1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * XArray implementation
4 * Copyright (c) 2017 Microsoft Corporation
5 * Author: Matthew Wilcox <willy@infradead.org>
6 */
7
8 #include <linux/bitmap.h>
9 #include <linux/export.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/xarray.h>
13
14 /*
15 * Coding conventions in this file:
16 *
17 * @xa is used to refer to the entire xarray.
18 * @xas is the 'xarray operation state'. It may be either a pointer to
19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
20 * ambiguity.
21 * @index is the index of the entry being operated on
22 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
23 * @node refers to an xa_node; usually the primary one being operated on by
24 * this function.
25 * @offset is the index into the slots array inside an xa_node.
26 * @parent refers to the @xa_node closer to the head than @node.
27 * @entry refers to something stored in a slot in the xarray
28 */
29
xa_lock_type(const struct xarray * xa)30 static inline unsigned int xa_lock_type(const struct xarray *xa)
31 {
32 return (__force unsigned int)xa->xa_flags & 3;
33 }
34
xas_lock_type(struct xa_state * xas,unsigned int lock_type)35 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
36 {
37 if (lock_type == XA_LOCK_IRQ)
38 xas_lock_irq(xas);
39 else if (lock_type == XA_LOCK_BH)
40 xas_lock_bh(xas);
41 else
42 xas_lock(xas);
43 }
44
xas_unlock_type(struct xa_state * xas,unsigned int lock_type)45 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
46 {
47 if (lock_type == XA_LOCK_IRQ)
48 xas_unlock_irq(xas);
49 else if (lock_type == XA_LOCK_BH)
50 xas_unlock_bh(xas);
51 else
52 xas_unlock(xas);
53 }
54
xa_track_free(const struct xarray * xa)55 static inline bool xa_track_free(const struct xarray *xa)
56 {
57 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
58 }
59
xa_zero_busy(const struct xarray * xa)60 static inline bool xa_zero_busy(const struct xarray *xa)
61 {
62 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
63 }
64
xa_mark_set(struct xarray * xa,xa_mark_t mark)65 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
66 {
67 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
68 xa->xa_flags |= XA_FLAGS_MARK(mark);
69 }
70
xa_mark_clear(struct xarray * xa,xa_mark_t mark)71 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
72 {
73 if (xa->xa_flags & XA_FLAGS_MARK(mark))
74 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
75 }
76
node_marks(struct xa_node * node,xa_mark_t mark)77 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
78 {
79 return node->marks[(__force unsigned)mark];
80 }
81
node_get_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)82 static inline bool node_get_mark(struct xa_node *node,
83 unsigned int offset, xa_mark_t mark)
84 {
85 return test_bit(offset, node_marks(node, mark));
86 }
87
88 /* returns true if the bit was set */
node_set_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)89 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
90 xa_mark_t mark)
91 {
92 return __test_and_set_bit(offset, node_marks(node, mark));
93 }
94
95 /* returns true if the bit was set */
node_clear_mark(struct xa_node * node,unsigned int offset,xa_mark_t mark)96 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
97 xa_mark_t mark)
98 {
99 return __test_and_clear_bit(offset, node_marks(node, mark));
100 }
101
node_any_mark(struct xa_node * node,xa_mark_t mark)102 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
103 {
104 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
105 }
106
node_mark_all(struct xa_node * node,xa_mark_t mark)107 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
108 {
109 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
110 }
111
112 #define mark_inc(mark) do { \
113 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
114 } while (0)
115
116 /*
117 * xas_squash_marks() - Merge all marks to the first entry
118 * @xas: Array operation state.
119 *
120 * Set a mark on the first entry if any entry has it set. Clear marks on
121 * all sibling entries.
122 */
xas_squash_marks(const struct xa_state * xas)123 static void xas_squash_marks(const struct xa_state *xas)
124 {
125 unsigned int mark = 0;
126 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
127
128 if (!xas->xa_sibs)
129 return;
130
131 do {
132 unsigned long *marks = xas->xa_node->marks[mark];
133 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
134 continue;
135 __set_bit(xas->xa_offset, marks);
136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
137 } while (mark++ != (__force unsigned)XA_MARK_MAX);
138 }
139
140 /* extracts the offset within this node from the index */
get_offset(unsigned long index,struct xa_node * node)141 static unsigned int get_offset(unsigned long index, struct xa_node *node)
142 {
143 return (index >> node->shift) & XA_CHUNK_MASK;
144 }
145
xas_set_offset(struct xa_state * xas)146 static void xas_set_offset(struct xa_state *xas)
147 {
148 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
149 }
150
151 /* move the index either forwards (find) or backwards (sibling slot) */
xas_move_index(struct xa_state * xas,unsigned long offset)152 static void xas_move_index(struct xa_state *xas, unsigned long offset)
153 {
154 unsigned int shift = xas->xa_node->shift;
155 xas->xa_index &= ~XA_CHUNK_MASK << shift;
156 xas->xa_index += offset << shift;
157 }
158
xas_advance(struct xa_state * xas)159 static void xas_advance(struct xa_state *xas)
160 {
161 xas->xa_offset++;
162 xas_move_index(xas, xas->xa_offset);
163 }
164
set_bounds(struct xa_state * xas)165 static void *set_bounds(struct xa_state *xas)
166 {
167 xas->xa_node = XAS_BOUNDS;
168 return NULL;
169 }
170
171 /*
172 * Starts a walk. If the @xas is already valid, we assume that it's on
173 * the right path and just return where we've got to. If we're in an
174 * error state, return NULL. If the index is outside the current scope
175 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
176 * set @xas->xa_node to NULL and return the current head of the array.
177 */
xas_start(struct xa_state * xas)178 static void *xas_start(struct xa_state *xas)
179 {
180 void *entry;
181
182 if (xas_valid(xas))
183 return xas_reload(xas);
184 if (xas_error(xas))
185 return NULL;
186
187 entry = xa_head(xas->xa);
188 if (!xa_is_node(entry)) {
189 if (xas->xa_index)
190 return set_bounds(xas);
191 } else {
192 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
193 return set_bounds(xas);
194 }
195
196 xas->xa_node = NULL;
197 return entry;
198 }
199
xas_descend(struct xa_state * xas,struct xa_node * node)200 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
201 {
202 unsigned int offset = get_offset(xas->xa_index, node);
203 void *entry = xa_entry(xas->xa, node, offset);
204
205 xas->xa_node = node;
206 if (xa_is_sibling(entry)) {
207 offset = xa_to_sibling(entry);
208 entry = xa_entry(xas->xa, node, offset);
209 }
210
211 xas->xa_offset = offset;
212 return entry;
213 }
214
215 /**
216 * xas_load() - Load an entry from the XArray (advanced).
217 * @xas: XArray operation state.
218 *
219 * Usually walks the @xas to the appropriate state to load the entry
220 * stored at xa_index. However, it will do nothing and return %NULL if
221 * @xas is in an error state. xas_load() will never expand the tree.
222 *
223 * If the xa_state is set up to operate on a multi-index entry, xas_load()
224 * may return %NULL or an internal entry, even if there are entries
225 * present within the range specified by @xas.
226 *
227 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
228 * Return: Usually an entry in the XArray, but see description for exceptions.
229 */
xas_load(struct xa_state * xas)230 void *xas_load(struct xa_state *xas)
231 {
232 void *entry = xas_start(xas);
233
234 while (xa_is_node(entry)) {
235 struct xa_node *node = xa_to_node(entry);
236
237 if (xas->xa_shift > node->shift)
238 break;
239 entry = xas_descend(xas, node);
240 if (node->shift == 0)
241 break;
242 }
243 return entry;
244 }
245 EXPORT_SYMBOL_GPL(xas_load);
246
247 /* Move the radix tree node cache here */
248 extern struct kmem_cache *radix_tree_node_cachep;
249 extern void radix_tree_node_rcu_free(struct rcu_head *head);
250
251 #define XA_RCU_FREE ((struct xarray *)1)
252
xa_node_free(struct xa_node * node)253 static void xa_node_free(struct xa_node *node)
254 {
255 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
256 node->array = XA_RCU_FREE;
257 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
258 }
259
260 /*
261 * xas_destroy() - Free any resources allocated during the XArray operation.
262 * @xas: XArray operation state.
263 *
264 * This function is now internal-only.
265 */
xas_destroy(struct xa_state * xas)266 static void xas_destroy(struct xa_state *xas)
267 {
268 struct xa_node *node = xas->xa_alloc;
269
270 if (!node)
271 return;
272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 kmem_cache_free(radix_tree_node_cachep, node);
274 xas->xa_alloc = NULL;
275 }
276
277 /**
278 * xas_nomem() - Allocate memory if needed.
279 * @xas: XArray operation state.
280 * @gfp: Memory allocation flags.
281 *
282 * If we need to add new nodes to the XArray, we try to allocate memory
283 * with GFP_NOWAIT while holding the lock, which will usually succeed.
284 * If it fails, @xas is flagged as needing memory to continue. The caller
285 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
286 * the caller should retry the operation.
287 *
288 * Forward progress is guaranteed as one node is allocated here and
289 * stored in the xa_state where it will be found by xas_alloc(). More
290 * nodes will likely be found in the slab allocator, but we do not tie
291 * them up here.
292 *
293 * Return: true if memory was needed, and was successfully allocated.
294 */
xas_nomem(struct xa_state * xas,gfp_t gfp)295 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
296 {
297 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
298 xas_destroy(xas);
299 return false;
300 }
301 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
302 gfp |= __GFP_ACCOUNT;
303 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
304 if (!xas->xa_alloc)
305 return false;
306 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
307 xas->xa_node = XAS_RESTART;
308 return true;
309 }
310 EXPORT_SYMBOL_GPL(xas_nomem);
311
312 /*
313 * __xas_nomem() - Drop locks and allocate memory if needed.
314 * @xas: XArray operation state.
315 * @gfp: Memory allocation flags.
316 *
317 * Internal variant of xas_nomem().
318 *
319 * Return: true if memory was needed, and was successfully allocated.
320 */
__xas_nomem(struct xa_state * xas,gfp_t gfp)321 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
322 __must_hold(xas->xa->xa_lock)
323 {
324 unsigned int lock_type = xa_lock_type(xas->xa);
325
326 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
327 xas_destroy(xas);
328 return false;
329 }
330 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
331 gfp |= __GFP_ACCOUNT;
332 if (gfpflags_allow_blocking(gfp)) {
333 xas_unlock_type(xas, lock_type);
334 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
335 xas_lock_type(xas, lock_type);
336 } else {
337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
338 }
339 if (!xas->xa_alloc)
340 return false;
341 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
342 xas->xa_node = XAS_RESTART;
343 return true;
344 }
345
xas_update(struct xa_state * xas,struct xa_node * node)346 static void xas_update(struct xa_state *xas, struct xa_node *node)
347 {
348 if (xas->xa_update)
349 xas->xa_update(node);
350 else
351 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
352 }
353
xas_alloc(struct xa_state * xas,unsigned int shift)354 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
355 {
356 struct xa_node *parent = xas->xa_node;
357 struct xa_node *node = xas->xa_alloc;
358
359 if (xas_invalid(xas))
360 return NULL;
361
362 if (node) {
363 xas->xa_alloc = NULL;
364 } else {
365 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
366
367 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
368 gfp |= __GFP_ACCOUNT;
369
370 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
371 if (!node) {
372 xas_set_err(xas, -ENOMEM);
373 return NULL;
374 }
375 }
376
377 if (parent) {
378 node->offset = xas->xa_offset;
379 parent->count++;
380 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
381 xas_update(xas, parent);
382 }
383 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
384 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
385 node->shift = shift;
386 node->count = 0;
387 node->nr_values = 0;
388 RCU_INIT_POINTER(node->parent, xas->xa_node);
389 node->array = xas->xa;
390
391 return node;
392 }
393
394 #ifdef CONFIG_XARRAY_MULTI
395 /* Returns the number of indices covered by a given xa_state */
xas_size(const struct xa_state * xas)396 static unsigned long xas_size(const struct xa_state *xas)
397 {
398 return (xas->xa_sibs + 1UL) << xas->xa_shift;
399 }
400 #endif
401
402 /*
403 * Use this to calculate the maximum index that will need to be created
404 * in order to add the entry described by @xas. Because we cannot store a
405 * multiple-index entry at index 0, the calculation is a little more complex
406 * than you might expect.
407 */
xas_max(struct xa_state * xas)408 static unsigned long xas_max(struct xa_state *xas)
409 {
410 unsigned long max = xas->xa_index;
411
412 #ifdef CONFIG_XARRAY_MULTI
413 if (xas->xa_shift || xas->xa_sibs) {
414 unsigned long mask = xas_size(xas) - 1;
415 max |= mask;
416 if (mask == max)
417 max++;
418 }
419 #endif
420
421 return max;
422 }
423
424 /* The maximum index that can be contained in the array without expanding it */
max_index(void * entry)425 static unsigned long max_index(void *entry)
426 {
427 if (!xa_is_node(entry))
428 return 0;
429 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
430 }
431
xas_shrink(struct xa_state * xas)432 static void xas_shrink(struct xa_state *xas)
433 {
434 struct xarray *xa = xas->xa;
435 struct xa_node *node = xas->xa_node;
436
437 for (;;) {
438 void *entry;
439
440 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
441 if (node->count != 1)
442 break;
443 entry = xa_entry_locked(xa, node, 0);
444 if (!entry)
445 break;
446 if (!xa_is_node(entry) && node->shift)
447 break;
448 if (xa_is_zero(entry) && xa_zero_busy(xa))
449 entry = NULL;
450 xas->xa_node = XAS_BOUNDS;
451
452 RCU_INIT_POINTER(xa->xa_head, entry);
453 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
454 xa_mark_clear(xa, XA_FREE_MARK);
455
456 node->count = 0;
457 node->nr_values = 0;
458 if (!xa_is_node(entry))
459 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
460 xas_update(xas, node);
461 xa_node_free(node);
462 if (!xa_is_node(entry))
463 break;
464 node = xa_to_node(entry);
465 node->parent = NULL;
466 }
467 }
468
469 /*
470 * xas_delete_node() - Attempt to delete an xa_node
471 * @xas: Array operation state.
472 *
473 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
474 * a non-zero reference count.
475 */
xas_delete_node(struct xa_state * xas)476 static void xas_delete_node(struct xa_state *xas)
477 {
478 struct xa_node *node = xas->xa_node;
479
480 for (;;) {
481 struct xa_node *parent;
482
483 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
484 if (node->count)
485 break;
486
487 parent = xa_parent_locked(xas->xa, node);
488 xas->xa_node = parent;
489 xas->xa_offset = node->offset;
490 xa_node_free(node);
491
492 if (!parent) {
493 xas->xa->xa_head = NULL;
494 xas->xa_node = XAS_BOUNDS;
495 return;
496 }
497
498 parent->slots[xas->xa_offset] = NULL;
499 parent->count--;
500 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
501 node = parent;
502 xas_update(xas, node);
503 }
504
505 if (!node->parent)
506 xas_shrink(xas);
507 }
508
509 /**
510 * xas_free_nodes() - Free this node and all nodes that it references
511 * @xas: Array operation state.
512 * @top: Node to free
513 *
514 * This node has been removed from the tree. We must now free it and all
515 * of its subnodes. There may be RCU walkers with references into the tree,
516 * so we must replace all entries with retry markers.
517 */
xas_free_nodes(struct xa_state * xas,struct xa_node * top)518 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
519 {
520 unsigned int offset = 0;
521 struct xa_node *node = top;
522
523 for (;;) {
524 void *entry = xa_entry_locked(xas->xa, node, offset);
525
526 if (node->shift && xa_is_node(entry)) {
527 node = xa_to_node(entry);
528 offset = 0;
529 continue;
530 }
531 if (entry)
532 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
533 offset++;
534 while (offset == XA_CHUNK_SIZE) {
535 struct xa_node *parent;
536
537 parent = xa_parent_locked(xas->xa, node);
538 offset = node->offset + 1;
539 node->count = 0;
540 node->nr_values = 0;
541 xas_update(xas, node);
542 xa_node_free(node);
543 if (node == top)
544 return;
545 node = parent;
546 }
547 }
548 }
549
550 /*
551 * xas_expand adds nodes to the head of the tree until it has reached
552 * sufficient height to be able to contain @xas->xa_index
553 */
xas_expand(struct xa_state * xas,void * head)554 static int xas_expand(struct xa_state *xas, void *head)
555 {
556 struct xarray *xa = xas->xa;
557 struct xa_node *node = NULL;
558 unsigned int shift = 0;
559 unsigned long max = xas_max(xas);
560
561 if (!head) {
562 if (max == 0)
563 return 0;
564 while ((max >> shift) >= XA_CHUNK_SIZE)
565 shift += XA_CHUNK_SHIFT;
566 return shift + XA_CHUNK_SHIFT;
567 } else if (xa_is_node(head)) {
568 node = xa_to_node(head);
569 shift = node->shift + XA_CHUNK_SHIFT;
570 }
571 xas->xa_node = NULL;
572
573 while (max > max_index(head)) {
574 xa_mark_t mark = 0;
575
576 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
577 node = xas_alloc(xas, shift);
578 if (!node)
579 return -ENOMEM;
580
581 node->count = 1;
582 if (xa_is_value(head))
583 node->nr_values = 1;
584 RCU_INIT_POINTER(node->slots[0], head);
585
586 /* Propagate the aggregated mark info to the new child */
587 for (;;) {
588 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
589 node_mark_all(node, XA_FREE_MARK);
590 if (!xa_marked(xa, XA_FREE_MARK)) {
591 node_clear_mark(node, 0, XA_FREE_MARK);
592 xa_mark_set(xa, XA_FREE_MARK);
593 }
594 } else if (xa_marked(xa, mark)) {
595 node_set_mark(node, 0, mark);
596 }
597 if (mark == XA_MARK_MAX)
598 break;
599 mark_inc(mark);
600 }
601
602 /*
603 * Now that the new node is fully initialised, we can add
604 * it to the tree
605 */
606 if (xa_is_node(head)) {
607 xa_to_node(head)->offset = 0;
608 rcu_assign_pointer(xa_to_node(head)->parent, node);
609 }
610 head = xa_mk_node(node);
611 rcu_assign_pointer(xa->xa_head, head);
612 xas_update(xas, node);
613
614 shift += XA_CHUNK_SHIFT;
615 }
616
617 xas->xa_node = node;
618 return shift;
619 }
620
621 /*
622 * xas_create() - Create a slot to store an entry in.
623 * @xas: XArray operation state.
624 * @allow_root: %true if we can store the entry in the root directly
625 *
626 * Most users will not need to call this function directly, as it is called
627 * by xas_store(). It is useful for doing conditional store operations
628 * (see the xa_cmpxchg() implementation for an example).
629 *
630 * Return: If the slot already existed, returns the contents of this slot.
631 * If the slot was newly created, returns %NULL. If it failed to create the
632 * slot, returns %NULL and indicates the error in @xas.
633 */
xas_create(struct xa_state * xas,bool allow_root)634 static void *xas_create(struct xa_state *xas, bool allow_root)
635 {
636 struct xarray *xa = xas->xa;
637 void *entry;
638 void __rcu **slot;
639 struct xa_node *node = xas->xa_node;
640 int shift;
641 unsigned int order = xas->xa_shift;
642
643 if (xas_top(node)) {
644 entry = xa_head_locked(xa);
645 xas->xa_node = NULL;
646 if (!entry && xa_zero_busy(xa))
647 entry = XA_ZERO_ENTRY;
648 shift = xas_expand(xas, entry);
649 if (shift < 0)
650 return NULL;
651 if (!shift && !allow_root)
652 shift = XA_CHUNK_SHIFT;
653 entry = xa_head_locked(xa);
654 slot = &xa->xa_head;
655 } else if (xas_error(xas)) {
656 return NULL;
657 } else if (node) {
658 unsigned int offset = xas->xa_offset;
659
660 shift = node->shift;
661 entry = xa_entry_locked(xa, node, offset);
662 slot = &node->slots[offset];
663 } else {
664 shift = 0;
665 entry = xa_head_locked(xa);
666 slot = &xa->xa_head;
667 }
668
669 while (shift > order) {
670 shift -= XA_CHUNK_SHIFT;
671 if (!entry) {
672 node = xas_alloc(xas, shift);
673 if (!node)
674 break;
675 if (xa_track_free(xa))
676 node_mark_all(node, XA_FREE_MARK);
677 rcu_assign_pointer(*slot, xa_mk_node(node));
678 } else if (xa_is_node(entry)) {
679 node = xa_to_node(entry);
680 } else {
681 break;
682 }
683 entry = xas_descend(xas, node);
684 slot = &node->slots[xas->xa_offset];
685 }
686
687 return entry;
688 }
689
690 /**
691 * xas_create_range() - Ensure that stores to this range will succeed
692 * @xas: XArray operation state.
693 *
694 * Creates all of the slots in the range covered by @xas. Sets @xas to
695 * create single-index entries and positions it at the beginning of the
696 * range. This is for the benefit of users which have not yet been
697 * converted to use multi-index entries.
698 */
xas_create_range(struct xa_state * xas)699 void xas_create_range(struct xa_state *xas)
700 {
701 unsigned long index = xas->xa_index;
702 unsigned char shift = xas->xa_shift;
703 unsigned char sibs = xas->xa_sibs;
704
705 xas->xa_index |= ((sibs + 1) << shift) - 1;
706 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
707 xas->xa_offset |= sibs;
708 xas->xa_shift = 0;
709 xas->xa_sibs = 0;
710
711 for (;;) {
712 xas_create(xas, true);
713 if (xas_error(xas))
714 goto restore;
715 if (xas->xa_index <= (index | XA_CHUNK_MASK))
716 goto success;
717 xas->xa_index -= XA_CHUNK_SIZE;
718
719 for (;;) {
720 struct xa_node *node = xas->xa_node;
721 xas->xa_node = xa_parent_locked(xas->xa, node);
722 xas->xa_offset = node->offset - 1;
723 if (node->offset != 0)
724 break;
725 }
726 }
727
728 restore:
729 xas->xa_shift = shift;
730 xas->xa_sibs = sibs;
731 xas->xa_index = index;
732 return;
733 success:
734 xas->xa_index = index;
735 if (xas->xa_node)
736 xas_set_offset(xas);
737 }
738 EXPORT_SYMBOL_GPL(xas_create_range);
739
update_node(struct xa_state * xas,struct xa_node * node,int count,int values)740 static void update_node(struct xa_state *xas, struct xa_node *node,
741 int count, int values)
742 {
743 if (!node || (!count && !values))
744 return;
745
746 node->count += count;
747 node->nr_values += values;
748 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
749 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
750 xas_update(xas, node);
751 if (count < 0)
752 xas_delete_node(xas);
753 }
754
755 /**
756 * xas_store() - Store this entry in the XArray.
757 * @xas: XArray operation state.
758 * @entry: New entry.
759 *
760 * If @xas is operating on a multi-index entry, the entry returned by this
761 * function is essentially meaningless (it may be an internal entry or it
762 * may be %NULL, even if there are non-NULL entries at some of the indices
763 * covered by the range). This is not a problem for any current users,
764 * and can be changed if needed.
765 *
766 * Return: The old entry at this index.
767 */
xas_store(struct xa_state * xas,void * entry)768 void *xas_store(struct xa_state *xas, void *entry)
769 {
770 struct xa_node *node;
771 void __rcu **slot = &xas->xa->xa_head;
772 unsigned int offset, max;
773 int count = 0;
774 int values = 0;
775 void *first, *next;
776 bool value = xa_is_value(entry);
777
778 if (entry) {
779 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
780 first = xas_create(xas, allow_root);
781 } else {
782 first = xas_load(xas);
783 }
784
785 if (xas_invalid(xas))
786 return first;
787 node = xas->xa_node;
788 if (node && (xas->xa_shift < node->shift))
789 xas->xa_sibs = 0;
790 if ((first == entry) && !xas->xa_sibs)
791 return first;
792
793 next = first;
794 offset = xas->xa_offset;
795 max = xas->xa_offset + xas->xa_sibs;
796 if (node) {
797 slot = &node->slots[offset];
798 if (xas->xa_sibs)
799 xas_squash_marks(xas);
800 }
801 if (!entry)
802 xas_init_marks(xas);
803
804 for (;;) {
805 /*
806 * Must clear the marks before setting the entry to NULL,
807 * otherwise xas_for_each_marked may find a NULL entry and
808 * stop early. rcu_assign_pointer contains a release barrier
809 * so the mark clearing will appear to happen before the
810 * entry is set to NULL.
811 */
812 rcu_assign_pointer(*slot, entry);
813 if (xa_is_node(next) && (!node || node->shift))
814 xas_free_nodes(xas, xa_to_node(next));
815 if (!node)
816 break;
817 count += !next - !entry;
818 values += !xa_is_value(first) - !value;
819 if (entry) {
820 if (offset == max)
821 break;
822 if (!xa_is_sibling(entry))
823 entry = xa_mk_sibling(xas->xa_offset);
824 } else {
825 if (offset == XA_CHUNK_MASK)
826 break;
827 }
828 next = xa_entry_locked(xas->xa, node, ++offset);
829 if (!xa_is_sibling(next)) {
830 if (!entry && (offset > max))
831 break;
832 first = next;
833 }
834 slot++;
835 }
836
837 update_node(xas, node, count, values);
838 return first;
839 }
840 EXPORT_SYMBOL_GPL(xas_store);
841
842 /**
843 * xas_get_mark() - Returns the state of this mark.
844 * @xas: XArray operation state.
845 * @mark: Mark number.
846 *
847 * Return: true if the mark is set, false if the mark is clear or @xas
848 * is in an error state.
849 */
xas_get_mark(const struct xa_state * xas,xa_mark_t mark)850 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
851 {
852 if (xas_invalid(xas))
853 return false;
854 if (!xas->xa_node)
855 return xa_marked(xas->xa, mark);
856 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
857 }
858 EXPORT_SYMBOL_GPL(xas_get_mark);
859
860 /**
861 * xas_set_mark() - Sets the mark on this entry and its parents.
862 * @xas: XArray operation state.
863 * @mark: Mark number.
864 *
865 * Sets the specified mark on this entry, and walks up the tree setting it
866 * on all the ancestor entries. Does nothing if @xas has not been walked to
867 * an entry, or is in an error state.
868 */
xas_set_mark(const struct xa_state * xas,xa_mark_t mark)869 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
870 {
871 struct xa_node *node = xas->xa_node;
872 unsigned int offset = xas->xa_offset;
873
874 if (xas_invalid(xas))
875 return;
876
877 while (node) {
878 if (node_set_mark(node, offset, mark))
879 return;
880 offset = node->offset;
881 node = xa_parent_locked(xas->xa, node);
882 }
883
884 if (!xa_marked(xas->xa, mark))
885 xa_mark_set(xas->xa, mark);
886 }
887 EXPORT_SYMBOL_GPL(xas_set_mark);
888
889 /**
890 * xas_clear_mark() - Clears the mark on this entry and its parents.
891 * @xas: XArray operation state.
892 * @mark: Mark number.
893 *
894 * Clears the specified mark on this entry, and walks back to the head
895 * attempting to clear it on all the ancestor entries. Does nothing if
896 * @xas has not been walked to an entry, or is in an error state.
897 */
xas_clear_mark(const struct xa_state * xas,xa_mark_t mark)898 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
899 {
900 struct xa_node *node = xas->xa_node;
901 unsigned int offset = xas->xa_offset;
902
903 if (xas_invalid(xas))
904 return;
905
906 while (node) {
907 if (!node_clear_mark(node, offset, mark))
908 return;
909 if (node_any_mark(node, mark))
910 return;
911
912 offset = node->offset;
913 node = xa_parent_locked(xas->xa, node);
914 }
915
916 if (xa_marked(xas->xa, mark))
917 xa_mark_clear(xas->xa, mark);
918 }
919 EXPORT_SYMBOL_GPL(xas_clear_mark);
920
921 /**
922 * xas_init_marks() - Initialise all marks for the entry
923 * @xas: Array operations state.
924 *
925 * Initialise all marks for the entry specified by @xas. If we're tracking
926 * free entries with a mark, we need to set it on all entries. All other
927 * marks are cleared.
928 *
929 * This implementation is not as efficient as it could be; we may walk
930 * up the tree multiple times.
931 */
xas_init_marks(const struct xa_state * xas)932 void xas_init_marks(const struct xa_state *xas)
933 {
934 xa_mark_t mark = 0;
935
936 for (;;) {
937 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
938 xas_set_mark(xas, mark);
939 else
940 xas_clear_mark(xas, mark);
941 if (mark == XA_MARK_MAX)
942 break;
943 mark_inc(mark);
944 }
945 }
946 EXPORT_SYMBOL_GPL(xas_init_marks);
947
948 /**
949 * xas_pause() - Pause a walk to drop a lock.
950 * @xas: XArray operation state.
951 *
952 * Some users need to pause a walk and drop the lock they're holding in
953 * order to yield to a higher priority thread or carry out an operation
954 * on an entry. Those users should call this function before they drop
955 * the lock. It resets the @xas to be suitable for the next iteration
956 * of the loop after the user has reacquired the lock. If most entries
957 * found during a walk require you to call xas_pause(), the xa_for_each()
958 * iterator may be more appropriate.
959 *
960 * Note that xas_pause() only works for forward iteration. If a user needs
961 * to pause a reverse iteration, we will need a xas_pause_rev().
962 */
xas_pause(struct xa_state * xas)963 void xas_pause(struct xa_state *xas)
964 {
965 struct xa_node *node = xas->xa_node;
966
967 if (xas_invalid(xas))
968 return;
969
970 if (node) {
971 unsigned int offset = xas->xa_offset;
972 while (++offset < XA_CHUNK_SIZE) {
973 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
974 break;
975 }
976 xas->xa_index += (offset - xas->xa_offset) << node->shift;
977 } else {
978 xas->xa_index++;
979 }
980 xas->xa_node = XAS_RESTART;
981 }
982 EXPORT_SYMBOL_GPL(xas_pause);
983
984 /*
985 * __xas_prev() - Find the previous entry in the XArray.
986 * @xas: XArray operation state.
987 *
988 * Helper function for xas_prev() which handles all the complex cases
989 * out of line.
990 */
__xas_prev(struct xa_state * xas)991 void *__xas_prev(struct xa_state *xas)
992 {
993 void *entry;
994
995 if (!xas_frozen(xas->xa_node))
996 xas->xa_index--;
997 if (!xas->xa_node)
998 return set_bounds(xas);
999 if (xas_not_node(xas->xa_node))
1000 return xas_load(xas);
1001
1002 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1003 xas->xa_offset--;
1004
1005 while (xas->xa_offset == 255) {
1006 xas->xa_offset = xas->xa_node->offset - 1;
1007 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1008 if (!xas->xa_node)
1009 return set_bounds(xas);
1010 }
1011
1012 for (;;) {
1013 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1014 if (!xa_is_node(entry))
1015 return entry;
1016
1017 xas->xa_node = xa_to_node(entry);
1018 xas_set_offset(xas);
1019 }
1020 }
1021 EXPORT_SYMBOL_GPL(__xas_prev);
1022
1023 /*
1024 * __xas_next() - Find the next entry in the XArray.
1025 * @xas: XArray operation state.
1026 *
1027 * Helper function for xas_next() which handles all the complex cases
1028 * out of line.
1029 */
__xas_next(struct xa_state * xas)1030 void *__xas_next(struct xa_state *xas)
1031 {
1032 void *entry;
1033
1034 if (!xas_frozen(xas->xa_node))
1035 xas->xa_index++;
1036 if (!xas->xa_node)
1037 return set_bounds(xas);
1038 if (xas_not_node(xas->xa_node))
1039 return xas_load(xas);
1040
1041 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1042 xas->xa_offset++;
1043
1044 while (xas->xa_offset == XA_CHUNK_SIZE) {
1045 xas->xa_offset = xas->xa_node->offset + 1;
1046 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1047 if (!xas->xa_node)
1048 return set_bounds(xas);
1049 }
1050
1051 for (;;) {
1052 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1053 if (!xa_is_node(entry))
1054 return entry;
1055
1056 xas->xa_node = xa_to_node(entry);
1057 xas_set_offset(xas);
1058 }
1059 }
1060 EXPORT_SYMBOL_GPL(__xas_next);
1061
1062 /**
1063 * xas_find() - Find the next present entry in the XArray.
1064 * @xas: XArray operation state.
1065 * @max: Highest index to return.
1066 *
1067 * If the @xas has not yet been walked to an entry, return the entry
1068 * which has an index >= xas.xa_index. If it has been walked, the entry
1069 * currently being pointed at has been processed, and so we move to the
1070 * next entry.
1071 *
1072 * If no entry is found and the array is smaller than @max, the iterator
1073 * is set to the smallest index not yet in the array. This allows @xas
1074 * to be immediately passed to xas_store().
1075 *
1076 * Return: The entry, if found, otherwise %NULL.
1077 */
xas_find(struct xa_state * xas,unsigned long max)1078 void *xas_find(struct xa_state *xas, unsigned long max)
1079 {
1080 void *entry;
1081
1082 if (xas_error(xas))
1083 return NULL;
1084
1085 if (!xas->xa_node) {
1086 xas->xa_index = 1;
1087 return set_bounds(xas);
1088 } else if (xas_top(xas->xa_node)) {
1089 entry = xas_load(xas);
1090 if (entry || xas_not_node(xas->xa_node))
1091 return entry;
1092 } else if (!xas->xa_node->shift &&
1093 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1094 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1095 }
1096
1097 xas_advance(xas);
1098
1099 while (xas->xa_node && (xas->xa_index <= max)) {
1100 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1101 xas->xa_offset = xas->xa_node->offset + 1;
1102 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1103 continue;
1104 }
1105
1106 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1107 if (xa_is_node(entry)) {
1108 xas->xa_node = xa_to_node(entry);
1109 xas->xa_offset = 0;
1110 continue;
1111 }
1112 if (entry && !xa_is_sibling(entry))
1113 return entry;
1114
1115 xas_advance(xas);
1116 }
1117
1118 if (!xas->xa_node)
1119 xas->xa_node = XAS_BOUNDS;
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL_GPL(xas_find);
1123
1124 /**
1125 * xas_find_marked() - Find the next marked entry in the XArray.
1126 * @xas: XArray operation state.
1127 * @max: Highest index to return.
1128 * @mark: Mark number to search for.
1129 *
1130 * If the @xas has not yet been walked to an entry, return the marked entry
1131 * which has an index >= xas.xa_index. If it has been walked, the entry
1132 * currently being pointed at has been processed, and so we return the
1133 * first marked entry with an index > xas.xa_index.
1134 *
1135 * If no marked entry is found and the array is smaller than @max, @xas is
1136 * set to the bounds state and xas->xa_index is set to the smallest index
1137 * not yet in the array. This allows @xas to be immediately passed to
1138 * xas_store().
1139 *
1140 * If no entry is found before @max is reached, @xas is set to the restart
1141 * state.
1142 *
1143 * Return: The entry, if found, otherwise %NULL.
1144 */
xas_find_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1145 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1146 {
1147 bool advance = true;
1148 unsigned int offset;
1149 void *entry;
1150
1151 if (xas_error(xas))
1152 return NULL;
1153
1154 if (!xas->xa_node) {
1155 xas->xa_index = 1;
1156 goto out;
1157 } else if (xas_top(xas->xa_node)) {
1158 advance = false;
1159 entry = xa_head(xas->xa);
1160 xas->xa_node = NULL;
1161 if (xas->xa_index > max_index(entry))
1162 goto out;
1163 if (!xa_is_node(entry)) {
1164 if (xa_marked(xas->xa, mark))
1165 return entry;
1166 xas->xa_index = 1;
1167 goto out;
1168 }
1169 xas->xa_node = xa_to_node(entry);
1170 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1171 }
1172
1173 while (xas->xa_index <= max) {
1174 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1175 xas->xa_offset = xas->xa_node->offset + 1;
1176 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1177 if (!xas->xa_node)
1178 break;
1179 advance = false;
1180 continue;
1181 }
1182
1183 if (!advance) {
1184 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1185 if (xa_is_sibling(entry)) {
1186 xas->xa_offset = xa_to_sibling(entry);
1187 xas_move_index(xas, xas->xa_offset);
1188 }
1189 }
1190
1191 offset = xas_find_chunk(xas, advance, mark);
1192 if (offset > xas->xa_offset) {
1193 advance = false;
1194 xas_move_index(xas, offset);
1195 /* Mind the wrap */
1196 if ((xas->xa_index - 1) >= max)
1197 goto max;
1198 xas->xa_offset = offset;
1199 if (offset == XA_CHUNK_SIZE)
1200 continue;
1201 }
1202
1203 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1204 if (!xa_is_node(entry))
1205 return entry;
1206 xas->xa_node = xa_to_node(entry);
1207 xas_set_offset(xas);
1208 }
1209
1210 out:
1211 if (xas->xa_index > max)
1212 goto max;
1213 return set_bounds(xas);
1214 max:
1215 xas->xa_node = XAS_RESTART;
1216 return NULL;
1217 }
1218 EXPORT_SYMBOL_GPL(xas_find_marked);
1219
1220 /**
1221 * xas_find_conflict() - Find the next present entry in a range.
1222 * @xas: XArray operation state.
1223 *
1224 * The @xas describes both a range and a position within that range.
1225 *
1226 * Context: Any context. Expects xa_lock to be held.
1227 * Return: The next entry in the range covered by @xas or %NULL.
1228 */
xas_find_conflict(struct xa_state * xas)1229 void *xas_find_conflict(struct xa_state *xas)
1230 {
1231 void *curr;
1232
1233 if (xas_error(xas))
1234 return NULL;
1235
1236 if (!xas->xa_node)
1237 return NULL;
1238
1239 if (xas_top(xas->xa_node)) {
1240 curr = xas_start(xas);
1241 if (!curr)
1242 return NULL;
1243 while (xa_is_node(curr)) {
1244 struct xa_node *node = xa_to_node(curr);
1245 curr = xas_descend(xas, node);
1246 }
1247 if (curr)
1248 return curr;
1249 }
1250
1251 if (xas->xa_node->shift > xas->xa_shift)
1252 return NULL;
1253
1254 for (;;) {
1255 if (xas->xa_node->shift == xas->xa_shift) {
1256 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1257 break;
1258 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1259 xas->xa_offset = xas->xa_node->offset;
1260 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1261 if (!xas->xa_node)
1262 break;
1263 continue;
1264 }
1265 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1266 if (xa_is_sibling(curr))
1267 continue;
1268 while (xa_is_node(curr)) {
1269 xas->xa_node = xa_to_node(curr);
1270 xas->xa_offset = 0;
1271 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1272 }
1273 if (curr)
1274 return curr;
1275 }
1276 xas->xa_offset -= xas->xa_sibs;
1277 return NULL;
1278 }
1279 EXPORT_SYMBOL_GPL(xas_find_conflict);
1280
1281 /**
1282 * xa_load() - Load an entry from an XArray.
1283 * @xa: XArray.
1284 * @index: index into array.
1285 *
1286 * Context: Any context. Takes and releases the RCU lock.
1287 * Return: The entry at @index in @xa.
1288 */
xa_load(struct xarray * xa,unsigned long index)1289 void *xa_load(struct xarray *xa, unsigned long index)
1290 {
1291 XA_STATE(xas, xa, index);
1292 void *entry;
1293
1294 rcu_read_lock();
1295 do {
1296 entry = xas_load(&xas);
1297 if (xa_is_zero(entry))
1298 entry = NULL;
1299 } while (xas_retry(&xas, entry));
1300 rcu_read_unlock();
1301
1302 return entry;
1303 }
1304 EXPORT_SYMBOL(xa_load);
1305
xas_result(struct xa_state * xas,void * curr)1306 static void *xas_result(struct xa_state *xas, void *curr)
1307 {
1308 if (xa_is_zero(curr))
1309 return NULL;
1310 if (xas_error(xas))
1311 curr = xas->xa_node;
1312 return curr;
1313 }
1314
1315 /**
1316 * __xa_erase() - Erase this entry from the XArray while locked.
1317 * @xa: XArray.
1318 * @index: Index into array.
1319 *
1320 * After this function returns, loading from @index will return %NULL.
1321 * If the index is part of a multi-index entry, all indices will be erased
1322 * and none of the entries will be part of a multi-index entry.
1323 *
1324 * Context: Any context. Expects xa_lock to be held on entry.
1325 * Return: The entry which used to be at this index.
1326 */
__xa_erase(struct xarray * xa,unsigned long index)1327 void *__xa_erase(struct xarray *xa, unsigned long index)
1328 {
1329 XA_STATE(xas, xa, index);
1330 return xas_result(&xas, xas_store(&xas, NULL));
1331 }
1332 EXPORT_SYMBOL(__xa_erase);
1333
1334 /**
1335 * xa_erase() - Erase this entry from the XArray.
1336 * @xa: XArray.
1337 * @index: Index of entry.
1338 *
1339 * After this function returns, loading from @index will return %NULL.
1340 * If the index is part of a multi-index entry, all indices will be erased
1341 * and none of the entries will be part of a multi-index entry.
1342 *
1343 * Context: Any context. Takes and releases the xa_lock.
1344 * Return: The entry which used to be at this index.
1345 */
xa_erase(struct xarray * xa,unsigned long index)1346 void *xa_erase(struct xarray *xa, unsigned long index)
1347 {
1348 void *entry;
1349
1350 xa_lock(xa);
1351 entry = __xa_erase(xa, index);
1352 xa_unlock(xa);
1353
1354 return entry;
1355 }
1356 EXPORT_SYMBOL(xa_erase);
1357
1358 /**
1359 * __xa_store() - Store this entry in the XArray.
1360 * @xa: XArray.
1361 * @index: Index into array.
1362 * @entry: New entry.
1363 * @gfp: Memory allocation flags.
1364 *
1365 * You must already be holding the xa_lock when calling this function.
1366 * It will drop the lock if needed to allocate memory, and then reacquire
1367 * it afterwards.
1368 *
1369 * Context: Any context. Expects xa_lock to be held on entry. May
1370 * release and reacquire xa_lock if @gfp flags permit.
1371 * Return: The old entry at this index or xa_err() if an error happened.
1372 */
__xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1373 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1374 {
1375 XA_STATE(xas, xa, index);
1376 void *curr;
1377
1378 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1379 return XA_ERROR(-EINVAL);
1380 if (xa_track_free(xa) && !entry)
1381 entry = XA_ZERO_ENTRY;
1382
1383 do {
1384 curr = xas_store(&xas, entry);
1385 if (xa_track_free(xa))
1386 xas_clear_mark(&xas, XA_FREE_MARK);
1387 } while (__xas_nomem(&xas, gfp));
1388
1389 return xas_result(&xas, curr);
1390 }
1391 EXPORT_SYMBOL(__xa_store);
1392
1393 /**
1394 * xa_store() - Store this entry in the XArray.
1395 * @xa: XArray.
1396 * @index: Index into array.
1397 * @entry: New entry.
1398 * @gfp: Memory allocation flags.
1399 *
1400 * After this function returns, loads from this index will return @entry.
1401 * Storing into an existing multislot entry updates the entry of every index.
1402 * The marks associated with @index are unaffected unless @entry is %NULL.
1403 *
1404 * Context: Any context. Takes and releases the xa_lock.
1405 * May sleep if the @gfp flags permit.
1406 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1407 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1408 * failed.
1409 */
xa_store(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1410 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1411 {
1412 void *curr;
1413
1414 xa_lock(xa);
1415 curr = __xa_store(xa, index, entry, gfp);
1416 xa_unlock(xa);
1417
1418 return curr;
1419 }
1420 EXPORT_SYMBOL(xa_store);
1421
1422 /**
1423 * __xa_cmpxchg() - Store this entry in the XArray.
1424 * @xa: XArray.
1425 * @index: Index into array.
1426 * @old: Old value to test against.
1427 * @entry: New entry.
1428 * @gfp: Memory allocation flags.
1429 *
1430 * You must already be holding the xa_lock when calling this function.
1431 * It will drop the lock if needed to allocate memory, and then reacquire
1432 * it afterwards.
1433 *
1434 * Context: Any context. Expects xa_lock to be held on entry. May
1435 * release and reacquire xa_lock if @gfp flags permit.
1436 * Return: The old entry at this index or xa_err() if an error happened.
1437 */
__xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)1438 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1439 void *old, void *entry, gfp_t gfp)
1440 {
1441 XA_STATE(xas, xa, index);
1442 void *curr;
1443
1444 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1445 return XA_ERROR(-EINVAL);
1446
1447 do {
1448 curr = xas_load(&xas);
1449 if (curr == old) {
1450 xas_store(&xas, entry);
1451 if (xa_track_free(xa) && entry && !curr)
1452 xas_clear_mark(&xas, XA_FREE_MARK);
1453 }
1454 } while (__xas_nomem(&xas, gfp));
1455
1456 return xas_result(&xas, curr);
1457 }
1458 EXPORT_SYMBOL(__xa_cmpxchg);
1459
1460 /**
1461 * __xa_insert() - Store this entry in the XArray if no entry is present.
1462 * @xa: XArray.
1463 * @index: Index into array.
1464 * @entry: New entry.
1465 * @gfp: Memory allocation flags.
1466 *
1467 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1468 * if no entry is present. Inserting will fail if a reserved entry is
1469 * present, even though loading from this index will return NULL.
1470 *
1471 * Context: Any context. Expects xa_lock to be held on entry. May
1472 * release and reacquire xa_lock if @gfp flags permit.
1473 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
1474 * -ENOMEM if memory could not be allocated.
1475 */
__xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)1476 int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1477 {
1478 XA_STATE(xas, xa, index);
1479 void *curr;
1480
1481 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1482 return -EINVAL;
1483 if (!entry)
1484 entry = XA_ZERO_ENTRY;
1485
1486 do {
1487 curr = xas_load(&xas);
1488 if (!curr) {
1489 xas_store(&xas, entry);
1490 if (xa_track_free(xa))
1491 xas_clear_mark(&xas, XA_FREE_MARK);
1492 } else {
1493 xas_set_err(&xas, -EBUSY);
1494 }
1495 } while (__xas_nomem(&xas, gfp));
1496
1497 return xas_error(&xas);
1498 }
1499 EXPORT_SYMBOL(__xa_insert);
1500
1501 #ifdef CONFIG_XARRAY_MULTI
xas_set_range(struct xa_state * xas,unsigned long first,unsigned long last)1502 static void xas_set_range(struct xa_state *xas, unsigned long first,
1503 unsigned long last)
1504 {
1505 unsigned int shift = 0;
1506 unsigned long sibs = last - first;
1507 unsigned int offset = XA_CHUNK_MASK;
1508
1509 xas_set(xas, first);
1510
1511 while ((first & XA_CHUNK_MASK) == 0) {
1512 if (sibs < XA_CHUNK_MASK)
1513 break;
1514 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1515 break;
1516 shift += XA_CHUNK_SHIFT;
1517 if (offset == XA_CHUNK_MASK)
1518 offset = sibs & XA_CHUNK_MASK;
1519 sibs >>= XA_CHUNK_SHIFT;
1520 first >>= XA_CHUNK_SHIFT;
1521 }
1522
1523 offset = first & XA_CHUNK_MASK;
1524 if (offset + sibs > XA_CHUNK_MASK)
1525 sibs = XA_CHUNK_MASK - offset;
1526 if ((((first + sibs + 1) << shift) - 1) > last)
1527 sibs -= 1;
1528
1529 xas->xa_shift = shift;
1530 xas->xa_sibs = sibs;
1531 }
1532
1533 /**
1534 * xa_store_range() - Store this entry at a range of indices in the XArray.
1535 * @xa: XArray.
1536 * @first: First index to affect.
1537 * @last: Last index to affect.
1538 * @entry: New entry.
1539 * @gfp: Memory allocation flags.
1540 *
1541 * After this function returns, loads from any index between @first and @last,
1542 * inclusive will return @entry.
1543 * Storing into an existing multislot entry updates the entry of every index.
1544 * The marks associated with @index are unaffected unless @entry is %NULL.
1545 *
1546 * Context: Process context. Takes and releases the xa_lock. May sleep
1547 * if the @gfp flags permit.
1548 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1549 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1550 */
xa_store_range(struct xarray * xa,unsigned long first,unsigned long last,void * entry,gfp_t gfp)1551 void *xa_store_range(struct xarray *xa, unsigned long first,
1552 unsigned long last, void *entry, gfp_t gfp)
1553 {
1554 XA_STATE(xas, xa, 0);
1555
1556 if (WARN_ON_ONCE(xa_is_internal(entry)))
1557 return XA_ERROR(-EINVAL);
1558 if (last < first)
1559 return XA_ERROR(-EINVAL);
1560
1561 do {
1562 xas_lock(&xas);
1563 if (entry) {
1564 unsigned int order = BITS_PER_LONG;
1565 if (last + 1)
1566 order = __ffs(last + 1);
1567 xas_set_order(&xas, last, order);
1568 xas_create(&xas, true);
1569 if (xas_error(&xas))
1570 goto unlock;
1571 }
1572 do {
1573 xas_set_range(&xas, first, last);
1574 xas_store(&xas, entry);
1575 if (xas_error(&xas))
1576 goto unlock;
1577 first += xas_size(&xas);
1578 } while (first <= last);
1579 unlock:
1580 xas_unlock(&xas);
1581 } while (xas_nomem(&xas, gfp));
1582
1583 return xas_result(&xas, NULL);
1584 }
1585 EXPORT_SYMBOL(xa_store_range);
1586 #endif /* CONFIG_XARRAY_MULTI */
1587
1588 /**
1589 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1590 * @xa: XArray.
1591 * @id: Pointer to ID.
1592 * @limit: Range for allocated ID.
1593 * @entry: New entry.
1594 * @gfp: Memory allocation flags.
1595 *
1596 * Finds an empty entry in @xa between @limit.min and @limit.max,
1597 * stores the index into the @id pointer, then stores the entry at
1598 * that index. A concurrent lookup will not see an uninitialised @id.
1599 *
1600 * Context: Any context. Expects xa_lock to be held on entry. May
1601 * release and reacquire xa_lock if @gfp flags permit.
1602 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1603 * -EBUSY if there are no free entries in @limit.
1604 */
__xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)1605 int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1606 struct xa_limit limit, gfp_t gfp)
1607 {
1608 XA_STATE(xas, xa, 0);
1609
1610 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1611 return -EINVAL;
1612 if (WARN_ON_ONCE(!xa_track_free(xa)))
1613 return -EINVAL;
1614
1615 if (!entry)
1616 entry = XA_ZERO_ENTRY;
1617
1618 do {
1619 xas.xa_index = limit.min;
1620 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1621 if (xas.xa_node == XAS_RESTART)
1622 xas_set_err(&xas, -EBUSY);
1623 else
1624 *id = xas.xa_index;
1625 xas_store(&xas, entry);
1626 xas_clear_mark(&xas, XA_FREE_MARK);
1627 } while (__xas_nomem(&xas, gfp));
1628
1629 return xas_error(&xas);
1630 }
1631 EXPORT_SYMBOL(__xa_alloc);
1632
1633 /**
1634 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1635 * @xa: XArray.
1636 * @id: Pointer to ID.
1637 * @entry: New entry.
1638 * @limit: Range of allocated ID.
1639 * @next: Pointer to next ID to allocate.
1640 * @gfp: Memory allocation flags.
1641 *
1642 * Finds an empty entry in @xa between @limit.min and @limit.max,
1643 * stores the index into the @id pointer, then stores the entry at
1644 * that index. A concurrent lookup will not see an uninitialised @id.
1645 * The search for an empty entry will start at @next and will wrap
1646 * around if necessary.
1647 *
1648 * Context: Any context. Expects xa_lock to be held on entry. May
1649 * release and reacquire xa_lock if @gfp flags permit.
1650 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1651 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1652 * allocated or -EBUSY if there are no free entries in @limit.
1653 */
__xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1654 int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1655 struct xa_limit limit, u32 *next, gfp_t gfp)
1656 {
1657 u32 min = limit.min;
1658 int ret;
1659
1660 limit.min = max(min, *next);
1661 ret = __xa_alloc(xa, id, entry, limit, gfp);
1662 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1663 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1664 ret = 1;
1665 }
1666
1667 if (ret < 0 && limit.min > min) {
1668 limit.min = min;
1669 ret = __xa_alloc(xa, id, entry, limit, gfp);
1670 if (ret == 0)
1671 ret = 1;
1672 }
1673
1674 if (ret >= 0) {
1675 *next = *id + 1;
1676 if (*next == 0)
1677 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1678 }
1679 return ret;
1680 }
1681 EXPORT_SYMBOL(__xa_alloc_cyclic);
1682
1683 /**
1684 * __xa_set_mark() - Set this mark on this entry while locked.
1685 * @xa: XArray.
1686 * @index: Index of entry.
1687 * @mark: Mark number.
1688 *
1689 * Attempting to set a mark on a %NULL entry does not succeed.
1690 *
1691 * Context: Any context. Expects xa_lock to be held on entry.
1692 */
__xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1693 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1694 {
1695 XA_STATE(xas, xa, index);
1696 void *entry = xas_load(&xas);
1697
1698 if (entry)
1699 xas_set_mark(&xas, mark);
1700 }
1701 EXPORT_SYMBOL(__xa_set_mark);
1702
1703 /**
1704 * __xa_clear_mark() - Clear this mark on this entry while locked.
1705 * @xa: XArray.
1706 * @index: Index of entry.
1707 * @mark: Mark number.
1708 *
1709 * Context: Any context. Expects xa_lock to be held on entry.
1710 */
__xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1711 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1712 {
1713 XA_STATE(xas, xa, index);
1714 void *entry = xas_load(&xas);
1715
1716 if (entry)
1717 xas_clear_mark(&xas, mark);
1718 }
1719 EXPORT_SYMBOL(__xa_clear_mark);
1720
1721 /**
1722 * xa_get_mark() - Inquire whether this mark is set on this entry.
1723 * @xa: XArray.
1724 * @index: Index of entry.
1725 * @mark: Mark number.
1726 *
1727 * This function uses the RCU read lock, so the result may be out of date
1728 * by the time it returns. If you need the result to be stable, use a lock.
1729 *
1730 * Context: Any context. Takes and releases the RCU lock.
1731 * Return: True if the entry at @index has this mark set, false if it doesn't.
1732 */
xa_get_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1733 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1734 {
1735 XA_STATE(xas, xa, index);
1736 void *entry;
1737
1738 rcu_read_lock();
1739 entry = xas_start(&xas);
1740 while (xas_get_mark(&xas, mark)) {
1741 if (!xa_is_node(entry))
1742 goto found;
1743 entry = xas_descend(&xas, xa_to_node(entry));
1744 }
1745 rcu_read_unlock();
1746 return false;
1747 found:
1748 rcu_read_unlock();
1749 return true;
1750 }
1751 EXPORT_SYMBOL(xa_get_mark);
1752
1753 /**
1754 * xa_set_mark() - Set this mark on this entry.
1755 * @xa: XArray.
1756 * @index: Index of entry.
1757 * @mark: Mark number.
1758 *
1759 * Attempting to set a mark on a %NULL entry does not succeed.
1760 *
1761 * Context: Process context. Takes and releases the xa_lock.
1762 */
xa_set_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1763 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1764 {
1765 xa_lock(xa);
1766 __xa_set_mark(xa, index, mark);
1767 xa_unlock(xa);
1768 }
1769 EXPORT_SYMBOL(xa_set_mark);
1770
1771 /**
1772 * xa_clear_mark() - Clear this mark on this entry.
1773 * @xa: XArray.
1774 * @index: Index of entry.
1775 * @mark: Mark number.
1776 *
1777 * Clearing a mark always succeeds.
1778 *
1779 * Context: Process context. Takes and releases the xa_lock.
1780 */
xa_clear_mark(struct xarray * xa,unsigned long index,xa_mark_t mark)1781 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1782 {
1783 xa_lock(xa);
1784 __xa_clear_mark(xa, index, mark);
1785 xa_unlock(xa);
1786 }
1787 EXPORT_SYMBOL(xa_clear_mark);
1788
1789 /**
1790 * xa_find() - Search the XArray for an entry.
1791 * @xa: XArray.
1792 * @indexp: Pointer to an index.
1793 * @max: Maximum index to search to.
1794 * @filter: Selection criterion.
1795 *
1796 * Finds the entry in @xa which matches the @filter, and has the lowest
1797 * index that is at least @indexp and no more than @max.
1798 * If an entry is found, @indexp is updated to be the index of the entry.
1799 * This function is protected by the RCU read lock, so it may not find
1800 * entries which are being simultaneously added. It will not return an
1801 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1802 *
1803 * Context: Any context. Takes and releases the RCU lock.
1804 * Return: The entry, if found, otherwise %NULL.
1805 */
xa_find(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)1806 void *xa_find(struct xarray *xa, unsigned long *indexp,
1807 unsigned long max, xa_mark_t filter)
1808 {
1809 XA_STATE(xas, xa, *indexp);
1810 void *entry;
1811
1812 rcu_read_lock();
1813 do {
1814 if ((__force unsigned int)filter < XA_MAX_MARKS)
1815 entry = xas_find_marked(&xas, max, filter);
1816 else
1817 entry = xas_find(&xas, max);
1818 } while (xas_retry(&xas, entry));
1819 rcu_read_unlock();
1820
1821 if (entry)
1822 *indexp = xas.xa_index;
1823 return entry;
1824 }
1825 EXPORT_SYMBOL(xa_find);
1826
1827 /**
1828 * xa_find_after() - Search the XArray for a present entry.
1829 * @xa: XArray.
1830 * @indexp: Pointer to an index.
1831 * @max: Maximum index to search to.
1832 * @filter: Selection criterion.
1833 *
1834 * Finds the entry in @xa which matches the @filter and has the lowest
1835 * index that is above @indexp and no more than @max.
1836 * If an entry is found, @indexp is updated to be the index of the entry.
1837 * This function is protected by the RCU read lock, so it may miss entries
1838 * which are being simultaneously added. It will not return an
1839 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1840 *
1841 * Context: Any context. Takes and releases the RCU lock.
1842 * Return: The pointer, if found, otherwise %NULL.
1843 */
xa_find_after(struct xarray * xa,unsigned long * indexp,unsigned long max,xa_mark_t filter)1844 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1845 unsigned long max, xa_mark_t filter)
1846 {
1847 XA_STATE(xas, xa, *indexp + 1);
1848 void *entry;
1849
1850 rcu_read_lock();
1851 for (;;) {
1852 if ((__force unsigned int)filter < XA_MAX_MARKS)
1853 entry = xas_find_marked(&xas, max, filter);
1854 else
1855 entry = xas_find(&xas, max);
1856 if (xas.xa_node == XAS_BOUNDS)
1857 break;
1858 if (xas.xa_shift) {
1859 if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
1860 continue;
1861 } else {
1862 if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
1863 continue;
1864 }
1865 if (!xas_retry(&xas, entry))
1866 break;
1867 }
1868 rcu_read_unlock();
1869
1870 if (entry)
1871 *indexp = xas.xa_index;
1872 return entry;
1873 }
1874 EXPORT_SYMBOL(xa_find_after);
1875
xas_extract_present(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n)1876 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1877 unsigned long max, unsigned int n)
1878 {
1879 void *entry;
1880 unsigned int i = 0;
1881
1882 rcu_read_lock();
1883 xas_for_each(xas, entry, max) {
1884 if (xas_retry(xas, entry))
1885 continue;
1886 dst[i++] = entry;
1887 if (i == n)
1888 break;
1889 }
1890 rcu_read_unlock();
1891
1892 return i;
1893 }
1894
xas_extract_marked(struct xa_state * xas,void ** dst,unsigned long max,unsigned int n,xa_mark_t mark)1895 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1896 unsigned long max, unsigned int n, xa_mark_t mark)
1897 {
1898 void *entry;
1899 unsigned int i = 0;
1900
1901 rcu_read_lock();
1902 xas_for_each_marked(xas, entry, max, mark) {
1903 if (xas_retry(xas, entry))
1904 continue;
1905 dst[i++] = entry;
1906 if (i == n)
1907 break;
1908 }
1909 rcu_read_unlock();
1910
1911 return i;
1912 }
1913
1914 /**
1915 * xa_extract() - Copy selected entries from the XArray into a normal array.
1916 * @xa: The source XArray to copy from.
1917 * @dst: The buffer to copy entries into.
1918 * @start: The first index in the XArray eligible to be selected.
1919 * @max: The last index in the XArray eligible to be selected.
1920 * @n: The maximum number of entries to copy.
1921 * @filter: Selection criterion.
1922 *
1923 * Copies up to @n entries that match @filter from the XArray. The
1924 * copied entries will have indices between @start and @max, inclusive.
1925 *
1926 * The @filter may be an XArray mark value, in which case entries which are
1927 * marked with that mark will be copied. It may also be %XA_PRESENT, in
1928 * which case all entries which are not %NULL will be copied.
1929 *
1930 * The entries returned may not represent a snapshot of the XArray at a
1931 * moment in time. For example, if another thread stores to index 5, then
1932 * index 10, calling xa_extract() may return the old contents of index 5
1933 * and the new contents of index 10. Indices not modified while this
1934 * function is running will not be skipped.
1935 *
1936 * If you need stronger guarantees, holding the xa_lock across calls to this
1937 * function will prevent concurrent modification.
1938 *
1939 * Context: Any context. Takes and releases the RCU lock.
1940 * Return: The number of entries copied.
1941 */
xa_extract(struct xarray * xa,void ** dst,unsigned long start,unsigned long max,unsigned int n,xa_mark_t filter)1942 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1943 unsigned long max, unsigned int n, xa_mark_t filter)
1944 {
1945 XA_STATE(xas, xa, start);
1946
1947 if (!n)
1948 return 0;
1949
1950 if ((__force unsigned int)filter < XA_MAX_MARKS)
1951 return xas_extract_marked(&xas, dst, max, n, filter);
1952 return xas_extract_present(&xas, dst, max, n);
1953 }
1954 EXPORT_SYMBOL(xa_extract);
1955
1956 /**
1957 * xa_destroy() - Free all internal data structures.
1958 * @xa: XArray.
1959 *
1960 * After calling this function, the XArray is empty and has freed all memory
1961 * allocated for its internal data structures. You are responsible for
1962 * freeing the objects referenced by the XArray.
1963 *
1964 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1965 */
xa_destroy(struct xarray * xa)1966 void xa_destroy(struct xarray *xa)
1967 {
1968 XA_STATE(xas, xa, 0);
1969 unsigned long flags;
1970 void *entry;
1971
1972 xas.xa_node = NULL;
1973 xas_lock_irqsave(&xas, flags);
1974 entry = xa_head_locked(xa);
1975 RCU_INIT_POINTER(xa->xa_head, NULL);
1976 xas_init_marks(&xas);
1977 if (xa_zero_busy(xa))
1978 xa_mark_clear(xa, XA_FREE_MARK);
1979 /* lockdep checks we're still holding the lock in xas_free_nodes() */
1980 if (xa_is_node(entry))
1981 xas_free_nodes(&xas, xa_to_node(entry));
1982 xas_unlock_irqrestore(&xas, flags);
1983 }
1984 EXPORT_SYMBOL(xa_destroy);
1985
1986 #ifdef XA_DEBUG
xa_dump_node(const struct xa_node * node)1987 void xa_dump_node(const struct xa_node *node)
1988 {
1989 unsigned i, j;
1990
1991 if (!node)
1992 return;
1993 if ((unsigned long)node & 3) {
1994 pr_cont("node %px\n", node);
1995 return;
1996 }
1997
1998 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
1999 "array %px list %px %px marks",
2000 node, node->parent ? "offset" : "max", node->offset,
2001 node->parent, node->shift, node->count, node->nr_values,
2002 node->array, node->private_list.prev, node->private_list.next);
2003 for (i = 0; i < XA_MAX_MARKS; i++)
2004 for (j = 0; j < XA_MARK_LONGS; j++)
2005 pr_cont(" %lx", node->marks[i][j]);
2006 pr_cont("\n");
2007 }
2008
xa_dump_index(unsigned long index,unsigned int shift)2009 void xa_dump_index(unsigned long index, unsigned int shift)
2010 {
2011 if (!shift)
2012 pr_info("%lu: ", index);
2013 else if (shift >= BITS_PER_LONG)
2014 pr_info("0-%lu: ", ~0UL);
2015 else
2016 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2017 }
2018
xa_dump_entry(const void * entry,unsigned long index,unsigned long shift)2019 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2020 {
2021 if (!entry)
2022 return;
2023
2024 xa_dump_index(index, shift);
2025
2026 if (xa_is_node(entry)) {
2027 if (shift == 0) {
2028 pr_cont("%px\n", entry);
2029 } else {
2030 unsigned long i;
2031 struct xa_node *node = xa_to_node(entry);
2032 xa_dump_node(node);
2033 for (i = 0; i < XA_CHUNK_SIZE; i++)
2034 xa_dump_entry(node->slots[i],
2035 index + (i << node->shift), node->shift);
2036 }
2037 } else if (xa_is_value(entry))
2038 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2039 xa_to_value(entry), entry);
2040 else if (!xa_is_internal(entry))
2041 pr_cont("%px\n", entry);
2042 else if (xa_is_retry(entry))
2043 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2044 else if (xa_is_sibling(entry))
2045 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2046 else if (xa_is_zero(entry))
2047 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2048 else
2049 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2050 }
2051
xa_dump(const struct xarray * xa)2052 void xa_dump(const struct xarray *xa)
2053 {
2054 void *entry = xa->xa_head;
2055 unsigned int shift = 0;
2056
2057 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2058 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2059 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2060 if (xa_is_node(entry))
2061 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2062 xa_dump_entry(entry, 0, shift);
2063 }
2064 #endif
2065