1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Xen time implementation.
4 *
5 * This is implemented in terms of a clocksource driver which uses
6 * the hypervisor clock as a nanosecond timebase, and a clockevent
7 * driver which uses the hypervisor's timer mechanism.
8 *
9 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
10 */
11 #include <linux/kernel.h>
12 #include <linux/interrupt.h>
13 #include <linux/clocksource.h>
14 #include <linux/clockchips.h>
15 #include <linux/gfp.h>
16 #include <linux/slab.h>
17 #include <linux/pvclock_gtod.h>
18 #include <linux/timekeeper_internal.h>
19
20 #include <asm/pvclock.h>
21 #include <asm/xen/hypervisor.h>
22 #include <asm/xen/hypercall.h>
23
24 #include <xen/events.h>
25 #include <xen/features.h>
26 #include <xen/interface/xen.h>
27 #include <xen/interface/vcpu.h>
28
29 #include "xen-ops.h"
30
31 /* Xen may fire a timer up to this many ns early */
32 #define TIMER_SLOP 100000
33
34 static u64 xen_sched_clock_offset __read_mostly;
35
36 /* Get the TSC speed from Xen */
xen_tsc_khz(void)37 static unsigned long xen_tsc_khz(void)
38 {
39 struct pvclock_vcpu_time_info *info =
40 &HYPERVISOR_shared_info->vcpu_info[0].time;
41
42 return pvclock_tsc_khz(info);
43 }
44
xen_clocksource_read(void)45 static u64 xen_clocksource_read(void)
46 {
47 struct pvclock_vcpu_time_info *src;
48 u64 ret;
49
50 preempt_disable_notrace();
51 src = &__this_cpu_read(xen_vcpu)->time;
52 ret = pvclock_clocksource_read(src);
53 preempt_enable_notrace();
54 return ret;
55 }
56
xen_clocksource_get_cycles(struct clocksource * cs)57 static u64 xen_clocksource_get_cycles(struct clocksource *cs)
58 {
59 return xen_clocksource_read();
60 }
61
xen_sched_clock(void)62 static u64 xen_sched_clock(void)
63 {
64 return xen_clocksource_read() - xen_sched_clock_offset;
65 }
66
xen_read_wallclock(struct timespec64 * ts)67 static void xen_read_wallclock(struct timespec64 *ts)
68 {
69 struct shared_info *s = HYPERVISOR_shared_info;
70 struct pvclock_wall_clock *wall_clock = &(s->wc);
71 struct pvclock_vcpu_time_info *vcpu_time;
72
73 vcpu_time = &get_cpu_var(xen_vcpu)->time;
74 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
75 put_cpu_var(xen_vcpu);
76 }
77
xen_get_wallclock(struct timespec64 * now)78 static void xen_get_wallclock(struct timespec64 *now)
79 {
80 xen_read_wallclock(now);
81 }
82
xen_set_wallclock(const struct timespec64 * now)83 static int xen_set_wallclock(const struct timespec64 *now)
84 {
85 return -ENODEV;
86 }
87
xen_pvclock_gtod_notify(struct notifier_block * nb,unsigned long was_set,void * priv)88 static int xen_pvclock_gtod_notify(struct notifier_block *nb,
89 unsigned long was_set, void *priv)
90 {
91 /* Protected by the calling core code serialization */
92 static struct timespec64 next_sync;
93
94 struct xen_platform_op op;
95 struct timespec64 now;
96 struct timekeeper *tk = priv;
97 static bool settime64_supported = true;
98 int ret;
99
100 now.tv_sec = tk->xtime_sec;
101 now.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
102
103 /*
104 * We only take the expensive HV call when the clock was set
105 * or when the 11 minutes RTC synchronization time elapsed.
106 */
107 if (!was_set && timespec64_compare(&now, &next_sync) < 0)
108 return NOTIFY_OK;
109
110 again:
111 if (settime64_supported) {
112 op.cmd = XENPF_settime64;
113 op.u.settime64.mbz = 0;
114 op.u.settime64.secs = now.tv_sec;
115 op.u.settime64.nsecs = now.tv_nsec;
116 op.u.settime64.system_time = xen_clocksource_read();
117 } else {
118 op.cmd = XENPF_settime32;
119 op.u.settime32.secs = now.tv_sec;
120 op.u.settime32.nsecs = now.tv_nsec;
121 op.u.settime32.system_time = xen_clocksource_read();
122 }
123
124 ret = HYPERVISOR_platform_op(&op);
125
126 if (ret == -ENOSYS && settime64_supported) {
127 settime64_supported = false;
128 goto again;
129 }
130 if (ret < 0)
131 return NOTIFY_BAD;
132
133 /*
134 * Move the next drift compensation time 11 minutes
135 * ahead. That's emulating the sync_cmos_clock() update for
136 * the hardware RTC.
137 */
138 next_sync = now;
139 next_sync.tv_sec += 11 * 60;
140
141 return NOTIFY_OK;
142 }
143
144 static struct notifier_block xen_pvclock_gtod_notifier = {
145 .notifier_call = xen_pvclock_gtod_notify,
146 };
147
148 static struct clocksource xen_clocksource __read_mostly = {
149 .name = "xen",
150 .rating = 400,
151 .read = xen_clocksource_get_cycles,
152 .mask = ~0,
153 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
154 };
155
156 /*
157 Xen clockevent implementation
158
159 Xen has two clockevent implementations:
160
161 The old timer_op one works with all released versions of Xen prior
162 to version 3.0.4. This version of the hypervisor provides a
163 single-shot timer with nanosecond resolution. However, sharing the
164 same event channel is a 100Hz tick which is delivered while the
165 vcpu is running. We don't care about or use this tick, but it will
166 cause the core time code to think the timer fired too soon, and
167 will end up resetting it each time. It could be filtered, but
168 doing so has complications when the ktime clocksource is not yet
169 the xen clocksource (ie, at boot time).
170
171 The new vcpu_op-based timer interface allows the tick timer period
172 to be changed or turned off. The tick timer is not useful as a
173 periodic timer because events are only delivered to running vcpus.
174 The one-shot timer can report when a timeout is in the past, so
175 set_next_event is capable of returning -ETIME when appropriate.
176 This interface is used when available.
177 */
178
179
180 /*
181 Get a hypervisor absolute time. In theory we could maintain an
182 offset between the kernel's time and the hypervisor's time, and
183 apply that to a kernel's absolute timeout. Unfortunately the
184 hypervisor and kernel times can drift even if the kernel is using
185 the Xen clocksource, because ntp can warp the kernel's clocksource.
186 */
get_abs_timeout(unsigned long delta)187 static s64 get_abs_timeout(unsigned long delta)
188 {
189 return xen_clocksource_read() + delta;
190 }
191
xen_timerop_shutdown(struct clock_event_device * evt)192 static int xen_timerop_shutdown(struct clock_event_device *evt)
193 {
194 /* cancel timeout */
195 HYPERVISOR_set_timer_op(0);
196
197 return 0;
198 }
199
xen_timerop_set_next_event(unsigned long delta,struct clock_event_device * evt)200 static int xen_timerop_set_next_event(unsigned long delta,
201 struct clock_event_device *evt)
202 {
203 WARN_ON(!clockevent_state_oneshot(evt));
204
205 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
206 BUG();
207
208 /* We may have missed the deadline, but there's no real way of
209 knowing for sure. If the event was in the past, then we'll
210 get an immediate interrupt. */
211
212 return 0;
213 }
214
215 static const struct clock_event_device xen_timerop_clockevent = {
216 .name = "xen",
217 .features = CLOCK_EVT_FEAT_ONESHOT,
218
219 .max_delta_ns = 0xffffffff,
220 .max_delta_ticks = 0xffffffff,
221 .min_delta_ns = TIMER_SLOP,
222 .min_delta_ticks = TIMER_SLOP,
223
224 .mult = 1,
225 .shift = 0,
226 .rating = 500,
227
228 .set_state_shutdown = xen_timerop_shutdown,
229 .set_next_event = xen_timerop_set_next_event,
230 };
231
xen_vcpuop_shutdown(struct clock_event_device * evt)232 static int xen_vcpuop_shutdown(struct clock_event_device *evt)
233 {
234 int cpu = smp_processor_id();
235
236 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, xen_vcpu_nr(cpu),
237 NULL) ||
238 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
239 NULL))
240 BUG();
241
242 return 0;
243 }
244
xen_vcpuop_set_oneshot(struct clock_event_device * evt)245 static int xen_vcpuop_set_oneshot(struct clock_event_device *evt)
246 {
247 int cpu = smp_processor_id();
248
249 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
250 NULL))
251 BUG();
252
253 return 0;
254 }
255
xen_vcpuop_set_next_event(unsigned long delta,struct clock_event_device * evt)256 static int xen_vcpuop_set_next_event(unsigned long delta,
257 struct clock_event_device *evt)
258 {
259 int cpu = smp_processor_id();
260 struct vcpu_set_singleshot_timer single;
261 int ret;
262
263 WARN_ON(!clockevent_state_oneshot(evt));
264
265 single.timeout_abs_ns = get_abs_timeout(delta);
266 /* Get an event anyway, even if the timeout is already expired */
267 single.flags = 0;
268
269 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, xen_vcpu_nr(cpu),
270 &single);
271 BUG_ON(ret != 0);
272
273 return ret;
274 }
275
276 static const struct clock_event_device xen_vcpuop_clockevent = {
277 .name = "xen",
278 .features = CLOCK_EVT_FEAT_ONESHOT,
279
280 .max_delta_ns = 0xffffffff,
281 .max_delta_ticks = 0xffffffff,
282 .min_delta_ns = TIMER_SLOP,
283 .min_delta_ticks = TIMER_SLOP,
284
285 .mult = 1,
286 .shift = 0,
287 .rating = 500,
288
289 .set_state_shutdown = xen_vcpuop_shutdown,
290 .set_state_oneshot = xen_vcpuop_set_oneshot,
291 .set_next_event = xen_vcpuop_set_next_event,
292 };
293
294 static const struct clock_event_device *xen_clockevent =
295 &xen_timerop_clockevent;
296
297 struct xen_clock_event_device {
298 struct clock_event_device evt;
299 char name[16];
300 };
301 static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
302
xen_timer_interrupt(int irq,void * dev_id)303 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
304 {
305 struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
306 irqreturn_t ret;
307
308 ret = IRQ_NONE;
309 if (evt->event_handler) {
310 evt->event_handler(evt);
311 ret = IRQ_HANDLED;
312 }
313
314 return ret;
315 }
316
xen_teardown_timer(int cpu)317 void xen_teardown_timer(int cpu)
318 {
319 struct clock_event_device *evt;
320 evt = &per_cpu(xen_clock_events, cpu).evt;
321
322 if (evt->irq >= 0) {
323 unbind_from_irqhandler(evt->irq, NULL);
324 evt->irq = -1;
325 }
326 }
327
xen_setup_timer(int cpu)328 void xen_setup_timer(int cpu)
329 {
330 struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
331 struct clock_event_device *evt = &xevt->evt;
332 int irq;
333
334 WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
335 if (evt->irq >= 0)
336 xen_teardown_timer(cpu);
337
338 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
339
340 snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
341
342 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
343 IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
344 IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
345 xevt->name, NULL);
346 (void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
347
348 memcpy(evt, xen_clockevent, sizeof(*evt));
349
350 evt->cpumask = cpumask_of(cpu);
351 evt->irq = irq;
352 }
353
354
xen_setup_cpu_clockevents(void)355 void xen_setup_cpu_clockevents(void)
356 {
357 clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
358 }
359
xen_timer_resume(void)360 void xen_timer_resume(void)
361 {
362 int cpu;
363
364 pvclock_resume();
365
366 if (xen_clockevent != &xen_vcpuop_clockevent)
367 return;
368
369 for_each_online_cpu(cpu) {
370 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer,
371 xen_vcpu_nr(cpu), NULL))
372 BUG();
373 }
374 }
375
376 static const struct pv_time_ops xen_time_ops __initconst = {
377 .sched_clock = xen_sched_clock,
378 .steal_clock = xen_steal_clock,
379 };
380
381 static struct pvclock_vsyscall_time_info *xen_clock __read_mostly;
382
xen_save_time_memory_area(void)383 void xen_save_time_memory_area(void)
384 {
385 struct vcpu_register_time_memory_area t;
386 int ret;
387
388 if (!xen_clock)
389 return;
390
391 t.addr.v = NULL;
392
393 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
394 if (ret != 0)
395 pr_notice("Cannot save secondary vcpu_time_info (err %d)",
396 ret);
397 else
398 clear_page(xen_clock);
399 }
400
xen_restore_time_memory_area(void)401 void xen_restore_time_memory_area(void)
402 {
403 struct vcpu_register_time_memory_area t;
404 int ret;
405
406 if (!xen_clock)
407 return;
408
409 t.addr.v = &xen_clock->pvti;
410
411 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
412
413 /*
414 * We don't disable VCLOCK_PVCLOCK entirely if it fails to register the
415 * secondary time info with Xen or if we migrated to a host without the
416 * necessary flags. On both of these cases what happens is either
417 * process seeing a zeroed out pvti or seeing no PVCLOCK_TSC_STABLE_BIT
418 * bit set. Userspace checks the latter and if 0, it discards the data
419 * in pvti and fallbacks to a system call for a reliable timestamp.
420 */
421 if (ret != 0)
422 pr_notice("Cannot restore secondary vcpu_time_info (err %d)",
423 ret);
424 }
425
xen_setup_vsyscall_time_info(void)426 static void xen_setup_vsyscall_time_info(void)
427 {
428 struct vcpu_register_time_memory_area t;
429 struct pvclock_vsyscall_time_info *ti;
430 int ret;
431
432 ti = (struct pvclock_vsyscall_time_info *)get_zeroed_page(GFP_KERNEL);
433 if (!ti)
434 return;
435
436 t.addr.v = &ti->pvti;
437
438 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area, 0, &t);
439 if (ret) {
440 pr_notice("xen: VCLOCK_PVCLOCK not supported (err %d)\n", ret);
441 free_page((unsigned long)ti);
442 return;
443 }
444
445 /*
446 * If primary time info had this bit set, secondary should too since
447 * it's the same data on both just different memory regions. But we
448 * still check it in case hypervisor is buggy.
449 */
450 if (!(ti->pvti.flags & PVCLOCK_TSC_STABLE_BIT)) {
451 t.addr.v = NULL;
452 ret = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_time_memory_area,
453 0, &t);
454 if (!ret)
455 free_page((unsigned long)ti);
456
457 pr_notice("xen: VCLOCK_PVCLOCK not supported (tsc unstable)\n");
458 return;
459 }
460
461 xen_clock = ti;
462 pvclock_set_pvti_cpu0_va(xen_clock);
463
464 xen_clocksource.archdata.vclock_mode = VCLOCK_PVCLOCK;
465 }
466
xen_time_init(void)467 static void __init xen_time_init(void)
468 {
469 struct pvclock_vcpu_time_info *pvti;
470 int cpu = smp_processor_id();
471 struct timespec64 tp;
472
473 /* As Dom0 is never moved, no penalty on using TSC there */
474 if (xen_initial_domain())
475 xen_clocksource.rating = 275;
476
477 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
478
479 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, xen_vcpu_nr(cpu),
480 NULL) == 0) {
481 /* Successfully turned off 100Hz tick, so we have the
482 vcpuop-based timer interface */
483 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
484 xen_clockevent = &xen_vcpuop_clockevent;
485 }
486
487 /* Set initial system time with full resolution */
488 xen_read_wallclock(&tp);
489 do_settimeofday64(&tp);
490
491 setup_force_cpu_cap(X86_FEATURE_TSC);
492
493 /*
494 * We check ahead on the primary time info if this
495 * bit is supported hence speeding up Xen clocksource.
496 */
497 pvti = &__this_cpu_read(xen_vcpu)->time;
498 if (pvti->flags & PVCLOCK_TSC_STABLE_BIT) {
499 pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
500 xen_setup_vsyscall_time_info();
501 }
502
503 xen_setup_runstate_info(cpu);
504 xen_setup_timer(cpu);
505 xen_setup_cpu_clockevents();
506
507 xen_time_setup_guest();
508
509 if (xen_initial_domain())
510 pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
511 }
512
xen_init_time_ops(void)513 void __init xen_init_time_ops(void)
514 {
515 xen_sched_clock_offset = xen_clocksource_read();
516 pv_time_ops = xen_time_ops;
517
518 x86_init.timers.timer_init = xen_time_init;
519 x86_init.timers.setup_percpu_clockev = x86_init_noop;
520 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
521
522 x86_platform.calibrate_tsc = xen_tsc_khz;
523 x86_platform.get_wallclock = xen_get_wallclock;
524 /* Dom0 uses the native method to set the hardware RTC. */
525 if (!xen_initial_domain())
526 x86_platform.set_wallclock = xen_set_wallclock;
527 }
528
529 #ifdef CONFIG_XEN_PVHVM
xen_hvm_setup_cpu_clockevents(void)530 static void xen_hvm_setup_cpu_clockevents(void)
531 {
532 int cpu = smp_processor_id();
533 xen_setup_runstate_info(cpu);
534 /*
535 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
536 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
537 * early bootup and also during CPU hotplug events).
538 */
539 xen_setup_cpu_clockevents();
540 }
541
xen_hvm_init_time_ops(void)542 void __init xen_hvm_init_time_ops(void)
543 {
544 /*
545 * vector callback is needed otherwise we cannot receive interrupts
546 * on cpu > 0 and at this point we don't know how many cpus are
547 * available.
548 */
549 if (!xen_have_vector_callback)
550 return;
551
552 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
553 pr_info("Xen doesn't support pvclock on HVM, disable pv timer");
554 return;
555 }
556
557 xen_sched_clock_offset = xen_clocksource_read();
558 pv_time_ops = xen_time_ops;
559 x86_init.timers.setup_percpu_clockev = xen_time_init;
560 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
561
562 x86_platform.calibrate_tsc = xen_tsc_khz;
563 x86_platform.get_wallclock = xen_get_wallclock;
564 x86_platform.set_wallclock = xen_set_wallclock;
565 }
566 #endif
567