1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Ultra Wide Band
4 * AES-128 CCM Encryption
5 *
6 * Copyright (C) 2007 Intel Corporation
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * We don't do any encryption here; we use the Linux Kernel's AES-128
10 * crypto modules to construct keys and payload blocks in a way
11 * defined by WUSB1.0[6]. Check the erratas, as typos are are patched
12 * there.
13 *
14 * Thanks a zillion to John Keys for his help and clarifications over
15 * the designed-by-a-committee text.
16 *
17 * So the idea is that there is this basic Pseudo-Random-Function
18 * defined in WUSB1.0[6.5] which is the core of everything. It works
19 * by tweaking some blocks, AES crypting them and then xoring
20 * something else with them (this seems to be called CBC(AES) -- can
21 * you tell I know jack about crypto?). So we just funnel it into the
22 * Linux Crypto API.
23 *
24 * We leave a crypto test module so we can verify that vectors match,
25 * every now and then.
26 *
27 * Block size: 16 bytes -- AES seems to do things in 'block sizes'. I
28 * am learning a lot...
29 *
30 * Conveniently, some data structures that need to be
31 * funneled through AES are...16 bytes in size!
32 */
33
34 #include <crypto/aes.h>
35 #include <crypto/algapi.h>
36 #include <crypto/hash.h>
37 #include <crypto/skcipher.h>
38 #include <linux/crypto.h>
39 #include <linux/module.h>
40 #include <linux/err.h>
41 #include <linux/slab.h>
42 #include <linux/scatterlist.h>
43 #include "../uwb/uwb.h"
44 #include "include/wusb.h"
45
46 static int debug_crypto_verify;
47
48 module_param(debug_crypto_verify, int, 0);
49 MODULE_PARM_DESC(debug_crypto_verify, "verify the key generation algorithms");
50
wusb_key_dump(const void * buf,size_t len)51 static void wusb_key_dump(const void *buf, size_t len)
52 {
53 print_hex_dump(KERN_ERR, " ", DUMP_PREFIX_OFFSET, 16, 1,
54 buf, len, 0);
55 }
56
57 /*
58 * Block of data, as understood by AES-CCM
59 *
60 * The code assumes this structure is nothing but a 16 byte array
61 * (packed in a struct to avoid common mess ups that I usually do with
62 * arrays and enforcing type checking).
63 */
64 struct aes_ccm_block {
65 u8 data[16];
66 } __attribute__((packed));
67
68 /*
69 * Counter-mode Blocks (WUSB1.0[6.4])
70 *
71 * According to CCM (or so it seems), for the purpose of calculating
72 * the MIC, the message is broken in N counter-mode blocks, B0, B1,
73 * ... BN.
74 *
75 * B0 contains flags, the CCM nonce and l(m).
76 *
77 * B1 contains l(a), the MAC header, the encryption offset and padding.
78 *
79 * If EO is nonzero, additional blocks are built from payload bytes
80 * until EO is exhausted (FIXME: padding to 16 bytes, I guess). The
81 * padding is not xmitted.
82 */
83
84 /* WUSB1.0[T6.4] */
85 struct aes_ccm_b0 {
86 u8 flags; /* 0x59, per CCM spec */
87 struct aes_ccm_nonce ccm_nonce;
88 __be16 lm;
89 } __attribute__((packed));
90
91 /* WUSB1.0[T6.5] */
92 struct aes_ccm_b1 {
93 __be16 la;
94 u8 mac_header[10];
95 __le16 eo;
96 u8 security_reserved; /* This is always zero */
97 u8 padding; /* 0 */
98 } __attribute__((packed));
99
100 /*
101 * Encryption Blocks (WUSB1.0[6.4.4])
102 *
103 * CCM uses Ax blocks to generate a keystream with which the MIC and
104 * the message's payload are encoded. A0 always encrypts/decrypts the
105 * MIC. Ax (x>0) are used for the successive payload blocks.
106 *
107 * The x is the counter, and is increased for each block.
108 */
109 struct aes_ccm_a {
110 u8 flags; /* 0x01, per CCM spec */
111 struct aes_ccm_nonce ccm_nonce;
112 __be16 counter; /* Value of x */
113 } __attribute__((packed));
114
115 /* Scratch space for MAC calculations. */
116 struct wusb_mac_scratch {
117 struct aes_ccm_b0 b0;
118 struct aes_ccm_b1 b1;
119 struct aes_ccm_a ax;
120 };
121
122 /*
123 * CC-MAC function WUSB1.0[6.5]
124 *
125 * Take a data string and produce the encrypted CBC Counter-mode MIC
126 *
127 * Note the names for most function arguments are made to (more or
128 * less) match those used in the pseudo-function definition given in
129 * WUSB1.0[6.5].
130 *
131 * @tfm_cbc: CBC(AES) blkcipher handle (initialized)
132 *
133 * @tfm_aes: AES cipher handle (initialized)
134 *
135 * @mic: buffer for placing the computed MIC (Message Integrity
136 * Code). This is exactly 8 bytes, and we expect the buffer to
137 * be at least eight bytes in length.
138 *
139 * @key: 128 bit symmetric key
140 *
141 * @n: CCM nonce
142 *
143 * @a: ASCII string, 14 bytes long (I guess zero padded if needed;
144 * we use exactly 14 bytes).
145 *
146 * @b: data stream to be processed
147 *
148 * @blen: size of b...
149 *
150 * Still not very clear how this is done, but looks like this: we
151 * create block B0 (as WUSB1.0[6.5] says), then we AES-crypt it with
152 * @key. We bytewise xor B0 with B1 (1) and AES-crypt that. Then we
153 * take the payload and divide it in blocks (16 bytes), xor them with
154 * the previous crypto result (16 bytes) and crypt it, repeat the next
155 * block with the output of the previous one, rinse wash. So we use
156 * the CBC-MAC(AES) shash, that does precisely that. The IV (Initial
157 * Vector) is 16 bytes and is set to zero, so
158 *
159 * (1) Created as 6.5 says, again, using as l(a) 'Blen + 14', and
160 * using the 14 bytes of @a to fill up
161 * b1.{mac_header,e0,security_reserved,padding}.
162 *
163 * NOTE: The definition of l(a) in WUSB1.0[6.5] vs the definition of
164 * l(m) is orthogonal, they bear no relationship, so it is not
165 * in conflict with the parameter's relation that
166 * WUSB1.0[6.4.2]) defines.
167 *
168 * NOTE: WUSB1.0[A.1]: Host Nonce is missing a nibble? (1e); fixed in
169 * first errata released on 2005/07.
170 *
171 * NOTE: we need to clean IV to zero at each invocation to make sure
172 * we start with a fresh empty Initial Vector, so that the CBC
173 * works ok.
174 *
175 * NOTE: blen is not aligned to a block size, we'll pad zeros, that's
176 * what sg[4] is for. Maybe there is a smarter way to do this.
177 */
wusb_ccm_mac(struct crypto_shash * tfm_cbcmac,struct wusb_mac_scratch * scratch,void * mic,const struct aes_ccm_nonce * n,const struct aes_ccm_label * a,const void * b,size_t blen)178 static int wusb_ccm_mac(struct crypto_shash *tfm_cbcmac,
179 struct wusb_mac_scratch *scratch,
180 void *mic,
181 const struct aes_ccm_nonce *n,
182 const struct aes_ccm_label *a, const void *b,
183 size_t blen)
184 {
185 SHASH_DESC_ON_STACK(desc, tfm_cbcmac);
186 u8 iv[AES_BLOCK_SIZE];
187
188 /*
189 * These checks should be compile time optimized out
190 * ensure @a fills b1's mac_header and following fields
191 */
192 BUILD_BUG_ON(sizeof(*a) != sizeof(scratch->b1) - sizeof(scratch->b1.la));
193 BUILD_BUG_ON(sizeof(scratch->b0) != sizeof(struct aes_ccm_block));
194 BUILD_BUG_ON(sizeof(scratch->b1) != sizeof(struct aes_ccm_block));
195 BUILD_BUG_ON(sizeof(scratch->ax) != sizeof(struct aes_ccm_block));
196
197 /* Setup B0 */
198 scratch->b0.flags = 0x59; /* Format B0 */
199 scratch->b0.ccm_nonce = *n;
200 scratch->b0.lm = cpu_to_be16(0); /* WUSB1.0[6.5] sez l(m) is 0 */
201
202 /* Setup B1
203 *
204 * The WUSB spec is anything but clear! WUSB1.0[6.5]
205 * says that to initialize B1 from A with 'l(a) = blen +
206 * 14'--after clarification, it means to use A's contents
207 * for MAC Header, EO, sec reserved and padding.
208 */
209 scratch->b1.la = cpu_to_be16(blen + 14);
210 memcpy(&scratch->b1.mac_header, a, sizeof(*a));
211
212 desc->tfm = tfm_cbcmac;
213 crypto_shash_init(desc);
214 crypto_shash_update(desc, (u8 *)&scratch->b0, sizeof(scratch->b0) +
215 sizeof(scratch->b1));
216 crypto_shash_finup(desc, b, blen, iv);
217
218 /* Now we crypt the MIC Tag (*iv) with Ax -- values per WUSB1.0[6.5]
219 * The procedure is to AES crypt the A0 block and XOR the MIC
220 * Tag against it; we only do the first 8 bytes and place it
221 * directly in the destination buffer.
222 */
223 scratch->ax.flags = 0x01; /* as per WUSB 1.0 spec */
224 scratch->ax.ccm_nonce = *n;
225 scratch->ax.counter = 0;
226
227 /* reuse the CBC-MAC transform to perform the single block encryption */
228 crypto_shash_digest(desc, (u8 *)&scratch->ax, sizeof(scratch->ax),
229 (u8 *)&scratch->ax);
230
231 crypto_xor_cpy(mic, (u8 *)&scratch->ax, iv, 8);
232
233 return 8;
234 }
235
236 /*
237 * WUSB Pseudo Random Function (WUSB1.0[6.5])
238 *
239 * @b: buffer to the source data; cannot be a global or const local
240 * (will confuse the scatterlists)
241 */
wusb_prf(void * out,size_t out_size,const u8 key[16],const struct aes_ccm_nonce * _n,const struct aes_ccm_label * a,const void * b,size_t blen,size_t len)242 ssize_t wusb_prf(void *out, size_t out_size,
243 const u8 key[16], const struct aes_ccm_nonce *_n,
244 const struct aes_ccm_label *a,
245 const void *b, size_t blen, size_t len)
246 {
247 ssize_t result, bytes = 0, bitr;
248 struct aes_ccm_nonce n = *_n;
249 struct crypto_shash *tfm_cbcmac;
250 struct wusb_mac_scratch scratch;
251 u64 sfn = 0;
252 __le64 sfn_le;
253
254 tfm_cbcmac = crypto_alloc_shash("cbcmac(aes)", 0, 0);
255 if (IS_ERR(tfm_cbcmac)) {
256 result = PTR_ERR(tfm_cbcmac);
257 printk(KERN_ERR "E: can't load CBCMAC-AES: %d\n", (int)result);
258 goto error_alloc_cbcmac;
259 }
260
261 result = crypto_shash_setkey(tfm_cbcmac, key, AES_BLOCK_SIZE);
262 if (result < 0) {
263 printk(KERN_ERR "E: can't set CBCMAC-AES key: %d\n", (int)result);
264 goto error_setkey_cbcmac;
265 }
266
267 for (bitr = 0; bitr < (len + 63) / 64; bitr++) {
268 sfn_le = cpu_to_le64(sfn++);
269 memcpy(&n.sfn, &sfn_le, sizeof(n.sfn)); /* n.sfn++... */
270 result = wusb_ccm_mac(tfm_cbcmac, &scratch, out + bytes,
271 &n, a, b, blen);
272 if (result < 0)
273 goto error_ccm_mac;
274 bytes += result;
275 }
276 result = bytes;
277
278 error_ccm_mac:
279 error_setkey_cbcmac:
280 crypto_free_shash(tfm_cbcmac);
281 error_alloc_cbcmac:
282 return result;
283 }
284
285 /* WUSB1.0[A.2] test vectors */
286 static const u8 stv_hsmic_key[16] = {
287 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
288 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
289 };
290
291 static const struct aes_ccm_nonce stv_hsmic_n = {
292 .sfn = { 0 },
293 .tkid = { 0x76, 0x98, 0x01, },
294 .dest_addr = { .data = { 0xbe, 0x00 } },
295 .src_addr = { .data = { 0x76, 0x98 } },
296 };
297
298 /*
299 * Out-of-band MIC Generation verification code
300 *
301 */
wusb_oob_mic_verify(void)302 static int wusb_oob_mic_verify(void)
303 {
304 int result;
305 u8 mic[8];
306 /* WUSB1.0[A.2] test vectors */
307 static const struct usb_handshake stv_hsmic_hs = {
308 .bMessageNumber = 2,
309 .bStatus = 00,
310 .tTKID = { 0x76, 0x98, 0x01 },
311 .bReserved = 00,
312 .CDID = { 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,
313 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b,
314 0x3c, 0x3d, 0x3e, 0x3f },
315 .nonce = { 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
316 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
317 0x2c, 0x2d, 0x2e, 0x2f },
318 .MIC = { 0x75, 0x6a, 0x97, 0x51, 0x0c, 0x8c,
319 0x14, 0x7b },
320 };
321 size_t hs_size;
322
323 result = wusb_oob_mic(mic, stv_hsmic_key, &stv_hsmic_n, &stv_hsmic_hs);
324 if (result < 0)
325 printk(KERN_ERR "E: WUSB OOB MIC test: failed: %d\n", result);
326 else if (memcmp(stv_hsmic_hs.MIC, mic, sizeof(mic))) {
327 printk(KERN_ERR "E: OOB MIC test: "
328 "mismatch between MIC result and WUSB1.0[A2]\n");
329 hs_size = sizeof(stv_hsmic_hs) - sizeof(stv_hsmic_hs.MIC);
330 printk(KERN_ERR "E: Handshake2 in: (%zu bytes)\n", hs_size);
331 wusb_key_dump(&stv_hsmic_hs, hs_size);
332 printk(KERN_ERR "E: CCM Nonce in: (%zu bytes)\n",
333 sizeof(stv_hsmic_n));
334 wusb_key_dump(&stv_hsmic_n, sizeof(stv_hsmic_n));
335 printk(KERN_ERR "E: MIC out:\n");
336 wusb_key_dump(mic, sizeof(mic));
337 printk(KERN_ERR "E: MIC out (from WUSB1.0[A.2]):\n");
338 wusb_key_dump(stv_hsmic_hs.MIC, sizeof(stv_hsmic_hs.MIC));
339 result = -EINVAL;
340 } else
341 result = 0;
342 return result;
343 }
344
345 /*
346 * Test vectors for Key derivation
347 *
348 * These come from WUSB1.0[6.5.1], the vectors in WUSB1.0[A.1]
349 * (errata corrected in 2005/07).
350 */
351 static const u8 stv_key_a1[16] __attribute__ ((__aligned__(4))) = {
352 0xf0, 0xe1, 0xd2, 0xc3, 0xb4, 0xa5, 0x96, 0x87,
353 0x78, 0x69, 0x5a, 0x4b, 0x3c, 0x2d, 0x1e, 0x0f
354 };
355
356 static const struct aes_ccm_nonce stv_keydvt_n_a1 = {
357 .sfn = { 0 },
358 .tkid = { 0x76, 0x98, 0x01, },
359 .dest_addr = { .data = { 0xbe, 0x00 } },
360 .src_addr = { .data = { 0x76, 0x98 } },
361 };
362
363 static const struct wusb_keydvt_out stv_keydvt_out_a1 = {
364 .kck = {
365 0x4b, 0x79, 0xa3, 0xcf, 0xe5, 0x53, 0x23, 0x9d,
366 0xd7, 0xc1, 0x6d, 0x1c, 0x2d, 0xab, 0x6d, 0x3f
367 },
368 .ptk = {
369 0xc8, 0x70, 0x62, 0x82, 0xb6, 0x7c, 0xe9, 0x06,
370 0x7b, 0xc5, 0x25, 0x69, 0xf2, 0x36, 0x61, 0x2d
371 }
372 };
373
374 /*
375 * Performa a test to make sure we match the vectors defined in
376 * WUSB1.0[A.1](Errata2006/12)
377 */
wusb_key_derive_verify(void)378 static int wusb_key_derive_verify(void)
379 {
380 int result = 0;
381 struct wusb_keydvt_out keydvt_out;
382 /* These come from WUSB1.0[A.1] + 2006/12 errata */
383 static const struct wusb_keydvt_in stv_keydvt_in_a1 = {
384 .hnonce = {
385 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
386 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
387 },
388 .dnonce = {
389 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
390 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f
391 }
392 };
393
394 result = wusb_key_derive(&keydvt_out, stv_key_a1, &stv_keydvt_n_a1,
395 &stv_keydvt_in_a1);
396 if (result < 0)
397 printk(KERN_ERR "E: WUSB key derivation test: "
398 "derivation failed: %d\n", result);
399 if (memcmp(&stv_keydvt_out_a1, &keydvt_out, sizeof(keydvt_out))) {
400 printk(KERN_ERR "E: WUSB key derivation test: "
401 "mismatch between key derivation result "
402 "and WUSB1.0[A1] Errata 2006/12\n");
403 printk(KERN_ERR "E: keydvt in: key\n");
404 wusb_key_dump(stv_key_a1, sizeof(stv_key_a1));
405 printk(KERN_ERR "E: keydvt in: nonce\n");
406 wusb_key_dump(&stv_keydvt_n_a1, sizeof(stv_keydvt_n_a1));
407 printk(KERN_ERR "E: keydvt in: hnonce & dnonce\n");
408 wusb_key_dump(&stv_keydvt_in_a1, sizeof(stv_keydvt_in_a1));
409 printk(KERN_ERR "E: keydvt out: KCK\n");
410 wusb_key_dump(&keydvt_out.kck, sizeof(keydvt_out.kck));
411 printk(KERN_ERR "E: keydvt out: PTK\n");
412 wusb_key_dump(&keydvt_out.ptk, sizeof(keydvt_out.ptk));
413 result = -EINVAL;
414 } else
415 result = 0;
416 return result;
417 }
418
419 /*
420 * Initialize crypto system
421 *
422 * FIXME: we do nothing now, other than verifying. Later on we'll
423 * cache the encryption stuff, so that's why we have a separate init.
424 */
wusb_crypto_init(void)425 int wusb_crypto_init(void)
426 {
427 int result;
428
429 if (debug_crypto_verify) {
430 result = wusb_key_derive_verify();
431 if (result < 0)
432 return result;
433 return wusb_oob_mic_verify();
434 }
435 return 0;
436 }
437
wusb_crypto_exit(void)438 void wusb_crypto_exit(void)
439 {
440 /* FIXME: free cached crypto transforms */
441 }
442