1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 .enabled = 1,
52 .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61 * from just a typename, as opposed to an actual function.
62 */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
70 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
71 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
72
73 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
74 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
75 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
76
77 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
78 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
79 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
80
81 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
82 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
83
84 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
86
87 /*
88 * This one is magic, it will get called even when PMU init fails (because
89 * there is no PMU), in which case it should simply return NULL.
90 */
91 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
92
93 u64 __read_mostly hw_cache_event_ids
94 [PERF_COUNT_HW_CACHE_MAX]
95 [PERF_COUNT_HW_CACHE_OP_MAX]
96 [PERF_COUNT_HW_CACHE_RESULT_MAX];
97 u64 __read_mostly hw_cache_extra_regs
98 [PERF_COUNT_HW_CACHE_MAX]
99 [PERF_COUNT_HW_CACHE_OP_MAX]
100 [PERF_COUNT_HW_CACHE_RESULT_MAX];
101
102 /*
103 * Propagate event elapsed time into the generic event.
104 * Can only be executed on the CPU where the event is active.
105 * Returns the delta events processed.
106 */
x86_perf_event_update(struct perf_event * event)107 u64 x86_perf_event_update(struct perf_event *event)
108 {
109 struct hw_perf_event *hwc = &event->hw;
110 int shift = 64 - x86_pmu.cntval_bits;
111 u64 prev_raw_count, new_raw_count;
112 u64 delta;
113
114 if (unlikely(!hwc->event_base))
115 return 0;
116
117 if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
118 return x86_pmu.update_topdown_event(event);
119
120 /*
121 * Careful: an NMI might modify the previous event value.
122 *
123 * Our tactic to handle this is to first atomically read and
124 * exchange a new raw count - then add that new-prev delta
125 * count to the generic event atomically:
126 */
127 again:
128 prev_raw_count = local64_read(&hwc->prev_count);
129 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
130
131 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
132 new_raw_count) != prev_raw_count)
133 goto again;
134
135 /*
136 * Now we have the new raw value and have updated the prev
137 * timestamp already. We can now calculate the elapsed delta
138 * (event-)time and add that to the generic event.
139 *
140 * Careful, not all hw sign-extends above the physical width
141 * of the count.
142 */
143 delta = (new_raw_count << shift) - (prev_raw_count << shift);
144 delta >>= shift;
145
146 local64_add(delta, &event->count);
147 local64_sub(delta, &hwc->period_left);
148
149 return new_raw_count;
150 }
151
152 /*
153 * Find and validate any extra registers to set up.
154 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)155 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
156 {
157 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
158 struct hw_perf_event_extra *reg;
159 struct extra_reg *er;
160
161 reg = &event->hw.extra_reg;
162
163 if (!extra_regs)
164 return 0;
165
166 for (er = extra_regs; er->msr; er++) {
167 if (er->event != (config & er->config_mask))
168 continue;
169 if (event->attr.config1 & ~er->valid_mask)
170 return -EINVAL;
171 /* Check if the extra msrs can be safely accessed*/
172 if (!er->extra_msr_access)
173 return -ENXIO;
174
175 reg->idx = er->idx;
176 reg->config = event->attr.config1;
177 reg->reg = er->msr;
178 break;
179 }
180 return 0;
181 }
182
183 static atomic_t active_events;
184 static atomic_t pmc_refcount;
185 static DEFINE_MUTEX(pmc_reserve_mutex);
186
187 #ifdef CONFIG_X86_LOCAL_APIC
188
get_possible_num_counters(void)189 static inline int get_possible_num_counters(void)
190 {
191 int i, num_counters = x86_pmu.num_counters;
192
193 if (!is_hybrid())
194 return num_counters;
195
196 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
197 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
198
199 return num_counters;
200 }
201
reserve_pmc_hardware(void)202 static bool reserve_pmc_hardware(void)
203 {
204 int i, num_counters = get_possible_num_counters();
205
206 for (i = 0; i < num_counters; i++) {
207 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
208 goto perfctr_fail;
209 }
210
211 for (i = 0; i < num_counters; i++) {
212 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
213 goto eventsel_fail;
214 }
215
216 return true;
217
218 eventsel_fail:
219 for (i--; i >= 0; i--)
220 release_evntsel_nmi(x86_pmu_config_addr(i));
221
222 i = num_counters;
223
224 perfctr_fail:
225 for (i--; i >= 0; i--)
226 release_perfctr_nmi(x86_pmu_event_addr(i));
227
228 return false;
229 }
230
release_pmc_hardware(void)231 static void release_pmc_hardware(void)
232 {
233 int i, num_counters = get_possible_num_counters();
234
235 for (i = 0; i < num_counters; i++) {
236 release_perfctr_nmi(x86_pmu_event_addr(i));
237 release_evntsel_nmi(x86_pmu_config_addr(i));
238 }
239 }
240
241 #else
242
reserve_pmc_hardware(void)243 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)244 static void release_pmc_hardware(void) {}
245
246 #endif
247
check_hw_exists(struct pmu * pmu,int num_counters,int num_counters_fixed)248 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
249 {
250 u64 val, val_fail = -1, val_new= ~0;
251 int i, reg, reg_fail = -1, ret = 0;
252 int bios_fail = 0;
253 int reg_safe = -1;
254
255 /*
256 * Check to see if the BIOS enabled any of the counters, if so
257 * complain and bail.
258 */
259 for (i = 0; i < num_counters; i++) {
260 reg = x86_pmu_config_addr(i);
261 ret = rdmsrl_safe(reg, &val);
262 if (ret)
263 goto msr_fail;
264 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
265 bios_fail = 1;
266 val_fail = val;
267 reg_fail = reg;
268 } else {
269 reg_safe = i;
270 }
271 }
272
273 if (num_counters_fixed) {
274 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
275 ret = rdmsrl_safe(reg, &val);
276 if (ret)
277 goto msr_fail;
278 for (i = 0; i < num_counters_fixed; i++) {
279 if (fixed_counter_disabled(i, pmu))
280 continue;
281 if (val & (0x03ULL << i*4)) {
282 bios_fail = 1;
283 val_fail = val;
284 reg_fail = reg;
285 }
286 }
287 }
288
289 /*
290 * If all the counters are enabled, the below test will always
291 * fail. The tools will also become useless in this scenario.
292 * Just fail and disable the hardware counters.
293 */
294
295 if (reg_safe == -1) {
296 reg = reg_safe;
297 goto msr_fail;
298 }
299
300 /*
301 * Read the current value, change it and read it back to see if it
302 * matches, this is needed to detect certain hardware emulators
303 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
304 */
305 reg = x86_pmu_event_addr(reg_safe);
306 if (rdmsrl_safe(reg, &val))
307 goto msr_fail;
308 val ^= 0xffffUL;
309 ret = wrmsrl_safe(reg, val);
310 ret |= rdmsrl_safe(reg, &val_new);
311 if (ret || val != val_new)
312 goto msr_fail;
313
314 /*
315 * We still allow the PMU driver to operate:
316 */
317 if (bios_fail) {
318 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
319 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
320 reg_fail, val_fail);
321 }
322
323 return true;
324
325 msr_fail:
326 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
327 pr_cont("PMU not available due to virtualization, using software events only.\n");
328 } else {
329 pr_cont("Broken PMU hardware detected, using software events only.\n");
330 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
331 reg, val_new);
332 }
333
334 return false;
335 }
336
hw_perf_event_destroy(struct perf_event * event)337 static void hw_perf_event_destroy(struct perf_event *event)
338 {
339 x86_release_hardware();
340 atomic_dec(&active_events);
341 }
342
hw_perf_lbr_event_destroy(struct perf_event * event)343 void hw_perf_lbr_event_destroy(struct perf_event *event)
344 {
345 hw_perf_event_destroy(event);
346
347 /* undo the lbr/bts event accounting */
348 x86_del_exclusive(x86_lbr_exclusive_lbr);
349 }
350
x86_pmu_initialized(void)351 static inline int x86_pmu_initialized(void)
352 {
353 return x86_pmu.handle_irq != NULL;
354 }
355
356 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)357 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
358 {
359 struct perf_event_attr *attr = &event->attr;
360 unsigned int cache_type, cache_op, cache_result;
361 u64 config, val;
362
363 config = attr->config;
364
365 cache_type = (config >> 0) & 0xff;
366 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
367 return -EINVAL;
368 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
369
370 cache_op = (config >> 8) & 0xff;
371 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
372 return -EINVAL;
373 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
374
375 cache_result = (config >> 16) & 0xff;
376 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
377 return -EINVAL;
378 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
379
380 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
381 if (val == 0)
382 return -ENOENT;
383
384 if (val == -1)
385 return -EINVAL;
386
387 hwc->config |= val;
388 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
389 return x86_pmu_extra_regs(val, event);
390 }
391
x86_reserve_hardware(void)392 int x86_reserve_hardware(void)
393 {
394 int err = 0;
395
396 if (!atomic_inc_not_zero(&pmc_refcount)) {
397 mutex_lock(&pmc_reserve_mutex);
398 if (atomic_read(&pmc_refcount) == 0) {
399 if (!reserve_pmc_hardware()) {
400 err = -EBUSY;
401 } else {
402 reserve_ds_buffers();
403 reserve_lbr_buffers();
404 }
405 }
406 if (!err)
407 atomic_inc(&pmc_refcount);
408 mutex_unlock(&pmc_reserve_mutex);
409 }
410
411 return err;
412 }
413
x86_release_hardware(void)414 void x86_release_hardware(void)
415 {
416 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
417 release_pmc_hardware();
418 release_ds_buffers();
419 release_lbr_buffers();
420 mutex_unlock(&pmc_reserve_mutex);
421 }
422 }
423
424 /*
425 * Check if we can create event of a certain type (that no conflicting events
426 * are present).
427 */
x86_add_exclusive(unsigned int what)428 int x86_add_exclusive(unsigned int what)
429 {
430 int i;
431
432 /*
433 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
434 * LBR and BTS are still mutually exclusive.
435 */
436 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
437 goto out;
438
439 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
440 mutex_lock(&pmc_reserve_mutex);
441 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
442 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
443 goto fail_unlock;
444 }
445 atomic_inc(&x86_pmu.lbr_exclusive[what]);
446 mutex_unlock(&pmc_reserve_mutex);
447 }
448
449 out:
450 atomic_inc(&active_events);
451 return 0;
452
453 fail_unlock:
454 mutex_unlock(&pmc_reserve_mutex);
455 return -EBUSY;
456 }
457
x86_del_exclusive(unsigned int what)458 void x86_del_exclusive(unsigned int what)
459 {
460 atomic_dec(&active_events);
461
462 /*
463 * See the comment in x86_add_exclusive().
464 */
465 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
466 return;
467
468 atomic_dec(&x86_pmu.lbr_exclusive[what]);
469 }
470
x86_setup_perfctr(struct perf_event * event)471 int x86_setup_perfctr(struct perf_event *event)
472 {
473 struct perf_event_attr *attr = &event->attr;
474 struct hw_perf_event *hwc = &event->hw;
475 u64 config;
476
477 if (!is_sampling_event(event)) {
478 hwc->sample_period = x86_pmu.max_period;
479 hwc->last_period = hwc->sample_period;
480 local64_set(&hwc->period_left, hwc->sample_period);
481 }
482
483 if (attr->type == event->pmu->type)
484 return x86_pmu_extra_regs(event->attr.config, event);
485
486 if (attr->type == PERF_TYPE_HW_CACHE)
487 return set_ext_hw_attr(hwc, event);
488
489 if (attr->config >= x86_pmu.max_events)
490 return -EINVAL;
491
492 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
493
494 /*
495 * The generic map:
496 */
497 config = x86_pmu.event_map(attr->config);
498
499 if (config == 0)
500 return -ENOENT;
501
502 if (config == -1LL)
503 return -EINVAL;
504
505 hwc->config |= config;
506
507 return 0;
508 }
509
510 /*
511 * check that branch_sample_type is compatible with
512 * settings needed for precise_ip > 1 which implies
513 * using the LBR to capture ALL taken branches at the
514 * priv levels of the measurement
515 */
precise_br_compat(struct perf_event * event)516 static inline int precise_br_compat(struct perf_event *event)
517 {
518 u64 m = event->attr.branch_sample_type;
519 u64 b = 0;
520
521 /* must capture all branches */
522 if (!(m & PERF_SAMPLE_BRANCH_ANY))
523 return 0;
524
525 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
526
527 if (!event->attr.exclude_user)
528 b |= PERF_SAMPLE_BRANCH_USER;
529
530 if (!event->attr.exclude_kernel)
531 b |= PERF_SAMPLE_BRANCH_KERNEL;
532
533 /*
534 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
535 */
536
537 return m == b;
538 }
539
x86_pmu_max_precise(void)540 int x86_pmu_max_precise(void)
541 {
542 int precise = 0;
543
544 /* Support for constant skid */
545 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
546 precise++;
547
548 /* Support for IP fixup */
549 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
550 precise++;
551
552 if (x86_pmu.pebs_prec_dist)
553 precise++;
554 }
555 return precise;
556 }
557
x86_pmu_hw_config(struct perf_event * event)558 int x86_pmu_hw_config(struct perf_event *event)
559 {
560 if (event->attr.precise_ip) {
561 int precise = x86_pmu_max_precise();
562
563 if (event->attr.precise_ip > precise)
564 return -EOPNOTSUPP;
565
566 /* There's no sense in having PEBS for non sampling events: */
567 if (!is_sampling_event(event))
568 return -EINVAL;
569 }
570 /*
571 * check that PEBS LBR correction does not conflict with
572 * whatever the user is asking with attr->branch_sample_type
573 */
574 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
575 u64 *br_type = &event->attr.branch_sample_type;
576
577 if (has_branch_stack(event)) {
578 if (!precise_br_compat(event))
579 return -EOPNOTSUPP;
580
581 /* branch_sample_type is compatible */
582
583 } else {
584 /*
585 * user did not specify branch_sample_type
586 *
587 * For PEBS fixups, we capture all
588 * the branches at the priv level of the
589 * event.
590 */
591 *br_type = PERF_SAMPLE_BRANCH_ANY;
592
593 if (!event->attr.exclude_user)
594 *br_type |= PERF_SAMPLE_BRANCH_USER;
595
596 if (!event->attr.exclude_kernel)
597 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
598 }
599 }
600
601 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
602 event->attach_state |= PERF_ATTACH_TASK_DATA;
603
604 /*
605 * Generate PMC IRQs:
606 * (keep 'enabled' bit clear for now)
607 */
608 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
609
610 /*
611 * Count user and OS events unless requested not to
612 */
613 if (!event->attr.exclude_user)
614 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
615 if (!event->attr.exclude_kernel)
616 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
617
618 if (event->attr.type == event->pmu->type)
619 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
620
621 if (event->attr.sample_period && x86_pmu.limit_period) {
622 if (x86_pmu.limit_period(event, event->attr.sample_period) >
623 event->attr.sample_period)
624 return -EINVAL;
625 }
626
627 /* sample_regs_user never support XMM registers */
628 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
629 return -EINVAL;
630 /*
631 * Besides the general purpose registers, XMM registers may
632 * be collected in PEBS on some platforms, e.g. Icelake
633 */
634 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
635 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
636 return -EINVAL;
637
638 if (!event->attr.precise_ip)
639 return -EINVAL;
640 }
641
642 return x86_setup_perfctr(event);
643 }
644
645 /*
646 * Setup the hardware configuration for a given attr_type
647 */
__x86_pmu_event_init(struct perf_event * event)648 static int __x86_pmu_event_init(struct perf_event *event)
649 {
650 int err;
651
652 if (!x86_pmu_initialized())
653 return -ENODEV;
654
655 err = x86_reserve_hardware();
656 if (err)
657 return err;
658
659 atomic_inc(&active_events);
660 event->destroy = hw_perf_event_destroy;
661
662 event->hw.idx = -1;
663 event->hw.last_cpu = -1;
664 event->hw.last_tag = ~0ULL;
665
666 /* mark unused */
667 event->hw.extra_reg.idx = EXTRA_REG_NONE;
668 event->hw.branch_reg.idx = EXTRA_REG_NONE;
669
670 return x86_pmu.hw_config(event);
671 }
672
x86_pmu_disable_all(void)673 void x86_pmu_disable_all(void)
674 {
675 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
676 int idx;
677
678 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
679 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
680 u64 val;
681
682 if (!test_bit(idx, cpuc->active_mask))
683 continue;
684 rdmsrl(x86_pmu_config_addr(idx), val);
685 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
686 continue;
687 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
688 wrmsrl(x86_pmu_config_addr(idx), val);
689 if (is_counter_pair(hwc))
690 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
691 }
692 }
693
perf_guest_get_msrs(int * nr)694 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
695 {
696 return static_call(x86_pmu_guest_get_msrs)(nr);
697 }
698 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
699
700 /*
701 * There may be PMI landing after enabled=0. The PMI hitting could be before or
702 * after disable_all.
703 *
704 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
705 * It will not be re-enabled in the NMI handler again, because enabled=0. After
706 * handling the NMI, disable_all will be called, which will not change the
707 * state either. If PMI hits after disable_all, the PMU is already disabled
708 * before entering NMI handler. The NMI handler will not change the state
709 * either.
710 *
711 * So either situation is harmless.
712 */
x86_pmu_disable(struct pmu * pmu)713 static void x86_pmu_disable(struct pmu *pmu)
714 {
715 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
716
717 if (!x86_pmu_initialized())
718 return;
719
720 if (!cpuc->enabled)
721 return;
722
723 cpuc->n_added = 0;
724 cpuc->enabled = 0;
725 barrier();
726
727 static_call(x86_pmu_disable_all)();
728 }
729
x86_pmu_enable_all(int added)730 void x86_pmu_enable_all(int added)
731 {
732 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
733 int idx;
734
735 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
736 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
737
738 if (!test_bit(idx, cpuc->active_mask))
739 continue;
740
741 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
742 }
743 }
744
is_x86_event(struct perf_event * event)745 static inline int is_x86_event(struct perf_event *event)
746 {
747 int i;
748
749 if (!is_hybrid())
750 return event->pmu == &pmu;
751
752 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
753 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
754 return true;
755 }
756
757 return false;
758 }
759
x86_get_pmu(unsigned int cpu)760 struct pmu *x86_get_pmu(unsigned int cpu)
761 {
762 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
763
764 /*
765 * All CPUs of the hybrid type have been offline.
766 * The x86_get_pmu() should not be invoked.
767 */
768 if (WARN_ON_ONCE(!cpuc->pmu))
769 return &pmu;
770
771 return cpuc->pmu;
772 }
773 /*
774 * Event scheduler state:
775 *
776 * Assign events iterating over all events and counters, beginning
777 * with events with least weights first. Keep the current iterator
778 * state in struct sched_state.
779 */
780 struct sched_state {
781 int weight;
782 int event; /* event index */
783 int counter; /* counter index */
784 int unassigned; /* number of events to be assigned left */
785 int nr_gp; /* number of GP counters used */
786 u64 used;
787 };
788
789 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
790 #define SCHED_STATES_MAX 2
791
792 struct perf_sched {
793 int max_weight;
794 int max_events;
795 int max_gp;
796 int saved_states;
797 struct event_constraint **constraints;
798 struct sched_state state;
799 struct sched_state saved[SCHED_STATES_MAX];
800 };
801
802 /*
803 * Initialize iterator that runs through all events and counters.
804 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)805 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
806 int num, int wmin, int wmax, int gpmax)
807 {
808 int idx;
809
810 memset(sched, 0, sizeof(*sched));
811 sched->max_events = num;
812 sched->max_weight = wmax;
813 sched->max_gp = gpmax;
814 sched->constraints = constraints;
815
816 for (idx = 0; idx < num; idx++) {
817 if (constraints[idx]->weight == wmin)
818 break;
819 }
820
821 sched->state.event = idx; /* start with min weight */
822 sched->state.weight = wmin;
823 sched->state.unassigned = num;
824 }
825
perf_sched_save_state(struct perf_sched * sched)826 static void perf_sched_save_state(struct perf_sched *sched)
827 {
828 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
829 return;
830
831 sched->saved[sched->saved_states] = sched->state;
832 sched->saved_states++;
833 }
834
perf_sched_restore_state(struct perf_sched * sched)835 static bool perf_sched_restore_state(struct perf_sched *sched)
836 {
837 if (!sched->saved_states)
838 return false;
839
840 sched->saved_states--;
841 sched->state = sched->saved[sched->saved_states];
842
843 /* this assignment didn't work out */
844 /* XXX broken vs EVENT_PAIR */
845 sched->state.used &= ~BIT_ULL(sched->state.counter);
846
847 /* try the next one */
848 sched->state.counter++;
849
850 return true;
851 }
852
853 /*
854 * Select a counter for the current event to schedule. Return true on
855 * success.
856 */
__perf_sched_find_counter(struct perf_sched * sched)857 static bool __perf_sched_find_counter(struct perf_sched *sched)
858 {
859 struct event_constraint *c;
860 int idx;
861
862 if (!sched->state.unassigned)
863 return false;
864
865 if (sched->state.event >= sched->max_events)
866 return false;
867
868 c = sched->constraints[sched->state.event];
869 /* Prefer fixed purpose counters */
870 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
871 idx = INTEL_PMC_IDX_FIXED;
872 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
873 u64 mask = BIT_ULL(idx);
874
875 if (sched->state.used & mask)
876 continue;
877
878 sched->state.used |= mask;
879 goto done;
880 }
881 }
882
883 /* Grab the first unused counter starting with idx */
884 idx = sched->state.counter;
885 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
886 u64 mask = BIT_ULL(idx);
887
888 if (c->flags & PERF_X86_EVENT_PAIR)
889 mask |= mask << 1;
890
891 if (sched->state.used & mask)
892 continue;
893
894 if (sched->state.nr_gp++ >= sched->max_gp)
895 return false;
896
897 sched->state.used |= mask;
898 goto done;
899 }
900
901 return false;
902
903 done:
904 sched->state.counter = idx;
905
906 if (c->overlap)
907 perf_sched_save_state(sched);
908
909 return true;
910 }
911
perf_sched_find_counter(struct perf_sched * sched)912 static bool perf_sched_find_counter(struct perf_sched *sched)
913 {
914 while (!__perf_sched_find_counter(sched)) {
915 if (!perf_sched_restore_state(sched))
916 return false;
917 }
918
919 return true;
920 }
921
922 /*
923 * Go through all unassigned events and find the next one to schedule.
924 * Take events with the least weight first. Return true on success.
925 */
perf_sched_next_event(struct perf_sched * sched)926 static bool perf_sched_next_event(struct perf_sched *sched)
927 {
928 struct event_constraint *c;
929
930 if (!sched->state.unassigned || !--sched->state.unassigned)
931 return false;
932
933 do {
934 /* next event */
935 sched->state.event++;
936 if (sched->state.event >= sched->max_events) {
937 /* next weight */
938 sched->state.event = 0;
939 sched->state.weight++;
940 if (sched->state.weight > sched->max_weight)
941 return false;
942 }
943 c = sched->constraints[sched->state.event];
944 } while (c->weight != sched->state.weight);
945
946 sched->state.counter = 0; /* start with first counter */
947
948 return true;
949 }
950
951 /*
952 * Assign a counter for each event.
953 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)954 int perf_assign_events(struct event_constraint **constraints, int n,
955 int wmin, int wmax, int gpmax, int *assign)
956 {
957 struct perf_sched sched;
958
959 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
960
961 do {
962 if (!perf_sched_find_counter(&sched))
963 break; /* failed */
964 if (assign)
965 assign[sched.state.event] = sched.state.counter;
966 } while (perf_sched_next_event(&sched));
967
968 return sched.state.unassigned;
969 }
970 EXPORT_SYMBOL_GPL(perf_assign_events);
971
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)972 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
973 {
974 int num_counters = hybrid(cpuc->pmu, num_counters);
975 struct event_constraint *c;
976 struct perf_event *e;
977 int n0, i, wmin, wmax, unsched = 0;
978 struct hw_perf_event *hwc;
979 u64 used_mask = 0;
980
981 /*
982 * Compute the number of events already present; see x86_pmu_add(),
983 * validate_group() and x86_pmu_commit_txn(). For the former two
984 * cpuc->n_events hasn't been updated yet, while for the latter
985 * cpuc->n_txn contains the number of events added in the current
986 * transaction.
987 */
988 n0 = cpuc->n_events;
989 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
990 n0 -= cpuc->n_txn;
991
992 static_call_cond(x86_pmu_start_scheduling)(cpuc);
993
994 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
995 c = cpuc->event_constraint[i];
996
997 /*
998 * Previously scheduled events should have a cached constraint,
999 * while new events should not have one.
1000 */
1001 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1002
1003 /*
1004 * Request constraints for new events; or for those events that
1005 * have a dynamic constraint -- for those the constraint can
1006 * change due to external factors (sibling state, allow_tfa).
1007 */
1008 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1009 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1010 cpuc->event_constraint[i] = c;
1011 }
1012
1013 wmin = min(wmin, c->weight);
1014 wmax = max(wmax, c->weight);
1015 }
1016
1017 /*
1018 * fastpath, try to reuse previous register
1019 */
1020 for (i = 0; i < n; i++) {
1021 u64 mask;
1022
1023 hwc = &cpuc->event_list[i]->hw;
1024 c = cpuc->event_constraint[i];
1025
1026 /* never assigned */
1027 if (hwc->idx == -1)
1028 break;
1029
1030 /* constraint still honored */
1031 if (!test_bit(hwc->idx, c->idxmsk))
1032 break;
1033
1034 mask = BIT_ULL(hwc->idx);
1035 if (is_counter_pair(hwc))
1036 mask |= mask << 1;
1037
1038 /* not already used */
1039 if (used_mask & mask)
1040 break;
1041
1042 used_mask |= mask;
1043
1044 if (assign)
1045 assign[i] = hwc->idx;
1046 }
1047
1048 /* slow path */
1049 if (i != n) {
1050 int gpmax = num_counters;
1051
1052 /*
1053 * Do not allow scheduling of more than half the available
1054 * generic counters.
1055 *
1056 * This helps avoid counter starvation of sibling thread by
1057 * ensuring at most half the counters cannot be in exclusive
1058 * mode. There is no designated counters for the limits. Any
1059 * N/2 counters can be used. This helps with events with
1060 * specific counter constraints.
1061 */
1062 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1063 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1064 gpmax /= 2;
1065
1066 /*
1067 * Reduce the amount of available counters to allow fitting
1068 * the extra Merge events needed by large increment events.
1069 */
1070 if (x86_pmu.flags & PMU_FL_PAIR) {
1071 gpmax = num_counters - cpuc->n_pair;
1072 WARN_ON(gpmax <= 0);
1073 }
1074
1075 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1076 wmax, gpmax, assign);
1077 }
1078
1079 /*
1080 * In case of success (unsched = 0), mark events as committed,
1081 * so we do not put_constraint() in case new events are added
1082 * and fail to be scheduled
1083 *
1084 * We invoke the lower level commit callback to lock the resource
1085 *
1086 * We do not need to do all of this in case we are called to
1087 * validate an event group (assign == NULL)
1088 */
1089 if (!unsched && assign) {
1090 for (i = 0; i < n; i++)
1091 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1092 } else {
1093 for (i = n0; i < n; i++) {
1094 e = cpuc->event_list[i];
1095
1096 /*
1097 * release events that failed scheduling
1098 */
1099 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1100
1101 cpuc->event_constraint[i] = NULL;
1102 }
1103 }
1104
1105 static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1106
1107 return unsched ? -EINVAL : 0;
1108 }
1109
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1110 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1111 struct perf_event *event)
1112 {
1113 if (is_metric_event(event)) {
1114 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1115 return -EINVAL;
1116 cpuc->n_metric++;
1117 cpuc->n_txn_metric++;
1118 }
1119
1120 return 0;
1121 }
1122
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1123 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1124 struct perf_event *event)
1125 {
1126 if (is_metric_event(event))
1127 cpuc->n_metric--;
1128 }
1129
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1130 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1131 int max_count, int n)
1132 {
1133 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1134
1135 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1136 return -EINVAL;
1137
1138 if (n >= max_count + cpuc->n_metric)
1139 return -EINVAL;
1140
1141 cpuc->event_list[n] = event;
1142 if (is_counter_pair(&event->hw)) {
1143 cpuc->n_pair++;
1144 cpuc->n_txn_pair++;
1145 }
1146
1147 return 0;
1148 }
1149
1150 /*
1151 * dogrp: true if must collect siblings events (group)
1152 * returns total number of events and error code
1153 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1154 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1155 {
1156 int num_counters = hybrid(cpuc->pmu, num_counters);
1157 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1158 struct perf_event *event;
1159 int n, max_count;
1160
1161 max_count = num_counters + num_counters_fixed;
1162
1163 /* current number of events already accepted */
1164 n = cpuc->n_events;
1165 if (!cpuc->n_events)
1166 cpuc->pebs_output = 0;
1167
1168 if (!cpuc->is_fake && leader->attr.precise_ip) {
1169 /*
1170 * For PEBS->PT, if !aux_event, the group leader (PT) went
1171 * away, the group was broken down and this singleton event
1172 * can't schedule any more.
1173 */
1174 if (is_pebs_pt(leader) && !leader->aux_event)
1175 return -EINVAL;
1176
1177 /*
1178 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1179 */
1180 if (cpuc->pebs_output &&
1181 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1182 return -EINVAL;
1183
1184 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1185 }
1186
1187 if (is_x86_event(leader)) {
1188 if (collect_event(cpuc, leader, max_count, n))
1189 return -EINVAL;
1190 n++;
1191 }
1192
1193 if (!dogrp)
1194 return n;
1195
1196 for_each_sibling_event(event, leader) {
1197 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1198 continue;
1199
1200 if (collect_event(cpuc, event, max_count, n))
1201 return -EINVAL;
1202
1203 n++;
1204 }
1205 return n;
1206 }
1207
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1208 static inline void x86_assign_hw_event(struct perf_event *event,
1209 struct cpu_hw_events *cpuc, int i)
1210 {
1211 struct hw_perf_event *hwc = &event->hw;
1212 int idx;
1213
1214 idx = hwc->idx = cpuc->assign[i];
1215 hwc->last_cpu = smp_processor_id();
1216 hwc->last_tag = ++cpuc->tags[i];
1217
1218 switch (hwc->idx) {
1219 case INTEL_PMC_IDX_FIXED_BTS:
1220 case INTEL_PMC_IDX_FIXED_VLBR:
1221 hwc->config_base = 0;
1222 hwc->event_base = 0;
1223 break;
1224
1225 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1226 /* All the metric events are mapped onto the fixed counter 3. */
1227 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1228 fallthrough;
1229 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1230 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1231 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1232 (idx - INTEL_PMC_IDX_FIXED);
1233 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1234 INTEL_PMC_FIXED_RDPMC_BASE;
1235 break;
1236
1237 default:
1238 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1239 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1240 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1241 break;
1242 }
1243 }
1244
1245 /**
1246 * x86_perf_rdpmc_index - Return PMC counter used for event
1247 * @event: the perf_event to which the PMC counter was assigned
1248 *
1249 * The counter assigned to this performance event may change if interrupts
1250 * are enabled. This counter should thus never be used while interrupts are
1251 * enabled. Before this function is used to obtain the assigned counter the
1252 * event should be checked for validity using, for example,
1253 * perf_event_read_local(), within the same interrupt disabled section in
1254 * which this counter is planned to be used.
1255 *
1256 * Return: The index of the performance monitoring counter assigned to
1257 * @perf_event.
1258 */
x86_perf_rdpmc_index(struct perf_event * event)1259 int x86_perf_rdpmc_index(struct perf_event *event)
1260 {
1261 lockdep_assert_irqs_disabled();
1262
1263 return event->hw.event_base_rdpmc;
1264 }
1265
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1266 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1267 struct cpu_hw_events *cpuc,
1268 int i)
1269 {
1270 return hwc->idx == cpuc->assign[i] &&
1271 hwc->last_cpu == smp_processor_id() &&
1272 hwc->last_tag == cpuc->tags[i];
1273 }
1274
1275 static void x86_pmu_start(struct perf_event *event, int flags);
1276
x86_pmu_enable(struct pmu * pmu)1277 static void x86_pmu_enable(struct pmu *pmu)
1278 {
1279 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1280 struct perf_event *event;
1281 struct hw_perf_event *hwc;
1282 int i, added = cpuc->n_added;
1283
1284 if (!x86_pmu_initialized())
1285 return;
1286
1287 if (cpuc->enabled)
1288 return;
1289
1290 if (cpuc->n_added) {
1291 int n_running = cpuc->n_events - cpuc->n_added;
1292 /*
1293 * apply assignment obtained either from
1294 * hw_perf_group_sched_in() or x86_pmu_enable()
1295 *
1296 * step1: save events moving to new counters
1297 */
1298 for (i = 0; i < n_running; i++) {
1299 event = cpuc->event_list[i];
1300 hwc = &event->hw;
1301
1302 /*
1303 * we can avoid reprogramming counter if:
1304 * - assigned same counter as last time
1305 * - running on same CPU as last time
1306 * - no other event has used the counter since
1307 */
1308 if (hwc->idx == -1 ||
1309 match_prev_assignment(hwc, cpuc, i))
1310 continue;
1311
1312 /*
1313 * Ensure we don't accidentally enable a stopped
1314 * counter simply because we rescheduled.
1315 */
1316 if (hwc->state & PERF_HES_STOPPED)
1317 hwc->state |= PERF_HES_ARCH;
1318
1319 x86_pmu_stop(event, PERF_EF_UPDATE);
1320 }
1321
1322 /*
1323 * step2: reprogram moved events into new counters
1324 */
1325 for (i = 0; i < cpuc->n_events; i++) {
1326 event = cpuc->event_list[i];
1327 hwc = &event->hw;
1328
1329 if (!match_prev_assignment(hwc, cpuc, i))
1330 x86_assign_hw_event(event, cpuc, i);
1331 else if (i < n_running)
1332 continue;
1333
1334 if (hwc->state & PERF_HES_ARCH)
1335 continue;
1336
1337 x86_pmu_start(event, PERF_EF_RELOAD);
1338 }
1339 cpuc->n_added = 0;
1340 perf_events_lapic_init();
1341 }
1342
1343 cpuc->enabled = 1;
1344 barrier();
1345
1346 static_call(x86_pmu_enable_all)(added);
1347 }
1348
1349 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1350
1351 /*
1352 * Set the next IRQ period, based on the hwc->period_left value.
1353 * To be called with the event disabled in hw:
1354 */
x86_perf_event_set_period(struct perf_event * event)1355 int x86_perf_event_set_period(struct perf_event *event)
1356 {
1357 struct hw_perf_event *hwc = &event->hw;
1358 s64 left = local64_read(&hwc->period_left);
1359 s64 period = hwc->sample_period;
1360 int ret = 0, idx = hwc->idx;
1361
1362 if (unlikely(!hwc->event_base))
1363 return 0;
1364
1365 if (unlikely(is_topdown_count(event)) &&
1366 x86_pmu.set_topdown_event_period)
1367 return x86_pmu.set_topdown_event_period(event);
1368
1369 /*
1370 * If we are way outside a reasonable range then just skip forward:
1371 */
1372 if (unlikely(left <= -period)) {
1373 left = period;
1374 local64_set(&hwc->period_left, left);
1375 hwc->last_period = period;
1376 ret = 1;
1377 }
1378
1379 if (unlikely(left <= 0)) {
1380 left += period;
1381 local64_set(&hwc->period_left, left);
1382 hwc->last_period = period;
1383 ret = 1;
1384 }
1385 /*
1386 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1387 */
1388 if (unlikely(left < 2))
1389 left = 2;
1390
1391 if (left > x86_pmu.max_period)
1392 left = x86_pmu.max_period;
1393
1394 if (x86_pmu.limit_period)
1395 left = x86_pmu.limit_period(event, left);
1396
1397 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1398
1399 /*
1400 * The hw event starts counting from this event offset,
1401 * mark it to be able to extra future deltas:
1402 */
1403 local64_set(&hwc->prev_count, (u64)-left);
1404
1405 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1406
1407 /*
1408 * Sign extend the Merge event counter's upper 16 bits since
1409 * we currently declare a 48-bit counter width
1410 */
1411 if (is_counter_pair(hwc))
1412 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1413
1414 /*
1415 * Due to erratum on certan cpu we need
1416 * a second write to be sure the register
1417 * is updated properly
1418 */
1419 if (x86_pmu.perfctr_second_write) {
1420 wrmsrl(hwc->event_base,
1421 (u64)(-left) & x86_pmu.cntval_mask);
1422 }
1423
1424 perf_event_update_userpage(event);
1425
1426 return ret;
1427 }
1428
x86_pmu_enable_event(struct perf_event * event)1429 void x86_pmu_enable_event(struct perf_event *event)
1430 {
1431 if (__this_cpu_read(cpu_hw_events.enabled))
1432 __x86_pmu_enable_event(&event->hw,
1433 ARCH_PERFMON_EVENTSEL_ENABLE);
1434 }
1435
1436 /*
1437 * Add a single event to the PMU.
1438 *
1439 * The event is added to the group of enabled events
1440 * but only if it can be scheduled with existing events.
1441 */
x86_pmu_add(struct perf_event * event,int flags)1442 static int x86_pmu_add(struct perf_event *event, int flags)
1443 {
1444 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1445 struct hw_perf_event *hwc;
1446 int assign[X86_PMC_IDX_MAX];
1447 int n, n0, ret;
1448
1449 hwc = &event->hw;
1450
1451 n0 = cpuc->n_events;
1452 ret = n = collect_events(cpuc, event, false);
1453 if (ret < 0)
1454 goto out;
1455
1456 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1457 if (!(flags & PERF_EF_START))
1458 hwc->state |= PERF_HES_ARCH;
1459
1460 /*
1461 * If group events scheduling transaction was started,
1462 * skip the schedulability test here, it will be performed
1463 * at commit time (->commit_txn) as a whole.
1464 *
1465 * If commit fails, we'll call ->del() on all events
1466 * for which ->add() was called.
1467 */
1468 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1469 goto done_collect;
1470
1471 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1472 if (ret)
1473 goto out;
1474 /*
1475 * copy new assignment, now we know it is possible
1476 * will be used by hw_perf_enable()
1477 */
1478 memcpy(cpuc->assign, assign, n*sizeof(int));
1479
1480 done_collect:
1481 /*
1482 * Commit the collect_events() state. See x86_pmu_del() and
1483 * x86_pmu_*_txn().
1484 */
1485 cpuc->n_events = n;
1486 cpuc->n_added += n - n0;
1487 cpuc->n_txn += n - n0;
1488
1489 /*
1490 * This is before x86_pmu_enable() will call x86_pmu_start(),
1491 * so we enable LBRs before an event needs them etc..
1492 */
1493 static_call_cond(x86_pmu_add)(event);
1494
1495 ret = 0;
1496 out:
1497 return ret;
1498 }
1499
x86_pmu_start(struct perf_event * event,int flags)1500 static void x86_pmu_start(struct perf_event *event, int flags)
1501 {
1502 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1503 int idx = event->hw.idx;
1504
1505 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1506 return;
1507
1508 if (WARN_ON_ONCE(idx == -1))
1509 return;
1510
1511 if (flags & PERF_EF_RELOAD) {
1512 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1513 x86_perf_event_set_period(event);
1514 }
1515
1516 event->hw.state = 0;
1517
1518 cpuc->events[idx] = event;
1519 __set_bit(idx, cpuc->active_mask);
1520 static_call(x86_pmu_enable)(event);
1521 perf_event_update_userpage(event);
1522 }
1523
perf_event_print_debug(void)1524 void perf_event_print_debug(void)
1525 {
1526 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1527 u64 pebs, debugctl;
1528 int cpu = smp_processor_id();
1529 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1530 int num_counters = hybrid(cpuc->pmu, num_counters);
1531 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1532 struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1533 unsigned long flags;
1534 int idx;
1535
1536 if (!num_counters)
1537 return;
1538
1539 local_irq_save(flags);
1540
1541 if (x86_pmu.version >= 2) {
1542 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1543 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1544 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1545 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1546
1547 pr_info("\n");
1548 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1549 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1550 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1551 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1552 if (pebs_constraints) {
1553 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1554 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1555 }
1556 if (x86_pmu.lbr_nr) {
1557 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1558 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1559 }
1560 }
1561 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1562
1563 for (idx = 0; idx < num_counters; idx++) {
1564 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1565 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1566
1567 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1568
1569 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1570 cpu, idx, pmc_ctrl);
1571 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1572 cpu, idx, pmc_count);
1573 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1574 cpu, idx, prev_left);
1575 }
1576 for (idx = 0; idx < num_counters_fixed; idx++) {
1577 if (fixed_counter_disabled(idx, cpuc->pmu))
1578 continue;
1579 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1580
1581 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1582 cpu, idx, pmc_count);
1583 }
1584 local_irq_restore(flags);
1585 }
1586
x86_pmu_stop(struct perf_event * event,int flags)1587 void x86_pmu_stop(struct perf_event *event, int flags)
1588 {
1589 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1590 struct hw_perf_event *hwc = &event->hw;
1591
1592 if (test_bit(hwc->idx, cpuc->active_mask)) {
1593 static_call(x86_pmu_disable)(event);
1594 __clear_bit(hwc->idx, cpuc->active_mask);
1595 cpuc->events[hwc->idx] = NULL;
1596 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1597 hwc->state |= PERF_HES_STOPPED;
1598 }
1599
1600 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1601 /*
1602 * Drain the remaining delta count out of a event
1603 * that we are disabling:
1604 */
1605 x86_perf_event_update(event);
1606 hwc->state |= PERF_HES_UPTODATE;
1607 }
1608 }
1609
x86_pmu_del(struct perf_event * event,int flags)1610 static void x86_pmu_del(struct perf_event *event, int flags)
1611 {
1612 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1613 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1614 int i;
1615
1616 /*
1617 * If we're called during a txn, we only need to undo x86_pmu.add.
1618 * The events never got scheduled and ->cancel_txn will truncate
1619 * the event_list.
1620 *
1621 * XXX assumes any ->del() called during a TXN will only be on
1622 * an event added during that same TXN.
1623 */
1624 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1625 goto do_del;
1626
1627 __set_bit(event->hw.idx, cpuc->dirty);
1628
1629 /*
1630 * Not a TXN, therefore cleanup properly.
1631 */
1632 x86_pmu_stop(event, PERF_EF_UPDATE);
1633
1634 for (i = 0; i < cpuc->n_events; i++) {
1635 if (event == cpuc->event_list[i])
1636 break;
1637 }
1638
1639 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1640 return;
1641
1642 /* If we have a newly added event; make sure to decrease n_added. */
1643 if (i >= cpuc->n_events - cpuc->n_added)
1644 --cpuc->n_added;
1645
1646 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1647
1648 /* Delete the array entry. */
1649 while (++i < cpuc->n_events) {
1650 cpuc->event_list[i-1] = cpuc->event_list[i];
1651 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1652 }
1653 cpuc->event_constraint[i-1] = NULL;
1654 --cpuc->n_events;
1655 if (intel_cap.perf_metrics)
1656 del_nr_metric_event(cpuc, event);
1657
1658 perf_event_update_userpage(event);
1659
1660 do_del:
1661
1662 /*
1663 * This is after x86_pmu_stop(); so we disable LBRs after any
1664 * event can need them etc..
1665 */
1666 static_call_cond(x86_pmu_del)(event);
1667 }
1668
x86_pmu_handle_irq(struct pt_regs * regs)1669 int x86_pmu_handle_irq(struct pt_regs *regs)
1670 {
1671 struct perf_sample_data data;
1672 struct cpu_hw_events *cpuc;
1673 struct perf_event *event;
1674 int idx, handled = 0;
1675 u64 val;
1676
1677 cpuc = this_cpu_ptr(&cpu_hw_events);
1678
1679 /*
1680 * Some chipsets need to unmask the LVTPC in a particular spot
1681 * inside the nmi handler. As a result, the unmasking was pushed
1682 * into all the nmi handlers.
1683 *
1684 * This generic handler doesn't seem to have any issues where the
1685 * unmasking occurs so it was left at the top.
1686 */
1687 apic_write(APIC_LVTPC, APIC_DM_NMI);
1688
1689 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1690 if (!test_bit(idx, cpuc->active_mask))
1691 continue;
1692
1693 event = cpuc->events[idx];
1694
1695 val = x86_perf_event_update(event);
1696 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1697 continue;
1698
1699 /*
1700 * event overflow
1701 */
1702 handled++;
1703 perf_sample_data_init(&data, 0, event->hw.last_period);
1704
1705 if (!x86_perf_event_set_period(event))
1706 continue;
1707
1708 if (perf_event_overflow(event, &data, regs))
1709 x86_pmu_stop(event, 0);
1710 }
1711
1712 if (handled)
1713 inc_irq_stat(apic_perf_irqs);
1714
1715 return handled;
1716 }
1717
perf_events_lapic_init(void)1718 void perf_events_lapic_init(void)
1719 {
1720 if (!x86_pmu.apic || !x86_pmu_initialized())
1721 return;
1722
1723 /*
1724 * Always use NMI for PMU
1725 */
1726 apic_write(APIC_LVTPC, APIC_DM_NMI);
1727 }
1728
1729 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1730 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1731 {
1732 u64 start_clock;
1733 u64 finish_clock;
1734 int ret;
1735
1736 /*
1737 * All PMUs/events that share this PMI handler should make sure to
1738 * increment active_events for their events.
1739 */
1740 if (!atomic_read(&active_events))
1741 return NMI_DONE;
1742
1743 start_clock = sched_clock();
1744 ret = static_call(x86_pmu_handle_irq)(regs);
1745 finish_clock = sched_clock();
1746
1747 perf_sample_event_took(finish_clock - start_clock);
1748
1749 return ret;
1750 }
1751 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1752
1753 struct event_constraint emptyconstraint;
1754 struct event_constraint unconstrained;
1755
x86_pmu_prepare_cpu(unsigned int cpu)1756 static int x86_pmu_prepare_cpu(unsigned int cpu)
1757 {
1758 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1759 int i;
1760
1761 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1762 cpuc->kfree_on_online[i] = NULL;
1763 if (x86_pmu.cpu_prepare)
1764 return x86_pmu.cpu_prepare(cpu);
1765 return 0;
1766 }
1767
x86_pmu_dead_cpu(unsigned int cpu)1768 static int x86_pmu_dead_cpu(unsigned int cpu)
1769 {
1770 if (x86_pmu.cpu_dead)
1771 x86_pmu.cpu_dead(cpu);
1772 return 0;
1773 }
1774
x86_pmu_online_cpu(unsigned int cpu)1775 static int x86_pmu_online_cpu(unsigned int cpu)
1776 {
1777 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1778 int i;
1779
1780 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1781 kfree(cpuc->kfree_on_online[i]);
1782 cpuc->kfree_on_online[i] = NULL;
1783 }
1784 return 0;
1785 }
1786
x86_pmu_starting_cpu(unsigned int cpu)1787 static int x86_pmu_starting_cpu(unsigned int cpu)
1788 {
1789 if (x86_pmu.cpu_starting)
1790 x86_pmu.cpu_starting(cpu);
1791 return 0;
1792 }
1793
x86_pmu_dying_cpu(unsigned int cpu)1794 static int x86_pmu_dying_cpu(unsigned int cpu)
1795 {
1796 if (x86_pmu.cpu_dying)
1797 x86_pmu.cpu_dying(cpu);
1798 return 0;
1799 }
1800
pmu_check_apic(void)1801 static void __init pmu_check_apic(void)
1802 {
1803 if (boot_cpu_has(X86_FEATURE_APIC))
1804 return;
1805
1806 x86_pmu.apic = 0;
1807 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1808 pr_info("no hardware sampling interrupt available.\n");
1809
1810 /*
1811 * If we have a PMU initialized but no APIC
1812 * interrupts, we cannot sample hardware
1813 * events (user-space has to fall back and
1814 * sample via a hrtimer based software event):
1815 */
1816 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1817
1818 }
1819
1820 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1821 .name = "format",
1822 .attrs = NULL,
1823 };
1824
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1825 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1826 {
1827 struct perf_pmu_events_attr *pmu_attr =
1828 container_of(attr, struct perf_pmu_events_attr, attr);
1829 u64 config = 0;
1830
1831 if (pmu_attr->id < x86_pmu.max_events)
1832 config = x86_pmu.event_map(pmu_attr->id);
1833
1834 /* string trumps id */
1835 if (pmu_attr->event_str)
1836 return sprintf(page, "%s", pmu_attr->event_str);
1837
1838 return x86_pmu.events_sysfs_show(page, config);
1839 }
1840 EXPORT_SYMBOL_GPL(events_sysfs_show);
1841
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1842 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1843 char *page)
1844 {
1845 struct perf_pmu_events_ht_attr *pmu_attr =
1846 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1847
1848 /*
1849 * Report conditional events depending on Hyper-Threading.
1850 *
1851 * This is overly conservative as usually the HT special
1852 * handling is not needed if the other CPU thread is idle.
1853 *
1854 * Note this does not (and cannot) handle the case when thread
1855 * siblings are invisible, for example with virtualization
1856 * if they are owned by some other guest. The user tool
1857 * has to re-read when a thread sibling gets onlined later.
1858 */
1859 return sprintf(page, "%s",
1860 topology_max_smt_threads() > 1 ?
1861 pmu_attr->event_str_ht :
1862 pmu_attr->event_str_noht);
1863 }
1864
events_hybrid_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1865 ssize_t events_hybrid_sysfs_show(struct device *dev,
1866 struct device_attribute *attr,
1867 char *page)
1868 {
1869 struct perf_pmu_events_hybrid_attr *pmu_attr =
1870 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1871 struct x86_hybrid_pmu *pmu;
1872 const char *str, *next_str;
1873 int i;
1874
1875 if (hweight64(pmu_attr->pmu_type) == 1)
1876 return sprintf(page, "%s", pmu_attr->event_str);
1877
1878 /*
1879 * Hybrid PMUs may support the same event name, but with different
1880 * event encoding, e.g., the mem-loads event on an Atom PMU has
1881 * different event encoding from a Core PMU.
1882 *
1883 * The event_str includes all event encodings. Each event encoding
1884 * is divided by ";". The order of the event encodings must follow
1885 * the order of the hybrid PMU index.
1886 */
1887 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1888
1889 str = pmu_attr->event_str;
1890 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1891 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1892 continue;
1893 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1894 next_str = strchr(str, ';');
1895 if (next_str)
1896 return snprintf(page, next_str - str + 1, "%s", str);
1897 else
1898 return sprintf(page, "%s", str);
1899 }
1900 str = strchr(str, ';');
1901 str++;
1902 }
1903
1904 return 0;
1905 }
1906 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1907
1908 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1909 EVENT_ATTR(instructions, INSTRUCTIONS );
1910 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1911 EVENT_ATTR(cache-misses, CACHE_MISSES );
1912 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1913 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1914 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1915 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1916 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1917 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1918
1919 static struct attribute *empty_attrs;
1920
1921 static struct attribute *events_attr[] = {
1922 EVENT_PTR(CPU_CYCLES),
1923 EVENT_PTR(INSTRUCTIONS),
1924 EVENT_PTR(CACHE_REFERENCES),
1925 EVENT_PTR(CACHE_MISSES),
1926 EVENT_PTR(BRANCH_INSTRUCTIONS),
1927 EVENT_PTR(BRANCH_MISSES),
1928 EVENT_PTR(BUS_CYCLES),
1929 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1930 EVENT_PTR(STALLED_CYCLES_BACKEND),
1931 EVENT_PTR(REF_CPU_CYCLES),
1932 NULL,
1933 };
1934
1935 /*
1936 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1937 * out of events_attr attributes.
1938 */
1939 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1940 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1941 {
1942 struct perf_pmu_events_attr *pmu_attr;
1943
1944 if (idx >= x86_pmu.max_events)
1945 return 0;
1946
1947 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1948 /* str trumps id */
1949 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1950 }
1951
1952 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1953 .name = "events",
1954 .attrs = events_attr,
1955 .is_visible = is_visible,
1956 };
1957
x86_event_sysfs_show(char * page,u64 config,u64 event)1958 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1959 {
1960 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1961 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1962 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1963 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1964 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1965 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1966 ssize_t ret;
1967
1968 /*
1969 * We have whole page size to spend and just little data
1970 * to write, so we can safely use sprintf.
1971 */
1972 ret = sprintf(page, "event=0x%02llx", event);
1973
1974 if (umask)
1975 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1976
1977 if (edge)
1978 ret += sprintf(page + ret, ",edge");
1979
1980 if (pc)
1981 ret += sprintf(page + ret, ",pc");
1982
1983 if (any)
1984 ret += sprintf(page + ret, ",any");
1985
1986 if (inv)
1987 ret += sprintf(page + ret, ",inv");
1988
1989 if (cmask)
1990 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1991
1992 ret += sprintf(page + ret, "\n");
1993
1994 return ret;
1995 }
1996
1997 static struct attribute_group x86_pmu_attr_group;
1998 static struct attribute_group x86_pmu_caps_group;
1999
x86_pmu_static_call_update(void)2000 static void x86_pmu_static_call_update(void)
2001 {
2002 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2003 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2004 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2005 static_call_update(x86_pmu_enable, x86_pmu.enable);
2006 static_call_update(x86_pmu_disable, x86_pmu.disable);
2007
2008 static_call_update(x86_pmu_add, x86_pmu.add);
2009 static_call_update(x86_pmu_del, x86_pmu.del);
2010 static_call_update(x86_pmu_read, x86_pmu.read);
2011
2012 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2013 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2014 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2015
2016 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2017 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2018 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2019
2020 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2021 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2022
2023 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2024 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2025
2026 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2027 }
2028
_x86_pmu_read(struct perf_event * event)2029 static void _x86_pmu_read(struct perf_event *event)
2030 {
2031 x86_perf_event_update(event);
2032 }
2033
x86_pmu_show_pmu_cap(int num_counters,int num_counters_fixed,u64 intel_ctrl)2034 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2035 u64 intel_ctrl)
2036 {
2037 pr_info("... version: %d\n", x86_pmu.version);
2038 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
2039 pr_info("... generic registers: %d\n", num_counters);
2040 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
2041 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2042 pr_info("... fixed-purpose events: %lu\n",
2043 hweight64((((1ULL << num_counters_fixed) - 1)
2044 << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2045 pr_info("... event mask: %016Lx\n", intel_ctrl);
2046 }
2047
2048 /*
2049 * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2050 * of the first registered PMU is unconditionally assigned to
2051 * each possible cpuctx->ctx.pmu.
2052 * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2053 */
x86_pmu_update_cpu_context(struct pmu * pmu,int cpu)2054 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2055 {
2056 struct perf_cpu_context *cpuctx;
2057
2058 if (!pmu->pmu_cpu_context)
2059 return;
2060
2061 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2062 cpuctx->ctx.pmu = pmu;
2063 }
2064
init_hw_perf_events(void)2065 static int __init init_hw_perf_events(void)
2066 {
2067 struct x86_pmu_quirk *quirk;
2068 int err;
2069
2070 pr_info("Performance Events: ");
2071
2072 switch (boot_cpu_data.x86_vendor) {
2073 case X86_VENDOR_INTEL:
2074 err = intel_pmu_init();
2075 break;
2076 case X86_VENDOR_AMD:
2077 err = amd_pmu_init();
2078 break;
2079 case X86_VENDOR_HYGON:
2080 err = amd_pmu_init();
2081 x86_pmu.name = "HYGON";
2082 break;
2083 case X86_VENDOR_ZHAOXIN:
2084 case X86_VENDOR_CENTAUR:
2085 err = zhaoxin_pmu_init();
2086 break;
2087 default:
2088 err = -ENOTSUPP;
2089 }
2090 if (err != 0) {
2091 pr_cont("no PMU driver, software events only.\n");
2092 return 0;
2093 }
2094
2095 pmu_check_apic();
2096
2097 /* sanity check that the hardware exists or is emulated */
2098 if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2099 return 0;
2100
2101 pr_cont("%s PMU driver.\n", x86_pmu.name);
2102
2103 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2104
2105 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2106 quirk->func();
2107
2108 if (!x86_pmu.intel_ctrl)
2109 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2110
2111 perf_events_lapic_init();
2112 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2113
2114 unconstrained = (struct event_constraint)
2115 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2116 0, x86_pmu.num_counters, 0, 0);
2117
2118 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2119
2120 if (!x86_pmu.events_sysfs_show)
2121 x86_pmu_events_group.attrs = &empty_attrs;
2122
2123 pmu.attr_update = x86_pmu.attr_update;
2124
2125 if (!is_hybrid()) {
2126 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2127 x86_pmu.num_counters_fixed,
2128 x86_pmu.intel_ctrl);
2129 }
2130
2131 if (!x86_pmu.read)
2132 x86_pmu.read = _x86_pmu_read;
2133
2134 if (!x86_pmu.guest_get_msrs)
2135 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2136
2137 x86_pmu_static_call_update();
2138
2139 /*
2140 * Install callbacks. Core will call them for each online
2141 * cpu.
2142 */
2143 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2144 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2145 if (err)
2146 return err;
2147
2148 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2149 "perf/x86:starting", x86_pmu_starting_cpu,
2150 x86_pmu_dying_cpu);
2151 if (err)
2152 goto out;
2153
2154 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2155 x86_pmu_online_cpu, NULL);
2156 if (err)
2157 goto out1;
2158
2159 if (!is_hybrid()) {
2160 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2161 if (err)
2162 goto out2;
2163 } else {
2164 u8 cpu_type = get_this_hybrid_cpu_type();
2165 struct x86_hybrid_pmu *hybrid_pmu;
2166 int i, j;
2167
2168 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2169 cpu_type = x86_pmu.get_hybrid_cpu_type();
2170
2171 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2172 hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2173
2174 hybrid_pmu->pmu = pmu;
2175 hybrid_pmu->pmu.type = -1;
2176 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2177 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2178 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2179
2180 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2181 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2182 if (err)
2183 break;
2184
2185 if (cpu_type == hybrid_pmu->cpu_type)
2186 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2187 }
2188
2189 if (i < x86_pmu.num_hybrid_pmus) {
2190 for (j = 0; j < i; j++)
2191 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2192 pr_warn("Failed to register hybrid PMUs\n");
2193 kfree(x86_pmu.hybrid_pmu);
2194 x86_pmu.hybrid_pmu = NULL;
2195 x86_pmu.num_hybrid_pmus = 0;
2196 goto out2;
2197 }
2198 }
2199
2200 return 0;
2201
2202 out2:
2203 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2204 out1:
2205 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2206 out:
2207 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2208 return err;
2209 }
2210 early_initcall(init_hw_perf_events);
2211
x86_pmu_read(struct perf_event * event)2212 static void x86_pmu_read(struct perf_event *event)
2213 {
2214 static_call(x86_pmu_read)(event);
2215 }
2216
2217 /*
2218 * Start group events scheduling transaction
2219 * Set the flag to make pmu::enable() not perform the
2220 * schedulability test, it will be performed at commit time
2221 *
2222 * We only support PERF_PMU_TXN_ADD transactions. Save the
2223 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2224 * transactions.
2225 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2226 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2227 {
2228 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2229
2230 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
2231
2232 cpuc->txn_flags = txn_flags;
2233 if (txn_flags & ~PERF_PMU_TXN_ADD)
2234 return;
2235
2236 perf_pmu_disable(pmu);
2237 __this_cpu_write(cpu_hw_events.n_txn, 0);
2238 __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2239 __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2240 }
2241
2242 /*
2243 * Stop group events scheduling transaction
2244 * Clear the flag and pmu::enable() will perform the
2245 * schedulability test.
2246 */
x86_pmu_cancel_txn(struct pmu * pmu)2247 static void x86_pmu_cancel_txn(struct pmu *pmu)
2248 {
2249 unsigned int txn_flags;
2250 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2251
2252 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2253
2254 txn_flags = cpuc->txn_flags;
2255 cpuc->txn_flags = 0;
2256 if (txn_flags & ~PERF_PMU_TXN_ADD)
2257 return;
2258
2259 /*
2260 * Truncate collected array by the number of events added in this
2261 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2262 */
2263 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2264 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2265 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2266 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2267 perf_pmu_enable(pmu);
2268 }
2269
2270 /*
2271 * Commit group events scheduling transaction
2272 * Perform the group schedulability test as a whole
2273 * Return 0 if success
2274 *
2275 * Does not cancel the transaction on failure; expects the caller to do this.
2276 */
x86_pmu_commit_txn(struct pmu * pmu)2277 static int x86_pmu_commit_txn(struct pmu *pmu)
2278 {
2279 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2280 int assign[X86_PMC_IDX_MAX];
2281 int n, ret;
2282
2283 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2284
2285 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2286 cpuc->txn_flags = 0;
2287 return 0;
2288 }
2289
2290 n = cpuc->n_events;
2291
2292 if (!x86_pmu_initialized())
2293 return -EAGAIN;
2294
2295 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2296 if (ret)
2297 return ret;
2298
2299 /*
2300 * copy new assignment, now we know it is possible
2301 * will be used by hw_perf_enable()
2302 */
2303 memcpy(cpuc->assign, assign, n*sizeof(int));
2304
2305 cpuc->txn_flags = 0;
2306 perf_pmu_enable(pmu);
2307 return 0;
2308 }
2309 /*
2310 * a fake_cpuc is used to validate event groups. Due to
2311 * the extra reg logic, we need to also allocate a fake
2312 * per_core and per_cpu structure. Otherwise, group events
2313 * using extra reg may conflict without the kernel being
2314 * able to catch this when the last event gets added to
2315 * the group.
2316 */
free_fake_cpuc(struct cpu_hw_events * cpuc)2317 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2318 {
2319 intel_cpuc_finish(cpuc);
2320 kfree(cpuc);
2321 }
2322
allocate_fake_cpuc(struct pmu * event_pmu)2323 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2324 {
2325 struct cpu_hw_events *cpuc;
2326 int cpu;
2327
2328 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2329 if (!cpuc)
2330 return ERR_PTR(-ENOMEM);
2331 cpuc->is_fake = 1;
2332
2333 if (is_hybrid()) {
2334 struct x86_hybrid_pmu *h_pmu;
2335
2336 h_pmu = hybrid_pmu(event_pmu);
2337 if (cpumask_empty(&h_pmu->supported_cpus))
2338 goto error;
2339 cpu = cpumask_first(&h_pmu->supported_cpus);
2340 } else
2341 cpu = raw_smp_processor_id();
2342 cpuc->pmu = event_pmu;
2343
2344 if (intel_cpuc_prepare(cpuc, cpu))
2345 goto error;
2346
2347 return cpuc;
2348 error:
2349 free_fake_cpuc(cpuc);
2350 return ERR_PTR(-ENOMEM);
2351 }
2352
2353 /*
2354 * validate that we can schedule this event
2355 */
validate_event(struct perf_event * event)2356 static int validate_event(struct perf_event *event)
2357 {
2358 struct cpu_hw_events *fake_cpuc;
2359 struct event_constraint *c;
2360 int ret = 0;
2361
2362 fake_cpuc = allocate_fake_cpuc(event->pmu);
2363 if (IS_ERR(fake_cpuc))
2364 return PTR_ERR(fake_cpuc);
2365
2366 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2367
2368 if (!c || !c->weight)
2369 ret = -EINVAL;
2370
2371 if (x86_pmu.put_event_constraints)
2372 x86_pmu.put_event_constraints(fake_cpuc, event);
2373
2374 free_fake_cpuc(fake_cpuc);
2375
2376 return ret;
2377 }
2378
2379 /*
2380 * validate a single event group
2381 *
2382 * validation include:
2383 * - check events are compatible which each other
2384 * - events do not compete for the same counter
2385 * - number of events <= number of counters
2386 *
2387 * validation ensures the group can be loaded onto the
2388 * PMU if it was the only group available.
2389 */
validate_group(struct perf_event * event)2390 static int validate_group(struct perf_event *event)
2391 {
2392 struct perf_event *leader = event->group_leader;
2393 struct cpu_hw_events *fake_cpuc;
2394 int ret = -EINVAL, n;
2395
2396 /*
2397 * Reject events from different hybrid PMUs.
2398 */
2399 if (is_hybrid()) {
2400 struct perf_event *sibling;
2401 struct pmu *pmu = NULL;
2402
2403 if (is_x86_event(leader))
2404 pmu = leader->pmu;
2405
2406 for_each_sibling_event(sibling, leader) {
2407 if (!is_x86_event(sibling))
2408 continue;
2409 if (!pmu)
2410 pmu = sibling->pmu;
2411 else if (pmu != sibling->pmu)
2412 return ret;
2413 }
2414 }
2415
2416 fake_cpuc = allocate_fake_cpuc(event->pmu);
2417 if (IS_ERR(fake_cpuc))
2418 return PTR_ERR(fake_cpuc);
2419 /*
2420 * the event is not yet connected with its
2421 * siblings therefore we must first collect
2422 * existing siblings, then add the new event
2423 * before we can simulate the scheduling
2424 */
2425 n = collect_events(fake_cpuc, leader, true);
2426 if (n < 0)
2427 goto out;
2428
2429 fake_cpuc->n_events = n;
2430 n = collect_events(fake_cpuc, event, false);
2431 if (n < 0)
2432 goto out;
2433
2434 fake_cpuc->n_events = 0;
2435 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2436
2437 out:
2438 free_fake_cpuc(fake_cpuc);
2439 return ret;
2440 }
2441
x86_pmu_event_init(struct perf_event * event)2442 static int x86_pmu_event_init(struct perf_event *event)
2443 {
2444 struct x86_hybrid_pmu *pmu = NULL;
2445 int err;
2446
2447 if ((event->attr.type != event->pmu->type) &&
2448 (event->attr.type != PERF_TYPE_HARDWARE) &&
2449 (event->attr.type != PERF_TYPE_HW_CACHE))
2450 return -ENOENT;
2451
2452 if (is_hybrid() && (event->cpu != -1)) {
2453 pmu = hybrid_pmu(event->pmu);
2454 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2455 return -ENOENT;
2456 }
2457
2458 err = __x86_pmu_event_init(event);
2459 if (!err) {
2460 if (event->group_leader != event)
2461 err = validate_group(event);
2462 else
2463 err = validate_event(event);
2464 }
2465 if (err) {
2466 if (event->destroy)
2467 event->destroy(event);
2468 event->destroy = NULL;
2469 }
2470
2471 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2472 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2473 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2474
2475 return err;
2476 }
2477
perf_clear_dirty_counters(void)2478 void perf_clear_dirty_counters(void)
2479 {
2480 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2481 int i;
2482
2483 /* Don't need to clear the assigned counter. */
2484 for (i = 0; i < cpuc->n_events; i++)
2485 __clear_bit(cpuc->assign[i], cpuc->dirty);
2486
2487 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2488 return;
2489
2490 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2491 if (i >= INTEL_PMC_IDX_FIXED) {
2492 /* Metrics and fake events don't have corresponding HW counters. */
2493 if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2494 continue;
2495
2496 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2497 } else {
2498 wrmsrl(x86_pmu_event_addr(i), 0);
2499 }
2500 }
2501
2502 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2503 }
2504
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2505 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2506 {
2507 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2508 return;
2509
2510 /*
2511 * This function relies on not being called concurrently in two
2512 * tasks in the same mm. Otherwise one task could observe
2513 * perf_rdpmc_allowed > 1 and return all the way back to
2514 * userspace with CR4.PCE clear while another task is still
2515 * doing on_each_cpu_mask() to propagate CR4.PCE.
2516 *
2517 * For now, this can't happen because all callers hold mmap_lock
2518 * for write. If this changes, we'll need a different solution.
2519 */
2520 mmap_assert_write_locked(mm);
2521
2522 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2523 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2524 }
2525
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2526 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2527 {
2528 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2529 return;
2530
2531 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2532 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2533 }
2534
x86_pmu_event_idx(struct perf_event * event)2535 static int x86_pmu_event_idx(struct perf_event *event)
2536 {
2537 struct hw_perf_event *hwc = &event->hw;
2538
2539 if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2540 return 0;
2541
2542 if (is_metric_idx(hwc->idx))
2543 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2544 else
2545 return hwc->event_base_rdpmc + 1;
2546 }
2547
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2548 static ssize_t get_attr_rdpmc(struct device *cdev,
2549 struct device_attribute *attr,
2550 char *buf)
2551 {
2552 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2553 }
2554
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2555 static ssize_t set_attr_rdpmc(struct device *cdev,
2556 struct device_attribute *attr,
2557 const char *buf, size_t count)
2558 {
2559 unsigned long val;
2560 ssize_t ret;
2561
2562 ret = kstrtoul(buf, 0, &val);
2563 if (ret)
2564 return ret;
2565
2566 if (val > 2)
2567 return -EINVAL;
2568
2569 if (x86_pmu.attr_rdpmc_broken)
2570 return -ENOTSUPP;
2571
2572 if (val != x86_pmu.attr_rdpmc) {
2573 /*
2574 * Changing into or out of never available or always available,
2575 * aka perf-event-bypassing mode. This path is extremely slow,
2576 * but only root can trigger it, so it's okay.
2577 */
2578 if (val == 0)
2579 static_branch_inc(&rdpmc_never_available_key);
2580 else if (x86_pmu.attr_rdpmc == 0)
2581 static_branch_dec(&rdpmc_never_available_key);
2582
2583 if (val == 2)
2584 static_branch_inc(&rdpmc_always_available_key);
2585 else if (x86_pmu.attr_rdpmc == 2)
2586 static_branch_dec(&rdpmc_always_available_key);
2587
2588 on_each_cpu(cr4_update_pce, NULL, 1);
2589 x86_pmu.attr_rdpmc = val;
2590 }
2591
2592 return count;
2593 }
2594
2595 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2596
2597 static struct attribute *x86_pmu_attrs[] = {
2598 &dev_attr_rdpmc.attr,
2599 NULL,
2600 };
2601
2602 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2603 .attrs = x86_pmu_attrs,
2604 };
2605
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2606 static ssize_t max_precise_show(struct device *cdev,
2607 struct device_attribute *attr,
2608 char *buf)
2609 {
2610 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2611 }
2612
2613 static DEVICE_ATTR_RO(max_precise);
2614
2615 static struct attribute *x86_pmu_caps_attrs[] = {
2616 &dev_attr_max_precise.attr,
2617 NULL
2618 };
2619
2620 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2621 .name = "caps",
2622 .attrs = x86_pmu_caps_attrs,
2623 };
2624
2625 static const struct attribute_group *x86_pmu_attr_groups[] = {
2626 &x86_pmu_attr_group,
2627 &x86_pmu_format_group,
2628 &x86_pmu_events_group,
2629 &x86_pmu_caps_group,
2630 NULL,
2631 };
2632
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2633 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2634 {
2635 static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2636 }
2637
x86_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)2638 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2639 struct perf_event_context *next)
2640 {
2641 static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2642 }
2643
perf_check_microcode(void)2644 void perf_check_microcode(void)
2645 {
2646 if (x86_pmu.check_microcode)
2647 x86_pmu.check_microcode();
2648 }
2649
x86_pmu_check_period(struct perf_event * event,u64 value)2650 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2651 {
2652 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2653 return -EINVAL;
2654
2655 if (value && x86_pmu.limit_period) {
2656 if (x86_pmu.limit_period(event, value) > value)
2657 return -EINVAL;
2658 }
2659
2660 return 0;
2661 }
2662
x86_pmu_aux_output_match(struct perf_event * event)2663 static int x86_pmu_aux_output_match(struct perf_event *event)
2664 {
2665 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2666 return 0;
2667
2668 if (x86_pmu.aux_output_match)
2669 return x86_pmu.aux_output_match(event);
2670
2671 return 0;
2672 }
2673
x86_pmu_filter_match(struct perf_event * event)2674 static int x86_pmu_filter_match(struct perf_event *event)
2675 {
2676 if (x86_pmu.filter_match)
2677 return x86_pmu.filter_match(event);
2678
2679 return 1;
2680 }
2681
2682 static struct pmu pmu = {
2683 .pmu_enable = x86_pmu_enable,
2684 .pmu_disable = x86_pmu_disable,
2685
2686 .attr_groups = x86_pmu_attr_groups,
2687
2688 .event_init = x86_pmu_event_init,
2689
2690 .event_mapped = x86_pmu_event_mapped,
2691 .event_unmapped = x86_pmu_event_unmapped,
2692
2693 .add = x86_pmu_add,
2694 .del = x86_pmu_del,
2695 .start = x86_pmu_start,
2696 .stop = x86_pmu_stop,
2697 .read = x86_pmu_read,
2698
2699 .start_txn = x86_pmu_start_txn,
2700 .cancel_txn = x86_pmu_cancel_txn,
2701 .commit_txn = x86_pmu_commit_txn,
2702
2703 .event_idx = x86_pmu_event_idx,
2704 .sched_task = x86_pmu_sched_task,
2705 .swap_task_ctx = x86_pmu_swap_task_ctx,
2706 .check_period = x86_pmu_check_period,
2707
2708 .aux_output_match = x86_pmu_aux_output_match,
2709
2710 .filter_match = x86_pmu_filter_match,
2711 };
2712
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2713 void arch_perf_update_userpage(struct perf_event *event,
2714 struct perf_event_mmap_page *userpg, u64 now)
2715 {
2716 struct cyc2ns_data data;
2717 u64 offset;
2718
2719 userpg->cap_user_time = 0;
2720 userpg->cap_user_time_zero = 0;
2721 userpg->cap_user_rdpmc =
2722 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2723 userpg->pmc_width = x86_pmu.cntval_bits;
2724
2725 if (!using_native_sched_clock() || !sched_clock_stable())
2726 return;
2727
2728 cyc2ns_read_begin(&data);
2729
2730 offset = data.cyc2ns_offset + __sched_clock_offset;
2731
2732 /*
2733 * Internal timekeeping for enabled/running/stopped times
2734 * is always in the local_clock domain.
2735 */
2736 userpg->cap_user_time = 1;
2737 userpg->time_mult = data.cyc2ns_mul;
2738 userpg->time_shift = data.cyc2ns_shift;
2739 userpg->time_offset = offset - now;
2740
2741 /*
2742 * cap_user_time_zero doesn't make sense when we're using a different
2743 * time base for the records.
2744 */
2745 if (!event->attr.use_clockid) {
2746 userpg->cap_user_time_zero = 1;
2747 userpg->time_zero = offset;
2748 }
2749
2750 cyc2ns_read_end();
2751 }
2752
2753 /*
2754 * Determine whether the regs were taken from an irq/exception handler rather
2755 * than from perf_arch_fetch_caller_regs().
2756 */
perf_hw_regs(struct pt_regs * regs)2757 static bool perf_hw_regs(struct pt_regs *regs)
2758 {
2759 return regs->flags & X86_EFLAGS_FIXED;
2760 }
2761
2762 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2763 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2764 {
2765 struct unwind_state state;
2766 unsigned long addr;
2767
2768 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2769 /* TODO: We don't support guest os callchain now */
2770 return;
2771 }
2772
2773 if (perf_callchain_store(entry, regs->ip))
2774 return;
2775
2776 if (perf_hw_regs(regs))
2777 unwind_start(&state, current, regs, NULL);
2778 else
2779 unwind_start(&state, current, NULL, (void *)regs->sp);
2780
2781 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2782 addr = unwind_get_return_address(&state);
2783 if (!addr || perf_callchain_store(entry, addr))
2784 return;
2785 }
2786 }
2787
2788 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2789 valid_user_frame(const void __user *fp, unsigned long size)
2790 {
2791 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2792 }
2793
get_segment_base(unsigned int segment)2794 static unsigned long get_segment_base(unsigned int segment)
2795 {
2796 struct desc_struct *desc;
2797 unsigned int idx = segment >> 3;
2798
2799 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2800 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2801 struct ldt_struct *ldt;
2802
2803 /* IRQs are off, so this synchronizes with smp_store_release */
2804 ldt = READ_ONCE(current->active_mm->context.ldt);
2805 if (!ldt || idx >= ldt->nr_entries)
2806 return 0;
2807
2808 desc = &ldt->entries[idx];
2809 #else
2810 return 0;
2811 #endif
2812 } else {
2813 if (idx >= GDT_ENTRIES)
2814 return 0;
2815
2816 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2817 }
2818
2819 return get_desc_base(desc);
2820 }
2821
2822 #ifdef CONFIG_IA32_EMULATION
2823
2824 #include <linux/compat.h>
2825
2826 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2827 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2828 {
2829 /* 32-bit process in 64-bit kernel. */
2830 unsigned long ss_base, cs_base;
2831 struct stack_frame_ia32 frame;
2832 const struct stack_frame_ia32 __user *fp;
2833
2834 if (user_64bit_mode(regs))
2835 return 0;
2836
2837 cs_base = get_segment_base(regs->cs);
2838 ss_base = get_segment_base(regs->ss);
2839
2840 fp = compat_ptr(ss_base + regs->bp);
2841 pagefault_disable();
2842 while (entry->nr < entry->max_stack) {
2843 if (!valid_user_frame(fp, sizeof(frame)))
2844 break;
2845
2846 if (__get_user(frame.next_frame, &fp->next_frame))
2847 break;
2848 if (__get_user(frame.return_address, &fp->return_address))
2849 break;
2850
2851 perf_callchain_store(entry, cs_base + frame.return_address);
2852 fp = compat_ptr(ss_base + frame.next_frame);
2853 }
2854 pagefault_enable();
2855 return 1;
2856 }
2857 #else
2858 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2859 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2860 {
2861 return 0;
2862 }
2863 #endif
2864
2865 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2866 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2867 {
2868 struct stack_frame frame;
2869 const struct stack_frame __user *fp;
2870
2871 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2872 /* TODO: We don't support guest os callchain now */
2873 return;
2874 }
2875
2876 /*
2877 * We don't know what to do with VM86 stacks.. ignore them for now.
2878 */
2879 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2880 return;
2881
2882 fp = (void __user *)regs->bp;
2883
2884 perf_callchain_store(entry, regs->ip);
2885
2886 if (!nmi_uaccess_okay())
2887 return;
2888
2889 if (perf_callchain_user32(regs, entry))
2890 return;
2891
2892 pagefault_disable();
2893 while (entry->nr < entry->max_stack) {
2894 if (!valid_user_frame(fp, sizeof(frame)))
2895 break;
2896
2897 if (__get_user(frame.next_frame, &fp->next_frame))
2898 break;
2899 if (__get_user(frame.return_address, &fp->return_address))
2900 break;
2901
2902 perf_callchain_store(entry, frame.return_address);
2903 fp = (void __user *)frame.next_frame;
2904 }
2905 pagefault_enable();
2906 }
2907
2908 /*
2909 * Deal with code segment offsets for the various execution modes:
2910 *
2911 * VM86 - the good olde 16 bit days, where the linear address is
2912 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2913 *
2914 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2915 * to figure out what the 32bit base address is.
2916 *
2917 * X32 - has TIF_X32 set, but is running in x86_64
2918 *
2919 * X86_64 - CS,DS,SS,ES are all zero based.
2920 */
code_segment_base(struct pt_regs * regs)2921 static unsigned long code_segment_base(struct pt_regs *regs)
2922 {
2923 /*
2924 * For IA32 we look at the GDT/LDT segment base to convert the
2925 * effective IP to a linear address.
2926 */
2927
2928 #ifdef CONFIG_X86_32
2929 /*
2930 * If we are in VM86 mode, add the segment offset to convert to a
2931 * linear address.
2932 */
2933 if (regs->flags & X86_VM_MASK)
2934 return 0x10 * regs->cs;
2935
2936 if (user_mode(regs) && regs->cs != __USER_CS)
2937 return get_segment_base(regs->cs);
2938 #else
2939 if (user_mode(regs) && !user_64bit_mode(regs) &&
2940 regs->cs != __USER32_CS)
2941 return get_segment_base(regs->cs);
2942 #endif
2943 return 0;
2944 }
2945
perf_instruction_pointer(struct pt_regs * regs)2946 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2947 {
2948 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2949 return perf_guest_cbs->get_guest_ip();
2950
2951 return regs->ip + code_segment_base(regs);
2952 }
2953
perf_misc_flags(struct pt_regs * regs)2954 unsigned long perf_misc_flags(struct pt_regs *regs)
2955 {
2956 int misc = 0;
2957
2958 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2959 if (perf_guest_cbs->is_user_mode())
2960 misc |= PERF_RECORD_MISC_GUEST_USER;
2961 else
2962 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2963 } else {
2964 if (user_mode(regs))
2965 misc |= PERF_RECORD_MISC_USER;
2966 else
2967 misc |= PERF_RECORD_MISC_KERNEL;
2968 }
2969
2970 if (regs->flags & PERF_EFLAGS_EXACT)
2971 misc |= PERF_RECORD_MISC_EXACT_IP;
2972
2973 return misc;
2974 }
2975
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2976 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2977 {
2978 cap->version = x86_pmu.version;
2979 /*
2980 * KVM doesn't support the hybrid PMU yet.
2981 * Return the common value in global x86_pmu,
2982 * which available for all cores.
2983 */
2984 cap->num_counters_gp = x86_pmu.num_counters;
2985 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2986 cap->bit_width_gp = x86_pmu.cntval_bits;
2987 cap->bit_width_fixed = x86_pmu.cntval_bits;
2988 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2989 cap->events_mask_len = x86_pmu.events_mask_len;
2990 }
2991 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2992