1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_XARRAY_H
3 #define _LINUX_XARRAY_H
4 /*
5 * eXtensible Arrays
6 * Copyright (c) 2017 Microsoft Corporation
7 * Author: Matthew Wilcox <willy@infradead.org>
8 *
9 * See Documentation/core-api/xarray.rst for how to use the XArray.
10 */
11
12 #include <linux/bug.h>
13 #include <linux/compiler.h>
14 #include <linux/gfp.h>
15 #include <linux/kconfig.h>
16 #include <linux/kernel.h>
17 #include <linux/rcupdate.h>
18 #include <linux/spinlock.h>
19 #include <linux/types.h>
20
21 /*
22 * The bottom two bits of the entry determine how the XArray interprets
23 * the contents:
24 *
25 * 00: Pointer entry
26 * 10: Internal entry
27 * x1: Value entry or tagged pointer
28 *
29 * Attempting to store internal entries in the XArray is a bug.
30 *
31 * Most internal entries are pointers to the next node in the tree.
32 * The following internal entries have a special meaning:
33 *
34 * 0-62: Sibling entries
35 * 256: Zero entry
36 * 257: Retry entry
37 *
38 * Errors are also represented as internal entries, but use the negative
39 * space (-4094 to -2). They're never stored in the slots array; only
40 * returned by the normal API.
41 */
42
43 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1)
44
45 /**
46 * xa_mk_value() - Create an XArray entry from an integer.
47 * @v: Value to store in XArray.
48 *
49 * Context: Any context.
50 * Return: An entry suitable for storing in the XArray.
51 */
xa_mk_value(unsigned long v)52 static inline void *xa_mk_value(unsigned long v)
53 {
54 WARN_ON((long)v < 0);
55 return (void *)((v << 1) | 1);
56 }
57
58 /**
59 * xa_to_value() - Get value stored in an XArray entry.
60 * @entry: XArray entry.
61 *
62 * Context: Any context.
63 * Return: The value stored in the XArray entry.
64 */
xa_to_value(const void * entry)65 static inline unsigned long xa_to_value(const void *entry)
66 {
67 return (unsigned long)entry >> 1;
68 }
69
70 /**
71 * xa_is_value() - Determine if an entry is a value.
72 * @entry: XArray entry.
73 *
74 * Context: Any context.
75 * Return: True if the entry is a value, false if it is a pointer.
76 */
xa_is_value(const void * entry)77 static inline bool xa_is_value(const void *entry)
78 {
79 return (unsigned long)entry & 1;
80 }
81
82 /**
83 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
84 * @p: Plain pointer.
85 * @tag: Tag value (0, 1 or 3).
86 *
87 * If the user of the XArray prefers, they can tag their pointers instead
88 * of storing value entries. Three tags are available (0, 1 and 3).
89 * These are distinct from the xa_mark_t as they are not replicated up
90 * through the array and cannot be searched for.
91 *
92 * Context: Any context.
93 * Return: An XArray entry.
94 */
xa_tag_pointer(void * p,unsigned long tag)95 static inline void *xa_tag_pointer(void *p, unsigned long tag)
96 {
97 return (void *)((unsigned long)p | tag);
98 }
99
100 /**
101 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
102 * @entry: XArray entry.
103 *
104 * If you have stored a tagged pointer in the XArray, call this function
105 * to get the untagged version of the pointer.
106 *
107 * Context: Any context.
108 * Return: A pointer.
109 */
xa_untag_pointer(void * entry)110 static inline void *xa_untag_pointer(void *entry)
111 {
112 return (void *)((unsigned long)entry & ~3UL);
113 }
114
115 /**
116 * xa_pointer_tag() - Get the tag stored in an XArray entry.
117 * @entry: XArray entry.
118 *
119 * If you have stored a tagged pointer in the XArray, call this function
120 * to get the tag of that pointer.
121 *
122 * Context: Any context.
123 * Return: A tag.
124 */
xa_pointer_tag(void * entry)125 static inline unsigned int xa_pointer_tag(void *entry)
126 {
127 return (unsigned long)entry & 3UL;
128 }
129
130 /*
131 * xa_mk_internal() - Create an internal entry.
132 * @v: Value to turn into an internal entry.
133 *
134 * Internal entries are used for a number of purposes. Entries 0-255 are
135 * used for sibling entries (only 0-62 are used by the current code). 256
136 * is used for the retry entry. 257 is used for the reserved / zero entry.
137 * Negative internal entries are used to represent errnos. Node pointers
138 * are also tagged as internal entries in some situations.
139 *
140 * Context: Any context.
141 * Return: An XArray internal entry corresponding to this value.
142 */
xa_mk_internal(unsigned long v)143 static inline void *xa_mk_internal(unsigned long v)
144 {
145 return (void *)((v << 2) | 2);
146 }
147
148 /*
149 * xa_to_internal() - Extract the value from an internal entry.
150 * @entry: XArray entry.
151 *
152 * Context: Any context.
153 * Return: The value which was stored in the internal entry.
154 */
xa_to_internal(const void * entry)155 static inline unsigned long xa_to_internal(const void *entry)
156 {
157 return (unsigned long)entry >> 2;
158 }
159
160 /*
161 * xa_is_internal() - Is the entry an internal entry?
162 * @entry: XArray entry.
163 *
164 * Context: Any context.
165 * Return: %true if the entry is an internal entry.
166 */
xa_is_internal(const void * entry)167 static inline bool xa_is_internal(const void *entry)
168 {
169 return ((unsigned long)entry & 3) == 2;
170 }
171
172 #define XA_ZERO_ENTRY xa_mk_internal(257)
173
174 /**
175 * xa_is_zero() - Is the entry a zero entry?
176 * @entry: Entry retrieved from the XArray
177 *
178 * The normal API will return NULL as the contents of a slot containing
179 * a zero entry. You can only see zero entries by using the advanced API.
180 *
181 * Return: %true if the entry is a zero entry.
182 */
xa_is_zero(const void * entry)183 static inline bool xa_is_zero(const void *entry)
184 {
185 return unlikely(entry == XA_ZERO_ENTRY);
186 }
187
188 /**
189 * xa_is_err() - Report whether an XArray operation returned an error
190 * @entry: Result from calling an XArray function
191 *
192 * If an XArray operation cannot complete an operation, it will return
193 * a special value indicating an error. This function tells you
194 * whether an error occurred; xa_err() tells you which error occurred.
195 *
196 * Context: Any context.
197 * Return: %true if the entry indicates an error.
198 */
xa_is_err(const void * entry)199 static inline bool xa_is_err(const void *entry)
200 {
201 return unlikely(xa_is_internal(entry) &&
202 entry >= xa_mk_internal(-MAX_ERRNO));
203 }
204
205 /**
206 * xa_err() - Turn an XArray result into an errno.
207 * @entry: Result from calling an XArray function.
208 *
209 * If an XArray operation cannot complete an operation, it will return
210 * a special pointer value which encodes an errno. This function extracts
211 * the errno from the pointer value, or returns 0 if the pointer does not
212 * represent an errno.
213 *
214 * Context: Any context.
215 * Return: A negative errno or 0.
216 */
xa_err(void * entry)217 static inline int xa_err(void *entry)
218 {
219 /* xa_to_internal() would not do sign extension. */
220 if (xa_is_err(entry))
221 return (long)entry >> 2;
222 return 0;
223 }
224
225 /**
226 * struct xa_limit - Represents a range of IDs.
227 * @min: The lowest ID to allocate (inclusive).
228 * @max: The maximum ID to allocate (inclusive).
229 *
230 * This structure is used either directly or via the XA_LIMIT() macro
231 * to communicate the range of IDs that are valid for allocation.
232 * Two common ranges are predefined for you:
233 * * xa_limit_32b - [0 - UINT_MAX]
234 * * xa_limit_31b - [0 - INT_MAX]
235 */
236 struct xa_limit {
237 u32 max;
238 u32 min;
239 };
240
241 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
242
243 #define xa_limit_32b XA_LIMIT(0, UINT_MAX)
244 #define xa_limit_31b XA_LIMIT(0, INT_MAX)
245
246 typedef unsigned __bitwise xa_mark_t;
247 #define XA_MARK_0 ((__force xa_mark_t)0U)
248 #define XA_MARK_1 ((__force xa_mark_t)1U)
249 #define XA_MARK_2 ((__force xa_mark_t)2U)
250 #define XA_PRESENT ((__force xa_mark_t)8U)
251 #define XA_MARK_MAX XA_MARK_2
252 #define XA_FREE_MARK XA_MARK_0
253
254 enum xa_lock_type {
255 XA_LOCK_IRQ = 1,
256 XA_LOCK_BH = 2,
257 };
258
259 /*
260 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags,
261 * and we remain compatible with that.
262 */
263 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ)
264 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH)
265 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U)
266 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U)
267 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U)
268 #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U)
269 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
270 (__force unsigned)(mark)))
271
272 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */
273 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
274 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
275
276 /**
277 * struct xarray - The anchor of the XArray.
278 * @xa_lock: Lock that protects the contents of the XArray.
279 *
280 * To use the xarray, define it statically or embed it in your data structure.
281 * It is a very small data structure, so it does not usually make sense to
282 * allocate it separately and keep a pointer to it in your data structure.
283 *
284 * You may use the xa_lock to protect your own data structures as well.
285 */
286 /*
287 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
288 * If the only non-NULL entry in the array is at index 0, @xa_head is that
289 * entry. If any other entry in the array is non-NULL, @xa_head points
290 * to an @xa_node.
291 */
292 struct xarray {
293 spinlock_t xa_lock;
294 /* private: The rest of the data structure is not to be used directly. */
295 gfp_t xa_flags;
296 void __rcu * xa_head;
297 };
298
299 #define XARRAY_INIT(name, flags) { \
300 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \
301 .xa_flags = flags, \
302 .xa_head = NULL, \
303 }
304
305 /**
306 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
307 * @name: A string that names your XArray.
308 * @flags: XA_FLAG values.
309 *
310 * This is intended for file scope definitions of XArrays. It declares
311 * and initialises an empty XArray with the chosen name and flags. It is
312 * equivalent to calling xa_init_flags() on the array, but it does the
313 * initialisation at compiletime instead of runtime.
314 */
315 #define DEFINE_XARRAY_FLAGS(name, flags) \
316 struct xarray name = XARRAY_INIT(name, flags)
317
318 /**
319 * DEFINE_XARRAY() - Define an XArray.
320 * @name: A string that names your XArray.
321 *
322 * This is intended for file scope definitions of XArrays. It declares
323 * and initialises an empty XArray with the chosen name. It is equivalent
324 * to calling xa_init() on the array, but it does the initialisation at
325 * compiletime instead of runtime.
326 */
327 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
328
329 /**
330 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
331 * @name: A string that names your XArray.
332 *
333 * This is intended for file scope definitions of allocating XArrays.
334 * See also DEFINE_XARRAY().
335 */
336 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
337
338 /**
339 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
340 * @name: A string that names your XArray.
341 *
342 * This is intended for file scope definitions of allocating XArrays.
343 * See also DEFINE_XARRAY().
344 */
345 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
346
347 void *xa_load(struct xarray *, unsigned long index);
348 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
349 void *xa_erase(struct xarray *, unsigned long index);
350 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
351 void *entry, gfp_t);
352 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
353 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
354 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
355 void *xa_find(struct xarray *xa, unsigned long *index,
356 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
357 void *xa_find_after(struct xarray *xa, unsigned long *index,
358 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
359 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
360 unsigned long max, unsigned int n, xa_mark_t);
361 void xa_destroy(struct xarray *);
362
363 /**
364 * xa_init_flags() - Initialise an empty XArray with flags.
365 * @xa: XArray.
366 * @flags: XA_FLAG values.
367 *
368 * If you need to initialise an XArray with special flags (eg you need
369 * to take the lock from interrupt context), use this function instead
370 * of xa_init().
371 *
372 * Context: Any context.
373 */
xa_init_flags(struct xarray * xa,gfp_t flags)374 static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
375 {
376 spin_lock_init(&xa->xa_lock);
377 xa->xa_flags = flags;
378 xa->xa_head = NULL;
379 }
380
381 /**
382 * xa_init() - Initialise an empty XArray.
383 * @xa: XArray.
384 *
385 * An empty XArray is full of NULL entries.
386 *
387 * Context: Any context.
388 */
xa_init(struct xarray * xa)389 static inline void xa_init(struct xarray *xa)
390 {
391 xa_init_flags(xa, 0);
392 }
393
394 /**
395 * xa_empty() - Determine if an array has any present entries.
396 * @xa: XArray.
397 *
398 * Context: Any context.
399 * Return: %true if the array contains only NULL pointers.
400 */
xa_empty(const struct xarray * xa)401 static inline bool xa_empty(const struct xarray *xa)
402 {
403 return xa->xa_head == NULL;
404 }
405
406 /**
407 * xa_marked() - Inquire whether any entry in this array has a mark set
408 * @xa: Array
409 * @mark: Mark value
410 *
411 * Context: Any context.
412 * Return: %true if any entry has this mark set.
413 */
xa_marked(const struct xarray * xa,xa_mark_t mark)414 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
415 {
416 return xa->xa_flags & XA_FLAGS_MARK(mark);
417 }
418
419 /**
420 * xa_for_each_start() - Iterate over a portion of an XArray.
421 * @xa: XArray.
422 * @index: Index of @entry.
423 * @entry: Entry retrieved from array.
424 * @start: First index to retrieve from array.
425 *
426 * During the iteration, @entry will have the value of the entry stored
427 * in @xa at @index. You may modify @index during the iteration if you
428 * want to skip or reprocess indices. It is safe to modify the array
429 * during the iteration. At the end of the iteration, @entry will be set
430 * to NULL and @index will have a value less than or equal to max.
431 *
432 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have
433 * to handle your own locking with xas_for_each(), and if you have to unlock
434 * after each iteration, it will also end up being O(n.log(n)).
435 * xa_for_each_start() will spin if it hits a retry entry; if you intend to
436 * see retry entries, you should use the xas_for_each() iterator instead.
437 * The xas_for_each() iterator will expand into more inline code than
438 * xa_for_each_start().
439 *
440 * Context: Any context. Takes and releases the RCU lock.
441 */
442 #define xa_for_each_start(xa, index, entry, start) \
443 for (index = start, \
444 entry = xa_find(xa, &index, ULONG_MAX, XA_PRESENT); \
445 entry; \
446 entry = xa_find_after(xa, &index, ULONG_MAX, XA_PRESENT))
447
448 /**
449 * xa_for_each() - Iterate over present entries in an XArray.
450 * @xa: XArray.
451 * @index: Index of @entry.
452 * @entry: Entry retrieved from array.
453 *
454 * During the iteration, @entry will have the value of the entry stored
455 * in @xa at @index. You may modify @index during the iteration if you want
456 * to skip or reprocess indices. It is safe to modify the array during the
457 * iteration. At the end of the iteration, @entry will be set to NULL and
458 * @index will have a value less than or equal to max.
459 *
460 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have
461 * to handle your own locking with xas_for_each(), and if you have to unlock
462 * after each iteration, it will also end up being O(n.log(n)). xa_for_each()
463 * will spin if it hits a retry entry; if you intend to see retry entries,
464 * you should use the xas_for_each() iterator instead. The xas_for_each()
465 * iterator will expand into more inline code than xa_for_each().
466 *
467 * Context: Any context. Takes and releases the RCU lock.
468 */
469 #define xa_for_each(xa, index, entry) \
470 xa_for_each_start(xa, index, entry, 0)
471
472 /**
473 * xa_for_each_marked() - Iterate over marked entries in an XArray.
474 * @xa: XArray.
475 * @index: Index of @entry.
476 * @entry: Entry retrieved from array.
477 * @filter: Selection criterion.
478 *
479 * During the iteration, @entry will have the value of the entry stored
480 * in @xa at @index. The iteration will skip all entries in the array
481 * which do not match @filter. You may modify @index during the iteration
482 * if you want to skip or reprocess indices. It is safe to modify the array
483 * during the iteration. At the end of the iteration, @entry will be set to
484 * NULL and @index will have a value less than or equal to max.
485 *
486 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
487 * You have to handle your own locking with xas_for_each(), and if you have
488 * to unlock after each iteration, it will also end up being O(n.log(n)).
489 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
490 * see retry entries, you should use the xas_for_each_marked() iterator
491 * instead. The xas_for_each_marked() iterator will expand into more inline
492 * code than xa_for_each_marked().
493 *
494 * Context: Any context. Takes and releases the RCU lock.
495 */
496 #define xa_for_each_marked(xa, index, entry, filter) \
497 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
498 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
499
500 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock)
501 #define xa_lock(xa) spin_lock(&(xa)->xa_lock)
502 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock)
503 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock)
504 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock)
505 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock)
506 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock)
507 #define xa_lock_irqsave(xa, flags) \
508 spin_lock_irqsave(&(xa)->xa_lock, flags)
509 #define xa_unlock_irqrestore(xa, flags) \
510 spin_unlock_irqrestore(&(xa)->xa_lock, flags)
511
512 /*
513 * Versions of the normal API which require the caller to hold the
514 * xa_lock. If the GFP flags allow it, they will drop the lock to
515 * allocate memory, then reacquire it afterwards. These functions
516 * may also re-enable interrupts if the XArray flags indicate the
517 * locking should be interrupt safe.
518 */
519 void *__xa_erase(struct xarray *, unsigned long index);
520 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
521 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
522 void *entry, gfp_t);
523 int __must_check __xa_insert(struct xarray *, unsigned long index,
524 void *entry, gfp_t);
525 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
526 struct xa_limit, gfp_t);
527 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
528 struct xa_limit, u32 *next, gfp_t);
529 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
530 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
531
532 /**
533 * xa_store_bh() - Store this entry in the XArray.
534 * @xa: XArray.
535 * @index: Index into array.
536 * @entry: New entry.
537 * @gfp: Memory allocation flags.
538 *
539 * This function is like calling xa_store() except it disables softirqs
540 * while holding the array lock.
541 *
542 * Context: Any context. Takes and releases the xa_lock while
543 * disabling softirqs.
544 * Return: The entry which used to be at this index.
545 */
xa_store_bh(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)546 static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
547 void *entry, gfp_t gfp)
548 {
549 void *curr;
550
551 xa_lock_bh(xa);
552 curr = __xa_store(xa, index, entry, gfp);
553 xa_unlock_bh(xa);
554
555 return curr;
556 }
557
558 /**
559 * xa_store_irq() - Store this entry in the XArray.
560 * @xa: XArray.
561 * @index: Index into array.
562 * @entry: New entry.
563 * @gfp: Memory allocation flags.
564 *
565 * This function is like calling xa_store() except it disables interrupts
566 * while holding the array lock.
567 *
568 * Context: Process context. Takes and releases the xa_lock while
569 * disabling interrupts.
570 * Return: The entry which used to be at this index.
571 */
xa_store_irq(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)572 static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
573 void *entry, gfp_t gfp)
574 {
575 void *curr;
576
577 xa_lock_irq(xa);
578 curr = __xa_store(xa, index, entry, gfp);
579 xa_unlock_irq(xa);
580
581 return curr;
582 }
583
584 /**
585 * xa_erase_bh() - Erase this entry from the XArray.
586 * @xa: XArray.
587 * @index: Index of entry.
588 *
589 * After this function returns, loading from @index will return %NULL.
590 * If the index is part of a multi-index entry, all indices will be erased
591 * and none of the entries will be part of a multi-index entry.
592 *
593 * Context: Any context. Takes and releases the xa_lock while
594 * disabling softirqs.
595 * Return: The entry which used to be at this index.
596 */
xa_erase_bh(struct xarray * xa,unsigned long index)597 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
598 {
599 void *entry;
600
601 xa_lock_bh(xa);
602 entry = __xa_erase(xa, index);
603 xa_unlock_bh(xa);
604
605 return entry;
606 }
607
608 /**
609 * xa_erase_irq() - Erase this entry from the XArray.
610 * @xa: XArray.
611 * @index: Index of entry.
612 *
613 * After this function returns, loading from @index will return %NULL.
614 * If the index is part of a multi-index entry, all indices will be erased
615 * and none of the entries will be part of a multi-index entry.
616 *
617 * Context: Process context. Takes and releases the xa_lock while
618 * disabling interrupts.
619 * Return: The entry which used to be at this index.
620 */
xa_erase_irq(struct xarray * xa,unsigned long index)621 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
622 {
623 void *entry;
624
625 xa_lock_irq(xa);
626 entry = __xa_erase(xa, index);
627 xa_unlock_irq(xa);
628
629 return entry;
630 }
631
632 /**
633 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
634 * @xa: XArray.
635 * @index: Index into array.
636 * @old: Old value to test against.
637 * @entry: New value to place in array.
638 * @gfp: Memory allocation flags.
639 *
640 * If the entry at @index is the same as @old, replace it with @entry.
641 * If the return value is equal to @old, then the exchange was successful.
642 *
643 * Context: Any context. Takes and releases the xa_lock. May sleep
644 * if the @gfp flags permit.
645 * Return: The old value at this index or xa_err() if an error happened.
646 */
xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)647 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
648 void *old, void *entry, gfp_t gfp)
649 {
650 void *curr;
651
652 xa_lock(xa);
653 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
654 xa_unlock(xa);
655
656 return curr;
657 }
658
659 /**
660 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
661 * @xa: XArray.
662 * @index: Index into array.
663 * @old: Old value to test against.
664 * @entry: New value to place in array.
665 * @gfp: Memory allocation flags.
666 *
667 * This function is like calling xa_cmpxchg() except it disables softirqs
668 * while holding the array lock.
669 *
670 * Context: Any context. Takes and releases the xa_lock while
671 * disabling softirqs. May sleep if the @gfp flags permit.
672 * Return: The old value at this index or xa_err() if an error happened.
673 */
xa_cmpxchg_bh(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)674 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
675 void *old, void *entry, gfp_t gfp)
676 {
677 void *curr;
678
679 xa_lock_bh(xa);
680 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
681 xa_unlock_bh(xa);
682
683 return curr;
684 }
685
686 /**
687 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
688 * @xa: XArray.
689 * @index: Index into array.
690 * @old: Old value to test against.
691 * @entry: New value to place in array.
692 * @gfp: Memory allocation flags.
693 *
694 * This function is like calling xa_cmpxchg() except it disables interrupts
695 * while holding the array lock.
696 *
697 * Context: Process context. Takes and releases the xa_lock while
698 * disabling interrupts. May sleep if the @gfp flags permit.
699 * Return: The old value at this index or xa_err() if an error happened.
700 */
xa_cmpxchg_irq(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)701 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
702 void *old, void *entry, gfp_t gfp)
703 {
704 void *curr;
705
706 xa_lock_irq(xa);
707 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
708 xa_unlock_irq(xa);
709
710 return curr;
711 }
712
713 /**
714 * xa_insert() - Store this entry in the XArray unless another entry is
715 * already present.
716 * @xa: XArray.
717 * @index: Index into array.
718 * @entry: New entry.
719 * @gfp: Memory allocation flags.
720 *
721 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
722 * if no entry is present. Inserting will fail if a reserved entry is
723 * present, even though loading from this index will return NULL.
724 *
725 * Context: Any context. Takes and releases the xa_lock. May sleep if
726 * the @gfp flags permit.
727 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
728 * -ENOMEM if memory could not be allocated.
729 */
xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)730 static inline int __must_check xa_insert(struct xarray *xa,
731 unsigned long index, void *entry, gfp_t gfp)
732 {
733 int err;
734
735 xa_lock(xa);
736 err = __xa_insert(xa, index, entry, gfp);
737 xa_unlock(xa);
738
739 return err;
740 }
741
742 /**
743 * xa_insert_bh() - Store this entry in the XArray unless another entry is
744 * already present.
745 * @xa: XArray.
746 * @index: Index into array.
747 * @entry: New entry.
748 * @gfp: Memory allocation flags.
749 *
750 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
751 * if no entry is present. Inserting will fail if a reserved entry is
752 * present, even though loading from this index will return NULL.
753 *
754 * Context: Any context. Takes and releases the xa_lock while
755 * disabling softirqs. May sleep if the @gfp flags permit.
756 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
757 * -ENOMEM if memory could not be allocated.
758 */
xa_insert_bh(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)759 static inline int __must_check xa_insert_bh(struct xarray *xa,
760 unsigned long index, void *entry, gfp_t gfp)
761 {
762 int err;
763
764 xa_lock_bh(xa);
765 err = __xa_insert(xa, index, entry, gfp);
766 xa_unlock_bh(xa);
767
768 return err;
769 }
770
771 /**
772 * xa_insert_irq() - Store this entry in the XArray unless another entry is
773 * already present.
774 * @xa: XArray.
775 * @index: Index into array.
776 * @entry: New entry.
777 * @gfp: Memory allocation flags.
778 *
779 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
780 * if no entry is present. Inserting will fail if a reserved entry is
781 * present, even though loading from this index will return NULL.
782 *
783 * Context: Process context. Takes and releases the xa_lock while
784 * disabling interrupts. May sleep if the @gfp flags permit.
785 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
786 * -ENOMEM if memory could not be allocated.
787 */
xa_insert_irq(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)788 static inline int __must_check xa_insert_irq(struct xarray *xa,
789 unsigned long index, void *entry, gfp_t gfp)
790 {
791 int err;
792
793 xa_lock_irq(xa);
794 err = __xa_insert(xa, index, entry, gfp);
795 xa_unlock_irq(xa);
796
797 return err;
798 }
799
800 /**
801 * xa_alloc() - Find somewhere to store this entry in the XArray.
802 * @xa: XArray.
803 * @id: Pointer to ID.
804 * @entry: New entry.
805 * @limit: Range of ID to allocate.
806 * @gfp: Memory allocation flags.
807 *
808 * Finds an empty entry in @xa between @limit.min and @limit.max,
809 * stores the index into the @id pointer, then stores the entry at
810 * that index. A concurrent lookup will not see an uninitialised @id.
811 *
812 * Context: Any context. Takes and releases the xa_lock. May sleep if
813 * the @gfp flags permit.
814 * Return: 0 on success, -ENOMEM if memory could not be allocated or
815 * -EBUSY if there are no free entries in @limit.
816 */
xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)817 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
818 void *entry, struct xa_limit limit, gfp_t gfp)
819 {
820 int err;
821
822 xa_lock(xa);
823 err = __xa_alloc(xa, id, entry, limit, gfp);
824 xa_unlock(xa);
825
826 return err;
827 }
828
829 /**
830 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
831 * @xa: XArray.
832 * @id: Pointer to ID.
833 * @entry: New entry.
834 * @limit: Range of ID to allocate.
835 * @gfp: Memory allocation flags.
836 *
837 * Finds an empty entry in @xa between @limit.min and @limit.max,
838 * stores the index into the @id pointer, then stores the entry at
839 * that index. A concurrent lookup will not see an uninitialised @id.
840 *
841 * Context: Any context. Takes and releases the xa_lock while
842 * disabling softirqs. May sleep if the @gfp flags permit.
843 * Return: 0 on success, -ENOMEM if memory could not be allocated or
844 * -EBUSY if there are no free entries in @limit.
845 */
xa_alloc_bh(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)846 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
847 void *entry, struct xa_limit limit, gfp_t gfp)
848 {
849 int err;
850
851 xa_lock_bh(xa);
852 err = __xa_alloc(xa, id, entry, limit, gfp);
853 xa_unlock_bh(xa);
854
855 return err;
856 }
857
858 /**
859 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
860 * @xa: XArray.
861 * @id: Pointer to ID.
862 * @entry: New entry.
863 * @limit: Range of ID to allocate.
864 * @gfp: Memory allocation flags.
865 *
866 * Finds an empty entry in @xa between @limit.min and @limit.max,
867 * stores the index into the @id pointer, then stores the entry at
868 * that index. A concurrent lookup will not see an uninitialised @id.
869 *
870 * Context: Process context. Takes and releases the xa_lock while
871 * disabling interrupts. May sleep if the @gfp flags permit.
872 * Return: 0 on success, -ENOMEM if memory could not be allocated or
873 * -EBUSY if there are no free entries in @limit.
874 */
xa_alloc_irq(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)875 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
876 void *entry, struct xa_limit limit, gfp_t gfp)
877 {
878 int err;
879
880 xa_lock_irq(xa);
881 err = __xa_alloc(xa, id, entry, limit, gfp);
882 xa_unlock_irq(xa);
883
884 return err;
885 }
886
887 /**
888 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
889 * @xa: XArray.
890 * @id: Pointer to ID.
891 * @entry: New entry.
892 * @limit: Range of allocated ID.
893 * @next: Pointer to next ID to allocate.
894 * @gfp: Memory allocation flags.
895 *
896 * Finds an empty entry in @xa between @limit.min and @limit.max,
897 * stores the index into the @id pointer, then stores the entry at
898 * that index. A concurrent lookup will not see an uninitialised @id.
899 * The search for an empty entry will start at @next and will wrap
900 * around if necessary.
901 *
902 * Context: Any context. Takes and releases the xa_lock. May sleep if
903 * the @gfp flags permit.
904 * Return: 0 if the allocation succeeded without wrapping. 1 if the
905 * allocation succeeded after wrapping, -ENOMEM if memory could not be
906 * allocated or -EBUSY if there are no free entries in @limit.
907 */
xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)908 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
909 struct xa_limit limit, u32 *next, gfp_t gfp)
910 {
911 int err;
912
913 xa_lock(xa);
914 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
915 xa_unlock(xa);
916
917 return err;
918 }
919
920 /**
921 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
922 * @xa: XArray.
923 * @id: Pointer to ID.
924 * @entry: New entry.
925 * @limit: Range of allocated ID.
926 * @next: Pointer to next ID to allocate.
927 * @gfp: Memory allocation flags.
928 *
929 * Finds an empty entry in @xa between @limit.min and @limit.max,
930 * stores the index into the @id pointer, then stores the entry at
931 * that index. A concurrent lookup will not see an uninitialised @id.
932 * The search for an empty entry will start at @next and will wrap
933 * around if necessary.
934 *
935 * Context: Any context. Takes and releases the xa_lock while
936 * disabling softirqs. May sleep if the @gfp flags permit.
937 * Return: 0 if the allocation succeeded without wrapping. 1 if the
938 * allocation succeeded after wrapping, -ENOMEM if memory could not be
939 * allocated or -EBUSY if there are no free entries in @limit.
940 */
xa_alloc_cyclic_bh(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)941 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
942 struct xa_limit limit, u32 *next, gfp_t gfp)
943 {
944 int err;
945
946 xa_lock_bh(xa);
947 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
948 xa_unlock_bh(xa);
949
950 return err;
951 }
952
953 /**
954 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
955 * @xa: XArray.
956 * @id: Pointer to ID.
957 * @entry: New entry.
958 * @limit: Range of allocated ID.
959 * @next: Pointer to next ID to allocate.
960 * @gfp: Memory allocation flags.
961 *
962 * Finds an empty entry in @xa between @limit.min and @limit.max,
963 * stores the index into the @id pointer, then stores the entry at
964 * that index. A concurrent lookup will not see an uninitialised @id.
965 * The search for an empty entry will start at @next and will wrap
966 * around if necessary.
967 *
968 * Context: Process context. Takes and releases the xa_lock while
969 * disabling interrupts. May sleep if the @gfp flags permit.
970 * Return: 0 if the allocation succeeded without wrapping. 1 if the
971 * allocation succeeded after wrapping, -ENOMEM if memory could not be
972 * allocated or -EBUSY if there are no free entries in @limit.
973 */
xa_alloc_cyclic_irq(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)974 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
975 struct xa_limit limit, u32 *next, gfp_t gfp)
976 {
977 int err;
978
979 xa_lock_irq(xa);
980 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
981 xa_unlock_irq(xa);
982
983 return err;
984 }
985
986 /**
987 * xa_reserve() - Reserve this index in the XArray.
988 * @xa: XArray.
989 * @index: Index into array.
990 * @gfp: Memory allocation flags.
991 *
992 * Ensures there is somewhere to store an entry at @index in the array.
993 * If there is already something stored at @index, this function does
994 * nothing. If there was nothing there, the entry is marked as reserved.
995 * Loading from a reserved entry returns a %NULL pointer.
996 *
997 * If you do not use the entry that you have reserved, call xa_release()
998 * or xa_erase() to free any unnecessary memory.
999 *
1000 * Context: Any context. Takes and releases the xa_lock.
1001 * May sleep if the @gfp flags permit.
1002 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1003 */
1004 static inline __must_check
xa_reserve(struct xarray * xa,unsigned long index,gfp_t gfp)1005 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1006 {
1007 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1008 }
1009
1010 /**
1011 * xa_reserve_bh() - Reserve this index in the XArray.
1012 * @xa: XArray.
1013 * @index: Index into array.
1014 * @gfp: Memory allocation flags.
1015 *
1016 * A softirq-disabling version of xa_reserve().
1017 *
1018 * Context: Any context. Takes and releases the xa_lock while
1019 * disabling softirqs.
1020 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1021 */
1022 static inline __must_check
xa_reserve_bh(struct xarray * xa,unsigned long index,gfp_t gfp)1023 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1024 {
1025 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1026 }
1027
1028 /**
1029 * xa_reserve_irq() - Reserve this index in the XArray.
1030 * @xa: XArray.
1031 * @index: Index into array.
1032 * @gfp: Memory allocation flags.
1033 *
1034 * An interrupt-disabling version of xa_reserve().
1035 *
1036 * Context: Process context. Takes and releases the xa_lock while
1037 * disabling interrupts.
1038 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1039 */
1040 static inline __must_check
xa_reserve_irq(struct xarray * xa,unsigned long index,gfp_t gfp)1041 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1042 {
1043 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1044 }
1045
1046 /**
1047 * xa_release() - Release a reserved entry.
1048 * @xa: XArray.
1049 * @index: Index of entry.
1050 *
1051 * After calling xa_reserve(), you can call this function to release the
1052 * reservation. If the entry at @index has been stored to, this function
1053 * will do nothing.
1054 */
xa_release(struct xarray * xa,unsigned long index)1055 static inline void xa_release(struct xarray *xa, unsigned long index)
1056 {
1057 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1058 }
1059
1060 /* Everything below here is the Advanced API. Proceed with caution. */
1061
1062 /*
1063 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing
1064 * the best chunk size requires some tradeoffs. A power of two recommends
1065 * itself so that we can walk the tree based purely on shifts and masks.
1066 * Generally, the larger the better; as the number of slots per level of the
1067 * tree increases, the less tall the tree needs to be. But that needs to be
1068 * balanced against the memory consumption of each node. On a 64-bit system,
1069 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we
1070 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1071 */
1072 #ifndef XA_CHUNK_SHIFT
1073 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
1074 #endif
1075 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT)
1076 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1)
1077 #define XA_MAX_MARKS 3
1078 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1079
1080 /*
1081 * @count is the count of every non-NULL element in the ->slots array
1082 * whether that is a value entry, a retry entry, a user pointer,
1083 * a sibling entry or a pointer to the next level of the tree.
1084 * @nr_values is the count of every element in ->slots which is
1085 * either a value entry or a sibling of a value entry.
1086 */
1087 struct xa_node {
1088 unsigned char shift; /* Bits remaining in each slot */
1089 unsigned char offset; /* Slot offset in parent */
1090 unsigned char count; /* Total entry count */
1091 unsigned char nr_values; /* Value entry count */
1092 struct xa_node __rcu *parent; /* NULL at top of tree */
1093 struct xarray *array; /* The array we belong to */
1094 union {
1095 struct list_head private_list; /* For tree user */
1096 struct rcu_head rcu_head; /* Used when freeing node */
1097 };
1098 void __rcu *slots[XA_CHUNK_SIZE];
1099 union {
1100 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS];
1101 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS];
1102 };
1103 };
1104
1105 void xa_dump(const struct xarray *);
1106 void xa_dump_node(const struct xa_node *);
1107
1108 #ifdef XA_DEBUG
1109 #define XA_BUG_ON(xa, x) do { \
1110 if (x) { \
1111 xa_dump(xa); \
1112 BUG(); \
1113 } \
1114 } while (0)
1115 #define XA_NODE_BUG_ON(node, x) do { \
1116 if (x) { \
1117 if (node) xa_dump_node(node); \
1118 BUG(); \
1119 } \
1120 } while (0)
1121 #else
1122 #define XA_BUG_ON(xa, x) do { } while (0)
1123 #define XA_NODE_BUG_ON(node, x) do { } while (0)
1124 #endif
1125
1126 /* Private */
xa_head(const struct xarray * xa)1127 static inline void *xa_head(const struct xarray *xa)
1128 {
1129 return rcu_dereference_check(xa->xa_head,
1130 lockdep_is_held(&xa->xa_lock));
1131 }
1132
1133 /* Private */
xa_head_locked(const struct xarray * xa)1134 static inline void *xa_head_locked(const struct xarray *xa)
1135 {
1136 return rcu_dereference_protected(xa->xa_head,
1137 lockdep_is_held(&xa->xa_lock));
1138 }
1139
1140 /* Private */
xa_entry(const struct xarray * xa,const struct xa_node * node,unsigned int offset)1141 static inline void *xa_entry(const struct xarray *xa,
1142 const struct xa_node *node, unsigned int offset)
1143 {
1144 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1145 return rcu_dereference_check(node->slots[offset],
1146 lockdep_is_held(&xa->xa_lock));
1147 }
1148
1149 /* Private */
xa_entry_locked(const struct xarray * xa,const struct xa_node * node,unsigned int offset)1150 static inline void *xa_entry_locked(const struct xarray *xa,
1151 const struct xa_node *node, unsigned int offset)
1152 {
1153 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1154 return rcu_dereference_protected(node->slots[offset],
1155 lockdep_is_held(&xa->xa_lock));
1156 }
1157
1158 /* Private */
xa_parent(const struct xarray * xa,const struct xa_node * node)1159 static inline struct xa_node *xa_parent(const struct xarray *xa,
1160 const struct xa_node *node)
1161 {
1162 return rcu_dereference_check(node->parent,
1163 lockdep_is_held(&xa->xa_lock));
1164 }
1165
1166 /* Private */
xa_parent_locked(const struct xarray * xa,const struct xa_node * node)1167 static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1168 const struct xa_node *node)
1169 {
1170 return rcu_dereference_protected(node->parent,
1171 lockdep_is_held(&xa->xa_lock));
1172 }
1173
1174 /* Private */
xa_mk_node(const struct xa_node * node)1175 static inline void *xa_mk_node(const struct xa_node *node)
1176 {
1177 return (void *)((unsigned long)node | 2);
1178 }
1179
1180 /* Private */
xa_to_node(const void * entry)1181 static inline struct xa_node *xa_to_node(const void *entry)
1182 {
1183 return (struct xa_node *)((unsigned long)entry - 2);
1184 }
1185
1186 /* Private */
xa_is_node(const void * entry)1187 static inline bool xa_is_node(const void *entry)
1188 {
1189 return xa_is_internal(entry) && (unsigned long)entry > 4096;
1190 }
1191
1192 /* Private */
xa_mk_sibling(unsigned int offset)1193 static inline void *xa_mk_sibling(unsigned int offset)
1194 {
1195 return xa_mk_internal(offset);
1196 }
1197
1198 /* Private */
xa_to_sibling(const void * entry)1199 static inline unsigned long xa_to_sibling(const void *entry)
1200 {
1201 return xa_to_internal(entry);
1202 }
1203
1204 /**
1205 * xa_is_sibling() - Is the entry a sibling entry?
1206 * @entry: Entry retrieved from the XArray
1207 *
1208 * Return: %true if the entry is a sibling entry.
1209 */
xa_is_sibling(const void * entry)1210 static inline bool xa_is_sibling(const void *entry)
1211 {
1212 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1213 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1214 }
1215
1216 #define XA_RETRY_ENTRY xa_mk_internal(256)
1217
1218 /**
1219 * xa_is_retry() - Is the entry a retry entry?
1220 * @entry: Entry retrieved from the XArray
1221 *
1222 * Return: %true if the entry is a retry entry.
1223 */
xa_is_retry(const void * entry)1224 static inline bool xa_is_retry(const void *entry)
1225 {
1226 return unlikely(entry == XA_RETRY_ENTRY);
1227 }
1228
1229 /**
1230 * xa_is_advanced() - Is the entry only permitted for the advanced API?
1231 * @entry: Entry to be stored in the XArray.
1232 *
1233 * Return: %true if the entry cannot be stored by the normal API.
1234 */
xa_is_advanced(const void * entry)1235 static inline bool xa_is_advanced(const void *entry)
1236 {
1237 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1238 }
1239
1240 /**
1241 * typedef xa_update_node_t - A callback function from the XArray.
1242 * @node: The node which is being processed
1243 *
1244 * This function is called every time the XArray updates the count of
1245 * present and value entries in a node. It allows advanced users to
1246 * maintain the private_list in the node.
1247 *
1248 * Context: The xa_lock is held and interrupts may be disabled.
1249 * Implementations should not drop the xa_lock, nor re-enable
1250 * interrupts.
1251 */
1252 typedef void (*xa_update_node_t)(struct xa_node *node);
1253
1254 /*
1255 * The xa_state is opaque to its users. It contains various different pieces
1256 * of state involved in the current operation on the XArray. It should be
1257 * declared on the stack and passed between the various internal routines.
1258 * The various elements in it should not be accessed directly, but only
1259 * through the provided accessor functions. The below documentation is for
1260 * the benefit of those working on the code, not for users of the XArray.
1261 *
1262 * @xa_node usually points to the xa_node containing the slot we're operating
1263 * on (and @xa_offset is the offset in the slots array). If there is a
1264 * single entry in the array at index 0, there are no allocated xa_nodes to
1265 * point to, and so we store %NULL in @xa_node. @xa_node is set to
1266 * the value %XAS_RESTART if the xa_state is not walked to the correct
1267 * position in the tree of nodes for this operation. If an error occurs
1268 * during an operation, it is set to an %XAS_ERROR value. If we run off the
1269 * end of the allocated nodes, it is set to %XAS_BOUNDS.
1270 */
1271 struct xa_state {
1272 struct xarray *xa;
1273 unsigned long xa_index;
1274 unsigned char xa_shift;
1275 unsigned char xa_sibs;
1276 unsigned char xa_offset;
1277 unsigned char xa_pad; /* Helps gcc generate better code */
1278 struct xa_node *xa_node;
1279 struct xa_node *xa_alloc;
1280 xa_update_node_t xa_update;
1281 };
1282
1283 /*
1284 * We encode errnos in the xas->xa_node. If an error has happened, we need to
1285 * drop the lock to fix it, and once we've done so the xa_state is invalid.
1286 */
1287 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1288 #define XAS_BOUNDS ((struct xa_node *)1UL)
1289 #define XAS_RESTART ((struct xa_node *)3UL)
1290
1291 #define __XA_STATE(array, index, shift, sibs) { \
1292 .xa = array, \
1293 .xa_index = index, \
1294 .xa_shift = shift, \
1295 .xa_sibs = sibs, \
1296 .xa_offset = 0, \
1297 .xa_pad = 0, \
1298 .xa_node = XAS_RESTART, \
1299 .xa_alloc = NULL, \
1300 .xa_update = NULL \
1301 }
1302
1303 /**
1304 * XA_STATE() - Declare an XArray operation state.
1305 * @name: Name of this operation state (usually xas).
1306 * @array: Array to operate on.
1307 * @index: Initial index of interest.
1308 *
1309 * Declare and initialise an xa_state on the stack.
1310 */
1311 #define XA_STATE(name, array, index) \
1312 struct xa_state name = __XA_STATE(array, index, 0, 0)
1313
1314 /**
1315 * XA_STATE_ORDER() - Declare an XArray operation state.
1316 * @name: Name of this operation state (usually xas).
1317 * @array: Array to operate on.
1318 * @index: Initial index of interest.
1319 * @order: Order of entry.
1320 *
1321 * Declare and initialise an xa_state on the stack. This variant of
1322 * XA_STATE() allows you to specify the 'order' of the element you
1323 * want to operate on.`
1324 */
1325 #define XA_STATE_ORDER(name, array, index, order) \
1326 struct xa_state name = __XA_STATE(array, \
1327 (index >> order) << order, \
1328 order - (order % XA_CHUNK_SHIFT), \
1329 (1U << (order % XA_CHUNK_SHIFT)) - 1)
1330
1331 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark))
1332 #define xas_trylock(xas) xa_trylock((xas)->xa)
1333 #define xas_lock(xas) xa_lock((xas)->xa)
1334 #define xas_unlock(xas) xa_unlock((xas)->xa)
1335 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa)
1336 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa)
1337 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa)
1338 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa)
1339 #define xas_lock_irqsave(xas, flags) \
1340 xa_lock_irqsave((xas)->xa, flags)
1341 #define xas_unlock_irqrestore(xas, flags) \
1342 xa_unlock_irqrestore((xas)->xa, flags)
1343
1344 /**
1345 * xas_error() - Return an errno stored in the xa_state.
1346 * @xas: XArray operation state.
1347 *
1348 * Return: 0 if no error has been noted. A negative errno if one has.
1349 */
xas_error(const struct xa_state * xas)1350 static inline int xas_error(const struct xa_state *xas)
1351 {
1352 return xa_err(xas->xa_node);
1353 }
1354
1355 /**
1356 * xas_set_err() - Note an error in the xa_state.
1357 * @xas: XArray operation state.
1358 * @err: Negative error number.
1359 *
1360 * Only call this function with a negative @err; zero or positive errors
1361 * will probably not behave the way you think they should. If you want
1362 * to clear the error from an xa_state, use xas_reset().
1363 */
xas_set_err(struct xa_state * xas,long err)1364 static inline void xas_set_err(struct xa_state *xas, long err)
1365 {
1366 xas->xa_node = XA_ERROR(err);
1367 }
1368
1369 /**
1370 * xas_invalid() - Is the xas in a retry or error state?
1371 * @xas: XArray operation state.
1372 *
1373 * Return: %true if the xas cannot be used for operations.
1374 */
xas_invalid(const struct xa_state * xas)1375 static inline bool xas_invalid(const struct xa_state *xas)
1376 {
1377 return (unsigned long)xas->xa_node & 3;
1378 }
1379
1380 /**
1381 * xas_valid() - Is the xas a valid cursor into the array?
1382 * @xas: XArray operation state.
1383 *
1384 * Return: %true if the xas can be used for operations.
1385 */
xas_valid(const struct xa_state * xas)1386 static inline bool xas_valid(const struct xa_state *xas)
1387 {
1388 return !xas_invalid(xas);
1389 }
1390
1391 /**
1392 * xas_is_node() - Does the xas point to a node?
1393 * @xas: XArray operation state.
1394 *
1395 * Return: %true if the xas currently references a node.
1396 */
xas_is_node(const struct xa_state * xas)1397 static inline bool xas_is_node(const struct xa_state *xas)
1398 {
1399 return xas_valid(xas) && xas->xa_node;
1400 }
1401
1402 /* True if the pointer is something other than a node */
xas_not_node(struct xa_node * node)1403 static inline bool xas_not_node(struct xa_node *node)
1404 {
1405 return ((unsigned long)node & 3) || !node;
1406 }
1407
1408 /* True if the node represents RESTART or an error */
xas_frozen(struct xa_node * node)1409 static inline bool xas_frozen(struct xa_node *node)
1410 {
1411 return (unsigned long)node & 2;
1412 }
1413
1414 /* True if the node represents head-of-tree, RESTART or BOUNDS */
xas_top(struct xa_node * node)1415 static inline bool xas_top(struct xa_node *node)
1416 {
1417 return node <= XAS_RESTART;
1418 }
1419
1420 /**
1421 * xas_reset() - Reset an XArray operation state.
1422 * @xas: XArray operation state.
1423 *
1424 * Resets the error or walk state of the @xas so future walks of the
1425 * array will start from the root. Use this if you have dropped the
1426 * xarray lock and want to reuse the xa_state.
1427 *
1428 * Context: Any context.
1429 */
xas_reset(struct xa_state * xas)1430 static inline void xas_reset(struct xa_state *xas)
1431 {
1432 xas->xa_node = XAS_RESTART;
1433 }
1434
1435 /**
1436 * xas_retry() - Retry the operation if appropriate.
1437 * @xas: XArray operation state.
1438 * @entry: Entry from xarray.
1439 *
1440 * The advanced functions may sometimes return an internal entry, such as
1441 * a retry entry or a zero entry. This function sets up the @xas to restart
1442 * the walk from the head of the array if needed.
1443 *
1444 * Context: Any context.
1445 * Return: true if the operation needs to be retried.
1446 */
xas_retry(struct xa_state * xas,const void * entry)1447 static inline bool xas_retry(struct xa_state *xas, const void *entry)
1448 {
1449 if (xa_is_zero(entry))
1450 return true;
1451 if (!xa_is_retry(entry))
1452 return false;
1453 xas_reset(xas);
1454 return true;
1455 }
1456
1457 void *xas_load(struct xa_state *);
1458 void *xas_store(struct xa_state *, void *entry);
1459 void *xas_find(struct xa_state *, unsigned long max);
1460 void *xas_find_conflict(struct xa_state *);
1461
1462 bool xas_get_mark(const struct xa_state *, xa_mark_t);
1463 void xas_set_mark(const struct xa_state *, xa_mark_t);
1464 void xas_clear_mark(const struct xa_state *, xa_mark_t);
1465 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1466 void xas_init_marks(const struct xa_state *);
1467
1468 bool xas_nomem(struct xa_state *, gfp_t);
1469 void xas_pause(struct xa_state *);
1470
1471 void xas_create_range(struct xa_state *);
1472
1473 /**
1474 * xas_reload() - Refetch an entry from the xarray.
1475 * @xas: XArray operation state.
1476 *
1477 * Use this function to check that a previously loaded entry still has
1478 * the same value. This is useful for the lockless pagecache lookup where
1479 * we walk the array with only the RCU lock to protect us, lock the page,
1480 * then check that the page hasn't moved since we looked it up.
1481 *
1482 * The caller guarantees that @xas is still valid. If it may be in an
1483 * error or restart state, call xas_load() instead.
1484 *
1485 * Return: The entry at this location in the xarray.
1486 */
xas_reload(struct xa_state * xas)1487 static inline void *xas_reload(struct xa_state *xas)
1488 {
1489 struct xa_node *node = xas->xa_node;
1490
1491 if (node)
1492 return xa_entry(xas->xa, node, xas->xa_offset);
1493 return xa_head(xas->xa);
1494 }
1495
1496 /**
1497 * xas_set() - Set up XArray operation state for a different index.
1498 * @xas: XArray operation state.
1499 * @index: New index into the XArray.
1500 *
1501 * Move the operation state to refer to a different index. This will
1502 * have the effect of starting a walk from the top; see xas_next()
1503 * to move to an adjacent index.
1504 */
xas_set(struct xa_state * xas,unsigned long index)1505 static inline void xas_set(struct xa_state *xas, unsigned long index)
1506 {
1507 xas->xa_index = index;
1508 xas->xa_node = XAS_RESTART;
1509 }
1510
1511 /**
1512 * xas_set_order() - Set up XArray operation state for a multislot entry.
1513 * @xas: XArray operation state.
1514 * @index: Target of the operation.
1515 * @order: Entry occupies 2^@order indices.
1516 */
xas_set_order(struct xa_state * xas,unsigned long index,unsigned int order)1517 static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1518 unsigned int order)
1519 {
1520 #ifdef CONFIG_XARRAY_MULTI
1521 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1522 xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1523 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1524 xas->xa_node = XAS_RESTART;
1525 #else
1526 BUG_ON(order > 0);
1527 xas_set(xas, index);
1528 #endif
1529 }
1530
1531 /**
1532 * xas_set_update() - Set up XArray operation state for a callback.
1533 * @xas: XArray operation state.
1534 * @update: Function to call when updating a node.
1535 *
1536 * The XArray can notify a caller after it has updated an xa_node.
1537 * This is advanced functionality and is only needed by the page cache.
1538 */
xas_set_update(struct xa_state * xas,xa_update_node_t update)1539 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1540 {
1541 xas->xa_update = update;
1542 }
1543
1544 /**
1545 * xas_next_entry() - Advance iterator to next present entry.
1546 * @xas: XArray operation state.
1547 * @max: Highest index to return.
1548 *
1549 * xas_next_entry() is an inline function to optimise xarray traversal for
1550 * speed. It is equivalent to calling xas_find(), and will call xas_find()
1551 * for all the hard cases.
1552 *
1553 * Return: The next present entry after the one currently referred to by @xas.
1554 */
xas_next_entry(struct xa_state * xas,unsigned long max)1555 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1556 {
1557 struct xa_node *node = xas->xa_node;
1558 void *entry;
1559
1560 if (unlikely(xas_not_node(node) || node->shift ||
1561 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1562 return xas_find(xas, max);
1563
1564 do {
1565 if (unlikely(xas->xa_index >= max))
1566 return xas_find(xas, max);
1567 if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1568 return xas_find(xas, max);
1569 entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1570 if (unlikely(xa_is_internal(entry)))
1571 return xas_find(xas, max);
1572 xas->xa_offset++;
1573 xas->xa_index++;
1574 } while (!entry);
1575
1576 return entry;
1577 }
1578
1579 /* Private */
xas_find_chunk(struct xa_state * xas,bool advance,xa_mark_t mark)1580 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1581 xa_mark_t mark)
1582 {
1583 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1584 unsigned int offset = xas->xa_offset;
1585
1586 if (advance)
1587 offset++;
1588 if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1589 if (offset < XA_CHUNK_SIZE) {
1590 unsigned long data = *addr & (~0UL << offset);
1591 if (data)
1592 return __ffs(data);
1593 }
1594 return XA_CHUNK_SIZE;
1595 }
1596
1597 return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1598 }
1599
1600 /**
1601 * xas_next_marked() - Advance iterator to next marked entry.
1602 * @xas: XArray operation state.
1603 * @max: Highest index to return.
1604 * @mark: Mark to search for.
1605 *
1606 * xas_next_marked() is an inline function to optimise xarray traversal for
1607 * speed. It is equivalent to calling xas_find_marked(), and will call
1608 * xas_find_marked() for all the hard cases.
1609 *
1610 * Return: The next marked entry after the one currently referred to by @xas.
1611 */
xas_next_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1612 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1613 xa_mark_t mark)
1614 {
1615 struct xa_node *node = xas->xa_node;
1616 unsigned int offset;
1617
1618 if (unlikely(xas_not_node(node) || node->shift))
1619 return xas_find_marked(xas, max, mark);
1620 offset = xas_find_chunk(xas, true, mark);
1621 xas->xa_offset = offset;
1622 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1623 if (xas->xa_index > max)
1624 return NULL;
1625 if (offset == XA_CHUNK_SIZE)
1626 return xas_find_marked(xas, max, mark);
1627 return xa_entry(xas->xa, node, offset);
1628 }
1629
1630 /*
1631 * If iterating while holding a lock, drop the lock and reschedule
1632 * every %XA_CHECK_SCHED loops.
1633 */
1634 enum {
1635 XA_CHECK_SCHED = 4096,
1636 };
1637
1638 /**
1639 * xas_for_each() - Iterate over a range of an XArray.
1640 * @xas: XArray operation state.
1641 * @entry: Entry retrieved from the array.
1642 * @max: Maximum index to retrieve from array.
1643 *
1644 * The loop body will be executed for each entry present in the xarray
1645 * between the current xas position and @max. @entry will be set to
1646 * the entry retrieved from the xarray. It is safe to delete entries
1647 * from the array in the loop body. You should hold either the RCU lock
1648 * or the xa_lock while iterating. If you need to drop the lock, call
1649 * xas_pause() first.
1650 */
1651 #define xas_for_each(xas, entry, max) \
1652 for (entry = xas_find(xas, max); entry; \
1653 entry = xas_next_entry(xas, max))
1654
1655 /**
1656 * xas_for_each_marked() - Iterate over a range of an XArray.
1657 * @xas: XArray operation state.
1658 * @entry: Entry retrieved from the array.
1659 * @max: Maximum index to retrieve from array.
1660 * @mark: Mark to search for.
1661 *
1662 * The loop body will be executed for each marked entry in the xarray
1663 * between the current xas position and @max. @entry will be set to
1664 * the entry retrieved from the xarray. It is safe to delete entries
1665 * from the array in the loop body. You should hold either the RCU lock
1666 * or the xa_lock while iterating. If you need to drop the lock, call
1667 * xas_pause() first.
1668 */
1669 #define xas_for_each_marked(xas, entry, max, mark) \
1670 for (entry = xas_find_marked(xas, max, mark); entry; \
1671 entry = xas_next_marked(xas, max, mark))
1672
1673 /**
1674 * xas_for_each_conflict() - Iterate over a range of an XArray.
1675 * @xas: XArray operation state.
1676 * @entry: Entry retrieved from the array.
1677 *
1678 * The loop body will be executed for each entry in the XArray that lies
1679 * within the range specified by @xas. If the loop completes successfully,
1680 * any entries that lie in this range will be replaced by @entry. The caller
1681 * may break out of the loop; if they do so, the contents of the XArray will
1682 * be unchanged. The operation may fail due to an out of memory condition.
1683 * The caller may also call xa_set_err() to exit the loop while setting an
1684 * error to record the reason.
1685 */
1686 #define xas_for_each_conflict(xas, entry) \
1687 while ((entry = xas_find_conflict(xas)))
1688
1689 void *__xas_next(struct xa_state *);
1690 void *__xas_prev(struct xa_state *);
1691
1692 /**
1693 * xas_prev() - Move iterator to previous index.
1694 * @xas: XArray operation state.
1695 *
1696 * If the @xas was in an error state, it will remain in an error state
1697 * and this function will return %NULL. If the @xas has never been walked,
1698 * it will have the effect of calling xas_load(). Otherwise one will be
1699 * subtracted from the index and the state will be walked to the correct
1700 * location in the array for the next operation.
1701 *
1702 * If the iterator was referencing index 0, this function wraps
1703 * around to %ULONG_MAX.
1704 *
1705 * Return: The entry at the new index. This may be %NULL or an internal
1706 * entry.
1707 */
xas_prev(struct xa_state * xas)1708 static inline void *xas_prev(struct xa_state *xas)
1709 {
1710 struct xa_node *node = xas->xa_node;
1711
1712 if (unlikely(xas_not_node(node) || node->shift ||
1713 xas->xa_offset == 0))
1714 return __xas_prev(xas);
1715
1716 xas->xa_index--;
1717 xas->xa_offset--;
1718 return xa_entry(xas->xa, node, xas->xa_offset);
1719 }
1720
1721 /**
1722 * xas_next() - Move state to next index.
1723 * @xas: XArray operation state.
1724 *
1725 * If the @xas was in an error state, it will remain in an error state
1726 * and this function will return %NULL. If the @xas has never been walked,
1727 * it will have the effect of calling xas_load(). Otherwise one will be
1728 * added to the index and the state will be walked to the correct
1729 * location in the array for the next operation.
1730 *
1731 * If the iterator was referencing index %ULONG_MAX, this function wraps
1732 * around to 0.
1733 *
1734 * Return: The entry at the new index. This may be %NULL or an internal
1735 * entry.
1736 */
xas_next(struct xa_state * xas)1737 static inline void *xas_next(struct xa_state *xas)
1738 {
1739 struct xa_node *node = xas->xa_node;
1740
1741 if (unlikely(xas_not_node(node) || node->shift ||
1742 xas->xa_offset == XA_CHUNK_MASK))
1743 return __xas_next(xas);
1744
1745 xas->xa_index++;
1746 xas->xa_offset++;
1747 return xa_entry(xas->xa, node, xas->xa_offset);
1748 }
1749
1750 #endif /* _LINUX_XARRAY_H */
1751