1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/iopoll.h>
9 #include <linux/sctp.h>
10 #include <linux/pci.h>
11 #include <net/tcp.h>
12 #include <net/ip.h>
13
14 #include "wx_type.h"
15 #include "wx_lib.h"
16 #include "wx_hw.h"
17
18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
19 static struct wx_dec_ptype wx_ptype_lookup[256] = {
20 /* L2: mac */
21 [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
22 [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2),
23 [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
24 [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
26 [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27 [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
28
29 /* L2: ethertype filter */
30 [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31
32 /* L3: ip non-tunnel */
33 [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
34 [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
35 [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4),
36 [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4),
37 [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
38 [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
39 [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
40 [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3),
41 [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4),
42 [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
43
44 /* L2: fcoe */
45 [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
46 [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47
48 /* IPv4 --> IPv4/IPv6 */
49 [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
50 [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
51 [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4),
52 [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4),
53 [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
54 [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
55 [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
56 [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4),
57 [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4),
58 [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
59
60 /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
61 [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
62 [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
63 [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
64 [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4),
65 [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4),
66 [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
67 [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
68 [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
69 [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4),
70 [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4),
71 [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
72
73 /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
74 [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
75 [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
76 [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
77 [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4),
78 [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4),
79 [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
80 [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
81 [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
82 [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4),
83 [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4),
84 [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
85
86 /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
87 [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
88 [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
89 [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
90 [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4),
91 [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4),
92 [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
93 [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
94 [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
95 [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4),
96 [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4),
97 [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
98
99 /* IPv6 --> IPv4/IPv6 */
100 [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
101 [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
102 [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4),
103 [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4),
104 [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
105 [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
106 [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
107 [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4),
108 [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4),
109 [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
110
111 /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
112 [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
113 [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
114 [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
115 [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4),
116 [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4),
117 [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
118 [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
119 [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
120 [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4),
121 [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4),
122 [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
123
124 /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
125 [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
126 [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
127 [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
128 [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4),
129 [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4),
130 [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
131 [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
132 [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
133 [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4),
134 [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4),
135 [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
136
137 /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
138 [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
139 [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
140 [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
141 [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4),
142 [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4),
143 [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
144 [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
145 [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
146 [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4),
147 [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4),
148 [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
149 };
150
wx_decode_ptype(const u8 ptype)151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
152 {
153 return wx_ptype_lookup[ptype];
154 }
155
156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
wx_test_staterr(union wx_rx_desc * rx_desc,const u32 stat_err_bits)157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
158 const u32 stat_err_bits)
159 {
160 return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
161 }
162
wx_can_reuse_rx_page(struct wx_rx_buffer * rx_buffer,int rx_buffer_pgcnt)163 static bool wx_can_reuse_rx_page(struct wx_rx_buffer *rx_buffer,
164 int rx_buffer_pgcnt)
165 {
166 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
167 struct page *page = rx_buffer->page;
168
169 /* avoid re-using remote and pfmemalloc pages */
170 if (!dev_page_is_reusable(page))
171 return false;
172
173 #if (PAGE_SIZE < 8192)
174 /* if we are only owner of page we can reuse it */
175 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
176 return false;
177 #endif
178
179 /* If we have drained the page fragment pool we need to update
180 * the pagecnt_bias and page count so that we fully restock the
181 * number of references the driver holds.
182 */
183 if (unlikely(pagecnt_bias == 1)) {
184 page_ref_add(page, USHRT_MAX - 1);
185 rx_buffer->pagecnt_bias = USHRT_MAX;
186 }
187
188 return true;
189 }
190
191 /**
192 * wx_reuse_rx_page - page flip buffer and store it back on the ring
193 * @rx_ring: rx descriptor ring to store buffers on
194 * @old_buff: donor buffer to have page reused
195 *
196 * Synchronizes page for reuse by the adapter
197 **/
wx_reuse_rx_page(struct wx_ring * rx_ring,struct wx_rx_buffer * old_buff)198 static void wx_reuse_rx_page(struct wx_ring *rx_ring,
199 struct wx_rx_buffer *old_buff)
200 {
201 u16 nta = rx_ring->next_to_alloc;
202 struct wx_rx_buffer *new_buff;
203
204 new_buff = &rx_ring->rx_buffer_info[nta];
205
206 /* update, and store next to alloc */
207 nta++;
208 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
209
210 /* transfer page from old buffer to new buffer */
211 new_buff->page = old_buff->page;
212 new_buff->page_dma = old_buff->page_dma;
213 new_buff->page_offset = old_buff->page_offset;
214 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
215 }
216
wx_dma_sync_frag(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer)217 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
218 struct wx_rx_buffer *rx_buffer)
219 {
220 struct sk_buff *skb = rx_buffer->skb;
221 skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
222
223 dma_sync_single_range_for_cpu(rx_ring->dev,
224 WX_CB(skb)->dma,
225 skb_frag_off(frag),
226 skb_frag_size(frag),
227 DMA_FROM_DEVICE);
228
229 /* If the page was released, just unmap it. */
230 if (unlikely(WX_CB(skb)->page_released))
231 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
232 }
233
wx_get_rx_buffer(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff ** skb,int * rx_buffer_pgcnt)234 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
235 union wx_rx_desc *rx_desc,
236 struct sk_buff **skb,
237 int *rx_buffer_pgcnt)
238 {
239 struct wx_rx_buffer *rx_buffer;
240 unsigned int size;
241
242 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
243 size = le16_to_cpu(rx_desc->wb.upper.length);
244
245 #if (PAGE_SIZE < 8192)
246 *rx_buffer_pgcnt = page_count(rx_buffer->page);
247 #else
248 *rx_buffer_pgcnt = 0;
249 #endif
250
251 prefetchw(rx_buffer->page);
252 *skb = rx_buffer->skb;
253
254 /* Delay unmapping of the first packet. It carries the header
255 * information, HW may still access the header after the writeback.
256 * Only unmap it when EOP is reached
257 */
258 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
259 if (!*skb)
260 goto skip_sync;
261 } else {
262 if (*skb)
263 wx_dma_sync_frag(rx_ring, rx_buffer);
264 }
265
266 /* we are reusing so sync this buffer for CPU use */
267 dma_sync_single_range_for_cpu(rx_ring->dev,
268 rx_buffer->dma,
269 rx_buffer->page_offset,
270 size,
271 DMA_FROM_DEVICE);
272 skip_sync:
273 rx_buffer->pagecnt_bias--;
274
275 return rx_buffer;
276 }
277
wx_put_rx_buffer(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer,struct sk_buff * skb,int rx_buffer_pgcnt)278 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
279 struct wx_rx_buffer *rx_buffer,
280 struct sk_buff *skb,
281 int rx_buffer_pgcnt)
282 {
283 if (wx_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
284 /* hand second half of page back to the ring */
285 wx_reuse_rx_page(rx_ring, rx_buffer);
286 } else {
287 if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
288 /* the page has been released from the ring */
289 WX_CB(skb)->page_released = true;
290 else
291 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
292
293 __page_frag_cache_drain(rx_buffer->page,
294 rx_buffer->pagecnt_bias);
295 }
296
297 /* clear contents of rx_buffer */
298 rx_buffer->page = NULL;
299 rx_buffer->skb = NULL;
300 }
301
wx_build_skb(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer,union wx_rx_desc * rx_desc)302 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
303 struct wx_rx_buffer *rx_buffer,
304 union wx_rx_desc *rx_desc)
305 {
306 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
307 #if (PAGE_SIZE < 8192)
308 unsigned int truesize = WX_RX_BUFSZ;
309 #else
310 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
311 #endif
312 struct sk_buff *skb = rx_buffer->skb;
313
314 if (!skb) {
315 void *page_addr = page_address(rx_buffer->page) +
316 rx_buffer->page_offset;
317
318 /* prefetch first cache line of first page */
319 prefetch(page_addr);
320 #if L1_CACHE_BYTES < 128
321 prefetch(page_addr + L1_CACHE_BYTES);
322 #endif
323
324 /* allocate a skb to store the frags */
325 skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
326 if (unlikely(!skb))
327 return NULL;
328
329 /* we will be copying header into skb->data in
330 * pskb_may_pull so it is in our interest to prefetch
331 * it now to avoid a possible cache miss
332 */
333 prefetchw(skb->data);
334
335 if (size <= WX_RXBUFFER_256) {
336 memcpy(__skb_put(skb, size), page_addr,
337 ALIGN(size, sizeof(long)));
338 rx_buffer->pagecnt_bias++;
339
340 return skb;
341 }
342
343 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
344 WX_CB(skb)->dma = rx_buffer->dma;
345
346 skb_add_rx_frag(skb, 0, rx_buffer->page,
347 rx_buffer->page_offset,
348 size, truesize);
349 goto out;
350
351 } else {
352 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
353 rx_buffer->page_offset, size, truesize);
354 }
355
356 out:
357 #if (PAGE_SIZE < 8192)
358 /* flip page offset to other buffer */
359 rx_buffer->page_offset ^= truesize;
360 #else
361 /* move offset up to the next cache line */
362 rx_buffer->page_offset += truesize;
363 #endif
364
365 return skb;
366 }
367
wx_alloc_mapped_page(struct wx_ring * rx_ring,struct wx_rx_buffer * bi)368 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
369 struct wx_rx_buffer *bi)
370 {
371 struct page *page = bi->page;
372 dma_addr_t dma;
373
374 /* since we are recycling buffers we should seldom need to alloc */
375 if (likely(page))
376 return true;
377
378 page = page_pool_dev_alloc_pages(rx_ring->page_pool);
379 WARN_ON(!page);
380 dma = page_pool_get_dma_addr(page);
381
382 bi->page_dma = dma;
383 bi->page = page;
384 bi->page_offset = 0;
385 page_ref_add(page, USHRT_MAX - 1);
386 bi->pagecnt_bias = USHRT_MAX;
387
388 return true;
389 }
390
391 /**
392 * wx_alloc_rx_buffers - Replace used receive buffers
393 * @rx_ring: ring to place buffers on
394 * @cleaned_count: number of buffers to replace
395 **/
wx_alloc_rx_buffers(struct wx_ring * rx_ring,u16 cleaned_count)396 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
397 {
398 u16 i = rx_ring->next_to_use;
399 union wx_rx_desc *rx_desc;
400 struct wx_rx_buffer *bi;
401
402 /* nothing to do */
403 if (!cleaned_count)
404 return;
405
406 rx_desc = WX_RX_DESC(rx_ring, i);
407 bi = &rx_ring->rx_buffer_info[i];
408 i -= rx_ring->count;
409
410 do {
411 if (!wx_alloc_mapped_page(rx_ring, bi))
412 break;
413
414 /* sync the buffer for use by the device */
415 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
416 bi->page_offset,
417 WX_RX_BUFSZ,
418 DMA_FROM_DEVICE);
419
420 rx_desc->read.pkt_addr =
421 cpu_to_le64(bi->page_dma + bi->page_offset);
422
423 rx_desc++;
424 bi++;
425 i++;
426 if (unlikely(!i)) {
427 rx_desc = WX_RX_DESC(rx_ring, 0);
428 bi = rx_ring->rx_buffer_info;
429 i -= rx_ring->count;
430 }
431
432 /* clear the status bits for the next_to_use descriptor */
433 rx_desc->wb.upper.status_error = 0;
434
435 cleaned_count--;
436 } while (cleaned_count);
437
438 i += rx_ring->count;
439
440 if (rx_ring->next_to_use != i) {
441 rx_ring->next_to_use = i;
442 /* update next to alloc since we have filled the ring */
443 rx_ring->next_to_alloc = i;
444
445 /* Force memory writes to complete before letting h/w
446 * know there are new descriptors to fetch. (Only
447 * applicable for weak-ordered memory model archs,
448 * such as IA-64).
449 */
450 wmb();
451 writel(i, rx_ring->tail);
452 }
453 }
454
wx_desc_unused(struct wx_ring * ring)455 u16 wx_desc_unused(struct wx_ring *ring)
456 {
457 u16 ntc = ring->next_to_clean;
458 u16 ntu = ring->next_to_use;
459
460 return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
461 }
462
463 /**
464 * wx_is_non_eop - process handling of non-EOP buffers
465 * @rx_ring: Rx ring being processed
466 * @rx_desc: Rx descriptor for current buffer
467 * @skb: Current socket buffer containing buffer in progress
468 *
469 * This function updates next to clean. If the buffer is an EOP buffer
470 * this function exits returning false, otherwise it will place the
471 * sk_buff in the next buffer to be chained and return true indicating
472 * that this is in fact a non-EOP buffer.
473 **/
wx_is_non_eop(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)474 static bool wx_is_non_eop(struct wx_ring *rx_ring,
475 union wx_rx_desc *rx_desc,
476 struct sk_buff *skb)
477 {
478 u32 ntc = rx_ring->next_to_clean + 1;
479
480 /* fetch, update, and store next to clean */
481 ntc = (ntc < rx_ring->count) ? ntc : 0;
482 rx_ring->next_to_clean = ntc;
483
484 prefetch(WX_RX_DESC(rx_ring, ntc));
485
486 /* if we are the last buffer then there is nothing else to do */
487 if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
488 return false;
489
490 rx_ring->rx_buffer_info[ntc].skb = skb;
491
492 return true;
493 }
494
wx_pull_tail(struct sk_buff * skb)495 static void wx_pull_tail(struct sk_buff *skb)
496 {
497 skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
498 unsigned int pull_len;
499 unsigned char *va;
500
501 /* it is valid to use page_address instead of kmap since we are
502 * working with pages allocated out of the lomem pool per
503 * alloc_page(GFP_ATOMIC)
504 */
505 va = skb_frag_address(frag);
506
507 /* we need the header to contain the greater of either ETH_HLEN or
508 * 60 bytes if the skb->len is less than 60 for skb_pad.
509 */
510 pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
511
512 /* align pull length to size of long to optimize memcpy performance */
513 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
514
515 /* update all of the pointers */
516 skb_frag_size_sub(frag, pull_len);
517 skb_frag_off_add(frag, pull_len);
518 skb->data_len -= pull_len;
519 skb->tail += pull_len;
520 }
521
522 /**
523 * wx_cleanup_headers - Correct corrupted or empty headers
524 * @rx_ring: rx descriptor ring packet is being transacted on
525 * @rx_desc: pointer to the EOP Rx descriptor
526 * @skb: pointer to current skb being fixed
527 *
528 * Check for corrupted packet headers caused by senders on the local L2
529 * embedded NIC switch not setting up their Tx Descriptors right. These
530 * should be very rare.
531 *
532 * Also address the case where we are pulling data in on pages only
533 * and as such no data is present in the skb header.
534 *
535 * In addition if skb is not at least 60 bytes we need to pad it so that
536 * it is large enough to qualify as a valid Ethernet frame.
537 *
538 * Returns true if an error was encountered and skb was freed.
539 **/
wx_cleanup_headers(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)540 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
541 union wx_rx_desc *rx_desc,
542 struct sk_buff *skb)
543 {
544 struct net_device *netdev = rx_ring->netdev;
545
546 /* verify that the packet does not have any known errors */
547 if (!netdev ||
548 unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
549 !(netdev->features & NETIF_F_RXALL))) {
550 dev_kfree_skb_any(skb);
551 return true;
552 }
553
554 /* place header in linear portion of buffer */
555 if (!skb_headlen(skb))
556 wx_pull_tail(skb);
557
558 /* if eth_skb_pad returns an error the skb was freed */
559 if (eth_skb_pad(skb))
560 return true;
561
562 return false;
563 }
564
wx_rx_hash(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)565 static void wx_rx_hash(struct wx_ring *ring,
566 union wx_rx_desc *rx_desc,
567 struct sk_buff *skb)
568 {
569 u16 rss_type;
570
571 if (!(ring->netdev->features & NETIF_F_RXHASH))
572 return;
573
574 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
575 WX_RXD_RSSTYPE_MASK;
576
577 if (!rss_type)
578 return;
579
580 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
581 (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
582 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
583 }
584
585 /**
586 * wx_rx_checksum - indicate in skb if hw indicated a good cksum
587 * @ring: structure containing ring specific data
588 * @rx_desc: current Rx descriptor being processed
589 * @skb: skb currently being received and modified
590 **/
wx_rx_checksum(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)591 static void wx_rx_checksum(struct wx_ring *ring,
592 union wx_rx_desc *rx_desc,
593 struct sk_buff *skb)
594 {
595 struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
596
597 skb_checksum_none_assert(skb);
598 /* Rx csum disabled */
599 if (!(ring->netdev->features & NETIF_F_RXCSUM))
600 return;
601
602 /* if IPv4 header checksum error */
603 if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
604 wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
605 (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
606 wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
607 ring->rx_stats.csum_err++;
608 return;
609 }
610
611 /* L4 checksum offload flag must set for the below code to work */
612 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
613 return;
614
615 /* Hardware can't guarantee csum if IPv6 Dest Header found */
616 if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
617 return;
618
619 /* if L4 checksum error */
620 if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
621 ring->rx_stats.csum_err++;
622 return;
623 }
624
625 /* It must be a TCP or UDP or SCTP packet with a valid checksum */
626 skb->ip_summed = CHECKSUM_UNNECESSARY;
627
628 /* If there is an outer header present that might contain a checksum
629 * we need to bump the checksum level by 1 to reflect the fact that
630 * we are indicating we validated the inner checksum.
631 */
632 if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
633 __skb_incr_checksum_unnecessary(skb);
634 ring->rx_stats.csum_good_cnt++;
635 }
636
wx_rx_vlan(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)637 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
638 struct sk_buff *skb)
639 {
640 u16 ethertype;
641 u8 idx = 0;
642
643 if ((ring->netdev->features &
644 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
645 wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
646 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
647 0x1c0) >> 6;
648 ethertype = ring->q_vector->wx->tpid[idx];
649 __vlan_hwaccel_put_tag(skb, htons(ethertype),
650 le16_to_cpu(rx_desc->wb.upper.vlan));
651 }
652 }
653
654 /**
655 * wx_process_skb_fields - Populate skb header fields from Rx descriptor
656 * @rx_ring: rx descriptor ring packet is being transacted on
657 * @rx_desc: pointer to the EOP Rx descriptor
658 * @skb: pointer to current skb being populated
659 *
660 * This function checks the ring, descriptor, and packet information in
661 * order to populate the hash, checksum, protocol, and
662 * other fields within the skb.
663 **/
wx_process_skb_fields(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)664 static void wx_process_skb_fields(struct wx_ring *rx_ring,
665 union wx_rx_desc *rx_desc,
666 struct sk_buff *skb)
667 {
668 wx_rx_hash(rx_ring, rx_desc, skb);
669 wx_rx_checksum(rx_ring, rx_desc, skb);
670 wx_rx_vlan(rx_ring, rx_desc, skb);
671 skb_record_rx_queue(skb, rx_ring->queue_index);
672 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
673 }
674
675 /**
676 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
677 * @q_vector: structure containing interrupt and ring information
678 * @rx_ring: rx descriptor ring to transact packets on
679 * @budget: Total limit on number of packets to process
680 *
681 * This function provides a "bounce buffer" approach to Rx interrupt
682 * processing. The advantage to this is that on systems that have
683 * expensive overhead for IOMMU access this provides a means of avoiding
684 * it by maintaining the mapping of the page to the system.
685 *
686 * Returns amount of work completed.
687 **/
wx_clean_rx_irq(struct wx_q_vector * q_vector,struct wx_ring * rx_ring,int budget)688 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
689 struct wx_ring *rx_ring,
690 int budget)
691 {
692 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
693 u16 cleaned_count = wx_desc_unused(rx_ring);
694
695 do {
696 struct wx_rx_buffer *rx_buffer;
697 union wx_rx_desc *rx_desc;
698 struct sk_buff *skb;
699 int rx_buffer_pgcnt;
700
701 /* return some buffers to hardware, one at a time is too slow */
702 if (cleaned_count >= WX_RX_BUFFER_WRITE) {
703 wx_alloc_rx_buffers(rx_ring, cleaned_count);
704 cleaned_count = 0;
705 }
706
707 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
708 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
709 break;
710
711 /* This memory barrier is needed to keep us from reading
712 * any other fields out of the rx_desc until we know the
713 * descriptor has been written back
714 */
715 dma_rmb();
716
717 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
718
719 /* retrieve a buffer from the ring */
720 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
721
722 /* exit if we failed to retrieve a buffer */
723 if (!skb) {
724 rx_buffer->pagecnt_bias++;
725 break;
726 }
727
728 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
729 cleaned_count++;
730
731 /* place incomplete frames back on ring for completion */
732 if (wx_is_non_eop(rx_ring, rx_desc, skb))
733 continue;
734
735 /* verify the packet layout is correct */
736 if (wx_cleanup_headers(rx_ring, rx_desc, skb))
737 continue;
738
739 /* probably a little skewed due to removing CRC */
740 total_rx_bytes += skb->len;
741
742 /* populate checksum, timestamp, VLAN, and protocol */
743 wx_process_skb_fields(rx_ring, rx_desc, skb);
744 napi_gro_receive(&q_vector->napi, skb);
745
746 /* update budget accounting */
747 total_rx_packets++;
748 } while (likely(total_rx_packets < budget));
749
750 u64_stats_update_begin(&rx_ring->syncp);
751 rx_ring->stats.packets += total_rx_packets;
752 rx_ring->stats.bytes += total_rx_bytes;
753 u64_stats_update_end(&rx_ring->syncp);
754 q_vector->rx.total_packets += total_rx_packets;
755 q_vector->rx.total_bytes += total_rx_bytes;
756
757 return total_rx_packets;
758 }
759
wx_txring_txq(const struct wx_ring * ring)760 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
761 {
762 return netdev_get_tx_queue(ring->netdev, ring->queue_index);
763 }
764
765 /**
766 * wx_clean_tx_irq - Reclaim resources after transmit completes
767 * @q_vector: structure containing interrupt and ring information
768 * @tx_ring: tx ring to clean
769 * @napi_budget: Used to determine if we are in netpoll
770 **/
wx_clean_tx_irq(struct wx_q_vector * q_vector,struct wx_ring * tx_ring,int napi_budget)771 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
772 struct wx_ring *tx_ring, int napi_budget)
773 {
774 unsigned int budget = q_vector->wx->tx_work_limit;
775 unsigned int total_bytes = 0, total_packets = 0;
776 unsigned int i = tx_ring->next_to_clean;
777 struct wx_tx_buffer *tx_buffer;
778 union wx_tx_desc *tx_desc;
779
780 if (!netif_carrier_ok(tx_ring->netdev))
781 return true;
782
783 tx_buffer = &tx_ring->tx_buffer_info[i];
784 tx_desc = WX_TX_DESC(tx_ring, i);
785 i -= tx_ring->count;
786
787 do {
788 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
789
790 /* if next_to_watch is not set then there is no work pending */
791 if (!eop_desc)
792 break;
793
794 /* prevent any other reads prior to eop_desc */
795 smp_rmb();
796
797 /* if DD is not set pending work has not been completed */
798 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
799 break;
800
801 /* clear next_to_watch to prevent false hangs */
802 tx_buffer->next_to_watch = NULL;
803
804 /* update the statistics for this packet */
805 total_bytes += tx_buffer->bytecount;
806 total_packets += tx_buffer->gso_segs;
807
808 /* free the skb */
809 napi_consume_skb(tx_buffer->skb, napi_budget);
810
811 /* unmap skb header data */
812 dma_unmap_single(tx_ring->dev,
813 dma_unmap_addr(tx_buffer, dma),
814 dma_unmap_len(tx_buffer, len),
815 DMA_TO_DEVICE);
816
817 /* clear tx_buffer data */
818 dma_unmap_len_set(tx_buffer, len, 0);
819
820 /* unmap remaining buffers */
821 while (tx_desc != eop_desc) {
822 tx_buffer++;
823 tx_desc++;
824 i++;
825 if (unlikely(!i)) {
826 i -= tx_ring->count;
827 tx_buffer = tx_ring->tx_buffer_info;
828 tx_desc = WX_TX_DESC(tx_ring, 0);
829 }
830
831 /* unmap any remaining paged data */
832 if (dma_unmap_len(tx_buffer, len)) {
833 dma_unmap_page(tx_ring->dev,
834 dma_unmap_addr(tx_buffer, dma),
835 dma_unmap_len(tx_buffer, len),
836 DMA_TO_DEVICE);
837 dma_unmap_len_set(tx_buffer, len, 0);
838 }
839 }
840
841 /* move us one more past the eop_desc for start of next pkt */
842 tx_buffer++;
843 tx_desc++;
844 i++;
845 if (unlikely(!i)) {
846 i -= tx_ring->count;
847 tx_buffer = tx_ring->tx_buffer_info;
848 tx_desc = WX_TX_DESC(tx_ring, 0);
849 }
850
851 /* issue prefetch for next Tx descriptor */
852 prefetch(tx_desc);
853
854 /* update budget accounting */
855 budget--;
856 } while (likely(budget));
857
858 i += tx_ring->count;
859 tx_ring->next_to_clean = i;
860 u64_stats_update_begin(&tx_ring->syncp);
861 tx_ring->stats.bytes += total_bytes;
862 tx_ring->stats.packets += total_packets;
863 u64_stats_update_end(&tx_ring->syncp);
864 q_vector->tx.total_bytes += total_bytes;
865 q_vector->tx.total_packets += total_packets;
866
867 netdev_tx_completed_queue(wx_txring_txq(tx_ring),
868 total_packets, total_bytes);
869
870 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
871 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
872 (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
873 /* Make sure that anybody stopping the queue after this
874 * sees the new next_to_clean.
875 */
876 smp_mb();
877
878 if (__netif_subqueue_stopped(tx_ring->netdev,
879 tx_ring->queue_index) &&
880 netif_running(tx_ring->netdev))
881 netif_wake_subqueue(tx_ring->netdev,
882 tx_ring->queue_index);
883 }
884
885 return !!budget;
886 }
887
888 /**
889 * wx_poll - NAPI polling RX/TX cleanup routine
890 * @napi: napi struct with our devices info in it
891 * @budget: amount of work driver is allowed to do this pass, in packets
892 *
893 * This function will clean all queues associated with a q_vector.
894 **/
wx_poll(struct napi_struct * napi,int budget)895 static int wx_poll(struct napi_struct *napi, int budget)
896 {
897 struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
898 int per_ring_budget, work_done = 0;
899 struct wx *wx = q_vector->wx;
900 bool clean_complete = true;
901 struct wx_ring *ring;
902
903 wx_for_each_ring(ring, q_vector->tx) {
904 if (!wx_clean_tx_irq(q_vector, ring, budget))
905 clean_complete = false;
906 }
907
908 /* Exit if we are called by netpoll */
909 if (budget <= 0)
910 return budget;
911
912 /* attempt to distribute budget to each queue fairly, but don't allow
913 * the budget to go below 1 because we'll exit polling
914 */
915 if (q_vector->rx.count > 1)
916 per_ring_budget = max(budget / q_vector->rx.count, 1);
917 else
918 per_ring_budget = budget;
919
920 wx_for_each_ring(ring, q_vector->rx) {
921 int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
922
923 work_done += cleaned;
924 if (cleaned >= per_ring_budget)
925 clean_complete = false;
926 }
927
928 /* If all work not completed, return budget and keep polling */
929 if (!clean_complete)
930 return budget;
931
932 /* all work done, exit the polling mode */
933 if (likely(napi_complete_done(napi, work_done))) {
934 if (netif_running(wx->netdev))
935 wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
936 }
937
938 return min(work_done, budget - 1);
939 }
940
wx_maybe_stop_tx(struct wx_ring * tx_ring,u16 size)941 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
942 {
943 if (likely(wx_desc_unused(tx_ring) >= size))
944 return 0;
945
946 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
947
948 /* For the next check */
949 smp_mb();
950
951 /* We need to check again in a case another CPU has just
952 * made room available.
953 */
954 if (likely(wx_desc_unused(tx_ring) < size))
955 return -EBUSY;
956
957 /* A reprieve! - use start_queue because it doesn't call schedule */
958 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
959
960 return 0;
961 }
962
wx_tx_cmd_type(u32 tx_flags)963 static u32 wx_tx_cmd_type(u32 tx_flags)
964 {
965 /* set type for advanced descriptor with frame checksum insertion */
966 u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
967
968 /* set HW vlan bit if vlan is present */
969 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
970 /* set segmentation enable bits for TSO/FSO */
971 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
972 /* set timestamp bit if present */
973 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
974 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
975
976 return cmd_type;
977 }
978
wx_tx_olinfo_status(union wx_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)979 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
980 u32 tx_flags, unsigned int paylen)
981 {
982 u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
983
984 /* enable L4 checksum for TSO and TX checksum offload */
985 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
986 /* enable IPv4 checksum for TSO */
987 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
988 /* enable outer IPv4 checksum for TSO */
989 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
990 WX_TXD_EIPCS);
991 /* Check Context must be set if Tx switch is enabled, which it
992 * always is for case where virtual functions are running
993 */
994 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
995 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
996 WX_TXD_IPSEC);
997 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
998 }
999
wx_tx_map(struct wx_ring * tx_ring,struct wx_tx_buffer * first,const u8 hdr_len)1000 static void wx_tx_map(struct wx_ring *tx_ring,
1001 struct wx_tx_buffer *first,
1002 const u8 hdr_len)
1003 {
1004 struct sk_buff *skb = first->skb;
1005 struct wx_tx_buffer *tx_buffer;
1006 u32 tx_flags = first->tx_flags;
1007 u16 i = tx_ring->next_to_use;
1008 unsigned int data_len, size;
1009 union wx_tx_desc *tx_desc;
1010 skb_frag_t *frag;
1011 dma_addr_t dma;
1012 u32 cmd_type;
1013
1014 cmd_type = wx_tx_cmd_type(tx_flags);
1015 tx_desc = WX_TX_DESC(tx_ring, i);
1016 wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
1017
1018 size = skb_headlen(skb);
1019 data_len = skb->data_len;
1020 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1021
1022 tx_buffer = first;
1023
1024 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1025 if (dma_mapping_error(tx_ring->dev, dma))
1026 goto dma_error;
1027
1028 /* record length, and DMA address */
1029 dma_unmap_len_set(tx_buffer, len, size);
1030 dma_unmap_addr_set(tx_buffer, dma, dma);
1031
1032 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1033
1034 while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
1035 tx_desc->read.cmd_type_len =
1036 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
1037
1038 i++;
1039 tx_desc++;
1040 if (i == tx_ring->count) {
1041 tx_desc = WX_TX_DESC(tx_ring, 0);
1042 i = 0;
1043 }
1044 tx_desc->read.olinfo_status = 0;
1045
1046 dma += WX_MAX_DATA_PER_TXD;
1047 size -= WX_MAX_DATA_PER_TXD;
1048
1049 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1050 }
1051
1052 if (likely(!data_len))
1053 break;
1054
1055 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1056
1057 i++;
1058 tx_desc++;
1059 if (i == tx_ring->count) {
1060 tx_desc = WX_TX_DESC(tx_ring, 0);
1061 i = 0;
1062 }
1063 tx_desc->read.olinfo_status = 0;
1064
1065 size = skb_frag_size(frag);
1066
1067 data_len -= size;
1068
1069 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1070 DMA_TO_DEVICE);
1071
1072 tx_buffer = &tx_ring->tx_buffer_info[i];
1073 }
1074
1075 /* write last descriptor with RS and EOP bits */
1076 cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1077 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1078
1079 netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1080
1081 skb_tx_timestamp(skb);
1082
1083 /* Force memory writes to complete before letting h/w know there
1084 * are new descriptors to fetch. (Only applicable for weak-ordered
1085 * memory model archs, such as IA-64).
1086 *
1087 * We also need this memory barrier to make certain all of the
1088 * status bits have been updated before next_to_watch is written.
1089 */
1090 wmb();
1091
1092 /* set next_to_watch value indicating a packet is present */
1093 first->next_to_watch = tx_desc;
1094
1095 i++;
1096 if (i == tx_ring->count)
1097 i = 0;
1098
1099 tx_ring->next_to_use = i;
1100
1101 wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1102
1103 if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1104 writel(i, tx_ring->tail);
1105
1106 return;
1107 dma_error:
1108 dev_err(tx_ring->dev, "TX DMA map failed\n");
1109
1110 /* clear dma mappings for failed tx_buffer_info map */
1111 for (;;) {
1112 tx_buffer = &tx_ring->tx_buffer_info[i];
1113 if (dma_unmap_len(tx_buffer, len))
1114 dma_unmap_page(tx_ring->dev,
1115 dma_unmap_addr(tx_buffer, dma),
1116 dma_unmap_len(tx_buffer, len),
1117 DMA_TO_DEVICE);
1118 dma_unmap_len_set(tx_buffer, len, 0);
1119 if (tx_buffer == first)
1120 break;
1121 if (i == 0)
1122 i += tx_ring->count;
1123 i--;
1124 }
1125
1126 dev_kfree_skb_any(first->skb);
1127 first->skb = NULL;
1128
1129 tx_ring->next_to_use = i;
1130 }
1131
wx_tx_ctxtdesc(struct wx_ring * tx_ring,u32 vlan_macip_lens,u32 fcoe_sof_eof,u32 type_tucmd,u32 mss_l4len_idx)1132 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1133 u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1134 {
1135 struct wx_tx_context_desc *context_desc;
1136 u16 i = tx_ring->next_to_use;
1137
1138 context_desc = WX_TX_CTXTDESC(tx_ring, i);
1139 i++;
1140 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1141
1142 /* set bits to identify this as an advanced context descriptor */
1143 type_tucmd |= WX_TXD_DTYP_CTXT;
1144 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1145 context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof);
1146 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1147 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1148 }
1149
wx_get_ipv6_proto(struct sk_buff * skb,int offset,u8 * nexthdr)1150 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1151 {
1152 struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1153
1154 *nexthdr = hdr->nexthdr;
1155 offset += sizeof(struct ipv6hdr);
1156 while (ipv6_ext_hdr(*nexthdr)) {
1157 struct ipv6_opt_hdr _hdr, *hp;
1158
1159 if (*nexthdr == NEXTHDR_NONE)
1160 return;
1161 hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
1162 if (!hp)
1163 return;
1164 if (*nexthdr == NEXTHDR_FRAGMENT)
1165 break;
1166 *nexthdr = hp->nexthdr;
1167 }
1168 }
1169
1170 union network_header {
1171 struct iphdr *ipv4;
1172 struct ipv6hdr *ipv6;
1173 void *raw;
1174 };
1175
wx_encode_tx_desc_ptype(const struct wx_tx_buffer * first)1176 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1177 {
1178 u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1179 struct sk_buff *skb = first->skb;
1180
1181 if (skb->encapsulation) {
1182 union network_header hdr;
1183
1184 switch (first->protocol) {
1185 case htons(ETH_P_IP):
1186 tun_prot = ip_hdr(skb)->protocol;
1187 ptype = WX_PTYPE_TUN_IPV4;
1188 break;
1189 case htons(ETH_P_IPV6):
1190 wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
1191 ptype = WX_PTYPE_TUN_IPV6;
1192 break;
1193 default:
1194 return ptype;
1195 }
1196
1197 if (tun_prot == IPPROTO_IPIP) {
1198 hdr.raw = (void *)inner_ip_hdr(skb);
1199 ptype |= WX_PTYPE_PKT_IPIP;
1200 } else if (tun_prot == IPPROTO_UDP) {
1201 hdr.raw = (void *)inner_ip_hdr(skb);
1202 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1203 skb->inner_protocol != htons(ETH_P_TEB)) {
1204 ptype |= WX_PTYPE_PKT_IG;
1205 } else {
1206 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1207 == htons(ETH_P_8021Q))
1208 ptype |= WX_PTYPE_PKT_IGMV;
1209 else
1210 ptype |= WX_PTYPE_PKT_IGM;
1211 }
1212
1213 } else if (tun_prot == IPPROTO_GRE) {
1214 hdr.raw = (void *)inner_ip_hdr(skb);
1215 if (skb->inner_protocol == htons(ETH_P_IP) ||
1216 skb->inner_protocol == htons(ETH_P_IPV6)) {
1217 ptype |= WX_PTYPE_PKT_IG;
1218 } else {
1219 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1220 == htons(ETH_P_8021Q))
1221 ptype |= WX_PTYPE_PKT_IGMV;
1222 else
1223 ptype |= WX_PTYPE_PKT_IGM;
1224 }
1225 } else {
1226 return ptype;
1227 }
1228
1229 switch (hdr.ipv4->version) {
1230 case IPVERSION:
1231 l4_prot = hdr.ipv4->protocol;
1232 break;
1233 case 6:
1234 wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
1235 ptype |= WX_PTYPE_PKT_IPV6;
1236 break;
1237 default:
1238 return ptype;
1239 }
1240 } else {
1241 switch (first->protocol) {
1242 case htons(ETH_P_IP):
1243 l4_prot = ip_hdr(skb)->protocol;
1244 ptype = WX_PTYPE_PKT_IP;
1245 break;
1246 case htons(ETH_P_IPV6):
1247 wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
1248 ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1249 break;
1250 default:
1251 return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1252 }
1253 }
1254 switch (l4_prot) {
1255 case IPPROTO_TCP:
1256 ptype |= WX_PTYPE_TYP_TCP;
1257 break;
1258 case IPPROTO_UDP:
1259 ptype |= WX_PTYPE_TYP_UDP;
1260 break;
1261 case IPPROTO_SCTP:
1262 ptype |= WX_PTYPE_TYP_SCTP;
1263 break;
1264 default:
1265 ptype |= WX_PTYPE_TYP_IP;
1266 break;
1267 }
1268
1269 return ptype;
1270 }
1271
wx_tso(struct wx_ring * tx_ring,struct wx_tx_buffer * first,u8 * hdr_len,u8 ptype)1272 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1273 u8 *hdr_len, u8 ptype)
1274 {
1275 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1276 struct net_device *netdev = tx_ring->netdev;
1277 u32 l4len, tunhdr_eiplen_tunlen = 0;
1278 struct sk_buff *skb = first->skb;
1279 bool enc = skb->encapsulation;
1280 struct ipv6hdr *ipv6h;
1281 struct tcphdr *tcph;
1282 struct iphdr *iph;
1283 u8 tun_prot = 0;
1284 int err;
1285
1286 if (skb->ip_summed != CHECKSUM_PARTIAL)
1287 return 0;
1288
1289 if (!skb_is_gso(skb))
1290 return 0;
1291
1292 err = skb_cow_head(skb, 0);
1293 if (err < 0)
1294 return err;
1295
1296 /* indicates the inner headers in the skbuff are valid. */
1297 iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1298 if (iph->version == 4) {
1299 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1300 iph->tot_len = 0;
1301 iph->check = 0;
1302 tcph->check = ~csum_tcpudp_magic(iph->saddr,
1303 iph->daddr, 0,
1304 IPPROTO_TCP, 0);
1305 first->tx_flags |= WX_TX_FLAGS_TSO |
1306 WX_TX_FLAGS_CSUM |
1307 WX_TX_FLAGS_IPV4 |
1308 WX_TX_FLAGS_CC;
1309 } else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1310 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1311 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1312 ipv6h->payload_len = 0;
1313 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1314 &ipv6h->daddr, 0,
1315 IPPROTO_TCP, 0);
1316 first->tx_flags |= WX_TX_FLAGS_TSO |
1317 WX_TX_FLAGS_CSUM |
1318 WX_TX_FLAGS_CC;
1319 }
1320
1321 /* compute header lengths */
1322 l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1323 *hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) :
1324 skb_transport_offset(skb);
1325 *hdr_len += l4len;
1326
1327 /* update gso size and bytecount with header size */
1328 first->gso_segs = skb_shinfo(skb)->gso_segs;
1329 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1330
1331 /* mss_l4len_id: use 0 as index for TSO */
1332 mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1333 mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1334
1335 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1336 if (enc) {
1337 switch (first->protocol) {
1338 case htons(ETH_P_IP):
1339 tun_prot = ip_hdr(skb)->protocol;
1340 first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1341 break;
1342 case htons(ETH_P_IPV6):
1343 tun_prot = ipv6_hdr(skb)->nexthdr;
1344 break;
1345 default:
1346 break;
1347 }
1348 switch (tun_prot) {
1349 case IPPROTO_UDP:
1350 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1351 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1352 WX_TXD_OUTER_IPLEN_SHIFT) |
1353 (((skb_inner_mac_header(skb) -
1354 skb_transport_header(skb)) >> 1) <<
1355 WX_TXD_TUNNEL_LEN_SHIFT);
1356 break;
1357 case IPPROTO_GRE:
1358 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1359 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1360 WX_TXD_OUTER_IPLEN_SHIFT) |
1361 (((skb_inner_mac_header(skb) -
1362 skb_transport_header(skb)) >> 1) <<
1363 WX_TXD_TUNNEL_LEN_SHIFT);
1364 break;
1365 case IPPROTO_IPIP:
1366 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1367 (char *)ip_hdr(skb)) >> 2) <<
1368 WX_TXD_OUTER_IPLEN_SHIFT;
1369 break;
1370 default:
1371 break;
1372 }
1373 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1374 } else {
1375 vlan_macip_lens = skb_network_header_len(skb) >> 1;
1376 }
1377
1378 vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1379 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1380
1381 type_tucmd = ptype << 24;
1382 if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1383 netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1384 type_tucmd |= WX_SET_FLAG(first->tx_flags,
1385 WX_TX_FLAGS_HW_VLAN,
1386 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1387 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1388 type_tucmd, mss_l4len_idx);
1389
1390 return 1;
1391 }
1392
wx_tx_csum(struct wx_ring * tx_ring,struct wx_tx_buffer * first,u8 ptype)1393 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1394 u8 ptype)
1395 {
1396 u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1397 struct net_device *netdev = tx_ring->netdev;
1398 u32 mss_l4len_idx = 0, type_tucmd;
1399 struct sk_buff *skb = first->skb;
1400 u8 tun_prot = 0;
1401
1402 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1403 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1404 !(first->tx_flags & WX_TX_FLAGS_CC))
1405 return;
1406 vlan_macip_lens = skb_network_offset(skb) <<
1407 WX_TXD_MACLEN_SHIFT;
1408 } else {
1409 u8 l4_prot = 0;
1410 union {
1411 struct iphdr *ipv4;
1412 struct ipv6hdr *ipv6;
1413 u8 *raw;
1414 } network_hdr;
1415 union {
1416 struct tcphdr *tcphdr;
1417 u8 *raw;
1418 } transport_hdr;
1419
1420 if (skb->encapsulation) {
1421 network_hdr.raw = skb_inner_network_header(skb);
1422 transport_hdr.raw = skb_inner_transport_header(skb);
1423 vlan_macip_lens = skb_network_offset(skb) <<
1424 WX_TXD_MACLEN_SHIFT;
1425 switch (first->protocol) {
1426 case htons(ETH_P_IP):
1427 tun_prot = ip_hdr(skb)->protocol;
1428 break;
1429 case htons(ETH_P_IPV6):
1430 tun_prot = ipv6_hdr(skb)->nexthdr;
1431 break;
1432 default:
1433 return;
1434 }
1435 switch (tun_prot) {
1436 case IPPROTO_UDP:
1437 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1438 tunhdr_eiplen_tunlen |=
1439 ((skb_network_header_len(skb) >> 2) <<
1440 WX_TXD_OUTER_IPLEN_SHIFT) |
1441 (((skb_inner_mac_header(skb) -
1442 skb_transport_header(skb)) >> 1) <<
1443 WX_TXD_TUNNEL_LEN_SHIFT);
1444 break;
1445 case IPPROTO_GRE:
1446 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1447 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1448 WX_TXD_OUTER_IPLEN_SHIFT) |
1449 (((skb_inner_mac_header(skb) -
1450 skb_transport_header(skb)) >> 1) <<
1451 WX_TXD_TUNNEL_LEN_SHIFT);
1452 break;
1453 case IPPROTO_IPIP:
1454 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1455 (char *)ip_hdr(skb)) >> 2) <<
1456 WX_TXD_OUTER_IPLEN_SHIFT;
1457 break;
1458 default:
1459 break;
1460 }
1461
1462 } else {
1463 network_hdr.raw = skb_network_header(skb);
1464 transport_hdr.raw = skb_transport_header(skb);
1465 vlan_macip_lens = skb_network_offset(skb) <<
1466 WX_TXD_MACLEN_SHIFT;
1467 }
1468
1469 switch (network_hdr.ipv4->version) {
1470 case IPVERSION:
1471 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1472 l4_prot = network_hdr.ipv4->protocol;
1473 break;
1474 case 6:
1475 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1476 l4_prot = network_hdr.ipv6->nexthdr;
1477 break;
1478 default:
1479 break;
1480 }
1481
1482 switch (l4_prot) {
1483 case IPPROTO_TCP:
1484 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1485 WX_TXD_L4LEN_SHIFT;
1486 break;
1487 case IPPROTO_SCTP:
1488 mss_l4len_idx = sizeof(struct sctphdr) <<
1489 WX_TXD_L4LEN_SHIFT;
1490 break;
1491 case IPPROTO_UDP:
1492 mss_l4len_idx = sizeof(struct udphdr) <<
1493 WX_TXD_L4LEN_SHIFT;
1494 break;
1495 default:
1496 break;
1497 }
1498
1499 /* update TX checksum flag */
1500 first->tx_flags |= WX_TX_FLAGS_CSUM;
1501 }
1502 first->tx_flags |= WX_TX_FLAGS_CC;
1503 /* vlan_macip_lens: MACLEN, VLAN tag */
1504 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1505
1506 type_tucmd = ptype << 24;
1507 if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1508 netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1509 type_tucmd |= WX_SET_FLAG(first->tx_flags,
1510 WX_TX_FLAGS_HW_VLAN,
1511 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1512 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1513 type_tucmd, mss_l4len_idx);
1514 }
1515
wx_xmit_frame_ring(struct sk_buff * skb,struct wx_ring * tx_ring)1516 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1517 struct wx_ring *tx_ring)
1518 {
1519 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1520 struct wx_tx_buffer *first;
1521 u8 hdr_len = 0, ptype;
1522 unsigned short f;
1523 u32 tx_flags = 0;
1524 int tso;
1525
1526 /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1527 * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1528 * + 2 desc gap to keep tail from touching head,
1529 * + 1 desc for context descriptor,
1530 * otherwise try next time
1531 */
1532 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1533 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1534 frags[f]));
1535
1536 if (wx_maybe_stop_tx(tx_ring, count + 3))
1537 return NETDEV_TX_BUSY;
1538
1539 /* record the location of the first descriptor for this packet */
1540 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1541 first->skb = skb;
1542 first->bytecount = skb->len;
1543 first->gso_segs = 1;
1544
1545 /* if we have a HW VLAN tag being added default to the HW one */
1546 if (skb_vlan_tag_present(skb)) {
1547 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1548 tx_flags |= WX_TX_FLAGS_HW_VLAN;
1549 }
1550
1551 /* record initial flags and protocol */
1552 first->tx_flags = tx_flags;
1553 first->protocol = vlan_get_protocol(skb);
1554
1555 ptype = wx_encode_tx_desc_ptype(first);
1556
1557 tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1558 if (tso < 0)
1559 goto out_drop;
1560 else if (!tso)
1561 wx_tx_csum(tx_ring, first, ptype);
1562 wx_tx_map(tx_ring, first, hdr_len);
1563
1564 return NETDEV_TX_OK;
1565 out_drop:
1566 dev_kfree_skb_any(first->skb);
1567 first->skb = NULL;
1568
1569 return NETDEV_TX_OK;
1570 }
1571
wx_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1572 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1573 struct net_device *netdev)
1574 {
1575 unsigned int r_idx = skb->queue_mapping;
1576 struct wx *wx = netdev_priv(netdev);
1577 struct wx_ring *tx_ring;
1578
1579 if (!netif_carrier_ok(netdev)) {
1580 dev_kfree_skb_any(skb);
1581 return NETDEV_TX_OK;
1582 }
1583
1584 /* The minimum packet size for olinfo paylen is 17 so pad the skb
1585 * in order to meet this minimum size requirement.
1586 */
1587 if (skb_put_padto(skb, 17))
1588 return NETDEV_TX_OK;
1589
1590 if (r_idx >= wx->num_tx_queues)
1591 r_idx = r_idx % wx->num_tx_queues;
1592 tx_ring = wx->tx_ring[r_idx];
1593
1594 return wx_xmit_frame_ring(skb, tx_ring);
1595 }
1596 EXPORT_SYMBOL(wx_xmit_frame);
1597
wx_napi_enable_all(struct wx * wx)1598 void wx_napi_enable_all(struct wx *wx)
1599 {
1600 struct wx_q_vector *q_vector;
1601 int q_idx;
1602
1603 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1604 q_vector = wx->q_vector[q_idx];
1605 napi_enable(&q_vector->napi);
1606 }
1607 }
1608 EXPORT_SYMBOL(wx_napi_enable_all);
1609
wx_napi_disable_all(struct wx * wx)1610 void wx_napi_disable_all(struct wx *wx)
1611 {
1612 struct wx_q_vector *q_vector;
1613 int q_idx;
1614
1615 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1616 q_vector = wx->q_vector[q_idx];
1617 napi_disable(&q_vector->napi);
1618 }
1619 }
1620 EXPORT_SYMBOL(wx_napi_disable_all);
1621
1622 /**
1623 * wx_set_rss_queues: Allocate queues for RSS
1624 * @wx: board private structure to initialize
1625 *
1626 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1627 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1628 *
1629 **/
wx_set_rss_queues(struct wx * wx)1630 static void wx_set_rss_queues(struct wx *wx)
1631 {
1632 wx->num_rx_queues = wx->mac.max_rx_queues;
1633 wx->num_tx_queues = wx->mac.max_tx_queues;
1634 }
1635
wx_set_num_queues(struct wx * wx)1636 static void wx_set_num_queues(struct wx *wx)
1637 {
1638 /* Start with base case */
1639 wx->num_rx_queues = 1;
1640 wx->num_tx_queues = 1;
1641 wx->queues_per_pool = 1;
1642
1643 wx_set_rss_queues(wx);
1644 }
1645
1646 /**
1647 * wx_acquire_msix_vectors - acquire MSI-X vectors
1648 * @wx: board private structure
1649 *
1650 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1651 * return a negative error code if unable to acquire MSI-X vectors for any
1652 * reason.
1653 */
wx_acquire_msix_vectors(struct wx * wx)1654 static int wx_acquire_msix_vectors(struct wx *wx)
1655 {
1656 struct irq_affinity affd = {0, };
1657 int nvecs, i;
1658
1659 nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors);
1660
1661 wx->msix_entries = kcalloc(nvecs,
1662 sizeof(struct msix_entry),
1663 GFP_KERNEL);
1664 if (!wx->msix_entries)
1665 return -ENOMEM;
1666
1667 nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1668 nvecs,
1669 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1670 &affd);
1671 if (nvecs < 0) {
1672 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1673 kfree(wx->msix_entries);
1674 wx->msix_entries = NULL;
1675 return nvecs;
1676 }
1677
1678 for (i = 0; i < nvecs; i++) {
1679 wx->msix_entries[i].entry = i;
1680 wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i);
1681 }
1682
1683 /* one for msix_other */
1684 nvecs -= 1;
1685 wx->num_q_vectors = nvecs;
1686 wx->num_rx_queues = nvecs;
1687 wx->num_tx_queues = nvecs;
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * wx_set_interrupt_capability - set MSI-X or MSI if supported
1694 * @wx: board private structure to initialize
1695 *
1696 * Attempt to configure the interrupts using the best available
1697 * capabilities of the hardware and the kernel.
1698 **/
wx_set_interrupt_capability(struct wx * wx)1699 static int wx_set_interrupt_capability(struct wx *wx)
1700 {
1701 struct pci_dev *pdev = wx->pdev;
1702 int nvecs, ret;
1703
1704 /* We will try to get MSI-X interrupts first */
1705 ret = wx_acquire_msix_vectors(wx);
1706 if (ret == 0 || (ret == -ENOMEM))
1707 return ret;
1708
1709 wx->num_rx_queues = 1;
1710 wx->num_tx_queues = 1;
1711 wx->num_q_vectors = 1;
1712
1713 /* minmum one for queue, one for misc*/
1714 nvecs = 1;
1715 nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1716 nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
1717 if (nvecs == 1) {
1718 if (pdev->msi_enabled)
1719 wx_err(wx, "Fallback to MSI.\n");
1720 else
1721 wx_err(wx, "Fallback to LEGACY.\n");
1722 } else {
1723 wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
1724 return nvecs;
1725 }
1726
1727 pdev->irq = pci_irq_vector(pdev, 0);
1728
1729 return 0;
1730 }
1731
1732 /**
1733 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1734 * @wx: board private structure to initialize
1735 *
1736 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1737 *
1738 **/
wx_cache_ring_rss(struct wx * wx)1739 static void wx_cache_ring_rss(struct wx *wx)
1740 {
1741 u16 i;
1742
1743 for (i = 0; i < wx->num_rx_queues; i++)
1744 wx->rx_ring[i]->reg_idx = i;
1745
1746 for (i = 0; i < wx->num_tx_queues; i++)
1747 wx->tx_ring[i]->reg_idx = i;
1748 }
1749
wx_add_ring(struct wx_ring * ring,struct wx_ring_container * head)1750 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1751 {
1752 ring->next = head->ring;
1753 head->ring = ring;
1754 head->count++;
1755 }
1756
1757 /**
1758 * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1759 * @wx: board private structure to initialize
1760 * @v_count: q_vectors allocated on wx, used for ring interleaving
1761 * @v_idx: index of vector in wx struct
1762 * @txr_count: total number of Tx rings to allocate
1763 * @txr_idx: index of first Tx ring to allocate
1764 * @rxr_count: total number of Rx rings to allocate
1765 * @rxr_idx: index of first Rx ring to allocate
1766 *
1767 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1768 **/
wx_alloc_q_vector(struct wx * wx,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)1769 static int wx_alloc_q_vector(struct wx *wx,
1770 unsigned int v_count, unsigned int v_idx,
1771 unsigned int txr_count, unsigned int txr_idx,
1772 unsigned int rxr_count, unsigned int rxr_idx)
1773 {
1774 struct wx_q_vector *q_vector;
1775 int ring_count, default_itr;
1776 struct wx_ring *ring;
1777
1778 /* note this will allocate space for the ring structure as well! */
1779 ring_count = txr_count + rxr_count;
1780
1781 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1782 GFP_KERNEL);
1783 if (!q_vector)
1784 return -ENOMEM;
1785
1786 /* initialize NAPI */
1787 netif_napi_add(wx->netdev, &q_vector->napi,
1788 wx_poll);
1789
1790 /* tie q_vector and wx together */
1791 wx->q_vector[v_idx] = q_vector;
1792 q_vector->wx = wx;
1793 q_vector->v_idx = v_idx;
1794 if (cpu_online(v_idx))
1795 q_vector->numa_node = cpu_to_node(v_idx);
1796
1797 /* initialize pointer to rings */
1798 ring = q_vector->ring;
1799
1800 if (wx->mac.type == wx_mac_sp)
1801 default_itr = WX_12K_ITR;
1802 else
1803 default_itr = WX_7K_ITR;
1804 /* initialize ITR */
1805 if (txr_count && !rxr_count)
1806 /* tx only vector */
1807 q_vector->itr = wx->tx_itr_setting ?
1808 default_itr : wx->tx_itr_setting;
1809 else
1810 /* rx or rx/tx vector */
1811 q_vector->itr = wx->rx_itr_setting ?
1812 default_itr : wx->rx_itr_setting;
1813
1814 while (txr_count) {
1815 /* assign generic ring traits */
1816 ring->dev = &wx->pdev->dev;
1817 ring->netdev = wx->netdev;
1818
1819 /* configure backlink on ring */
1820 ring->q_vector = q_vector;
1821
1822 /* update q_vector Tx values */
1823 wx_add_ring(ring, &q_vector->tx);
1824
1825 /* apply Tx specific ring traits */
1826 ring->count = wx->tx_ring_count;
1827
1828 ring->queue_index = txr_idx;
1829
1830 /* assign ring to wx */
1831 wx->tx_ring[txr_idx] = ring;
1832
1833 /* update count and index */
1834 txr_count--;
1835 txr_idx += v_count;
1836
1837 /* push pointer to next ring */
1838 ring++;
1839 }
1840
1841 while (rxr_count) {
1842 /* assign generic ring traits */
1843 ring->dev = &wx->pdev->dev;
1844 ring->netdev = wx->netdev;
1845
1846 /* configure backlink on ring */
1847 ring->q_vector = q_vector;
1848
1849 /* update q_vector Rx values */
1850 wx_add_ring(ring, &q_vector->rx);
1851
1852 /* apply Rx specific ring traits */
1853 ring->count = wx->rx_ring_count;
1854 ring->queue_index = rxr_idx;
1855
1856 /* assign ring to wx */
1857 wx->rx_ring[rxr_idx] = ring;
1858
1859 /* update count and index */
1860 rxr_count--;
1861 rxr_idx += v_count;
1862
1863 /* push pointer to next ring */
1864 ring++;
1865 }
1866
1867 return 0;
1868 }
1869
1870 /**
1871 * wx_free_q_vector - Free memory allocated for specific interrupt vector
1872 * @wx: board private structure to initialize
1873 * @v_idx: Index of vector to be freed
1874 *
1875 * This function frees the memory allocated to the q_vector. In addition if
1876 * NAPI is enabled it will delete any references to the NAPI struct prior
1877 * to freeing the q_vector.
1878 **/
wx_free_q_vector(struct wx * wx,int v_idx)1879 static void wx_free_q_vector(struct wx *wx, int v_idx)
1880 {
1881 struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1882 struct wx_ring *ring;
1883
1884 wx_for_each_ring(ring, q_vector->tx)
1885 wx->tx_ring[ring->queue_index] = NULL;
1886
1887 wx_for_each_ring(ring, q_vector->rx)
1888 wx->rx_ring[ring->queue_index] = NULL;
1889
1890 wx->q_vector[v_idx] = NULL;
1891 netif_napi_del(&q_vector->napi);
1892 kfree_rcu(q_vector, rcu);
1893 }
1894
1895 /**
1896 * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1897 * @wx: board private structure to initialize
1898 *
1899 * We allocate one q_vector per queue interrupt. If allocation fails we
1900 * return -ENOMEM.
1901 **/
wx_alloc_q_vectors(struct wx * wx)1902 static int wx_alloc_q_vectors(struct wx *wx)
1903 {
1904 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1905 unsigned int rxr_remaining = wx->num_rx_queues;
1906 unsigned int txr_remaining = wx->num_tx_queues;
1907 unsigned int q_vectors = wx->num_q_vectors;
1908 int rqpv, tqpv;
1909 int err;
1910
1911 for (; v_idx < q_vectors; v_idx++) {
1912 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1913 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1914 err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1915 tqpv, txr_idx,
1916 rqpv, rxr_idx);
1917
1918 if (err)
1919 goto err_out;
1920
1921 /* update counts and index */
1922 rxr_remaining -= rqpv;
1923 txr_remaining -= tqpv;
1924 rxr_idx++;
1925 txr_idx++;
1926 }
1927
1928 return 0;
1929
1930 err_out:
1931 wx->num_tx_queues = 0;
1932 wx->num_rx_queues = 0;
1933 wx->num_q_vectors = 0;
1934
1935 while (v_idx--)
1936 wx_free_q_vector(wx, v_idx);
1937
1938 return -ENOMEM;
1939 }
1940
1941 /**
1942 * wx_free_q_vectors - Free memory allocated for interrupt vectors
1943 * @wx: board private structure to initialize
1944 *
1945 * This function frees the memory allocated to the q_vectors. In addition if
1946 * NAPI is enabled it will delete any references to the NAPI struct prior
1947 * to freeing the q_vector.
1948 **/
wx_free_q_vectors(struct wx * wx)1949 static void wx_free_q_vectors(struct wx *wx)
1950 {
1951 int v_idx = wx->num_q_vectors;
1952
1953 wx->num_tx_queues = 0;
1954 wx->num_rx_queues = 0;
1955 wx->num_q_vectors = 0;
1956
1957 while (v_idx--)
1958 wx_free_q_vector(wx, v_idx);
1959 }
1960
wx_reset_interrupt_capability(struct wx * wx)1961 void wx_reset_interrupt_capability(struct wx *wx)
1962 {
1963 struct pci_dev *pdev = wx->pdev;
1964
1965 if (!pdev->msi_enabled && !pdev->msix_enabled)
1966 return;
1967
1968 pci_free_irq_vectors(wx->pdev);
1969 if (pdev->msix_enabled) {
1970 kfree(wx->msix_entries);
1971 wx->msix_entries = NULL;
1972 }
1973 }
1974 EXPORT_SYMBOL(wx_reset_interrupt_capability);
1975
1976 /**
1977 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
1978 * @wx: board private structure to clear interrupt scheme on
1979 *
1980 * We go through and clear interrupt specific resources and reset the structure
1981 * to pre-load conditions
1982 **/
wx_clear_interrupt_scheme(struct wx * wx)1983 void wx_clear_interrupt_scheme(struct wx *wx)
1984 {
1985 wx_free_q_vectors(wx);
1986 wx_reset_interrupt_capability(wx);
1987 }
1988 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
1989
wx_init_interrupt_scheme(struct wx * wx)1990 int wx_init_interrupt_scheme(struct wx *wx)
1991 {
1992 int ret;
1993
1994 /* Number of supported queues */
1995 wx_set_num_queues(wx);
1996
1997 /* Set interrupt mode */
1998 ret = wx_set_interrupt_capability(wx);
1999 if (ret) {
2000 wx_err(wx, "Allocate irq vectors for failed.\n");
2001 return ret;
2002 }
2003
2004 /* Allocate memory for queues */
2005 ret = wx_alloc_q_vectors(wx);
2006 if (ret) {
2007 wx_err(wx, "Unable to allocate memory for queue vectors.\n");
2008 wx_reset_interrupt_capability(wx);
2009 return ret;
2010 }
2011
2012 wx_cache_ring_rss(wx);
2013
2014 return 0;
2015 }
2016 EXPORT_SYMBOL(wx_init_interrupt_scheme);
2017
wx_msix_clean_rings(int __always_unused irq,void * data)2018 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
2019 {
2020 struct wx_q_vector *q_vector = data;
2021
2022 /* EIAM disabled interrupts (on this vector) for us */
2023 if (q_vector->rx.ring || q_vector->tx.ring)
2024 napi_schedule_irqoff(&q_vector->napi);
2025
2026 return IRQ_HANDLED;
2027 }
2028 EXPORT_SYMBOL(wx_msix_clean_rings);
2029
wx_free_irq(struct wx * wx)2030 void wx_free_irq(struct wx *wx)
2031 {
2032 struct pci_dev *pdev = wx->pdev;
2033 int vector;
2034
2035 if (!(pdev->msix_enabled)) {
2036 free_irq(pdev->irq, wx);
2037 return;
2038 }
2039
2040 for (vector = 0; vector < wx->num_q_vectors; vector++) {
2041 struct wx_q_vector *q_vector = wx->q_vector[vector];
2042 struct msix_entry *entry = &wx->msix_entries[vector];
2043
2044 /* free only the irqs that were actually requested */
2045 if (!q_vector->rx.ring && !q_vector->tx.ring)
2046 continue;
2047
2048 free_irq(entry->vector, q_vector);
2049 }
2050
2051 if (wx->mac.type == wx_mac_em)
2052 free_irq(wx->msix_entries[vector].vector, wx);
2053 }
2054 EXPORT_SYMBOL(wx_free_irq);
2055
2056 /**
2057 * wx_setup_isb_resources - allocate interrupt status resources
2058 * @wx: board private structure
2059 *
2060 * Return 0 on success, negative on failure
2061 **/
wx_setup_isb_resources(struct wx * wx)2062 int wx_setup_isb_resources(struct wx *wx)
2063 {
2064 struct pci_dev *pdev = wx->pdev;
2065
2066 wx->isb_mem = dma_alloc_coherent(&pdev->dev,
2067 sizeof(u32) * 4,
2068 &wx->isb_dma,
2069 GFP_KERNEL);
2070 if (!wx->isb_mem) {
2071 wx_err(wx, "Alloc isb_mem failed\n");
2072 return -ENOMEM;
2073 }
2074
2075 return 0;
2076 }
2077 EXPORT_SYMBOL(wx_setup_isb_resources);
2078
2079 /**
2080 * wx_free_isb_resources - allocate all queues Rx resources
2081 * @wx: board private structure
2082 *
2083 * Return 0 on success, negative on failure
2084 **/
wx_free_isb_resources(struct wx * wx)2085 void wx_free_isb_resources(struct wx *wx)
2086 {
2087 struct pci_dev *pdev = wx->pdev;
2088
2089 dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2090 wx->isb_mem, wx->isb_dma);
2091 wx->isb_mem = NULL;
2092 }
2093 EXPORT_SYMBOL(wx_free_isb_resources);
2094
wx_misc_isb(struct wx * wx,enum wx_isb_idx idx)2095 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2096 {
2097 u32 cur_tag = 0;
2098
2099 cur_tag = wx->isb_mem[WX_ISB_HEADER];
2100 wx->isb_tag[idx] = cur_tag;
2101
2102 return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2103 }
2104 EXPORT_SYMBOL(wx_misc_isb);
2105
2106 /**
2107 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2108 * @wx: pointer to wx struct
2109 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2110 * @queue: queue to map the corresponding interrupt to
2111 * @msix_vector: the vector to map to the corresponding queue
2112 *
2113 **/
wx_set_ivar(struct wx * wx,s8 direction,u16 queue,u16 msix_vector)2114 static void wx_set_ivar(struct wx *wx, s8 direction,
2115 u16 queue, u16 msix_vector)
2116 {
2117 u32 ivar, index;
2118
2119 if (direction == -1) {
2120 /* other causes */
2121 msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2122 index = 0;
2123 ivar = rd32(wx, WX_PX_MISC_IVAR);
2124 ivar &= ~(0xFF << index);
2125 ivar |= (msix_vector << index);
2126 wr32(wx, WX_PX_MISC_IVAR, ivar);
2127 } else {
2128 /* tx or rx causes */
2129 msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2130 index = ((16 * (queue & 1)) + (8 * direction));
2131 ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2132 ivar &= ~(0xFF << index);
2133 ivar |= (msix_vector << index);
2134 wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2135 }
2136 }
2137
2138 /**
2139 * wx_write_eitr - write EITR register in hardware specific way
2140 * @q_vector: structure containing interrupt and ring information
2141 *
2142 * This function is made to be called by ethtool and by the driver
2143 * when it needs to update EITR registers at runtime. Hardware
2144 * specific quirks/differences are taken care of here.
2145 */
wx_write_eitr(struct wx_q_vector * q_vector)2146 static void wx_write_eitr(struct wx_q_vector *q_vector)
2147 {
2148 struct wx *wx = q_vector->wx;
2149 int v_idx = q_vector->v_idx;
2150 u32 itr_reg;
2151
2152 if (wx->mac.type == wx_mac_sp)
2153 itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2154 else
2155 itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2156
2157 itr_reg |= WX_PX_ITR_CNT_WDIS;
2158
2159 wr32(wx, WX_PX_ITR(v_idx), itr_reg);
2160 }
2161
2162 /**
2163 * wx_configure_vectors - Configure vectors for hardware
2164 * @wx: board private structure
2165 *
2166 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
2167 * interrupts.
2168 **/
wx_configure_vectors(struct wx * wx)2169 void wx_configure_vectors(struct wx *wx)
2170 {
2171 struct pci_dev *pdev = wx->pdev;
2172 u32 eitrsel = 0;
2173 u16 v_idx;
2174
2175 if (pdev->msix_enabled) {
2176 /* Populate MSIX to EITR Select */
2177 wr32(wx, WX_PX_ITRSEL, eitrsel);
2178 /* use EIAM to auto-mask when MSI-X interrupt is asserted
2179 * this saves a register write for every interrupt
2180 */
2181 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2182 } else {
2183 /* legacy interrupts, use EIAM to auto-mask when reading EICR,
2184 * specifically only auto mask tx and rx interrupts.
2185 */
2186 wr32(wx, WX_PX_GPIE, 0);
2187 }
2188
2189 /* Populate the IVAR table and set the ITR values to the
2190 * corresponding register.
2191 */
2192 for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2193 struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2194 struct wx_ring *ring;
2195
2196 wx_for_each_ring(ring, q_vector->rx)
2197 wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2198
2199 wx_for_each_ring(ring, q_vector->tx)
2200 wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2201
2202 wx_write_eitr(q_vector);
2203 }
2204
2205 wx_set_ivar(wx, -1, 0, v_idx);
2206 if (pdev->msix_enabled)
2207 wr32(wx, WX_PX_ITR(v_idx), 1950);
2208 }
2209 EXPORT_SYMBOL(wx_configure_vectors);
2210
2211 /**
2212 * wx_clean_rx_ring - Free Rx Buffers per Queue
2213 * @rx_ring: ring to free buffers from
2214 **/
wx_clean_rx_ring(struct wx_ring * rx_ring)2215 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2216 {
2217 struct wx_rx_buffer *rx_buffer;
2218 u16 i = rx_ring->next_to_clean;
2219
2220 rx_buffer = &rx_ring->rx_buffer_info[i];
2221
2222 /* Free all the Rx ring sk_buffs */
2223 while (i != rx_ring->next_to_alloc) {
2224 if (rx_buffer->skb) {
2225 struct sk_buff *skb = rx_buffer->skb;
2226
2227 if (WX_CB(skb)->page_released)
2228 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2229
2230 dev_kfree_skb(skb);
2231 }
2232
2233 /* Invalidate cache lines that may have been written to by
2234 * device so that we avoid corrupting memory.
2235 */
2236 dma_sync_single_range_for_cpu(rx_ring->dev,
2237 rx_buffer->dma,
2238 rx_buffer->page_offset,
2239 WX_RX_BUFSZ,
2240 DMA_FROM_DEVICE);
2241
2242 /* free resources associated with mapping */
2243 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2244 __page_frag_cache_drain(rx_buffer->page,
2245 rx_buffer->pagecnt_bias);
2246
2247 i++;
2248 rx_buffer++;
2249 if (i == rx_ring->count) {
2250 i = 0;
2251 rx_buffer = rx_ring->rx_buffer_info;
2252 }
2253 }
2254
2255 rx_ring->next_to_alloc = 0;
2256 rx_ring->next_to_clean = 0;
2257 rx_ring->next_to_use = 0;
2258 }
2259
2260 /**
2261 * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2262 * @wx: board private structure
2263 **/
wx_clean_all_rx_rings(struct wx * wx)2264 void wx_clean_all_rx_rings(struct wx *wx)
2265 {
2266 int i;
2267
2268 for (i = 0; i < wx->num_rx_queues; i++)
2269 wx_clean_rx_ring(wx->rx_ring[i]);
2270 }
2271 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2272
2273 /**
2274 * wx_free_rx_resources - Free Rx Resources
2275 * @rx_ring: ring to clean the resources from
2276 *
2277 * Free all receive software resources
2278 **/
wx_free_rx_resources(struct wx_ring * rx_ring)2279 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2280 {
2281 wx_clean_rx_ring(rx_ring);
2282 kvfree(rx_ring->rx_buffer_info);
2283 rx_ring->rx_buffer_info = NULL;
2284
2285 /* if not set, then don't free */
2286 if (!rx_ring->desc)
2287 return;
2288
2289 dma_free_coherent(rx_ring->dev, rx_ring->size,
2290 rx_ring->desc, rx_ring->dma);
2291
2292 rx_ring->desc = NULL;
2293
2294 if (rx_ring->page_pool) {
2295 page_pool_destroy(rx_ring->page_pool);
2296 rx_ring->page_pool = NULL;
2297 }
2298 }
2299
2300 /**
2301 * wx_free_all_rx_resources - Free Rx Resources for All Queues
2302 * @wx: pointer to hardware structure
2303 *
2304 * Free all receive software resources
2305 **/
wx_free_all_rx_resources(struct wx * wx)2306 static void wx_free_all_rx_resources(struct wx *wx)
2307 {
2308 int i;
2309
2310 for (i = 0; i < wx->num_rx_queues; i++)
2311 wx_free_rx_resources(wx->rx_ring[i]);
2312 }
2313
2314 /**
2315 * wx_clean_tx_ring - Free Tx Buffers
2316 * @tx_ring: ring to be cleaned
2317 **/
wx_clean_tx_ring(struct wx_ring * tx_ring)2318 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2319 {
2320 struct wx_tx_buffer *tx_buffer;
2321 u16 i = tx_ring->next_to_clean;
2322
2323 tx_buffer = &tx_ring->tx_buffer_info[i];
2324
2325 while (i != tx_ring->next_to_use) {
2326 union wx_tx_desc *eop_desc, *tx_desc;
2327
2328 /* Free all the Tx ring sk_buffs */
2329 dev_kfree_skb_any(tx_buffer->skb);
2330
2331 /* unmap skb header data */
2332 dma_unmap_single(tx_ring->dev,
2333 dma_unmap_addr(tx_buffer, dma),
2334 dma_unmap_len(tx_buffer, len),
2335 DMA_TO_DEVICE);
2336
2337 /* check for eop_desc to determine the end of the packet */
2338 eop_desc = tx_buffer->next_to_watch;
2339 tx_desc = WX_TX_DESC(tx_ring, i);
2340
2341 /* unmap remaining buffers */
2342 while (tx_desc != eop_desc) {
2343 tx_buffer++;
2344 tx_desc++;
2345 i++;
2346 if (unlikely(i == tx_ring->count)) {
2347 i = 0;
2348 tx_buffer = tx_ring->tx_buffer_info;
2349 tx_desc = WX_TX_DESC(tx_ring, 0);
2350 }
2351
2352 /* unmap any remaining paged data */
2353 if (dma_unmap_len(tx_buffer, len))
2354 dma_unmap_page(tx_ring->dev,
2355 dma_unmap_addr(tx_buffer, dma),
2356 dma_unmap_len(tx_buffer, len),
2357 DMA_TO_DEVICE);
2358 }
2359
2360 /* move us one more past the eop_desc for start of next pkt */
2361 tx_buffer++;
2362 i++;
2363 if (unlikely(i == tx_ring->count)) {
2364 i = 0;
2365 tx_buffer = tx_ring->tx_buffer_info;
2366 }
2367 }
2368
2369 netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2370
2371 /* reset next_to_use and next_to_clean */
2372 tx_ring->next_to_use = 0;
2373 tx_ring->next_to_clean = 0;
2374 }
2375
2376 /**
2377 * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2378 * @wx: board private structure
2379 **/
wx_clean_all_tx_rings(struct wx * wx)2380 void wx_clean_all_tx_rings(struct wx *wx)
2381 {
2382 int i;
2383
2384 for (i = 0; i < wx->num_tx_queues; i++)
2385 wx_clean_tx_ring(wx->tx_ring[i]);
2386 }
2387 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2388
2389 /**
2390 * wx_free_tx_resources - Free Tx Resources per Queue
2391 * @tx_ring: Tx descriptor ring for a specific queue
2392 *
2393 * Free all transmit software resources
2394 **/
wx_free_tx_resources(struct wx_ring * tx_ring)2395 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2396 {
2397 wx_clean_tx_ring(tx_ring);
2398 kvfree(tx_ring->tx_buffer_info);
2399 tx_ring->tx_buffer_info = NULL;
2400
2401 /* if not set, then don't free */
2402 if (!tx_ring->desc)
2403 return;
2404
2405 dma_free_coherent(tx_ring->dev, tx_ring->size,
2406 tx_ring->desc, tx_ring->dma);
2407 tx_ring->desc = NULL;
2408 }
2409
2410 /**
2411 * wx_free_all_tx_resources - Free Tx Resources for All Queues
2412 * @wx: pointer to hardware structure
2413 *
2414 * Free all transmit software resources
2415 **/
wx_free_all_tx_resources(struct wx * wx)2416 static void wx_free_all_tx_resources(struct wx *wx)
2417 {
2418 int i;
2419
2420 for (i = 0; i < wx->num_tx_queues; i++)
2421 wx_free_tx_resources(wx->tx_ring[i]);
2422 }
2423
wx_free_resources(struct wx * wx)2424 void wx_free_resources(struct wx *wx)
2425 {
2426 wx_free_isb_resources(wx);
2427 wx_free_all_rx_resources(wx);
2428 wx_free_all_tx_resources(wx);
2429 }
2430 EXPORT_SYMBOL(wx_free_resources);
2431
wx_alloc_page_pool(struct wx_ring * rx_ring)2432 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2433 {
2434 int ret = 0;
2435
2436 struct page_pool_params pp_params = {
2437 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2438 .order = 0,
2439 .pool_size = rx_ring->size,
2440 .nid = dev_to_node(rx_ring->dev),
2441 .dev = rx_ring->dev,
2442 .dma_dir = DMA_FROM_DEVICE,
2443 .offset = 0,
2444 .max_len = PAGE_SIZE,
2445 };
2446
2447 rx_ring->page_pool = page_pool_create(&pp_params);
2448 if (IS_ERR(rx_ring->page_pool)) {
2449 ret = PTR_ERR(rx_ring->page_pool);
2450 rx_ring->page_pool = NULL;
2451 }
2452
2453 return ret;
2454 }
2455
2456 /**
2457 * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2458 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2459 *
2460 * Returns 0 on success, negative on failure
2461 **/
wx_setup_rx_resources(struct wx_ring * rx_ring)2462 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2463 {
2464 struct device *dev = rx_ring->dev;
2465 int orig_node = dev_to_node(dev);
2466 int numa_node = NUMA_NO_NODE;
2467 int size, ret;
2468
2469 size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2470
2471 if (rx_ring->q_vector)
2472 numa_node = rx_ring->q_vector->numa_node;
2473
2474 rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2475 if (!rx_ring->rx_buffer_info)
2476 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2477 if (!rx_ring->rx_buffer_info)
2478 goto err;
2479
2480 /* Round up to nearest 4K */
2481 rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2482 rx_ring->size = ALIGN(rx_ring->size, 4096);
2483
2484 set_dev_node(dev, numa_node);
2485 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2486 &rx_ring->dma, GFP_KERNEL);
2487 if (!rx_ring->desc) {
2488 set_dev_node(dev, orig_node);
2489 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2490 &rx_ring->dma, GFP_KERNEL);
2491 }
2492
2493 if (!rx_ring->desc)
2494 goto err;
2495
2496 rx_ring->next_to_clean = 0;
2497 rx_ring->next_to_use = 0;
2498
2499 ret = wx_alloc_page_pool(rx_ring);
2500 if (ret < 0) {
2501 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2502 goto err_desc;
2503 }
2504
2505 return 0;
2506
2507 err_desc:
2508 dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2509 err:
2510 kvfree(rx_ring->rx_buffer_info);
2511 rx_ring->rx_buffer_info = NULL;
2512 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2513 return -ENOMEM;
2514 }
2515
2516 /**
2517 * wx_setup_all_rx_resources - allocate all queues Rx resources
2518 * @wx: pointer to hardware structure
2519 *
2520 * If this function returns with an error, then it's possible one or
2521 * more of the rings is populated (while the rest are not). It is the
2522 * callers duty to clean those orphaned rings.
2523 *
2524 * Return 0 on success, negative on failure
2525 **/
wx_setup_all_rx_resources(struct wx * wx)2526 static int wx_setup_all_rx_resources(struct wx *wx)
2527 {
2528 int i, err = 0;
2529
2530 for (i = 0; i < wx->num_rx_queues; i++) {
2531 err = wx_setup_rx_resources(wx->rx_ring[i]);
2532 if (!err)
2533 continue;
2534
2535 wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2536 goto err_setup_rx;
2537 }
2538
2539 return 0;
2540 err_setup_rx:
2541 /* rewind the index freeing the rings as we go */
2542 while (i--)
2543 wx_free_rx_resources(wx->rx_ring[i]);
2544 return err;
2545 }
2546
2547 /**
2548 * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2549 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2550 *
2551 * Return 0 on success, negative on failure
2552 **/
wx_setup_tx_resources(struct wx_ring * tx_ring)2553 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2554 {
2555 struct device *dev = tx_ring->dev;
2556 int orig_node = dev_to_node(dev);
2557 int numa_node = NUMA_NO_NODE;
2558 int size;
2559
2560 size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2561
2562 if (tx_ring->q_vector)
2563 numa_node = tx_ring->q_vector->numa_node;
2564
2565 tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2566 if (!tx_ring->tx_buffer_info)
2567 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2568 if (!tx_ring->tx_buffer_info)
2569 goto err;
2570
2571 /* round up to nearest 4K */
2572 tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2573 tx_ring->size = ALIGN(tx_ring->size, 4096);
2574
2575 set_dev_node(dev, numa_node);
2576 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2577 &tx_ring->dma, GFP_KERNEL);
2578 if (!tx_ring->desc) {
2579 set_dev_node(dev, orig_node);
2580 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2581 &tx_ring->dma, GFP_KERNEL);
2582 }
2583
2584 if (!tx_ring->desc)
2585 goto err;
2586
2587 tx_ring->next_to_use = 0;
2588 tx_ring->next_to_clean = 0;
2589
2590 return 0;
2591
2592 err:
2593 kvfree(tx_ring->tx_buffer_info);
2594 tx_ring->tx_buffer_info = NULL;
2595 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2596 return -ENOMEM;
2597 }
2598
2599 /**
2600 * wx_setup_all_tx_resources - allocate all queues Tx resources
2601 * @wx: pointer to private structure
2602 *
2603 * If this function returns with an error, then it's possible one or
2604 * more of the rings is populated (while the rest are not). It is the
2605 * callers duty to clean those orphaned rings.
2606 *
2607 * Return 0 on success, negative on failure
2608 **/
wx_setup_all_tx_resources(struct wx * wx)2609 static int wx_setup_all_tx_resources(struct wx *wx)
2610 {
2611 int i, err = 0;
2612
2613 for (i = 0; i < wx->num_tx_queues; i++) {
2614 err = wx_setup_tx_resources(wx->tx_ring[i]);
2615 if (!err)
2616 continue;
2617
2618 wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2619 goto err_setup_tx;
2620 }
2621
2622 return 0;
2623 err_setup_tx:
2624 /* rewind the index freeing the rings as we go */
2625 while (i--)
2626 wx_free_tx_resources(wx->tx_ring[i]);
2627 return err;
2628 }
2629
wx_setup_resources(struct wx * wx)2630 int wx_setup_resources(struct wx *wx)
2631 {
2632 int err;
2633
2634 /* allocate transmit descriptors */
2635 err = wx_setup_all_tx_resources(wx);
2636 if (err)
2637 return err;
2638
2639 /* allocate receive descriptors */
2640 err = wx_setup_all_rx_resources(wx);
2641 if (err)
2642 goto err_free_tx;
2643
2644 err = wx_setup_isb_resources(wx);
2645 if (err)
2646 goto err_free_rx;
2647
2648 return 0;
2649
2650 err_free_rx:
2651 wx_free_all_rx_resources(wx);
2652 err_free_tx:
2653 wx_free_all_tx_resources(wx);
2654
2655 return err;
2656 }
2657 EXPORT_SYMBOL(wx_setup_resources);
2658
2659 /**
2660 * wx_get_stats64 - Get System Network Statistics
2661 * @netdev: network interface device structure
2662 * @stats: storage space for 64bit statistics
2663 */
wx_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2664 void wx_get_stats64(struct net_device *netdev,
2665 struct rtnl_link_stats64 *stats)
2666 {
2667 struct wx *wx = netdev_priv(netdev);
2668 int i;
2669
2670 rcu_read_lock();
2671 for (i = 0; i < wx->num_rx_queues; i++) {
2672 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2673 u64 bytes, packets;
2674 unsigned int start;
2675
2676 if (ring) {
2677 do {
2678 start = u64_stats_fetch_begin(&ring->syncp);
2679 packets = ring->stats.packets;
2680 bytes = ring->stats.bytes;
2681 } while (u64_stats_fetch_retry(&ring->syncp, start));
2682 stats->rx_packets += packets;
2683 stats->rx_bytes += bytes;
2684 }
2685 }
2686
2687 for (i = 0; i < wx->num_tx_queues; i++) {
2688 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2689 u64 bytes, packets;
2690 unsigned int start;
2691
2692 if (ring) {
2693 do {
2694 start = u64_stats_fetch_begin(&ring->syncp);
2695 packets = ring->stats.packets;
2696 bytes = ring->stats.bytes;
2697 } while (u64_stats_fetch_retry(&ring->syncp,
2698 start));
2699 stats->tx_packets += packets;
2700 stats->tx_bytes += bytes;
2701 }
2702 }
2703
2704 rcu_read_unlock();
2705 }
2706 EXPORT_SYMBOL(wx_get_stats64);
2707
wx_set_features(struct net_device * netdev,netdev_features_t features)2708 int wx_set_features(struct net_device *netdev, netdev_features_t features)
2709 {
2710 netdev_features_t changed = netdev->features ^ features;
2711 struct wx *wx = netdev_priv(netdev);
2712
2713 if (changed & NETIF_F_RXHASH)
2714 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2715 WX_RDB_RA_CTL_RSS_EN);
2716 else
2717 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2718
2719 if (changed &
2720 (NETIF_F_HW_VLAN_CTAG_RX |
2721 NETIF_F_HW_VLAN_STAG_RX))
2722 wx_set_rx_mode(netdev);
2723
2724 return 1;
2725 }
2726 EXPORT_SYMBOL(wx_set_features);
2727
2728 MODULE_LICENSE("GPL");
2729