1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Ultra Wide Band
4  * AES-128 CCM Encryption
5  *
6  * Copyright (C) 2007 Intel Corporation
7  * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8  *
9  * We don't do any encryption here; we use the Linux Kernel's AES-128
10  * crypto modules to construct keys and payload blocks in a way
11  * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
12  * there.
13  *
14  * Thanks a zillion to John Keys for his help and clarifications over
15  * the designed-by-a-committee text.
16  *
17  * So the idea is that there is this basic Pseudo-Random-Function
18  * defined in WUSB1.0[6.5] which is the core of everything. It works
19  * by tweaking some blocks, AES crypting them and then xoring
20  * something else with them (this seems to be called CBC(AES) -- can
21  * you tell I know jack about crypto?). So we just funnel it into the
22  * Linux Crypto API.
23  *
24  * We leave a crypto test module so we can verify that vectors match,
25  * every now and then.
26  *
27  * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
28  *             am learning a lot...
29  *
30  *             Conveniently, some data structures that need to be
31  *             funneled through AES are...16 bytes in size!
32  */
33 
34 #include <crypto/aes.h>
35 #include <crypto/algapi.h>
36 #include <crypto/hash.h>
37 #include <crypto/skcipher.h>
38 #include <linux/crypto.h>
39 #include <linux/module.h>
40 #include <linux/err.h>
41 #include <linux/slab.h>
42 #include <linux/scatterlist.h>
43 #include "../uwb/uwb.h"
44 #include "include/wusb.h"
45 
46 static int debug_crypto_verify;
47 
48 module_param(debug_crypto_verify, int, 0);
49 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
50 
wusb_key_dump(const void * buf,size_t len)51 static void wusb_key_dump(const void *buf, size_t len)
52 {
53 	print_hex_dump(KERN_ERR, "  ", DUMP_PREFIX_OFFSET, 16, 1,
54 		       buf, len, 0);
55 }
56 
57 /*
58  * Block of data, as understood by AES-CCM
59  *
60  * The code assumes this structure is nothing but a 16 byte array
61  * (packed in a struct to avoid common mess ups that I usually do with
62  * arrays and enforcing type checking).
63  */
64 struct aes_ccm_block {
65 	u8 data[16];
66 } __attribute__((packed));
67 
68 /*
69  * Counter-mode Blocks (WUSB1.0[6.4])
70  *
71  * According to CCM (or so it seems), for the purpose of calculating
72  * the MIC, the message is broken in N counter-mode blocks, B0, B1,
73  * ... BN.
74  *
75  * B0 contains flags, the CCM nonce and l(m).
76  *
77  * B1 contains l(a), the MAC header, the encryption offset and padding.
78  *
79  * If EO is nonzero, additional blocks are built from payload bytes
80  * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
81  * padding is not xmitted.
82  */
83 
84 /* WUSB1.0[T6.4] */
85 struct aes_ccm_b0 {
86 	u8 flags;	/* 0x59, per CCM spec */
87 	struct aes_ccm_nonce ccm_nonce;
88 	__be16 lm;
89 } __attribute__((packed));
90 
91 /* WUSB1.0[T6.5] */
92 struct aes_ccm_b1 {
93 	__be16 la;
94 	u8 mac_header[10];
95 	__le16 eo;
96 	u8 security_reserved;	/* This is always zero */
97 	u8 padding;		/* 0 */
98 } __attribute__((packed));
99 
100 /*
101  * Encryption Blocks (WUSB1.0[6.4.4])
102  *
103  * CCM uses Ax blocks to generate a keystream with which the MIC and
104  * the message's payload are encoded. A0 always encrypts/decrypts the
105  * MIC. Ax (x>0) are used for the successive payload blocks.
106  *
107  * The x is the counter, and is increased for each block.
108  */
109 struct aes_ccm_a {
110 	u8 flags;	/* 0x01, per CCM spec */
111 	struct aes_ccm_nonce ccm_nonce;
112 	__be16 counter;	/* Value of x */
113 } __attribute__((packed));
114 
115 /* Scratch space for MAC calculations. */
116 struct wusb_mac_scratch {
117 	struct aes_ccm_b0 b0;
118 	struct aes_ccm_b1 b1;
119 	struct aes_ccm_a ax;
120 };
121 
122 /*
123  * CC-MAC function WUSB1.0[6.5]
124  *
125  * Take a data string and produce the encrypted CBC Counter-mode MIC
126  *
127  * Note the names for most function arguments are made to (more or
128  * less) match those used in the pseudo-function definition given in
129  * WUSB1.0[6.5].
130  *
131  * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
132  *
133  * @tfm_aes: AES cipher handle (initialized)
134  *
135  * @mic: buffer for placing the computed MIC (Message Integrity
136  *       Code). This is exactly 8 bytes, and we expect the buffer to
137  *       be at least eight bytes in length.
138  *
139  * @key: 128 bit symmetric key
140  *
141  * @n: CCM nonce
142  *
143  * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
144  *     we use exactly 14 bytes).
145  *
146  * @b: data stream to be processed
147  *
148  * @blen: size of b...
149  *
150  * Still not very clear how this is done, but looks like this: we
151  * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
152  * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
153  * take the payload and divide it in blocks (16 bytes), xor them with
154  * the previous crypto result (16 bytes) and crypt it, repeat the next
155  * block with the output of the previous one, rinse wash. So we use
156  * the CBC-MAC(AES) shash, that does precisely that. The IV (Initial
157  * Vector) is 16 bytes and is set to zero, so
158  *
159  * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
160  *     using the 14 bytes of @a to fill up
161  *     b1.{mac_header,e0,security_reserved,padding}.
162  *
163  * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
164  *       l(m) is orthogonal, they bear no relationship, so it is not
165  *       in conflict with the parameter's relation that
166  *       WUSB1.0[6.4.2]) defines.
167  *
168  * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
169  *       first errata released on 2005/07.
170  *
171  * NOTE: we need to clean IV to zero at each invocation to make sure
172  *       we start with a fresh empty Initial Vector, so that the CBC
173  *       works ok.
174  *
175  * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
176  *       what sg[4] is for. Maybe there is a smarter way to do this.
177  */
wusb_ccm_mac(struct crypto_shash * tfm_cbcmac,struct wusb_mac_scratch * scratch,void * mic,const struct aes_ccm_nonce * n,const struct aes_ccm_label * a,const void * b,size_t blen)178 static int wusb_ccm_mac(struct crypto_shash *tfm_cbcmac,
179 			struct wusb_mac_scratch *scratch,
180 			void *mic,
181 			const struct aes_ccm_nonce *n,
182 			const struct aes_ccm_label *a, const void *b,
183 			size_t blen)
184 {
185 	SHASH_DESC_ON_STACK(desc, tfm_cbcmac);
186 	u8 iv[AES_BLOCK_SIZE];
187 
188 	/*
189 	 * These checks should be compile time optimized out
190 	 * ensure @a fills b1's mac_header and following fields
191 	 */
192 	BUILD_BUG_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
193 	BUILD_BUG_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
194 	BUILD_BUG_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
195 	BUILD_BUG_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
196 
197 	/* Setup B0 */
198 	scratch->b0.flags = 0x59;	/* Format B0 */
199 	scratch->b0.ccm_nonce = *n;
200 	scratch->b0.lm = cpu_to_be16(0);	/* WUSB1.0[6.5] sez l(m) is 0 */
201 
202 	/* Setup B1
203 	 *
204 	 * The WUSB spec is anything but clear! WUSB1.0[6.5]
205 	 * says that to initialize B1 from A with 'l(a) = blen +
206 	 * 14'--after clarification, it means to use A's contents
207 	 * for MAC Header, EO, sec reserved and padding.
208 	 */
209 	scratch->b1.la = cpu_to_be16(blen + 14);
210 	memcpy(&scratch->b1.mac_header, a, sizeof(*a));
211 
212 	desc->tfm = tfm_cbcmac;
213 	crypto_shash_init(desc);
214 	crypto_shash_update(desc, (u8 *)&scratch->b0, sizeof(scratch->b0) +
215 						      sizeof(scratch->b1));
216 	crypto_shash_finup(desc, b, blen, iv);
217 
218 	/* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
219 	 * The procedure is to AES crypt the A0 block and XOR the MIC
220 	 * Tag against it; we only do the first 8 bytes and place it
221 	 * directly in the destination buffer.
222 	 */
223 	scratch->ax.flags = 0x01;		/* as per WUSB 1.0 spec */
224 	scratch->ax.ccm_nonce = *n;
225 	scratch->ax.counter = 0;
226 
227 	/* reuse the CBC-MAC transform to perform the single block encryption */
228 	crypto_shash_digest(desc, (u8 *)&scratch->ax, sizeof(scratch->ax),
229 			    (u8 *)&scratch->ax);
230 
231 	crypto_xor_cpy(mic, (u8 *)&scratch->ax, iv, 8);
232 
233 	return 8;
234 }
235 
236 /*
237  * WUSB Pseudo Random Function (WUSB1.0[6.5])
238  *
239  * @b: buffer to the source data; cannot be a global or const local
240  *     (will confuse the scatterlists)
241  */
wusb_prf(void * out,size_t out_size,const u8 key[16],const struct aes_ccm_nonce * _n,const struct aes_ccm_label * a,const void * b,size_t blen,size_t len)242 ssize_t wusb_prf(void *out, size_t out_size,
243 		 const u8 key[16], const struct aes_ccm_nonce *_n,
244 		 const struct aes_ccm_label *a,
245 		 const void *b, size_t blen, size_t len)
246 {
247 	ssize_t result, bytes = 0, bitr;
248 	struct aes_ccm_nonce n = *_n;
249 	struct crypto_shash *tfm_cbcmac;
250 	struct wusb_mac_scratch scratch;
251 	u64 sfn = 0;
252 	__le64 sfn_le;
253 
254 	tfm_cbcmac = crypto_alloc_shash("cbcmac(aes)", 0, 0);
255 	if (IS_ERR(tfm_cbcmac)) {
256 		result = PTR_ERR(tfm_cbcmac);
257 		printk(KERN_ERR "E: can't load CBCMAC-AES: %d\n", (int)result);
258 		goto error_alloc_cbcmac;
259 	}
260 
261 	result = crypto_shash_setkey(tfm_cbcmac, key, AES_BLOCK_SIZE);
262 	if (result < 0) {
263 		printk(KERN_ERR "E: can't set CBCMAC-AES key: %d\n", (int)result);
264 		goto error_setkey_cbcmac;
265 	}
266 
267 	for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
268 		sfn_le = cpu_to_le64(sfn++);
269 		memcpy(&n.sfn, &sfn_le, sizeof(n.sfn));	/* n.sfn++... */
270 		result = wusb_ccm_mac(tfm_cbcmac, &scratch, out + bytes,
271 				      &n, a, b, blen);
272 		if (result < 0)
273 			goto error_ccm_mac;
274 		bytes += result;
275 	}
276 	result = bytes;
277 
278 error_ccm_mac:
279 error_setkey_cbcmac:
280 	crypto_free_shash(tfm_cbcmac);
281 error_alloc_cbcmac:
282 	return result;
283 }
284 
285 /* WUSB1.0[A.2] test vectors */
286 static const u8 stv_hsmic_key[16] = {
287 	0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
288 	0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
289 };
290 
291 static const struct aes_ccm_nonce stv_hsmic_n = {
292 	.sfn = { 0 },
293 	.tkid = { 0x76, 0x98, 0x01,  },
294 	.dest_addr = { .data = { 0xbe, 0x00 } },
295 		.src_addr = { .data = { 0x76, 0x98 } },
296 };
297 
298 /*
299  * Out-of-band MIC Generation verification code
300  *
301  */
wusb_oob_mic_verify(void)302 static int wusb_oob_mic_verify(void)
303 {
304 	int result;
305 	u8 mic[8];
306 	/* WUSB1.0[A.2] test vectors */
307 	static const struct usb_handshake stv_hsmic_hs = {
308 		.bMessageNumber = 2,
309 		.bStatus 	= 00,
310 		.tTKID 		= { 0x76, 0x98, 0x01 },
311 		.bReserved 	= 00,
312 		.CDID 		= { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
313 				    0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
314 				    0x3c, 0x3d, 0x3e, 0x3f },
315 		.nonce	 	= { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
316 				    0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
317 				    0x2c, 0x2d, 0x2e, 0x2f },
318 		.MIC	 	= { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
319 				    0x14, 0x7b },
320 	};
321 	size_t hs_size;
322 
323 	result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
324 	if (result < 0)
325 		printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
326 	else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
327 		printk(KERN_ERR "E: OOB MIC test: "
328 		       "mismatch between MIC result and WUSB1.0[A2]\n");
329 		hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
330 		printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
331 		wusb_key_dump(&stv_hsmic_hs, hs_size);
332 		printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
333 		       sizeof(stv_hsmic_n));
334 		wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
335 		printk(KERN_ERR "E: MIC out:\n");
336 		wusb_key_dump(mic, sizeof(mic));
337 		printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
338 		wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
339 		result = -EINVAL;
340 	} else
341 		result = 0;
342 	return result;
343 }
344 
345 /*
346  * Test vectors for Key derivation
347  *
348  * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
349  * (errata corrected in 2005/07).
350  */
351 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
352 	0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
353 	0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
354 };
355 
356 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
357 	.sfn = { 0 },
358 	.tkid = { 0x76, 0x98, 0x01,  },
359 	.dest_addr = { .data = { 0xbe, 0x00 } },
360 	.src_addr = { .data = { 0x76, 0x98 } },
361 };
362 
363 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
364 	.kck = {
365 		0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
366 		0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
367 	},
368 	.ptk = {
369 		0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
370 		0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
371 	}
372 };
373 
374 /*
375  * Performa a test to make sure we match the vectors defined in
376  * WUSB1.0[A.1](Errata2006/12)
377  */
wusb_key_derive_verify(void)378 static int wusb_key_derive_verify(void)
379 {
380 	int result = 0;
381 	struct wusb_keydvt_out keydvt_out;
382 	/* These come from WUSB1.0[A.1] + 2006/12 errata */
383 	static const struct wusb_keydvt_in stv_keydvt_in_a1 = {
384 		.hnonce = {
385 			0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
386 			0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
387 		},
388 		.dnonce = {
389 			0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
390 			0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
391 		}
392 	};
393 
394 	result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
395 				 &stv_keydvt_in_a1);
396 	if (result < 0)
397 		printk(KERN_ERR "E: WUSB key derivation test: "
398 		       "derivation failed: %d\n", result);
399 	if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
400 		printk(KERN_ERR "E: WUSB key derivation test: "
401 		       "mismatch between key derivation result "
402 		       "and WUSB1.0[A1] Errata 2006/12\n");
403 		printk(KERN_ERR "E: keydvt in: key\n");
404 		wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
405 		printk(KERN_ERR "E: keydvt in: nonce\n");
406 		wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
407 		printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
408 		wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
409 		printk(KERN_ERR "E: keydvt out: KCK\n");
410 		wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
411 		printk(KERN_ERR "E: keydvt out: PTK\n");
412 		wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
413 		result = -EINVAL;
414 	} else
415 		result = 0;
416 	return result;
417 }
418 
419 /*
420  * Initialize crypto system
421  *
422  * FIXME: we do nothing now, other than verifying. Later on we'll
423  * cache the encryption stuff, so that's why we have a separate init.
424  */
wusb_crypto_init(void)425 int wusb_crypto_init(void)
426 {
427 	int result;
428 
429 	if (debug_crypto_verify) {
430 		result = wusb_key_derive_verify();
431 		if (result < 0)
432 			return result;
433 		return wusb_oob_mic_verify();
434 	}
435 	return 0;
436 }
437 
wusb_crypto_exit(void)438 void wusb_crypto_exit(void)
439 {
440 	/* FIXME: free cached crypto transforms */
441 }
442