1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31
32 #include <asm/apic.h>
33 #include <asm/stacktrace.h>
34 #include <asm/nmi.h>
35 #include <asm/smp.h>
36 #include <asm/alternative.h>
37 #include <asm/mmu_context.h>
38 #include <asm/tlbflush.h>
39 #include <asm/timer.h>
40 #include <asm/desc.h>
41 #include <asm/ldt.h>
42 #include <asm/unwind.h>
43
44 #include "perf_event.h"
45
46 struct x86_pmu x86_pmu __read_mostly;
47
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49 .enabled = 1,
50 };
51
52 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
53
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
62
63 /*
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
67 */
x86_perf_event_update(struct perf_event * event)68 u64 x86_perf_event_update(struct perf_event *event)
69 {
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
73 int idx = hwc->idx;
74 u64 delta;
75
76 if (idx == INTEL_PMC_IDX_FIXED_BTS)
77 return 0;
78
79 /*
80 * Careful: an NMI might modify the previous event value.
81 *
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
85 */
86 again:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
89
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
92 goto again;
93
94 /*
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
98 *
99 * Careful, not all hw sign-extends above the physical width
100 * of the count.
101 */
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
104
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
107
108 return new_raw_count;
109 }
110
111 /*
112 * Find and validate any extra registers to set up.
113 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
115 {
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
118
119 reg = &event->hw.extra_reg;
120
121 if (!x86_pmu.extra_regs)
122 return 0;
123
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
129 /* Check if the extra msrs can be safely accessed*/
130 if (!er->extra_msr_access)
131 return -ENXIO;
132
133 reg->idx = er->idx;
134 reg->config = event->attr.config1;
135 reg->reg = er->msr;
136 break;
137 }
138 return 0;
139 }
140
141 static atomic_t active_events;
142 static atomic_t pmc_refcount;
143 static DEFINE_MUTEX(pmc_reserve_mutex);
144
145 #ifdef CONFIG_X86_LOCAL_APIC
146
reserve_pmc_hardware(void)147 static bool reserve_pmc_hardware(void)
148 {
149 int i;
150
151 for (i = 0; i < x86_pmu.num_counters; i++) {
152 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
153 goto perfctr_fail;
154 }
155
156 for (i = 0; i < x86_pmu.num_counters; i++) {
157 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
158 goto eventsel_fail;
159 }
160
161 return true;
162
163 eventsel_fail:
164 for (i--; i >= 0; i--)
165 release_evntsel_nmi(x86_pmu_config_addr(i));
166
167 i = x86_pmu.num_counters;
168
169 perfctr_fail:
170 for (i--; i >= 0; i--)
171 release_perfctr_nmi(x86_pmu_event_addr(i));
172
173 return false;
174 }
175
release_pmc_hardware(void)176 static void release_pmc_hardware(void)
177 {
178 int i;
179
180 for (i = 0; i < x86_pmu.num_counters; i++) {
181 release_perfctr_nmi(x86_pmu_event_addr(i));
182 release_evntsel_nmi(x86_pmu_config_addr(i));
183 }
184 }
185
186 #else
187
reserve_pmc_hardware(void)188 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)189 static void release_pmc_hardware(void) {}
190
191 #endif
192
check_hw_exists(void)193 static bool check_hw_exists(void)
194 {
195 u64 val, val_fail = -1, val_new= ~0;
196 int i, reg, reg_fail = -1, ret = 0;
197 int bios_fail = 0;
198 int reg_safe = -1;
199
200 /*
201 * Check to see if the BIOS enabled any of the counters, if so
202 * complain and bail.
203 */
204 for (i = 0; i < x86_pmu.num_counters; i++) {
205 reg = x86_pmu_config_addr(i);
206 ret = rdmsrl_safe(reg, &val);
207 if (ret)
208 goto msr_fail;
209 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
210 bios_fail = 1;
211 val_fail = val;
212 reg_fail = reg;
213 } else {
214 reg_safe = i;
215 }
216 }
217
218 if (x86_pmu.num_counters_fixed) {
219 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
220 ret = rdmsrl_safe(reg, &val);
221 if (ret)
222 goto msr_fail;
223 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
224 if (val & (0x03 << i*4)) {
225 bios_fail = 1;
226 val_fail = val;
227 reg_fail = reg;
228 }
229 }
230 }
231
232 /*
233 * If all the counters are enabled, the below test will always
234 * fail. The tools will also become useless in this scenario.
235 * Just fail and disable the hardware counters.
236 */
237
238 if (reg_safe == -1) {
239 reg = reg_safe;
240 goto msr_fail;
241 }
242
243 /*
244 * Read the current value, change it and read it back to see if it
245 * matches, this is needed to detect certain hardware emulators
246 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
247 */
248 reg = x86_pmu_event_addr(reg_safe);
249 if (rdmsrl_safe(reg, &val))
250 goto msr_fail;
251 val ^= 0xffffUL;
252 ret = wrmsrl_safe(reg, val);
253 ret |= rdmsrl_safe(reg, &val_new);
254 if (ret || val != val_new)
255 goto msr_fail;
256
257 /*
258 * We still allow the PMU driver to operate:
259 */
260 if (bios_fail) {
261 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
262 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
263 reg_fail, val_fail);
264 }
265
266 return true;
267
268 msr_fail:
269 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
270 pr_cont("PMU not available due to virtualization, using software events only.\n");
271 } else {
272 pr_cont("Broken PMU hardware detected, using software events only.\n");
273 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
274 reg, val_new);
275 }
276
277 return false;
278 }
279
hw_perf_event_destroy(struct perf_event * event)280 static void hw_perf_event_destroy(struct perf_event *event)
281 {
282 x86_release_hardware();
283 atomic_dec(&active_events);
284 }
285
hw_perf_lbr_event_destroy(struct perf_event * event)286 void hw_perf_lbr_event_destroy(struct perf_event *event)
287 {
288 hw_perf_event_destroy(event);
289
290 /* undo the lbr/bts event accounting */
291 x86_del_exclusive(x86_lbr_exclusive_lbr);
292 }
293
x86_pmu_initialized(void)294 static inline int x86_pmu_initialized(void)
295 {
296 return x86_pmu.handle_irq != NULL;
297 }
298
299 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)300 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
301 {
302 struct perf_event_attr *attr = &event->attr;
303 unsigned int cache_type, cache_op, cache_result;
304 u64 config, val;
305
306 config = attr->config;
307
308 cache_type = (config >> 0) & 0xff;
309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
310 return -EINVAL;
311 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
312
313 cache_op = (config >> 8) & 0xff;
314 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
315 return -EINVAL;
316 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
317
318 cache_result = (config >> 16) & 0xff;
319 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
320 return -EINVAL;
321 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
322
323 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
324
325 if (val == 0)
326 return -ENOENT;
327
328 if (val == -1)
329 return -EINVAL;
330
331 hwc->config |= val;
332 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
333 return x86_pmu_extra_regs(val, event);
334 }
335
x86_reserve_hardware(void)336 int x86_reserve_hardware(void)
337 {
338 int err = 0;
339
340 if (!atomic_inc_not_zero(&pmc_refcount)) {
341 mutex_lock(&pmc_reserve_mutex);
342 if (atomic_read(&pmc_refcount) == 0) {
343 if (!reserve_pmc_hardware())
344 err = -EBUSY;
345 else
346 reserve_ds_buffers();
347 }
348 if (!err)
349 atomic_inc(&pmc_refcount);
350 mutex_unlock(&pmc_reserve_mutex);
351 }
352
353 return err;
354 }
355
x86_release_hardware(void)356 void x86_release_hardware(void)
357 {
358 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
359 release_pmc_hardware();
360 release_ds_buffers();
361 mutex_unlock(&pmc_reserve_mutex);
362 }
363 }
364
365 /*
366 * Check if we can create event of a certain type (that no conflicting events
367 * are present).
368 */
x86_add_exclusive(unsigned int what)369 int x86_add_exclusive(unsigned int what)
370 {
371 int i;
372
373 /*
374 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
375 * LBR and BTS are still mutually exclusive.
376 */
377 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
378 return 0;
379
380 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
381 mutex_lock(&pmc_reserve_mutex);
382 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
383 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
384 goto fail_unlock;
385 }
386 atomic_inc(&x86_pmu.lbr_exclusive[what]);
387 mutex_unlock(&pmc_reserve_mutex);
388 }
389
390 atomic_inc(&active_events);
391 return 0;
392
393 fail_unlock:
394 mutex_unlock(&pmc_reserve_mutex);
395 return -EBUSY;
396 }
397
x86_del_exclusive(unsigned int what)398 void x86_del_exclusive(unsigned int what)
399 {
400 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
401 return;
402
403 atomic_dec(&x86_pmu.lbr_exclusive[what]);
404 atomic_dec(&active_events);
405 }
406
x86_setup_perfctr(struct perf_event * event)407 int x86_setup_perfctr(struct perf_event *event)
408 {
409 struct perf_event_attr *attr = &event->attr;
410 struct hw_perf_event *hwc = &event->hw;
411 u64 config;
412
413 if (!is_sampling_event(event)) {
414 hwc->sample_period = x86_pmu.max_period;
415 hwc->last_period = hwc->sample_period;
416 local64_set(&hwc->period_left, hwc->sample_period);
417 }
418
419 if (attr->type == PERF_TYPE_RAW)
420 return x86_pmu_extra_regs(event->attr.config, event);
421
422 if (attr->type == PERF_TYPE_HW_CACHE)
423 return set_ext_hw_attr(hwc, event);
424
425 if (attr->config >= x86_pmu.max_events)
426 return -EINVAL;
427
428 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
429
430 /*
431 * The generic map:
432 */
433 config = x86_pmu.event_map(attr->config);
434
435 if (config == 0)
436 return -ENOENT;
437
438 if (config == -1LL)
439 return -EINVAL;
440
441 hwc->config |= config;
442
443 return 0;
444 }
445
446 /*
447 * check that branch_sample_type is compatible with
448 * settings needed for precise_ip > 1 which implies
449 * using the LBR to capture ALL taken branches at the
450 * priv levels of the measurement
451 */
precise_br_compat(struct perf_event * event)452 static inline int precise_br_compat(struct perf_event *event)
453 {
454 u64 m = event->attr.branch_sample_type;
455 u64 b = 0;
456
457 /* must capture all branches */
458 if (!(m & PERF_SAMPLE_BRANCH_ANY))
459 return 0;
460
461 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
462
463 if (!event->attr.exclude_user)
464 b |= PERF_SAMPLE_BRANCH_USER;
465
466 if (!event->attr.exclude_kernel)
467 b |= PERF_SAMPLE_BRANCH_KERNEL;
468
469 /*
470 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
471 */
472
473 return m == b;
474 }
475
x86_pmu_max_precise(void)476 int x86_pmu_max_precise(void)
477 {
478 int precise = 0;
479
480 /* Support for constant skid */
481 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
482 precise++;
483
484 /* Support for IP fixup */
485 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
486 precise++;
487
488 if (x86_pmu.pebs_prec_dist)
489 precise++;
490 }
491 return precise;
492 }
493
x86_pmu_hw_config(struct perf_event * event)494 int x86_pmu_hw_config(struct perf_event *event)
495 {
496 if (event->attr.precise_ip) {
497 int precise = x86_pmu_max_precise();
498
499 if (event->attr.precise_ip > precise)
500 return -EOPNOTSUPP;
501
502 /* There's no sense in having PEBS for non sampling events: */
503 if (!is_sampling_event(event))
504 return -EINVAL;
505 }
506 /*
507 * check that PEBS LBR correction does not conflict with
508 * whatever the user is asking with attr->branch_sample_type
509 */
510 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
511 u64 *br_type = &event->attr.branch_sample_type;
512
513 if (has_branch_stack(event)) {
514 if (!precise_br_compat(event))
515 return -EOPNOTSUPP;
516
517 /* branch_sample_type is compatible */
518
519 } else {
520 /*
521 * user did not specify branch_sample_type
522 *
523 * For PEBS fixups, we capture all
524 * the branches at the priv level of the
525 * event.
526 */
527 *br_type = PERF_SAMPLE_BRANCH_ANY;
528
529 if (!event->attr.exclude_user)
530 *br_type |= PERF_SAMPLE_BRANCH_USER;
531
532 if (!event->attr.exclude_kernel)
533 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
534 }
535 }
536
537 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
538 event->attach_state |= PERF_ATTACH_TASK_DATA;
539
540 /*
541 * Generate PMC IRQs:
542 * (keep 'enabled' bit clear for now)
543 */
544 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
545
546 /*
547 * Count user and OS events unless requested not to
548 */
549 if (!event->attr.exclude_user)
550 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
551 if (!event->attr.exclude_kernel)
552 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
553
554 if (event->attr.type == PERF_TYPE_RAW)
555 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
556
557 if (event->attr.sample_period && x86_pmu.limit_period) {
558 if (x86_pmu.limit_period(event, event->attr.sample_period) >
559 event->attr.sample_period)
560 return -EINVAL;
561 }
562
563 /* sample_regs_user never support XMM registers */
564 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
565 return -EINVAL;
566 /*
567 * Besides the general purpose registers, XMM registers may
568 * be collected in PEBS on some platforms, e.g. Icelake
569 */
570 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
571 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
572 return -EINVAL;
573
574 if (!event->attr.precise_ip)
575 return -EINVAL;
576 }
577
578 return x86_setup_perfctr(event);
579 }
580
581 /*
582 * Setup the hardware configuration for a given attr_type
583 */
__x86_pmu_event_init(struct perf_event * event)584 static int __x86_pmu_event_init(struct perf_event *event)
585 {
586 int err;
587
588 if (!x86_pmu_initialized())
589 return -ENODEV;
590
591 err = x86_reserve_hardware();
592 if (err)
593 return err;
594
595 atomic_inc(&active_events);
596 event->destroy = hw_perf_event_destroy;
597
598 event->hw.idx = -1;
599 event->hw.last_cpu = -1;
600 event->hw.last_tag = ~0ULL;
601
602 /* mark unused */
603 event->hw.extra_reg.idx = EXTRA_REG_NONE;
604 event->hw.branch_reg.idx = EXTRA_REG_NONE;
605
606 return x86_pmu.hw_config(event);
607 }
608
x86_pmu_disable_all(void)609 void x86_pmu_disable_all(void)
610 {
611 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
612 int idx;
613
614 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
615 u64 val;
616
617 if (!test_bit(idx, cpuc->active_mask))
618 continue;
619 rdmsrl(x86_pmu_config_addr(idx), val);
620 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
621 continue;
622 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
623 wrmsrl(x86_pmu_config_addr(idx), val);
624 }
625 }
626
627 /*
628 * There may be PMI landing after enabled=0. The PMI hitting could be before or
629 * after disable_all.
630 *
631 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
632 * It will not be re-enabled in the NMI handler again, because enabled=0. After
633 * handling the NMI, disable_all will be called, which will not change the
634 * state either. If PMI hits after disable_all, the PMU is already disabled
635 * before entering NMI handler. The NMI handler will not change the state
636 * either.
637 *
638 * So either situation is harmless.
639 */
x86_pmu_disable(struct pmu * pmu)640 static void x86_pmu_disable(struct pmu *pmu)
641 {
642 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
643
644 if (!x86_pmu_initialized())
645 return;
646
647 if (!cpuc->enabled)
648 return;
649
650 cpuc->n_added = 0;
651 cpuc->enabled = 0;
652 barrier();
653
654 x86_pmu.disable_all();
655 }
656
x86_pmu_enable_all(int added)657 void x86_pmu_enable_all(int added)
658 {
659 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
660 int idx;
661
662 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
663 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
664
665 if (!test_bit(idx, cpuc->active_mask))
666 continue;
667
668 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
669 }
670 }
671
672 static struct pmu pmu;
673
is_x86_event(struct perf_event * event)674 static inline int is_x86_event(struct perf_event *event)
675 {
676 return event->pmu == &pmu;
677 }
678
x86_get_pmu(void)679 struct pmu *x86_get_pmu(void)
680 {
681 return &pmu;
682 }
683 /*
684 * Event scheduler state:
685 *
686 * Assign events iterating over all events and counters, beginning
687 * with events with least weights first. Keep the current iterator
688 * state in struct sched_state.
689 */
690 struct sched_state {
691 int weight;
692 int event; /* event index */
693 int counter; /* counter index */
694 int unassigned; /* number of events to be assigned left */
695 int nr_gp; /* number of GP counters used */
696 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
697 };
698
699 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
700 #define SCHED_STATES_MAX 2
701
702 struct perf_sched {
703 int max_weight;
704 int max_events;
705 int max_gp;
706 int saved_states;
707 struct event_constraint **constraints;
708 struct sched_state state;
709 struct sched_state saved[SCHED_STATES_MAX];
710 };
711
712 /*
713 * Initialize interator that runs through all events and counters.
714 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)715 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
716 int num, int wmin, int wmax, int gpmax)
717 {
718 int idx;
719
720 memset(sched, 0, sizeof(*sched));
721 sched->max_events = num;
722 sched->max_weight = wmax;
723 sched->max_gp = gpmax;
724 sched->constraints = constraints;
725
726 for (idx = 0; idx < num; idx++) {
727 if (constraints[idx]->weight == wmin)
728 break;
729 }
730
731 sched->state.event = idx; /* start with min weight */
732 sched->state.weight = wmin;
733 sched->state.unassigned = num;
734 }
735
perf_sched_save_state(struct perf_sched * sched)736 static void perf_sched_save_state(struct perf_sched *sched)
737 {
738 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
739 return;
740
741 sched->saved[sched->saved_states] = sched->state;
742 sched->saved_states++;
743 }
744
perf_sched_restore_state(struct perf_sched * sched)745 static bool perf_sched_restore_state(struct perf_sched *sched)
746 {
747 if (!sched->saved_states)
748 return false;
749
750 sched->saved_states--;
751 sched->state = sched->saved[sched->saved_states];
752
753 /* continue with next counter: */
754 clear_bit(sched->state.counter++, sched->state.used);
755
756 return true;
757 }
758
759 /*
760 * Select a counter for the current event to schedule. Return true on
761 * success.
762 */
__perf_sched_find_counter(struct perf_sched * sched)763 static bool __perf_sched_find_counter(struct perf_sched *sched)
764 {
765 struct event_constraint *c;
766 int idx;
767
768 if (!sched->state.unassigned)
769 return false;
770
771 if (sched->state.event >= sched->max_events)
772 return false;
773
774 c = sched->constraints[sched->state.event];
775 /* Prefer fixed purpose counters */
776 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
777 idx = INTEL_PMC_IDX_FIXED;
778 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
779 if (!__test_and_set_bit(idx, sched->state.used))
780 goto done;
781 }
782 }
783
784 /* Grab the first unused counter starting with idx */
785 idx = sched->state.counter;
786 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
787 if (!__test_and_set_bit(idx, sched->state.used)) {
788 if (sched->state.nr_gp++ >= sched->max_gp)
789 return false;
790
791 goto done;
792 }
793 }
794
795 return false;
796
797 done:
798 sched->state.counter = idx;
799
800 if (c->overlap)
801 perf_sched_save_state(sched);
802
803 return true;
804 }
805
perf_sched_find_counter(struct perf_sched * sched)806 static bool perf_sched_find_counter(struct perf_sched *sched)
807 {
808 while (!__perf_sched_find_counter(sched)) {
809 if (!perf_sched_restore_state(sched))
810 return false;
811 }
812
813 return true;
814 }
815
816 /*
817 * Go through all unassigned events and find the next one to schedule.
818 * Take events with the least weight first. Return true on success.
819 */
perf_sched_next_event(struct perf_sched * sched)820 static bool perf_sched_next_event(struct perf_sched *sched)
821 {
822 struct event_constraint *c;
823
824 if (!sched->state.unassigned || !--sched->state.unassigned)
825 return false;
826
827 do {
828 /* next event */
829 sched->state.event++;
830 if (sched->state.event >= sched->max_events) {
831 /* next weight */
832 sched->state.event = 0;
833 sched->state.weight++;
834 if (sched->state.weight > sched->max_weight)
835 return false;
836 }
837 c = sched->constraints[sched->state.event];
838 } while (c->weight != sched->state.weight);
839
840 sched->state.counter = 0; /* start with first counter */
841
842 return true;
843 }
844
845 /*
846 * Assign a counter for each event.
847 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)848 int perf_assign_events(struct event_constraint **constraints, int n,
849 int wmin, int wmax, int gpmax, int *assign)
850 {
851 struct perf_sched sched;
852
853 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
854
855 do {
856 if (!perf_sched_find_counter(&sched))
857 break; /* failed */
858 if (assign)
859 assign[sched.state.event] = sched.state.counter;
860 } while (perf_sched_next_event(&sched));
861
862 return sched.state.unassigned;
863 }
864 EXPORT_SYMBOL_GPL(perf_assign_events);
865
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)866 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
867 {
868 struct event_constraint *c;
869 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
870 struct perf_event *e;
871 int n0, i, wmin, wmax, unsched = 0;
872 struct hw_perf_event *hwc;
873
874 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
875
876 /*
877 * Compute the number of events already present; see x86_pmu_add(),
878 * validate_group() and x86_pmu_commit_txn(). For the former two
879 * cpuc->n_events hasn't been updated yet, while for the latter
880 * cpuc->n_txn contains the number of events added in the current
881 * transaction.
882 */
883 n0 = cpuc->n_events;
884 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
885 n0 -= cpuc->n_txn;
886
887 if (x86_pmu.start_scheduling)
888 x86_pmu.start_scheduling(cpuc);
889
890 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
891 c = cpuc->event_constraint[i];
892
893 /*
894 * Previously scheduled events should have a cached constraint,
895 * while new events should not have one.
896 */
897 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
898
899 /*
900 * Request constraints for new events; or for those events that
901 * have a dynamic constraint -- for those the constraint can
902 * change due to external factors (sibling state, allow_tfa).
903 */
904 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
905 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
906 cpuc->event_constraint[i] = c;
907 }
908
909 wmin = min(wmin, c->weight);
910 wmax = max(wmax, c->weight);
911 }
912
913 /*
914 * fastpath, try to reuse previous register
915 */
916 for (i = 0; i < n; i++) {
917 hwc = &cpuc->event_list[i]->hw;
918 c = cpuc->event_constraint[i];
919
920 /* never assigned */
921 if (hwc->idx == -1)
922 break;
923
924 /* constraint still honored */
925 if (!test_bit(hwc->idx, c->idxmsk))
926 break;
927
928 /* not already used */
929 if (test_bit(hwc->idx, used_mask))
930 break;
931
932 __set_bit(hwc->idx, used_mask);
933 if (assign)
934 assign[i] = hwc->idx;
935 }
936
937 /* slow path */
938 if (i != n) {
939 int gpmax = x86_pmu.num_counters;
940
941 /*
942 * Do not allow scheduling of more than half the available
943 * generic counters.
944 *
945 * This helps avoid counter starvation of sibling thread by
946 * ensuring at most half the counters cannot be in exclusive
947 * mode. There is no designated counters for the limits. Any
948 * N/2 counters can be used. This helps with events with
949 * specific counter constraints.
950 */
951 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
952 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
953 gpmax /= 2;
954
955 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
956 wmax, gpmax, assign);
957 }
958
959 /*
960 * In case of success (unsched = 0), mark events as committed,
961 * so we do not put_constraint() in case new events are added
962 * and fail to be scheduled
963 *
964 * We invoke the lower level commit callback to lock the resource
965 *
966 * We do not need to do all of this in case we are called to
967 * validate an event group (assign == NULL)
968 */
969 if (!unsched && assign) {
970 for (i = 0; i < n; i++) {
971 e = cpuc->event_list[i];
972 if (x86_pmu.commit_scheduling)
973 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
974 }
975 } else {
976 for (i = n0; i < n; i++) {
977 e = cpuc->event_list[i];
978
979 /*
980 * release events that failed scheduling
981 */
982 if (x86_pmu.put_event_constraints)
983 x86_pmu.put_event_constraints(cpuc, e);
984
985 cpuc->event_constraint[i] = NULL;
986 }
987 }
988
989 if (x86_pmu.stop_scheduling)
990 x86_pmu.stop_scheduling(cpuc);
991
992 return unsched ? -EINVAL : 0;
993 }
994
995 /*
996 * dogrp: true if must collect siblings events (group)
997 * returns total number of events and error code
998 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)999 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1000 {
1001 struct perf_event *event;
1002 int n, max_count;
1003
1004 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1005
1006 /* current number of events already accepted */
1007 n = cpuc->n_events;
1008 if (!cpuc->n_events)
1009 cpuc->pebs_output = 0;
1010
1011 if (!cpuc->is_fake && leader->attr.precise_ip) {
1012 /*
1013 * For PEBS->PT, if !aux_event, the group leader (PT) went
1014 * away, the group was broken down and this singleton event
1015 * can't schedule any more.
1016 */
1017 if (is_pebs_pt(leader) && !leader->aux_event)
1018 return -EINVAL;
1019
1020 /*
1021 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1022 */
1023 if (cpuc->pebs_output &&
1024 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1025 return -EINVAL;
1026
1027 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1028 }
1029
1030 if (is_x86_event(leader)) {
1031 if (n >= max_count)
1032 return -EINVAL;
1033 cpuc->event_list[n] = leader;
1034 n++;
1035 }
1036 if (!dogrp)
1037 return n;
1038
1039 for_each_sibling_event(event, leader) {
1040 if (!is_x86_event(event) ||
1041 event->state <= PERF_EVENT_STATE_OFF)
1042 continue;
1043
1044 if (n >= max_count)
1045 return -EINVAL;
1046
1047 cpuc->event_list[n] = event;
1048 n++;
1049 }
1050 return n;
1051 }
1052
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1053 static inline void x86_assign_hw_event(struct perf_event *event,
1054 struct cpu_hw_events *cpuc, int i)
1055 {
1056 struct hw_perf_event *hwc = &event->hw;
1057
1058 hwc->idx = cpuc->assign[i];
1059 hwc->last_cpu = smp_processor_id();
1060 hwc->last_tag = ++cpuc->tags[i];
1061
1062 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1063 hwc->config_base = 0;
1064 hwc->event_base = 0;
1065 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1066 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1067 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1068 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1069 } else {
1070 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1071 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1072 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1073 }
1074 }
1075
1076 /**
1077 * x86_perf_rdpmc_index - Return PMC counter used for event
1078 * @event: the perf_event to which the PMC counter was assigned
1079 *
1080 * The counter assigned to this performance event may change if interrupts
1081 * are enabled. This counter should thus never be used while interrupts are
1082 * enabled. Before this function is used to obtain the assigned counter the
1083 * event should be checked for validity using, for example,
1084 * perf_event_read_local(), within the same interrupt disabled section in
1085 * which this counter is planned to be used.
1086 *
1087 * Return: The index of the performance monitoring counter assigned to
1088 * @perf_event.
1089 */
x86_perf_rdpmc_index(struct perf_event * event)1090 int x86_perf_rdpmc_index(struct perf_event *event)
1091 {
1092 lockdep_assert_irqs_disabled();
1093
1094 return event->hw.event_base_rdpmc;
1095 }
1096
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1097 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1098 struct cpu_hw_events *cpuc,
1099 int i)
1100 {
1101 return hwc->idx == cpuc->assign[i] &&
1102 hwc->last_cpu == smp_processor_id() &&
1103 hwc->last_tag == cpuc->tags[i];
1104 }
1105
1106 static void x86_pmu_start(struct perf_event *event, int flags);
1107
x86_pmu_enable(struct pmu * pmu)1108 static void x86_pmu_enable(struct pmu *pmu)
1109 {
1110 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1111 struct perf_event *event;
1112 struct hw_perf_event *hwc;
1113 int i, added = cpuc->n_added;
1114
1115 if (!x86_pmu_initialized())
1116 return;
1117
1118 if (cpuc->enabled)
1119 return;
1120
1121 if (cpuc->n_added) {
1122 int n_running = cpuc->n_events - cpuc->n_added;
1123 /*
1124 * apply assignment obtained either from
1125 * hw_perf_group_sched_in() or x86_pmu_enable()
1126 *
1127 * step1: save events moving to new counters
1128 */
1129 for (i = 0; i < n_running; i++) {
1130 event = cpuc->event_list[i];
1131 hwc = &event->hw;
1132
1133 /*
1134 * we can avoid reprogramming counter if:
1135 * - assigned same counter as last time
1136 * - running on same CPU as last time
1137 * - no other event has used the counter since
1138 */
1139 if (hwc->idx == -1 ||
1140 match_prev_assignment(hwc, cpuc, i))
1141 continue;
1142
1143 /*
1144 * Ensure we don't accidentally enable a stopped
1145 * counter simply because we rescheduled.
1146 */
1147 if (hwc->state & PERF_HES_STOPPED)
1148 hwc->state |= PERF_HES_ARCH;
1149
1150 x86_pmu_stop(event, PERF_EF_UPDATE);
1151 }
1152
1153 /*
1154 * step2: reprogram moved events into new counters
1155 */
1156 for (i = 0; i < cpuc->n_events; i++) {
1157 event = cpuc->event_list[i];
1158 hwc = &event->hw;
1159
1160 if (!match_prev_assignment(hwc, cpuc, i))
1161 x86_assign_hw_event(event, cpuc, i);
1162 else if (i < n_running)
1163 continue;
1164
1165 if (hwc->state & PERF_HES_ARCH)
1166 continue;
1167
1168 x86_pmu_start(event, PERF_EF_RELOAD);
1169 }
1170 cpuc->n_added = 0;
1171 perf_events_lapic_init();
1172 }
1173
1174 cpuc->enabled = 1;
1175 barrier();
1176
1177 x86_pmu.enable_all(added);
1178 }
1179
1180 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1181
1182 /*
1183 * Set the next IRQ period, based on the hwc->period_left value.
1184 * To be called with the event disabled in hw:
1185 */
x86_perf_event_set_period(struct perf_event * event)1186 int x86_perf_event_set_period(struct perf_event *event)
1187 {
1188 struct hw_perf_event *hwc = &event->hw;
1189 s64 left = local64_read(&hwc->period_left);
1190 s64 period = hwc->sample_period;
1191 int ret = 0, idx = hwc->idx;
1192
1193 if (idx == INTEL_PMC_IDX_FIXED_BTS)
1194 return 0;
1195
1196 /*
1197 * If we are way outside a reasonable range then just skip forward:
1198 */
1199 if (unlikely(left <= -period)) {
1200 left = period;
1201 local64_set(&hwc->period_left, left);
1202 hwc->last_period = period;
1203 ret = 1;
1204 }
1205
1206 if (unlikely(left <= 0)) {
1207 left += period;
1208 local64_set(&hwc->period_left, left);
1209 hwc->last_period = period;
1210 ret = 1;
1211 }
1212 /*
1213 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1214 */
1215 if (unlikely(left < 2))
1216 left = 2;
1217
1218 if (left > x86_pmu.max_period)
1219 left = x86_pmu.max_period;
1220
1221 if (x86_pmu.limit_period)
1222 left = x86_pmu.limit_period(event, left);
1223
1224 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1225
1226 /*
1227 * The hw event starts counting from this event offset,
1228 * mark it to be able to extra future deltas:
1229 */
1230 local64_set(&hwc->prev_count, (u64)-left);
1231
1232 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1233
1234 /*
1235 * Due to erratum on certan cpu we need
1236 * a second write to be sure the register
1237 * is updated properly
1238 */
1239 if (x86_pmu.perfctr_second_write) {
1240 wrmsrl(hwc->event_base,
1241 (u64)(-left) & x86_pmu.cntval_mask);
1242 }
1243
1244 perf_event_update_userpage(event);
1245
1246 return ret;
1247 }
1248
x86_pmu_enable_event(struct perf_event * event)1249 void x86_pmu_enable_event(struct perf_event *event)
1250 {
1251 if (__this_cpu_read(cpu_hw_events.enabled))
1252 __x86_pmu_enable_event(&event->hw,
1253 ARCH_PERFMON_EVENTSEL_ENABLE);
1254 }
1255
1256 /*
1257 * Add a single event to the PMU.
1258 *
1259 * The event is added to the group of enabled events
1260 * but only if it can be scheduled with existing events.
1261 */
x86_pmu_add(struct perf_event * event,int flags)1262 static int x86_pmu_add(struct perf_event *event, int flags)
1263 {
1264 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1265 struct hw_perf_event *hwc;
1266 int assign[X86_PMC_IDX_MAX];
1267 int n, n0, ret;
1268
1269 hwc = &event->hw;
1270
1271 n0 = cpuc->n_events;
1272 ret = n = collect_events(cpuc, event, false);
1273 if (ret < 0)
1274 goto out;
1275
1276 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1277 if (!(flags & PERF_EF_START))
1278 hwc->state |= PERF_HES_ARCH;
1279
1280 /*
1281 * If group events scheduling transaction was started,
1282 * skip the schedulability test here, it will be performed
1283 * at commit time (->commit_txn) as a whole.
1284 *
1285 * If commit fails, we'll call ->del() on all events
1286 * for which ->add() was called.
1287 */
1288 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1289 goto done_collect;
1290
1291 ret = x86_pmu.schedule_events(cpuc, n, assign);
1292 if (ret)
1293 goto out;
1294 /*
1295 * copy new assignment, now we know it is possible
1296 * will be used by hw_perf_enable()
1297 */
1298 memcpy(cpuc->assign, assign, n*sizeof(int));
1299
1300 done_collect:
1301 /*
1302 * Commit the collect_events() state. See x86_pmu_del() and
1303 * x86_pmu_*_txn().
1304 */
1305 cpuc->n_events = n;
1306 cpuc->n_added += n - n0;
1307 cpuc->n_txn += n - n0;
1308
1309 if (x86_pmu.add) {
1310 /*
1311 * This is before x86_pmu_enable() will call x86_pmu_start(),
1312 * so we enable LBRs before an event needs them etc..
1313 */
1314 x86_pmu.add(event);
1315 }
1316
1317 ret = 0;
1318 out:
1319 return ret;
1320 }
1321
x86_pmu_start(struct perf_event * event,int flags)1322 static void x86_pmu_start(struct perf_event *event, int flags)
1323 {
1324 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1325 int idx = event->hw.idx;
1326
1327 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1328 return;
1329
1330 if (WARN_ON_ONCE(idx == -1))
1331 return;
1332
1333 if (flags & PERF_EF_RELOAD) {
1334 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1335 x86_perf_event_set_period(event);
1336 }
1337
1338 event->hw.state = 0;
1339
1340 cpuc->events[idx] = event;
1341 __set_bit(idx, cpuc->active_mask);
1342 __set_bit(idx, cpuc->running);
1343 x86_pmu.enable(event);
1344 perf_event_update_userpage(event);
1345 }
1346
perf_event_print_debug(void)1347 void perf_event_print_debug(void)
1348 {
1349 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1350 u64 pebs, debugctl;
1351 struct cpu_hw_events *cpuc;
1352 unsigned long flags;
1353 int cpu, idx;
1354
1355 if (!x86_pmu.num_counters)
1356 return;
1357
1358 local_irq_save(flags);
1359
1360 cpu = smp_processor_id();
1361 cpuc = &per_cpu(cpu_hw_events, cpu);
1362
1363 if (x86_pmu.version >= 2) {
1364 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1365 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1366 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1367 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1368
1369 pr_info("\n");
1370 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1371 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1372 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1373 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1374 if (x86_pmu.pebs_constraints) {
1375 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1376 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1377 }
1378 if (x86_pmu.lbr_nr) {
1379 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1380 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1381 }
1382 }
1383 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1384
1385 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1386 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1387 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1388
1389 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1390
1391 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1392 cpu, idx, pmc_ctrl);
1393 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1394 cpu, idx, pmc_count);
1395 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1396 cpu, idx, prev_left);
1397 }
1398 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1399 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1400
1401 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1402 cpu, idx, pmc_count);
1403 }
1404 local_irq_restore(flags);
1405 }
1406
x86_pmu_stop(struct perf_event * event,int flags)1407 void x86_pmu_stop(struct perf_event *event, int flags)
1408 {
1409 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1410 struct hw_perf_event *hwc = &event->hw;
1411
1412 if (test_bit(hwc->idx, cpuc->active_mask)) {
1413 x86_pmu.disable(event);
1414 __clear_bit(hwc->idx, cpuc->active_mask);
1415 cpuc->events[hwc->idx] = NULL;
1416 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1417 hwc->state |= PERF_HES_STOPPED;
1418 }
1419
1420 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1421 /*
1422 * Drain the remaining delta count out of a event
1423 * that we are disabling:
1424 */
1425 x86_perf_event_update(event);
1426 hwc->state |= PERF_HES_UPTODATE;
1427 }
1428 }
1429
x86_pmu_del(struct perf_event * event,int flags)1430 static void x86_pmu_del(struct perf_event *event, int flags)
1431 {
1432 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1433 int i;
1434
1435 /*
1436 * If we're called during a txn, we only need to undo x86_pmu.add.
1437 * The events never got scheduled and ->cancel_txn will truncate
1438 * the event_list.
1439 *
1440 * XXX assumes any ->del() called during a TXN will only be on
1441 * an event added during that same TXN.
1442 */
1443 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1444 goto do_del;
1445
1446 /*
1447 * Not a TXN, therefore cleanup properly.
1448 */
1449 x86_pmu_stop(event, PERF_EF_UPDATE);
1450
1451 for (i = 0; i < cpuc->n_events; i++) {
1452 if (event == cpuc->event_list[i])
1453 break;
1454 }
1455
1456 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1457 return;
1458
1459 /* If we have a newly added event; make sure to decrease n_added. */
1460 if (i >= cpuc->n_events - cpuc->n_added)
1461 --cpuc->n_added;
1462
1463 if (x86_pmu.put_event_constraints)
1464 x86_pmu.put_event_constraints(cpuc, event);
1465
1466 /* Delete the array entry. */
1467 while (++i < cpuc->n_events) {
1468 cpuc->event_list[i-1] = cpuc->event_list[i];
1469 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1470 }
1471 cpuc->event_constraint[i-1] = NULL;
1472 --cpuc->n_events;
1473
1474 perf_event_update_userpage(event);
1475
1476 do_del:
1477 if (x86_pmu.del) {
1478 /*
1479 * This is after x86_pmu_stop(); so we disable LBRs after any
1480 * event can need them etc..
1481 */
1482 x86_pmu.del(event);
1483 }
1484 }
1485
x86_pmu_handle_irq(struct pt_regs * regs)1486 int x86_pmu_handle_irq(struct pt_regs *regs)
1487 {
1488 struct perf_sample_data data;
1489 struct cpu_hw_events *cpuc;
1490 struct perf_event *event;
1491 int idx, handled = 0;
1492 u64 val;
1493
1494 cpuc = this_cpu_ptr(&cpu_hw_events);
1495
1496 /*
1497 * Some chipsets need to unmask the LVTPC in a particular spot
1498 * inside the nmi handler. As a result, the unmasking was pushed
1499 * into all the nmi handlers.
1500 *
1501 * This generic handler doesn't seem to have any issues where the
1502 * unmasking occurs so it was left at the top.
1503 */
1504 apic_write(APIC_LVTPC, APIC_DM_NMI);
1505
1506 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1507 if (!test_bit(idx, cpuc->active_mask))
1508 continue;
1509
1510 event = cpuc->events[idx];
1511
1512 val = x86_perf_event_update(event);
1513 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1514 continue;
1515
1516 /*
1517 * event overflow
1518 */
1519 handled++;
1520 perf_sample_data_init(&data, 0, event->hw.last_period);
1521
1522 if (!x86_perf_event_set_period(event))
1523 continue;
1524
1525 if (perf_event_overflow(event, &data, regs))
1526 x86_pmu_stop(event, 0);
1527 }
1528
1529 if (handled)
1530 inc_irq_stat(apic_perf_irqs);
1531
1532 return handled;
1533 }
1534
perf_events_lapic_init(void)1535 void perf_events_lapic_init(void)
1536 {
1537 if (!x86_pmu.apic || !x86_pmu_initialized())
1538 return;
1539
1540 /*
1541 * Always use NMI for PMU
1542 */
1543 apic_write(APIC_LVTPC, APIC_DM_NMI);
1544 }
1545
1546 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1547 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1548 {
1549 u64 start_clock;
1550 u64 finish_clock;
1551 int ret;
1552
1553 /*
1554 * All PMUs/events that share this PMI handler should make sure to
1555 * increment active_events for their events.
1556 */
1557 if (!atomic_read(&active_events))
1558 return NMI_DONE;
1559
1560 start_clock = sched_clock();
1561 ret = x86_pmu.handle_irq(regs);
1562 finish_clock = sched_clock();
1563
1564 perf_sample_event_took(finish_clock - start_clock);
1565
1566 return ret;
1567 }
1568 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1569
1570 struct event_constraint emptyconstraint;
1571 struct event_constraint unconstrained;
1572
x86_pmu_prepare_cpu(unsigned int cpu)1573 static int x86_pmu_prepare_cpu(unsigned int cpu)
1574 {
1575 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1576 int i;
1577
1578 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1579 cpuc->kfree_on_online[i] = NULL;
1580 if (x86_pmu.cpu_prepare)
1581 return x86_pmu.cpu_prepare(cpu);
1582 return 0;
1583 }
1584
x86_pmu_dead_cpu(unsigned int cpu)1585 static int x86_pmu_dead_cpu(unsigned int cpu)
1586 {
1587 if (x86_pmu.cpu_dead)
1588 x86_pmu.cpu_dead(cpu);
1589 return 0;
1590 }
1591
x86_pmu_online_cpu(unsigned int cpu)1592 static int x86_pmu_online_cpu(unsigned int cpu)
1593 {
1594 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1595 int i;
1596
1597 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1598 kfree(cpuc->kfree_on_online[i]);
1599 cpuc->kfree_on_online[i] = NULL;
1600 }
1601 return 0;
1602 }
1603
x86_pmu_starting_cpu(unsigned int cpu)1604 static int x86_pmu_starting_cpu(unsigned int cpu)
1605 {
1606 if (x86_pmu.cpu_starting)
1607 x86_pmu.cpu_starting(cpu);
1608 return 0;
1609 }
1610
x86_pmu_dying_cpu(unsigned int cpu)1611 static int x86_pmu_dying_cpu(unsigned int cpu)
1612 {
1613 if (x86_pmu.cpu_dying)
1614 x86_pmu.cpu_dying(cpu);
1615 return 0;
1616 }
1617
pmu_check_apic(void)1618 static void __init pmu_check_apic(void)
1619 {
1620 if (boot_cpu_has(X86_FEATURE_APIC))
1621 return;
1622
1623 x86_pmu.apic = 0;
1624 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1625 pr_info("no hardware sampling interrupt available.\n");
1626
1627 /*
1628 * If we have a PMU initialized but no APIC
1629 * interrupts, we cannot sample hardware
1630 * events (user-space has to fall back and
1631 * sample via a hrtimer based software event):
1632 */
1633 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1634
1635 }
1636
1637 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1638 .name = "format",
1639 .attrs = NULL,
1640 };
1641
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1642 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1643 {
1644 struct perf_pmu_events_attr *pmu_attr = \
1645 container_of(attr, struct perf_pmu_events_attr, attr);
1646 u64 config = x86_pmu.event_map(pmu_attr->id);
1647
1648 /* string trumps id */
1649 if (pmu_attr->event_str)
1650 return sprintf(page, "%s", pmu_attr->event_str);
1651
1652 return x86_pmu.events_sysfs_show(page, config);
1653 }
1654 EXPORT_SYMBOL_GPL(events_sysfs_show);
1655
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1656 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1657 char *page)
1658 {
1659 struct perf_pmu_events_ht_attr *pmu_attr =
1660 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1661
1662 /*
1663 * Report conditional events depending on Hyper-Threading.
1664 *
1665 * This is overly conservative as usually the HT special
1666 * handling is not needed if the other CPU thread is idle.
1667 *
1668 * Note this does not (and cannot) handle the case when thread
1669 * siblings are invisible, for example with virtualization
1670 * if they are owned by some other guest. The user tool
1671 * has to re-read when a thread sibling gets onlined later.
1672 */
1673 return sprintf(page, "%s",
1674 topology_max_smt_threads() > 1 ?
1675 pmu_attr->event_str_ht :
1676 pmu_attr->event_str_noht);
1677 }
1678
1679 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1680 EVENT_ATTR(instructions, INSTRUCTIONS );
1681 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1682 EVENT_ATTR(cache-misses, CACHE_MISSES );
1683 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1684 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1685 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1686 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1687 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1688 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1689
1690 static struct attribute *empty_attrs;
1691
1692 static struct attribute *events_attr[] = {
1693 EVENT_PTR(CPU_CYCLES),
1694 EVENT_PTR(INSTRUCTIONS),
1695 EVENT_PTR(CACHE_REFERENCES),
1696 EVENT_PTR(CACHE_MISSES),
1697 EVENT_PTR(BRANCH_INSTRUCTIONS),
1698 EVENT_PTR(BRANCH_MISSES),
1699 EVENT_PTR(BUS_CYCLES),
1700 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1701 EVENT_PTR(STALLED_CYCLES_BACKEND),
1702 EVENT_PTR(REF_CPU_CYCLES),
1703 NULL,
1704 };
1705
1706 /*
1707 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1708 * out of events_attr attributes.
1709 */
1710 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1711 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1712 {
1713 struct perf_pmu_events_attr *pmu_attr;
1714
1715 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1716 /* str trumps id */
1717 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1718 }
1719
1720 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1721 .name = "events",
1722 .attrs = events_attr,
1723 .is_visible = is_visible,
1724 };
1725
x86_event_sysfs_show(char * page,u64 config,u64 event)1726 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1727 {
1728 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1729 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1730 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1731 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1732 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1733 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1734 ssize_t ret;
1735
1736 /*
1737 * We have whole page size to spend and just little data
1738 * to write, so we can safely use sprintf.
1739 */
1740 ret = sprintf(page, "event=0x%02llx", event);
1741
1742 if (umask)
1743 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1744
1745 if (edge)
1746 ret += sprintf(page + ret, ",edge");
1747
1748 if (pc)
1749 ret += sprintf(page + ret, ",pc");
1750
1751 if (any)
1752 ret += sprintf(page + ret, ",any");
1753
1754 if (inv)
1755 ret += sprintf(page + ret, ",inv");
1756
1757 if (cmask)
1758 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1759
1760 ret += sprintf(page + ret, "\n");
1761
1762 return ret;
1763 }
1764
1765 static struct attribute_group x86_pmu_attr_group;
1766 static struct attribute_group x86_pmu_caps_group;
1767
init_hw_perf_events(void)1768 static int __init init_hw_perf_events(void)
1769 {
1770 struct x86_pmu_quirk *quirk;
1771 int err;
1772
1773 pr_info("Performance Events: ");
1774
1775 switch (boot_cpu_data.x86_vendor) {
1776 case X86_VENDOR_INTEL:
1777 err = intel_pmu_init();
1778 break;
1779 case X86_VENDOR_AMD:
1780 err = amd_pmu_init();
1781 break;
1782 case X86_VENDOR_HYGON:
1783 err = amd_pmu_init();
1784 x86_pmu.name = "HYGON";
1785 break;
1786 default:
1787 err = -ENOTSUPP;
1788 }
1789 if (err != 0) {
1790 pr_cont("no PMU driver, software events only.\n");
1791 return 0;
1792 }
1793
1794 pmu_check_apic();
1795
1796 /* sanity check that the hardware exists or is emulated */
1797 if (!check_hw_exists())
1798 return 0;
1799
1800 pr_cont("%s PMU driver.\n", x86_pmu.name);
1801
1802 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1803
1804 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1805 quirk->func();
1806
1807 if (!x86_pmu.intel_ctrl)
1808 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1809
1810 perf_events_lapic_init();
1811 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1812
1813 unconstrained = (struct event_constraint)
1814 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1815 0, x86_pmu.num_counters, 0, 0);
1816
1817 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1818
1819 if (!x86_pmu.events_sysfs_show)
1820 x86_pmu_events_group.attrs = &empty_attrs;
1821
1822 pmu.attr_update = x86_pmu.attr_update;
1823
1824 pr_info("... version: %d\n", x86_pmu.version);
1825 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1826 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1827 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1828 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1829 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1830 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1831
1832 /*
1833 * Install callbacks. Core will call them for each online
1834 * cpu.
1835 */
1836 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
1837 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1838 if (err)
1839 return err;
1840
1841 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
1842 "perf/x86:starting", x86_pmu_starting_cpu,
1843 x86_pmu_dying_cpu);
1844 if (err)
1845 goto out;
1846
1847 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
1848 x86_pmu_online_cpu, NULL);
1849 if (err)
1850 goto out1;
1851
1852 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1853 if (err)
1854 goto out2;
1855
1856 return 0;
1857
1858 out2:
1859 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1860 out1:
1861 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1862 out:
1863 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1864 return err;
1865 }
1866 early_initcall(init_hw_perf_events);
1867
x86_pmu_read(struct perf_event * event)1868 static inline void x86_pmu_read(struct perf_event *event)
1869 {
1870 if (x86_pmu.read)
1871 return x86_pmu.read(event);
1872 x86_perf_event_update(event);
1873 }
1874
1875 /*
1876 * Start group events scheduling transaction
1877 * Set the flag to make pmu::enable() not perform the
1878 * schedulability test, it will be performed at commit time
1879 *
1880 * We only support PERF_PMU_TXN_ADD transactions. Save the
1881 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1882 * transactions.
1883 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)1884 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1885 {
1886 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1887
1888 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1889
1890 cpuc->txn_flags = txn_flags;
1891 if (txn_flags & ~PERF_PMU_TXN_ADD)
1892 return;
1893
1894 perf_pmu_disable(pmu);
1895 __this_cpu_write(cpu_hw_events.n_txn, 0);
1896 }
1897
1898 /*
1899 * Stop group events scheduling transaction
1900 * Clear the flag and pmu::enable() will perform the
1901 * schedulability test.
1902 */
x86_pmu_cancel_txn(struct pmu * pmu)1903 static void x86_pmu_cancel_txn(struct pmu *pmu)
1904 {
1905 unsigned int txn_flags;
1906 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1907
1908 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1909
1910 txn_flags = cpuc->txn_flags;
1911 cpuc->txn_flags = 0;
1912 if (txn_flags & ~PERF_PMU_TXN_ADD)
1913 return;
1914
1915 /*
1916 * Truncate collected array by the number of events added in this
1917 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1918 */
1919 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1920 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1921 perf_pmu_enable(pmu);
1922 }
1923
1924 /*
1925 * Commit group events scheduling transaction
1926 * Perform the group schedulability test as a whole
1927 * Return 0 if success
1928 *
1929 * Does not cancel the transaction on failure; expects the caller to do this.
1930 */
x86_pmu_commit_txn(struct pmu * pmu)1931 static int x86_pmu_commit_txn(struct pmu *pmu)
1932 {
1933 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934 int assign[X86_PMC_IDX_MAX];
1935 int n, ret;
1936
1937 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1938
1939 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1940 cpuc->txn_flags = 0;
1941 return 0;
1942 }
1943
1944 n = cpuc->n_events;
1945
1946 if (!x86_pmu_initialized())
1947 return -EAGAIN;
1948
1949 ret = x86_pmu.schedule_events(cpuc, n, assign);
1950 if (ret)
1951 return ret;
1952
1953 /*
1954 * copy new assignment, now we know it is possible
1955 * will be used by hw_perf_enable()
1956 */
1957 memcpy(cpuc->assign, assign, n*sizeof(int));
1958
1959 cpuc->txn_flags = 0;
1960 perf_pmu_enable(pmu);
1961 return 0;
1962 }
1963 /*
1964 * a fake_cpuc is used to validate event groups. Due to
1965 * the extra reg logic, we need to also allocate a fake
1966 * per_core and per_cpu structure. Otherwise, group events
1967 * using extra reg may conflict without the kernel being
1968 * able to catch this when the last event gets added to
1969 * the group.
1970 */
free_fake_cpuc(struct cpu_hw_events * cpuc)1971 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1972 {
1973 intel_cpuc_finish(cpuc);
1974 kfree(cpuc);
1975 }
1976
allocate_fake_cpuc(void)1977 static struct cpu_hw_events *allocate_fake_cpuc(void)
1978 {
1979 struct cpu_hw_events *cpuc;
1980 int cpu = raw_smp_processor_id();
1981
1982 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1983 if (!cpuc)
1984 return ERR_PTR(-ENOMEM);
1985 cpuc->is_fake = 1;
1986
1987 if (intel_cpuc_prepare(cpuc, cpu))
1988 goto error;
1989
1990 return cpuc;
1991 error:
1992 free_fake_cpuc(cpuc);
1993 return ERR_PTR(-ENOMEM);
1994 }
1995
1996 /*
1997 * validate that we can schedule this event
1998 */
validate_event(struct perf_event * event)1999 static int validate_event(struct perf_event *event)
2000 {
2001 struct cpu_hw_events *fake_cpuc;
2002 struct event_constraint *c;
2003 int ret = 0;
2004
2005 fake_cpuc = allocate_fake_cpuc();
2006 if (IS_ERR(fake_cpuc))
2007 return PTR_ERR(fake_cpuc);
2008
2009 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2010
2011 if (!c || !c->weight)
2012 ret = -EINVAL;
2013
2014 if (x86_pmu.put_event_constraints)
2015 x86_pmu.put_event_constraints(fake_cpuc, event);
2016
2017 free_fake_cpuc(fake_cpuc);
2018
2019 return ret;
2020 }
2021
2022 /*
2023 * validate a single event group
2024 *
2025 * validation include:
2026 * - check events are compatible which each other
2027 * - events do not compete for the same counter
2028 * - number of events <= number of counters
2029 *
2030 * validation ensures the group can be loaded onto the
2031 * PMU if it was the only group available.
2032 */
validate_group(struct perf_event * event)2033 static int validate_group(struct perf_event *event)
2034 {
2035 struct perf_event *leader = event->group_leader;
2036 struct cpu_hw_events *fake_cpuc;
2037 int ret = -EINVAL, n;
2038
2039 fake_cpuc = allocate_fake_cpuc();
2040 if (IS_ERR(fake_cpuc))
2041 return PTR_ERR(fake_cpuc);
2042 /*
2043 * the event is not yet connected with its
2044 * siblings therefore we must first collect
2045 * existing siblings, then add the new event
2046 * before we can simulate the scheduling
2047 */
2048 n = collect_events(fake_cpuc, leader, true);
2049 if (n < 0)
2050 goto out;
2051
2052 fake_cpuc->n_events = n;
2053 n = collect_events(fake_cpuc, event, false);
2054 if (n < 0)
2055 goto out;
2056
2057 fake_cpuc->n_events = 0;
2058 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2059
2060 out:
2061 free_fake_cpuc(fake_cpuc);
2062 return ret;
2063 }
2064
x86_pmu_event_init(struct perf_event * event)2065 static int x86_pmu_event_init(struct perf_event *event)
2066 {
2067 struct pmu *tmp;
2068 int err;
2069
2070 switch (event->attr.type) {
2071 case PERF_TYPE_RAW:
2072 case PERF_TYPE_HARDWARE:
2073 case PERF_TYPE_HW_CACHE:
2074 break;
2075
2076 default:
2077 return -ENOENT;
2078 }
2079
2080 err = __x86_pmu_event_init(event);
2081 if (!err) {
2082 /*
2083 * we temporarily connect event to its pmu
2084 * such that validate_group() can classify
2085 * it as an x86 event using is_x86_event()
2086 */
2087 tmp = event->pmu;
2088 event->pmu = &pmu;
2089
2090 if (event->group_leader != event)
2091 err = validate_group(event);
2092 else
2093 err = validate_event(event);
2094
2095 event->pmu = tmp;
2096 }
2097 if (err) {
2098 if (event->destroy)
2099 event->destroy(event);
2100 }
2101
2102 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2103 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2104 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2105
2106 return err;
2107 }
2108
refresh_pce(void * ignored)2109 static void refresh_pce(void *ignored)
2110 {
2111 load_mm_cr4_irqsoff(this_cpu_read(cpu_tlbstate.loaded_mm));
2112 }
2113
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2114 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2115 {
2116 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2117 return;
2118
2119 /*
2120 * This function relies on not being called concurrently in two
2121 * tasks in the same mm. Otherwise one task could observe
2122 * perf_rdpmc_allowed > 1 and return all the way back to
2123 * userspace with CR4.PCE clear while another task is still
2124 * doing on_each_cpu_mask() to propagate CR4.PCE.
2125 *
2126 * For now, this can't happen because all callers hold mmap_sem
2127 * for write. If this changes, we'll need a different solution.
2128 */
2129 lockdep_assert_held_write(&mm->mmap_sem);
2130
2131 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2132 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2133 }
2134
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2135 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2136 {
2137
2138 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2139 return;
2140
2141 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2142 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
2143 }
2144
x86_pmu_event_idx(struct perf_event * event)2145 static int x86_pmu_event_idx(struct perf_event *event)
2146 {
2147 int idx = event->hw.idx;
2148
2149 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2150 return 0;
2151
2152 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2153 idx -= INTEL_PMC_IDX_FIXED;
2154 idx |= 1 << 30;
2155 }
2156
2157 return idx + 1;
2158 }
2159
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2160 static ssize_t get_attr_rdpmc(struct device *cdev,
2161 struct device_attribute *attr,
2162 char *buf)
2163 {
2164 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2165 }
2166
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2167 static ssize_t set_attr_rdpmc(struct device *cdev,
2168 struct device_attribute *attr,
2169 const char *buf, size_t count)
2170 {
2171 unsigned long val;
2172 ssize_t ret;
2173
2174 ret = kstrtoul(buf, 0, &val);
2175 if (ret)
2176 return ret;
2177
2178 if (val > 2)
2179 return -EINVAL;
2180
2181 if (x86_pmu.attr_rdpmc_broken)
2182 return -ENOTSUPP;
2183
2184 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2185 /*
2186 * Changing into or out of always available, aka
2187 * perf-event-bypassing mode. This path is extremely slow,
2188 * but only root can trigger it, so it's okay.
2189 */
2190 if (val == 2)
2191 static_branch_inc(&rdpmc_always_available_key);
2192 else
2193 static_branch_dec(&rdpmc_always_available_key);
2194 on_each_cpu(refresh_pce, NULL, 1);
2195 }
2196
2197 x86_pmu.attr_rdpmc = val;
2198
2199 return count;
2200 }
2201
2202 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2203
2204 static struct attribute *x86_pmu_attrs[] = {
2205 &dev_attr_rdpmc.attr,
2206 NULL,
2207 };
2208
2209 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2210 .attrs = x86_pmu_attrs,
2211 };
2212
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2213 static ssize_t max_precise_show(struct device *cdev,
2214 struct device_attribute *attr,
2215 char *buf)
2216 {
2217 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2218 }
2219
2220 static DEVICE_ATTR_RO(max_precise);
2221
2222 static struct attribute *x86_pmu_caps_attrs[] = {
2223 &dev_attr_max_precise.attr,
2224 NULL
2225 };
2226
2227 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2228 .name = "caps",
2229 .attrs = x86_pmu_caps_attrs,
2230 };
2231
2232 static const struct attribute_group *x86_pmu_attr_groups[] = {
2233 &x86_pmu_attr_group,
2234 &x86_pmu_format_group,
2235 &x86_pmu_events_group,
2236 &x86_pmu_caps_group,
2237 NULL,
2238 };
2239
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2240 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2241 {
2242 if (x86_pmu.sched_task)
2243 x86_pmu.sched_task(ctx, sched_in);
2244 }
2245
perf_check_microcode(void)2246 void perf_check_microcode(void)
2247 {
2248 if (x86_pmu.check_microcode)
2249 x86_pmu.check_microcode();
2250 }
2251
x86_pmu_check_period(struct perf_event * event,u64 value)2252 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2253 {
2254 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2255 return -EINVAL;
2256
2257 if (value && x86_pmu.limit_period) {
2258 if (x86_pmu.limit_period(event, value) > value)
2259 return -EINVAL;
2260 }
2261
2262 return 0;
2263 }
2264
x86_pmu_aux_output_match(struct perf_event * event)2265 static int x86_pmu_aux_output_match(struct perf_event *event)
2266 {
2267 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2268 return 0;
2269
2270 if (x86_pmu.aux_output_match)
2271 return x86_pmu.aux_output_match(event);
2272
2273 return 0;
2274 }
2275
2276 static struct pmu pmu = {
2277 .pmu_enable = x86_pmu_enable,
2278 .pmu_disable = x86_pmu_disable,
2279
2280 .attr_groups = x86_pmu_attr_groups,
2281
2282 .event_init = x86_pmu_event_init,
2283
2284 .event_mapped = x86_pmu_event_mapped,
2285 .event_unmapped = x86_pmu_event_unmapped,
2286
2287 .add = x86_pmu_add,
2288 .del = x86_pmu_del,
2289 .start = x86_pmu_start,
2290 .stop = x86_pmu_stop,
2291 .read = x86_pmu_read,
2292
2293 .start_txn = x86_pmu_start_txn,
2294 .cancel_txn = x86_pmu_cancel_txn,
2295 .commit_txn = x86_pmu_commit_txn,
2296
2297 .event_idx = x86_pmu_event_idx,
2298 .sched_task = x86_pmu_sched_task,
2299 .task_ctx_size = sizeof(struct x86_perf_task_context),
2300 .check_period = x86_pmu_check_period,
2301
2302 .aux_output_match = x86_pmu_aux_output_match,
2303 };
2304
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2305 void arch_perf_update_userpage(struct perf_event *event,
2306 struct perf_event_mmap_page *userpg, u64 now)
2307 {
2308 struct cyc2ns_data data;
2309 u64 offset;
2310
2311 userpg->cap_user_time = 0;
2312 userpg->cap_user_time_zero = 0;
2313 userpg->cap_user_rdpmc =
2314 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2315 userpg->pmc_width = x86_pmu.cntval_bits;
2316
2317 if (!using_native_sched_clock() || !sched_clock_stable())
2318 return;
2319
2320 cyc2ns_read_begin(&data);
2321
2322 offset = data.cyc2ns_offset + __sched_clock_offset;
2323
2324 /*
2325 * Internal timekeeping for enabled/running/stopped times
2326 * is always in the local_clock domain.
2327 */
2328 userpg->cap_user_time = 1;
2329 userpg->time_mult = data.cyc2ns_mul;
2330 userpg->time_shift = data.cyc2ns_shift;
2331 userpg->time_offset = offset - now;
2332
2333 /*
2334 * cap_user_time_zero doesn't make sense when we're using a different
2335 * time base for the records.
2336 */
2337 if (!event->attr.use_clockid) {
2338 userpg->cap_user_time_zero = 1;
2339 userpg->time_zero = offset;
2340 }
2341
2342 cyc2ns_read_end();
2343 }
2344
2345 /*
2346 * Determine whether the regs were taken from an irq/exception handler rather
2347 * than from perf_arch_fetch_caller_regs().
2348 */
perf_hw_regs(struct pt_regs * regs)2349 static bool perf_hw_regs(struct pt_regs *regs)
2350 {
2351 return regs->flags & X86_EFLAGS_FIXED;
2352 }
2353
2354 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2355 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2356 {
2357 struct unwind_state state;
2358 unsigned long addr;
2359
2360 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2361 /* TODO: We don't support guest os callchain now */
2362 return;
2363 }
2364
2365 if (perf_callchain_store(entry, regs->ip))
2366 return;
2367
2368 if (perf_hw_regs(regs))
2369 unwind_start(&state, current, regs, NULL);
2370 else
2371 unwind_start(&state, current, NULL, (void *)regs->sp);
2372
2373 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2374 addr = unwind_get_return_address(&state);
2375 if (!addr || perf_callchain_store(entry, addr))
2376 return;
2377 }
2378 }
2379
2380 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2381 valid_user_frame(const void __user *fp, unsigned long size)
2382 {
2383 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2384 }
2385
get_segment_base(unsigned int segment)2386 static unsigned long get_segment_base(unsigned int segment)
2387 {
2388 struct desc_struct *desc;
2389 unsigned int idx = segment >> 3;
2390
2391 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2392 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2393 struct ldt_struct *ldt;
2394
2395 /* IRQs are off, so this synchronizes with smp_store_release */
2396 ldt = READ_ONCE(current->active_mm->context.ldt);
2397 if (!ldt || idx >= ldt->nr_entries)
2398 return 0;
2399
2400 desc = &ldt->entries[idx];
2401 #else
2402 return 0;
2403 #endif
2404 } else {
2405 if (idx >= GDT_ENTRIES)
2406 return 0;
2407
2408 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2409 }
2410
2411 return get_desc_base(desc);
2412 }
2413
2414 #ifdef CONFIG_IA32_EMULATION
2415
2416 #include <linux/compat.h>
2417
2418 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2419 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2420 {
2421 /* 32-bit process in 64-bit kernel. */
2422 unsigned long ss_base, cs_base;
2423 struct stack_frame_ia32 frame;
2424 const void __user *fp;
2425
2426 if (!test_thread_flag(TIF_IA32))
2427 return 0;
2428
2429 cs_base = get_segment_base(regs->cs);
2430 ss_base = get_segment_base(regs->ss);
2431
2432 fp = compat_ptr(ss_base + regs->bp);
2433 pagefault_disable();
2434 while (entry->nr < entry->max_stack) {
2435 unsigned long bytes;
2436 frame.next_frame = 0;
2437 frame.return_address = 0;
2438
2439 if (!valid_user_frame(fp, sizeof(frame)))
2440 break;
2441
2442 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2443 if (bytes != 0)
2444 break;
2445 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2446 if (bytes != 0)
2447 break;
2448
2449 perf_callchain_store(entry, cs_base + frame.return_address);
2450 fp = compat_ptr(ss_base + frame.next_frame);
2451 }
2452 pagefault_enable();
2453 return 1;
2454 }
2455 #else
2456 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2457 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2458 {
2459 return 0;
2460 }
2461 #endif
2462
2463 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2464 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2465 {
2466 struct stack_frame frame;
2467 const unsigned long __user *fp;
2468
2469 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2470 /* TODO: We don't support guest os callchain now */
2471 return;
2472 }
2473
2474 /*
2475 * We don't know what to do with VM86 stacks.. ignore them for now.
2476 */
2477 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2478 return;
2479
2480 fp = (unsigned long __user *)regs->bp;
2481
2482 perf_callchain_store(entry, regs->ip);
2483
2484 if (!nmi_uaccess_okay())
2485 return;
2486
2487 if (perf_callchain_user32(regs, entry))
2488 return;
2489
2490 pagefault_disable();
2491 while (entry->nr < entry->max_stack) {
2492 unsigned long bytes;
2493
2494 frame.next_frame = NULL;
2495 frame.return_address = 0;
2496
2497 if (!valid_user_frame(fp, sizeof(frame)))
2498 break;
2499
2500 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
2501 if (bytes != 0)
2502 break;
2503 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
2504 if (bytes != 0)
2505 break;
2506
2507 perf_callchain_store(entry, frame.return_address);
2508 fp = (void __user *)frame.next_frame;
2509 }
2510 pagefault_enable();
2511 }
2512
2513 /*
2514 * Deal with code segment offsets for the various execution modes:
2515 *
2516 * VM86 - the good olde 16 bit days, where the linear address is
2517 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2518 *
2519 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2520 * to figure out what the 32bit base address is.
2521 *
2522 * X32 - has TIF_X32 set, but is running in x86_64
2523 *
2524 * X86_64 - CS,DS,SS,ES are all zero based.
2525 */
code_segment_base(struct pt_regs * regs)2526 static unsigned long code_segment_base(struct pt_regs *regs)
2527 {
2528 /*
2529 * For IA32 we look at the GDT/LDT segment base to convert the
2530 * effective IP to a linear address.
2531 */
2532
2533 #ifdef CONFIG_X86_32
2534 /*
2535 * If we are in VM86 mode, add the segment offset to convert to a
2536 * linear address.
2537 */
2538 if (regs->flags & X86_VM_MASK)
2539 return 0x10 * regs->cs;
2540
2541 if (user_mode(regs) && regs->cs != __USER_CS)
2542 return get_segment_base(regs->cs);
2543 #else
2544 if (user_mode(regs) && !user_64bit_mode(regs) &&
2545 regs->cs != __USER32_CS)
2546 return get_segment_base(regs->cs);
2547 #endif
2548 return 0;
2549 }
2550
perf_instruction_pointer(struct pt_regs * regs)2551 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2552 {
2553 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2554 return perf_guest_cbs->get_guest_ip();
2555
2556 return regs->ip + code_segment_base(regs);
2557 }
2558
perf_misc_flags(struct pt_regs * regs)2559 unsigned long perf_misc_flags(struct pt_regs *regs)
2560 {
2561 int misc = 0;
2562
2563 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2564 if (perf_guest_cbs->is_user_mode())
2565 misc |= PERF_RECORD_MISC_GUEST_USER;
2566 else
2567 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2568 } else {
2569 if (user_mode(regs))
2570 misc |= PERF_RECORD_MISC_USER;
2571 else
2572 misc |= PERF_RECORD_MISC_KERNEL;
2573 }
2574
2575 if (regs->flags & PERF_EFLAGS_EXACT)
2576 misc |= PERF_RECORD_MISC_EXACT_IP;
2577
2578 return misc;
2579 }
2580
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2581 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2582 {
2583 cap->version = x86_pmu.version;
2584 cap->num_counters_gp = x86_pmu.num_counters;
2585 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2586 cap->bit_width_gp = x86_pmu.cntval_bits;
2587 cap->bit_width_fixed = x86_pmu.cntval_bits;
2588 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2589 cap->events_mask_len = x86_pmu.events_mask_len;
2590 }
2591 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2592