1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/internal.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/alternative.h>
30 #include <asm/set_memory.h>
31 #include <asm/intel-family.h>
32 #include <asm/e820/api.h>
33 #include <asm/hypervisor.h>
34 #include <asm/tlbflush.h>
35
36 #include "cpu.h"
37
38 static void __init spectre_v1_select_mitigation(void);
39 static void __init spectre_v2_select_mitigation(void);
40 static void __init ssb_select_mitigation(void);
41 static void __init l1tf_select_mitigation(void);
42 static void __init mds_select_mitigation(void);
43 static void __init mds_print_mitigation(void);
44 static void __init taa_select_mitigation(void);
45 static void __init srbds_select_mitigation(void);
46
47 /* The base value of the SPEC_CTRL MSR that always has to be preserved. */
48 u64 x86_spec_ctrl_base;
49 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
50 static DEFINE_MUTEX(spec_ctrl_mutex);
51
52 /*
53 * The vendor and possibly platform specific bits which can be modified in
54 * x86_spec_ctrl_base.
55 */
56 static u64 __ro_after_init x86_spec_ctrl_mask = SPEC_CTRL_IBRS;
57
58 /*
59 * AMD specific MSR info for Speculative Store Bypass control.
60 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
61 */
62 u64 __ro_after_init x86_amd_ls_cfg_base;
63 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
64
65 /* Control conditional STIBP in switch_to() */
66 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
67 /* Control conditional IBPB in switch_mm() */
68 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
69 /* Control unconditional IBPB in switch_mm() */
70 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
71
72 /* Control MDS CPU buffer clear before returning to user space */
73 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
74 EXPORT_SYMBOL_GPL(mds_user_clear);
75 /* Control MDS CPU buffer clear before idling (halt, mwait) */
76 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
77 EXPORT_SYMBOL_GPL(mds_idle_clear);
78
check_bugs(void)79 void __init check_bugs(void)
80 {
81 identify_boot_cpu();
82
83 /*
84 * identify_boot_cpu() initialized SMT support information, let the
85 * core code know.
86 */
87 cpu_smt_check_topology();
88
89 if (!IS_ENABLED(CONFIG_SMP)) {
90 pr_info("CPU: ");
91 print_cpu_info(&boot_cpu_data);
92 }
93
94 /*
95 * Read the SPEC_CTRL MSR to account for reserved bits which may
96 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
97 * init code as it is not enumerated and depends on the family.
98 */
99 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
100 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
101
102 /* Allow STIBP in MSR_SPEC_CTRL if supported */
103 if (boot_cpu_has(X86_FEATURE_STIBP))
104 x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
105
106 /* Select the proper CPU mitigations before patching alternatives: */
107 spectre_v1_select_mitigation();
108 spectre_v2_select_mitigation();
109 ssb_select_mitigation();
110 l1tf_select_mitigation();
111 mds_select_mitigation();
112 taa_select_mitigation();
113 srbds_select_mitigation();
114
115 /*
116 * As MDS and TAA mitigations are inter-related, print MDS
117 * mitigation until after TAA mitigation selection is done.
118 */
119 mds_print_mitigation();
120
121 arch_smt_update();
122
123 #ifdef CONFIG_X86_32
124 /*
125 * Check whether we are able to run this kernel safely on SMP.
126 *
127 * - i386 is no longer supported.
128 * - In order to run on anything without a TSC, we need to be
129 * compiled for a i486.
130 */
131 if (boot_cpu_data.x86 < 4)
132 panic("Kernel requires i486+ for 'invlpg' and other features");
133
134 init_utsname()->machine[1] =
135 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
136 alternative_instructions();
137
138 fpu__init_check_bugs();
139 #else /* CONFIG_X86_64 */
140 alternative_instructions();
141
142 /*
143 * Make sure the first 2MB area is not mapped by huge pages
144 * There are typically fixed size MTRRs in there and overlapping
145 * MTRRs into large pages causes slow downs.
146 *
147 * Right now we don't do that with gbpages because there seems
148 * very little benefit for that case.
149 */
150 if (!direct_gbpages)
151 set_memory_4k((unsigned long)__va(0), 1);
152 #endif
153 }
154
155 void
x86_virt_spec_ctrl(u64 guest_spec_ctrl,u64 guest_virt_spec_ctrl,bool setguest)156 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
157 {
158 u64 msrval, guestval, hostval = x86_spec_ctrl_base;
159 struct thread_info *ti = current_thread_info();
160
161 /* Is MSR_SPEC_CTRL implemented ? */
162 if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
163 /*
164 * Restrict guest_spec_ctrl to supported values. Clear the
165 * modifiable bits in the host base value and or the
166 * modifiable bits from the guest value.
167 */
168 guestval = hostval & ~x86_spec_ctrl_mask;
169 guestval |= guest_spec_ctrl & x86_spec_ctrl_mask;
170
171 /* SSBD controlled in MSR_SPEC_CTRL */
172 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
173 static_cpu_has(X86_FEATURE_AMD_SSBD))
174 hostval |= ssbd_tif_to_spec_ctrl(ti->flags);
175
176 /* Conditional STIBP enabled? */
177 if (static_branch_unlikely(&switch_to_cond_stibp))
178 hostval |= stibp_tif_to_spec_ctrl(ti->flags);
179
180 if (hostval != guestval) {
181 msrval = setguest ? guestval : hostval;
182 wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
183 }
184 }
185
186 /*
187 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
188 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
189 */
190 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
191 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
192 return;
193
194 /*
195 * If the host has SSBD mitigation enabled, force it in the host's
196 * virtual MSR value. If its not permanently enabled, evaluate
197 * current's TIF_SSBD thread flag.
198 */
199 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
200 hostval = SPEC_CTRL_SSBD;
201 else
202 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
203
204 /* Sanitize the guest value */
205 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
206
207 if (hostval != guestval) {
208 unsigned long tif;
209
210 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
211 ssbd_spec_ctrl_to_tif(hostval);
212
213 speculation_ctrl_update(tif);
214 }
215 }
216 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
217
x86_amd_ssb_disable(void)218 static void x86_amd_ssb_disable(void)
219 {
220 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
221
222 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
223 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
224 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
225 wrmsrl(MSR_AMD64_LS_CFG, msrval);
226 }
227
228 #undef pr_fmt
229 #define pr_fmt(fmt) "MDS: " fmt
230
231 /* Default mitigation for MDS-affected CPUs */
232 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
233 static bool mds_nosmt __ro_after_init = false;
234
235 static const char * const mds_strings[] = {
236 [MDS_MITIGATION_OFF] = "Vulnerable",
237 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
238 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
239 };
240
mds_select_mitigation(void)241 static void __init mds_select_mitigation(void)
242 {
243 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
244 mds_mitigation = MDS_MITIGATION_OFF;
245 return;
246 }
247
248 if (mds_mitigation == MDS_MITIGATION_FULL) {
249 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
250 mds_mitigation = MDS_MITIGATION_VMWERV;
251
252 static_branch_enable(&mds_user_clear);
253
254 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
255 (mds_nosmt || cpu_mitigations_auto_nosmt()))
256 cpu_smt_disable(false);
257 }
258 }
259
mds_print_mitigation(void)260 static void __init mds_print_mitigation(void)
261 {
262 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off())
263 return;
264
265 pr_info("%s\n", mds_strings[mds_mitigation]);
266 }
267
mds_cmdline(char * str)268 static int __init mds_cmdline(char *str)
269 {
270 if (!boot_cpu_has_bug(X86_BUG_MDS))
271 return 0;
272
273 if (!str)
274 return -EINVAL;
275
276 if (!strcmp(str, "off"))
277 mds_mitigation = MDS_MITIGATION_OFF;
278 else if (!strcmp(str, "full"))
279 mds_mitigation = MDS_MITIGATION_FULL;
280 else if (!strcmp(str, "full,nosmt")) {
281 mds_mitigation = MDS_MITIGATION_FULL;
282 mds_nosmt = true;
283 }
284
285 return 0;
286 }
287 early_param("mds", mds_cmdline);
288
289 #undef pr_fmt
290 #define pr_fmt(fmt) "TAA: " fmt
291
292 enum taa_mitigations {
293 TAA_MITIGATION_OFF,
294 TAA_MITIGATION_UCODE_NEEDED,
295 TAA_MITIGATION_VERW,
296 TAA_MITIGATION_TSX_DISABLED,
297 };
298
299 /* Default mitigation for TAA-affected CPUs */
300 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
301 static bool taa_nosmt __ro_after_init;
302
303 static const char * const taa_strings[] = {
304 [TAA_MITIGATION_OFF] = "Vulnerable",
305 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
306 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
307 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
308 };
309
taa_select_mitigation(void)310 static void __init taa_select_mitigation(void)
311 {
312 u64 ia32_cap;
313
314 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
315 taa_mitigation = TAA_MITIGATION_OFF;
316 return;
317 }
318
319 /* TSX previously disabled by tsx=off */
320 if (!boot_cpu_has(X86_FEATURE_RTM)) {
321 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
322 goto out;
323 }
324
325 if (cpu_mitigations_off()) {
326 taa_mitigation = TAA_MITIGATION_OFF;
327 return;
328 }
329
330 /*
331 * TAA mitigation via VERW is turned off if both
332 * tsx_async_abort=off and mds=off are specified.
333 */
334 if (taa_mitigation == TAA_MITIGATION_OFF &&
335 mds_mitigation == MDS_MITIGATION_OFF)
336 goto out;
337
338 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
339 taa_mitigation = TAA_MITIGATION_VERW;
340 else
341 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
342
343 /*
344 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
345 * A microcode update fixes this behavior to clear CPU buffers. It also
346 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
347 * ARCH_CAP_TSX_CTRL_MSR bit.
348 *
349 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
350 * update is required.
351 */
352 ia32_cap = x86_read_arch_cap_msr();
353 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
354 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
355 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
356
357 /*
358 * TSX is enabled, select alternate mitigation for TAA which is
359 * the same as MDS. Enable MDS static branch to clear CPU buffers.
360 *
361 * For guests that can't determine whether the correct microcode is
362 * present on host, enable the mitigation for UCODE_NEEDED as well.
363 */
364 static_branch_enable(&mds_user_clear);
365
366 if (taa_nosmt || cpu_mitigations_auto_nosmt())
367 cpu_smt_disable(false);
368
369 /*
370 * Update MDS mitigation, if necessary, as the mds_user_clear is
371 * now enabled for TAA mitigation.
372 */
373 if (mds_mitigation == MDS_MITIGATION_OFF &&
374 boot_cpu_has_bug(X86_BUG_MDS)) {
375 mds_mitigation = MDS_MITIGATION_FULL;
376 mds_select_mitigation();
377 }
378 out:
379 pr_info("%s\n", taa_strings[taa_mitigation]);
380 }
381
tsx_async_abort_parse_cmdline(char * str)382 static int __init tsx_async_abort_parse_cmdline(char *str)
383 {
384 if (!boot_cpu_has_bug(X86_BUG_TAA))
385 return 0;
386
387 if (!str)
388 return -EINVAL;
389
390 if (!strcmp(str, "off")) {
391 taa_mitigation = TAA_MITIGATION_OFF;
392 } else if (!strcmp(str, "full")) {
393 taa_mitigation = TAA_MITIGATION_VERW;
394 } else if (!strcmp(str, "full,nosmt")) {
395 taa_mitigation = TAA_MITIGATION_VERW;
396 taa_nosmt = true;
397 }
398
399 return 0;
400 }
401 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
402
403 #undef pr_fmt
404 #define pr_fmt(fmt) "SRBDS: " fmt
405
406 enum srbds_mitigations {
407 SRBDS_MITIGATION_OFF,
408 SRBDS_MITIGATION_UCODE_NEEDED,
409 SRBDS_MITIGATION_FULL,
410 SRBDS_MITIGATION_TSX_OFF,
411 SRBDS_MITIGATION_HYPERVISOR,
412 };
413
414 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
415
416 static const char * const srbds_strings[] = {
417 [SRBDS_MITIGATION_OFF] = "Vulnerable",
418 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
419 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
420 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
421 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
422 };
423
424 static bool srbds_off;
425
update_srbds_msr(void)426 void update_srbds_msr(void)
427 {
428 u64 mcu_ctrl;
429
430 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
431 return;
432
433 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
434 return;
435
436 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
437 return;
438
439 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
440
441 switch (srbds_mitigation) {
442 case SRBDS_MITIGATION_OFF:
443 case SRBDS_MITIGATION_TSX_OFF:
444 mcu_ctrl |= RNGDS_MITG_DIS;
445 break;
446 case SRBDS_MITIGATION_FULL:
447 mcu_ctrl &= ~RNGDS_MITG_DIS;
448 break;
449 default:
450 break;
451 }
452
453 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
454 }
455
srbds_select_mitigation(void)456 static void __init srbds_select_mitigation(void)
457 {
458 u64 ia32_cap;
459
460 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
461 return;
462
463 /*
464 * Check to see if this is one of the MDS_NO systems supporting
465 * TSX that are only exposed to SRBDS when TSX is enabled.
466 */
467 ia32_cap = x86_read_arch_cap_msr();
468 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM))
469 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
470 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
471 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
472 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
473 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
474 else if (cpu_mitigations_off() || srbds_off)
475 srbds_mitigation = SRBDS_MITIGATION_OFF;
476
477 update_srbds_msr();
478 pr_info("%s\n", srbds_strings[srbds_mitigation]);
479 }
480
srbds_parse_cmdline(char * str)481 static int __init srbds_parse_cmdline(char *str)
482 {
483 if (!str)
484 return -EINVAL;
485
486 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
487 return 0;
488
489 srbds_off = !strcmp(str, "off");
490 return 0;
491 }
492 early_param("srbds", srbds_parse_cmdline);
493
494 #undef pr_fmt
495 #define pr_fmt(fmt) "Spectre V1 : " fmt
496
497 enum spectre_v1_mitigation {
498 SPECTRE_V1_MITIGATION_NONE,
499 SPECTRE_V1_MITIGATION_AUTO,
500 };
501
502 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
503 SPECTRE_V1_MITIGATION_AUTO;
504
505 static const char * const spectre_v1_strings[] = {
506 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
507 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
508 };
509
510 /*
511 * Does SMAP provide full mitigation against speculative kernel access to
512 * userspace?
513 */
smap_works_speculatively(void)514 static bool smap_works_speculatively(void)
515 {
516 if (!boot_cpu_has(X86_FEATURE_SMAP))
517 return false;
518
519 /*
520 * On CPUs which are vulnerable to Meltdown, SMAP does not
521 * prevent speculative access to user data in the L1 cache.
522 * Consider SMAP to be non-functional as a mitigation on these
523 * CPUs.
524 */
525 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
526 return false;
527
528 return true;
529 }
530
spectre_v1_select_mitigation(void)531 static void __init spectre_v1_select_mitigation(void)
532 {
533 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
534 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
535 return;
536 }
537
538 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
539 /*
540 * With Spectre v1, a user can speculatively control either
541 * path of a conditional swapgs with a user-controlled GS
542 * value. The mitigation is to add lfences to both code paths.
543 *
544 * If FSGSBASE is enabled, the user can put a kernel address in
545 * GS, in which case SMAP provides no protection.
546 *
547 * If FSGSBASE is disabled, the user can only put a user space
548 * address in GS. That makes an attack harder, but still
549 * possible if there's no SMAP protection.
550 */
551 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
552 !smap_works_speculatively()) {
553 /*
554 * Mitigation can be provided from SWAPGS itself or
555 * PTI as the CR3 write in the Meltdown mitigation
556 * is serializing.
557 *
558 * If neither is there, mitigate with an LFENCE to
559 * stop speculation through swapgs.
560 */
561 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
562 !boot_cpu_has(X86_FEATURE_PTI))
563 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
564
565 /*
566 * Enable lfences in the kernel entry (non-swapgs)
567 * paths, to prevent user entry from speculatively
568 * skipping swapgs.
569 */
570 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
571 }
572 }
573
574 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
575 }
576
nospectre_v1_cmdline(char * str)577 static int __init nospectre_v1_cmdline(char *str)
578 {
579 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
580 return 0;
581 }
582 early_param("nospectre_v1", nospectre_v1_cmdline);
583
584 #undef pr_fmt
585 #define pr_fmt(fmt) "Spectre V2 : " fmt
586
587 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
588 SPECTRE_V2_NONE;
589
590 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
591 SPECTRE_V2_USER_NONE;
592 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
593 SPECTRE_V2_USER_NONE;
594
595 #ifdef CONFIG_RETPOLINE
596 static bool spectre_v2_bad_module;
597
retpoline_module_ok(bool has_retpoline)598 bool retpoline_module_ok(bool has_retpoline)
599 {
600 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
601 return true;
602
603 pr_err("System may be vulnerable to spectre v2\n");
604 spectre_v2_bad_module = true;
605 return false;
606 }
607
spectre_v2_module_string(void)608 static inline const char *spectre_v2_module_string(void)
609 {
610 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
611 }
612 #else
spectre_v2_module_string(void)613 static inline const char *spectre_v2_module_string(void) { return ""; }
614 #endif
615
match_option(const char * arg,int arglen,const char * opt)616 static inline bool match_option(const char *arg, int arglen, const char *opt)
617 {
618 int len = strlen(opt);
619
620 return len == arglen && !strncmp(arg, opt, len);
621 }
622
623 /* The kernel command line selection for spectre v2 */
624 enum spectre_v2_mitigation_cmd {
625 SPECTRE_V2_CMD_NONE,
626 SPECTRE_V2_CMD_AUTO,
627 SPECTRE_V2_CMD_FORCE,
628 SPECTRE_V2_CMD_RETPOLINE,
629 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
630 SPECTRE_V2_CMD_RETPOLINE_AMD,
631 };
632
633 enum spectre_v2_user_cmd {
634 SPECTRE_V2_USER_CMD_NONE,
635 SPECTRE_V2_USER_CMD_AUTO,
636 SPECTRE_V2_USER_CMD_FORCE,
637 SPECTRE_V2_USER_CMD_PRCTL,
638 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
639 SPECTRE_V2_USER_CMD_SECCOMP,
640 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
641 };
642
643 static const char * const spectre_v2_user_strings[] = {
644 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
645 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
646 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
647 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
648 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
649 };
650
651 static const struct {
652 const char *option;
653 enum spectre_v2_user_cmd cmd;
654 bool secure;
655 } v2_user_options[] __initconst = {
656 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
657 { "off", SPECTRE_V2_USER_CMD_NONE, false },
658 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
659 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
660 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
661 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
662 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
663 };
664
spec_v2_user_print_cond(const char * reason,bool secure)665 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
666 {
667 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
668 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
669 }
670
671 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)672 spectre_v2_parse_user_cmdline(enum spectre_v2_mitigation_cmd v2_cmd)
673 {
674 char arg[20];
675 int ret, i;
676
677 switch (v2_cmd) {
678 case SPECTRE_V2_CMD_NONE:
679 return SPECTRE_V2_USER_CMD_NONE;
680 case SPECTRE_V2_CMD_FORCE:
681 return SPECTRE_V2_USER_CMD_FORCE;
682 default:
683 break;
684 }
685
686 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
687 arg, sizeof(arg));
688 if (ret < 0)
689 return SPECTRE_V2_USER_CMD_AUTO;
690
691 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
692 if (match_option(arg, ret, v2_user_options[i].option)) {
693 spec_v2_user_print_cond(v2_user_options[i].option,
694 v2_user_options[i].secure);
695 return v2_user_options[i].cmd;
696 }
697 }
698
699 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
700 return SPECTRE_V2_USER_CMD_AUTO;
701 }
702
703 static void __init
spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)704 spectre_v2_user_select_mitigation(enum spectre_v2_mitigation_cmd v2_cmd)
705 {
706 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
707 bool smt_possible = IS_ENABLED(CONFIG_SMP);
708 enum spectre_v2_user_cmd cmd;
709
710 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
711 return;
712
713 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
714 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
715 smt_possible = false;
716
717 cmd = spectre_v2_parse_user_cmdline(v2_cmd);
718 switch (cmd) {
719 case SPECTRE_V2_USER_CMD_NONE:
720 goto set_mode;
721 case SPECTRE_V2_USER_CMD_FORCE:
722 mode = SPECTRE_V2_USER_STRICT;
723 break;
724 case SPECTRE_V2_USER_CMD_PRCTL:
725 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
726 mode = SPECTRE_V2_USER_PRCTL;
727 break;
728 case SPECTRE_V2_USER_CMD_AUTO:
729 case SPECTRE_V2_USER_CMD_SECCOMP:
730 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
731 if (IS_ENABLED(CONFIG_SECCOMP))
732 mode = SPECTRE_V2_USER_SECCOMP;
733 else
734 mode = SPECTRE_V2_USER_PRCTL;
735 break;
736 }
737
738 /* Initialize Indirect Branch Prediction Barrier */
739 if (boot_cpu_has(X86_FEATURE_IBPB)) {
740 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
741
742 spectre_v2_user_ibpb = mode;
743 switch (cmd) {
744 case SPECTRE_V2_USER_CMD_FORCE:
745 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
746 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
747 static_branch_enable(&switch_mm_always_ibpb);
748 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
749 break;
750 case SPECTRE_V2_USER_CMD_PRCTL:
751 case SPECTRE_V2_USER_CMD_AUTO:
752 case SPECTRE_V2_USER_CMD_SECCOMP:
753 static_branch_enable(&switch_mm_cond_ibpb);
754 break;
755 default:
756 break;
757 }
758
759 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
760 static_key_enabled(&switch_mm_always_ibpb) ?
761 "always-on" : "conditional");
762 }
763
764 /*
765 * If no STIBP, enhanced IBRS is enabled or SMT impossible, STIBP is not
766 * required.
767 */
768 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
769 !smt_possible ||
770 spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
771 return;
772
773 /*
774 * At this point, an STIBP mode other than "off" has been set.
775 * If STIBP support is not being forced, check if STIBP always-on
776 * is preferred.
777 */
778 if (mode != SPECTRE_V2_USER_STRICT &&
779 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
780 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
781
782 spectre_v2_user_stibp = mode;
783
784 set_mode:
785 pr_info("%s\n", spectre_v2_user_strings[mode]);
786 }
787
788 static const char * const spectre_v2_strings[] = {
789 [SPECTRE_V2_NONE] = "Vulnerable",
790 [SPECTRE_V2_RETPOLINE_GENERIC] = "Mitigation: Full generic retpoline",
791 [SPECTRE_V2_RETPOLINE_AMD] = "Mitigation: Full AMD retpoline",
792 [SPECTRE_V2_IBRS_ENHANCED] = "Mitigation: Enhanced IBRS",
793 };
794
795 static const struct {
796 const char *option;
797 enum spectre_v2_mitigation_cmd cmd;
798 bool secure;
799 } mitigation_options[] __initconst = {
800 { "off", SPECTRE_V2_CMD_NONE, false },
801 { "on", SPECTRE_V2_CMD_FORCE, true },
802 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
803 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_AMD, false },
804 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
805 { "auto", SPECTRE_V2_CMD_AUTO, false },
806 };
807
spec_v2_print_cond(const char * reason,bool secure)808 static void __init spec_v2_print_cond(const char *reason, bool secure)
809 {
810 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
811 pr_info("%s selected on command line.\n", reason);
812 }
813
spectre_v2_parse_cmdline(void)814 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
815 {
816 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
817 char arg[20];
818 int ret, i;
819
820 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
821 cpu_mitigations_off())
822 return SPECTRE_V2_CMD_NONE;
823
824 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
825 if (ret < 0)
826 return SPECTRE_V2_CMD_AUTO;
827
828 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
829 if (!match_option(arg, ret, mitigation_options[i].option))
830 continue;
831 cmd = mitigation_options[i].cmd;
832 break;
833 }
834
835 if (i >= ARRAY_SIZE(mitigation_options)) {
836 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
837 return SPECTRE_V2_CMD_AUTO;
838 }
839
840 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
841 cmd == SPECTRE_V2_CMD_RETPOLINE_AMD ||
842 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC) &&
843 !IS_ENABLED(CONFIG_RETPOLINE)) {
844 pr_err("%s selected but not compiled in. Switching to AUTO select\n", mitigation_options[i].option);
845 return SPECTRE_V2_CMD_AUTO;
846 }
847
848 if (cmd == SPECTRE_V2_CMD_RETPOLINE_AMD &&
849 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON &&
850 boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
851 pr_err("retpoline,amd selected but CPU is not AMD. Switching to AUTO select\n");
852 return SPECTRE_V2_CMD_AUTO;
853 }
854
855 spec_v2_print_cond(mitigation_options[i].option,
856 mitigation_options[i].secure);
857 return cmd;
858 }
859
spectre_v2_select_mitigation(void)860 static void __init spectre_v2_select_mitigation(void)
861 {
862 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
863 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
864
865 /*
866 * If the CPU is not affected and the command line mode is NONE or AUTO
867 * then nothing to do.
868 */
869 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
870 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
871 return;
872
873 switch (cmd) {
874 case SPECTRE_V2_CMD_NONE:
875 return;
876
877 case SPECTRE_V2_CMD_FORCE:
878 case SPECTRE_V2_CMD_AUTO:
879 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
880 mode = SPECTRE_V2_IBRS_ENHANCED;
881 /* Force it so VMEXIT will restore correctly */
882 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
883 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
884 goto specv2_set_mode;
885 }
886 if (IS_ENABLED(CONFIG_RETPOLINE))
887 goto retpoline_auto;
888 break;
889 case SPECTRE_V2_CMD_RETPOLINE_AMD:
890 if (IS_ENABLED(CONFIG_RETPOLINE))
891 goto retpoline_amd;
892 break;
893 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
894 if (IS_ENABLED(CONFIG_RETPOLINE))
895 goto retpoline_generic;
896 break;
897 case SPECTRE_V2_CMD_RETPOLINE:
898 if (IS_ENABLED(CONFIG_RETPOLINE))
899 goto retpoline_auto;
900 break;
901 }
902 pr_err("Spectre mitigation: kernel not compiled with retpoline; no mitigation available!");
903 return;
904
905 retpoline_auto:
906 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
907 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
908 retpoline_amd:
909 if (!boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
910 pr_err("Spectre mitigation: LFENCE not serializing, switching to generic retpoline\n");
911 goto retpoline_generic;
912 }
913 mode = SPECTRE_V2_RETPOLINE_AMD;
914 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_AMD);
915 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
916 } else {
917 retpoline_generic:
918 mode = SPECTRE_V2_RETPOLINE_GENERIC;
919 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
920 }
921
922 specv2_set_mode:
923 spectre_v2_enabled = mode;
924 pr_info("%s\n", spectre_v2_strings[mode]);
925
926 /*
927 * If spectre v2 protection has been enabled, unconditionally fill
928 * RSB during a context switch; this protects against two independent
929 * issues:
930 *
931 * - RSB underflow (and switch to BTB) on Skylake+
932 * - SpectreRSB variant of spectre v2 on X86_BUG_SPECTRE_V2 CPUs
933 */
934 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
935 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
936
937 /*
938 * Retpoline means the kernel is safe because it has no indirect
939 * branches. Enhanced IBRS protects firmware too, so, enable restricted
940 * speculation around firmware calls only when Enhanced IBRS isn't
941 * supported.
942 *
943 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
944 * the user might select retpoline on the kernel command line and if
945 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
946 * enable IBRS around firmware calls.
947 */
948 if (boot_cpu_has(X86_FEATURE_IBRS) && mode != SPECTRE_V2_IBRS_ENHANCED) {
949 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
950 pr_info("Enabling Restricted Speculation for firmware calls\n");
951 }
952
953 /* Set up IBPB and STIBP depending on the general spectre V2 command */
954 spectre_v2_user_select_mitigation(cmd);
955 }
956
update_stibp_msr(void * __unused)957 static void update_stibp_msr(void * __unused)
958 {
959 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
960 }
961
962 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)963 static void update_stibp_strict(void)
964 {
965 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
966
967 if (sched_smt_active())
968 mask |= SPEC_CTRL_STIBP;
969
970 if (mask == x86_spec_ctrl_base)
971 return;
972
973 pr_info("Update user space SMT mitigation: STIBP %s\n",
974 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
975 x86_spec_ctrl_base = mask;
976 on_each_cpu(update_stibp_msr, NULL, 1);
977 }
978
979 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)980 static void update_indir_branch_cond(void)
981 {
982 if (sched_smt_active())
983 static_branch_enable(&switch_to_cond_stibp);
984 else
985 static_branch_disable(&switch_to_cond_stibp);
986 }
987
988 #undef pr_fmt
989 #define pr_fmt(fmt) fmt
990
991 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)992 static void update_mds_branch_idle(void)
993 {
994 /*
995 * Enable the idle clearing if SMT is active on CPUs which are
996 * affected only by MSBDS and not any other MDS variant.
997 *
998 * The other variants cannot be mitigated when SMT is enabled, so
999 * clearing the buffers on idle just to prevent the Store Buffer
1000 * repartitioning leak would be a window dressing exercise.
1001 */
1002 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1003 return;
1004
1005 if (sched_smt_active())
1006 static_branch_enable(&mds_idle_clear);
1007 else
1008 static_branch_disable(&mds_idle_clear);
1009 }
1010
1011 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1012 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1013
cpu_bugs_smt_update(void)1014 void cpu_bugs_smt_update(void)
1015 {
1016 mutex_lock(&spec_ctrl_mutex);
1017
1018 switch (spectre_v2_user_stibp) {
1019 case SPECTRE_V2_USER_NONE:
1020 break;
1021 case SPECTRE_V2_USER_STRICT:
1022 case SPECTRE_V2_USER_STRICT_PREFERRED:
1023 update_stibp_strict();
1024 break;
1025 case SPECTRE_V2_USER_PRCTL:
1026 case SPECTRE_V2_USER_SECCOMP:
1027 update_indir_branch_cond();
1028 break;
1029 }
1030
1031 switch (mds_mitigation) {
1032 case MDS_MITIGATION_FULL:
1033 case MDS_MITIGATION_VMWERV:
1034 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1035 pr_warn_once(MDS_MSG_SMT);
1036 update_mds_branch_idle();
1037 break;
1038 case MDS_MITIGATION_OFF:
1039 break;
1040 }
1041
1042 switch (taa_mitigation) {
1043 case TAA_MITIGATION_VERW:
1044 case TAA_MITIGATION_UCODE_NEEDED:
1045 if (sched_smt_active())
1046 pr_warn_once(TAA_MSG_SMT);
1047 break;
1048 case TAA_MITIGATION_TSX_DISABLED:
1049 case TAA_MITIGATION_OFF:
1050 break;
1051 }
1052
1053 mutex_unlock(&spec_ctrl_mutex);
1054 }
1055
1056 #undef pr_fmt
1057 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1058
1059 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1060
1061 /* The kernel command line selection */
1062 enum ssb_mitigation_cmd {
1063 SPEC_STORE_BYPASS_CMD_NONE,
1064 SPEC_STORE_BYPASS_CMD_AUTO,
1065 SPEC_STORE_BYPASS_CMD_ON,
1066 SPEC_STORE_BYPASS_CMD_PRCTL,
1067 SPEC_STORE_BYPASS_CMD_SECCOMP,
1068 };
1069
1070 static const char * const ssb_strings[] = {
1071 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1072 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1073 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1074 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1075 };
1076
1077 static const struct {
1078 const char *option;
1079 enum ssb_mitigation_cmd cmd;
1080 } ssb_mitigation_options[] __initconst = {
1081 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1082 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1083 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1084 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1085 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1086 };
1087
ssb_parse_cmdline(void)1088 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1089 {
1090 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1091 char arg[20];
1092 int ret, i;
1093
1094 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1095 cpu_mitigations_off()) {
1096 return SPEC_STORE_BYPASS_CMD_NONE;
1097 } else {
1098 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1099 arg, sizeof(arg));
1100 if (ret < 0)
1101 return SPEC_STORE_BYPASS_CMD_AUTO;
1102
1103 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1104 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1105 continue;
1106
1107 cmd = ssb_mitigation_options[i].cmd;
1108 break;
1109 }
1110
1111 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1112 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1113 return SPEC_STORE_BYPASS_CMD_AUTO;
1114 }
1115 }
1116
1117 return cmd;
1118 }
1119
__ssb_select_mitigation(void)1120 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1121 {
1122 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1123 enum ssb_mitigation_cmd cmd;
1124
1125 if (!boot_cpu_has(X86_FEATURE_SSBD))
1126 return mode;
1127
1128 cmd = ssb_parse_cmdline();
1129 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1130 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1131 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1132 return mode;
1133
1134 switch (cmd) {
1135 case SPEC_STORE_BYPASS_CMD_AUTO:
1136 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1137 /*
1138 * Choose prctl+seccomp as the default mode if seccomp is
1139 * enabled.
1140 */
1141 if (IS_ENABLED(CONFIG_SECCOMP))
1142 mode = SPEC_STORE_BYPASS_SECCOMP;
1143 else
1144 mode = SPEC_STORE_BYPASS_PRCTL;
1145 break;
1146 case SPEC_STORE_BYPASS_CMD_ON:
1147 mode = SPEC_STORE_BYPASS_DISABLE;
1148 break;
1149 case SPEC_STORE_BYPASS_CMD_PRCTL:
1150 mode = SPEC_STORE_BYPASS_PRCTL;
1151 break;
1152 case SPEC_STORE_BYPASS_CMD_NONE:
1153 break;
1154 }
1155
1156 /*
1157 * If SSBD is controlled by the SPEC_CTRL MSR, then set the proper
1158 * bit in the mask to allow guests to use the mitigation even in the
1159 * case where the host does not enable it.
1160 */
1161 if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
1162 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1163 x86_spec_ctrl_mask |= SPEC_CTRL_SSBD;
1164 }
1165
1166 /*
1167 * We have three CPU feature flags that are in play here:
1168 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1169 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1170 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1171 */
1172 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1173 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1174 /*
1175 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1176 * use a completely different MSR and bit dependent on family.
1177 */
1178 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1179 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1180 x86_amd_ssb_disable();
1181 } else {
1182 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1183 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1184 }
1185 }
1186
1187 return mode;
1188 }
1189
ssb_select_mitigation(void)1190 static void ssb_select_mitigation(void)
1191 {
1192 ssb_mode = __ssb_select_mitigation();
1193
1194 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1195 pr_info("%s\n", ssb_strings[ssb_mode]);
1196 }
1197
1198 #undef pr_fmt
1199 #define pr_fmt(fmt) "Speculation prctl: " fmt
1200
task_update_spec_tif(struct task_struct * tsk)1201 static void task_update_spec_tif(struct task_struct *tsk)
1202 {
1203 /* Force the update of the real TIF bits */
1204 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1205
1206 /*
1207 * Immediately update the speculation control MSRs for the current
1208 * task, but for a non-current task delay setting the CPU
1209 * mitigation until it is scheduled next.
1210 *
1211 * This can only happen for SECCOMP mitigation. For PRCTL it's
1212 * always the current task.
1213 */
1214 if (tsk == current)
1215 speculation_ctrl_update_current();
1216 }
1217
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)1218 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1219 {
1220 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1221 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1222 return -ENXIO;
1223
1224 switch (ctrl) {
1225 case PR_SPEC_ENABLE:
1226 /* If speculation is force disabled, enable is not allowed */
1227 if (task_spec_ssb_force_disable(task))
1228 return -EPERM;
1229 task_clear_spec_ssb_disable(task);
1230 task_clear_spec_ssb_noexec(task);
1231 task_update_spec_tif(task);
1232 break;
1233 case PR_SPEC_DISABLE:
1234 task_set_spec_ssb_disable(task);
1235 task_clear_spec_ssb_noexec(task);
1236 task_update_spec_tif(task);
1237 break;
1238 case PR_SPEC_FORCE_DISABLE:
1239 task_set_spec_ssb_disable(task);
1240 task_set_spec_ssb_force_disable(task);
1241 task_clear_spec_ssb_noexec(task);
1242 task_update_spec_tif(task);
1243 break;
1244 case PR_SPEC_DISABLE_NOEXEC:
1245 if (task_spec_ssb_force_disable(task))
1246 return -EPERM;
1247 task_set_spec_ssb_disable(task);
1248 task_set_spec_ssb_noexec(task);
1249 task_update_spec_tif(task);
1250 break;
1251 default:
1252 return -ERANGE;
1253 }
1254 return 0;
1255 }
1256
is_spec_ib_user_controlled(void)1257 static bool is_spec_ib_user_controlled(void)
1258 {
1259 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1260 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1261 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1262 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1263 }
1264
ib_prctl_set(struct task_struct * task,unsigned long ctrl)1265 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1266 {
1267 switch (ctrl) {
1268 case PR_SPEC_ENABLE:
1269 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1270 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1271 return 0;
1272
1273 /*
1274 * With strict mode for both IBPB and STIBP, the instruction
1275 * code paths avoid checking this task flag and instead,
1276 * unconditionally run the instruction. However, STIBP and IBPB
1277 * are independent and either can be set to conditionally
1278 * enabled regardless of the mode of the other.
1279 *
1280 * If either is set to conditional, allow the task flag to be
1281 * updated, unless it was force-disabled by a previous prctl
1282 * call. Currently, this is possible on an AMD CPU which has the
1283 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1284 * kernel is booted with 'spectre_v2_user=seccomp', then
1285 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1286 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1287 */
1288 if (!is_spec_ib_user_controlled() ||
1289 task_spec_ib_force_disable(task))
1290 return -EPERM;
1291
1292 task_clear_spec_ib_disable(task);
1293 task_update_spec_tif(task);
1294 break;
1295 case PR_SPEC_DISABLE:
1296 case PR_SPEC_FORCE_DISABLE:
1297 /*
1298 * Indirect branch speculation is always allowed when
1299 * mitigation is force disabled.
1300 */
1301 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1302 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1303 return -EPERM;
1304
1305 if (!is_spec_ib_user_controlled())
1306 return 0;
1307
1308 task_set_spec_ib_disable(task);
1309 if (ctrl == PR_SPEC_FORCE_DISABLE)
1310 task_set_spec_ib_force_disable(task);
1311 task_update_spec_tif(task);
1312 break;
1313 default:
1314 return -ERANGE;
1315 }
1316 return 0;
1317 }
1318
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)1319 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1320 unsigned long ctrl)
1321 {
1322 switch (which) {
1323 case PR_SPEC_STORE_BYPASS:
1324 return ssb_prctl_set(task, ctrl);
1325 case PR_SPEC_INDIRECT_BRANCH:
1326 return ib_prctl_set(task, ctrl);
1327 default:
1328 return -ENODEV;
1329 }
1330 }
1331
1332 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)1333 void arch_seccomp_spec_mitigate(struct task_struct *task)
1334 {
1335 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
1336 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1337 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1338 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
1339 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
1340 }
1341 #endif
1342
ssb_prctl_get(struct task_struct * task)1343 static int ssb_prctl_get(struct task_struct *task)
1344 {
1345 switch (ssb_mode) {
1346 case SPEC_STORE_BYPASS_DISABLE:
1347 return PR_SPEC_DISABLE;
1348 case SPEC_STORE_BYPASS_SECCOMP:
1349 case SPEC_STORE_BYPASS_PRCTL:
1350 if (task_spec_ssb_force_disable(task))
1351 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1352 if (task_spec_ssb_noexec(task))
1353 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
1354 if (task_spec_ssb_disable(task))
1355 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1356 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1357 default:
1358 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1359 return PR_SPEC_ENABLE;
1360 return PR_SPEC_NOT_AFFECTED;
1361 }
1362 }
1363
ib_prctl_get(struct task_struct * task)1364 static int ib_prctl_get(struct task_struct *task)
1365 {
1366 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
1367 return PR_SPEC_NOT_AFFECTED;
1368
1369 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1370 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1371 return PR_SPEC_ENABLE;
1372 else if (is_spec_ib_user_controlled()) {
1373 if (task_spec_ib_force_disable(task))
1374 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
1375 if (task_spec_ib_disable(task))
1376 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
1377 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
1378 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
1379 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
1380 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
1381 return PR_SPEC_DISABLE;
1382 else
1383 return PR_SPEC_NOT_AFFECTED;
1384 }
1385
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)1386 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
1387 {
1388 switch (which) {
1389 case PR_SPEC_STORE_BYPASS:
1390 return ssb_prctl_get(task);
1391 case PR_SPEC_INDIRECT_BRANCH:
1392 return ib_prctl_get(task);
1393 default:
1394 return -ENODEV;
1395 }
1396 }
1397
x86_spec_ctrl_setup_ap(void)1398 void x86_spec_ctrl_setup_ap(void)
1399 {
1400 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
1401 wrmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
1402
1403 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
1404 x86_amd_ssb_disable();
1405 }
1406
1407 bool itlb_multihit_kvm_mitigation;
1408 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
1409
1410 #undef pr_fmt
1411 #define pr_fmt(fmt) "L1TF: " fmt
1412
1413 /* Default mitigation for L1TF-affected CPUs */
1414 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
1415 #if IS_ENABLED(CONFIG_KVM_INTEL)
1416 EXPORT_SYMBOL_GPL(l1tf_mitigation);
1417 #endif
1418 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
1419 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
1420
1421 /*
1422 * These CPUs all support 44bits physical address space internally in the
1423 * cache but CPUID can report a smaller number of physical address bits.
1424 *
1425 * The L1TF mitigation uses the top most address bit for the inversion of
1426 * non present PTEs. When the installed memory reaches into the top most
1427 * address bit due to memory holes, which has been observed on machines
1428 * which report 36bits physical address bits and have 32G RAM installed,
1429 * then the mitigation range check in l1tf_select_mitigation() triggers.
1430 * This is a false positive because the mitigation is still possible due to
1431 * the fact that the cache uses 44bit internally. Use the cache bits
1432 * instead of the reported physical bits and adjust them on the affected
1433 * machines to 44bit if the reported bits are less than 44.
1434 */
override_cache_bits(struct cpuinfo_x86 * c)1435 static void override_cache_bits(struct cpuinfo_x86 *c)
1436 {
1437 if (c->x86 != 6)
1438 return;
1439
1440 switch (c->x86_model) {
1441 case INTEL_FAM6_NEHALEM:
1442 case INTEL_FAM6_WESTMERE:
1443 case INTEL_FAM6_SANDYBRIDGE:
1444 case INTEL_FAM6_IVYBRIDGE:
1445 case INTEL_FAM6_HASWELL:
1446 case INTEL_FAM6_HASWELL_L:
1447 case INTEL_FAM6_HASWELL_G:
1448 case INTEL_FAM6_BROADWELL:
1449 case INTEL_FAM6_BROADWELL_G:
1450 case INTEL_FAM6_SKYLAKE_L:
1451 case INTEL_FAM6_SKYLAKE:
1452 case INTEL_FAM6_KABYLAKE_L:
1453 case INTEL_FAM6_KABYLAKE:
1454 if (c->x86_cache_bits < 44)
1455 c->x86_cache_bits = 44;
1456 break;
1457 }
1458 }
1459
l1tf_select_mitigation(void)1460 static void __init l1tf_select_mitigation(void)
1461 {
1462 u64 half_pa;
1463
1464 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1465 return;
1466
1467 if (cpu_mitigations_off())
1468 l1tf_mitigation = L1TF_MITIGATION_OFF;
1469 else if (cpu_mitigations_auto_nosmt())
1470 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1471
1472 override_cache_bits(&boot_cpu_data);
1473
1474 switch (l1tf_mitigation) {
1475 case L1TF_MITIGATION_OFF:
1476 case L1TF_MITIGATION_FLUSH_NOWARN:
1477 case L1TF_MITIGATION_FLUSH:
1478 break;
1479 case L1TF_MITIGATION_FLUSH_NOSMT:
1480 case L1TF_MITIGATION_FULL:
1481 cpu_smt_disable(false);
1482 break;
1483 case L1TF_MITIGATION_FULL_FORCE:
1484 cpu_smt_disable(true);
1485 break;
1486 }
1487
1488 #if CONFIG_PGTABLE_LEVELS == 2
1489 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
1490 return;
1491 #endif
1492
1493 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
1494 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
1495 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
1496 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
1497 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
1498 half_pa);
1499 pr_info("However, doing so will make a part of your RAM unusable.\n");
1500 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
1501 return;
1502 }
1503
1504 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
1505 }
1506
l1tf_cmdline(char * str)1507 static int __init l1tf_cmdline(char *str)
1508 {
1509 if (!boot_cpu_has_bug(X86_BUG_L1TF))
1510 return 0;
1511
1512 if (!str)
1513 return -EINVAL;
1514
1515 if (!strcmp(str, "off"))
1516 l1tf_mitigation = L1TF_MITIGATION_OFF;
1517 else if (!strcmp(str, "flush,nowarn"))
1518 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
1519 else if (!strcmp(str, "flush"))
1520 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
1521 else if (!strcmp(str, "flush,nosmt"))
1522 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
1523 else if (!strcmp(str, "full"))
1524 l1tf_mitigation = L1TF_MITIGATION_FULL;
1525 else if (!strcmp(str, "full,force"))
1526 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
1527
1528 return 0;
1529 }
1530 early_param("l1tf", l1tf_cmdline);
1531
1532 #undef pr_fmt
1533 #define pr_fmt(fmt) fmt
1534
1535 #ifdef CONFIG_SYSFS
1536
1537 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
1538
1539 #if IS_ENABLED(CONFIG_KVM_INTEL)
1540 static const char * const l1tf_vmx_states[] = {
1541 [VMENTER_L1D_FLUSH_AUTO] = "auto",
1542 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
1543 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
1544 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
1545 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
1546 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
1547 };
1548
l1tf_show_state(char * buf)1549 static ssize_t l1tf_show_state(char *buf)
1550 {
1551 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
1552 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1553
1554 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
1555 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
1556 sched_smt_active())) {
1557 return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
1558 l1tf_vmx_states[l1tf_vmx_mitigation]);
1559 }
1560
1561 return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
1562 l1tf_vmx_states[l1tf_vmx_mitigation],
1563 sched_smt_active() ? "vulnerable" : "disabled");
1564 }
1565
itlb_multihit_show_state(char * buf)1566 static ssize_t itlb_multihit_show_state(char *buf)
1567 {
1568 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
1569 !boot_cpu_has(X86_FEATURE_VMX))
1570 return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
1571 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
1572 return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
1573 else if (itlb_multihit_kvm_mitigation)
1574 return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
1575 else
1576 return sprintf(buf, "KVM: Vulnerable\n");
1577 }
1578 #else
l1tf_show_state(char * buf)1579 static ssize_t l1tf_show_state(char *buf)
1580 {
1581 return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
1582 }
1583
itlb_multihit_show_state(char * buf)1584 static ssize_t itlb_multihit_show_state(char *buf)
1585 {
1586 return sprintf(buf, "Processor vulnerable\n");
1587 }
1588 #endif
1589
mds_show_state(char * buf)1590 static ssize_t mds_show_state(char *buf)
1591 {
1592 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1593 return sprintf(buf, "%s; SMT Host state unknown\n",
1594 mds_strings[mds_mitigation]);
1595 }
1596
1597 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
1598 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1599 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
1600 sched_smt_active() ? "mitigated" : "disabled"));
1601 }
1602
1603 return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
1604 sched_smt_active() ? "vulnerable" : "disabled");
1605 }
1606
tsx_async_abort_show_state(char * buf)1607 static ssize_t tsx_async_abort_show_state(char *buf)
1608 {
1609 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
1610 (taa_mitigation == TAA_MITIGATION_OFF))
1611 return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
1612
1613 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
1614 return sprintf(buf, "%s; SMT Host state unknown\n",
1615 taa_strings[taa_mitigation]);
1616 }
1617
1618 return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
1619 sched_smt_active() ? "vulnerable" : "disabled");
1620 }
1621
stibp_state(void)1622 static char *stibp_state(void)
1623 {
1624 if (spectre_v2_enabled == SPECTRE_V2_IBRS_ENHANCED)
1625 return "";
1626
1627 switch (spectre_v2_user_stibp) {
1628 case SPECTRE_V2_USER_NONE:
1629 return ", STIBP: disabled";
1630 case SPECTRE_V2_USER_STRICT:
1631 return ", STIBP: forced";
1632 case SPECTRE_V2_USER_STRICT_PREFERRED:
1633 return ", STIBP: always-on";
1634 case SPECTRE_V2_USER_PRCTL:
1635 case SPECTRE_V2_USER_SECCOMP:
1636 if (static_key_enabled(&switch_to_cond_stibp))
1637 return ", STIBP: conditional";
1638 }
1639 return "";
1640 }
1641
ibpb_state(void)1642 static char *ibpb_state(void)
1643 {
1644 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1645 if (static_key_enabled(&switch_mm_always_ibpb))
1646 return ", IBPB: always-on";
1647 if (static_key_enabled(&switch_mm_cond_ibpb))
1648 return ", IBPB: conditional";
1649 return ", IBPB: disabled";
1650 }
1651 return "";
1652 }
1653
srbds_show_state(char * buf)1654 static ssize_t srbds_show_state(char *buf)
1655 {
1656 return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
1657 }
1658
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)1659 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
1660 char *buf, unsigned int bug)
1661 {
1662 if (!boot_cpu_has_bug(bug))
1663 return sprintf(buf, "Not affected\n");
1664
1665 switch (bug) {
1666 case X86_BUG_CPU_MELTDOWN:
1667 if (boot_cpu_has(X86_FEATURE_PTI))
1668 return sprintf(buf, "Mitigation: PTI\n");
1669
1670 if (hypervisor_is_type(X86_HYPER_XEN_PV))
1671 return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
1672
1673 break;
1674
1675 case X86_BUG_SPECTRE_V1:
1676 return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
1677
1678 case X86_BUG_SPECTRE_V2:
1679 return sprintf(buf, "%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled],
1680 ibpb_state(),
1681 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
1682 stibp_state(),
1683 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
1684 spectre_v2_module_string());
1685
1686 case X86_BUG_SPEC_STORE_BYPASS:
1687 return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
1688
1689 case X86_BUG_L1TF:
1690 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
1691 return l1tf_show_state(buf);
1692 break;
1693
1694 case X86_BUG_MDS:
1695 return mds_show_state(buf);
1696
1697 case X86_BUG_TAA:
1698 return tsx_async_abort_show_state(buf);
1699
1700 case X86_BUG_ITLB_MULTIHIT:
1701 return itlb_multihit_show_state(buf);
1702
1703 case X86_BUG_SRBDS:
1704 return srbds_show_state(buf);
1705
1706 default:
1707 break;
1708 }
1709
1710 return sprintf(buf, "Vulnerable\n");
1711 }
1712
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)1713 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
1714 {
1715 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
1716 }
1717
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)1718 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
1719 {
1720 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
1721 }
1722
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)1723 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
1724 {
1725 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
1726 }
1727
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)1728 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
1729 {
1730 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
1731 }
1732
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)1733 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
1734 {
1735 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
1736 }
1737
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)1738 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
1739 {
1740 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
1741 }
1742
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)1743 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
1744 {
1745 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
1746 }
1747
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)1748 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
1749 {
1750 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
1751 }
1752
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)1753 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
1754 {
1755 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
1756 }
1757 #endif
1758