1 /*
2  * This file is part of the Chelsio T4 Ethernet driver for Linux.
3  *
4  * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <net/ipv6.h>
35 
36 #include "cxgb4.h"
37 #include "t4_regs.h"
38 #include "t4_tcb.h"
39 #include "t4_values.h"
40 #include "clip_tbl.h"
41 #include "l2t.h"
42 #include "smt.h"
43 #include "t4fw_api.h"
44 #include "cxgb4_filter.h"
45 
is_field_set(u32 val,u32 mask)46 static inline bool is_field_set(u32 val, u32 mask)
47 {
48 	return val || mask;
49 }
50 
unsupported(u32 conf,u32 conf_mask,u32 val,u32 mask)51 static inline bool unsupported(u32 conf, u32 conf_mask, u32 val, u32 mask)
52 {
53 	return !(conf & conf_mask) && is_field_set(val, mask);
54 }
55 
set_tcb_field(struct adapter * adap,struct filter_entry * f,unsigned int ftid,u16 word,u64 mask,u64 val,int no_reply)56 static int set_tcb_field(struct adapter *adap, struct filter_entry *f,
57 			 unsigned int ftid,  u16 word, u64 mask, u64 val,
58 			 int no_reply)
59 {
60 	struct cpl_set_tcb_field *req;
61 	struct sk_buff *skb;
62 
63 	skb = alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_ATOMIC);
64 	if (!skb)
65 		return -ENOMEM;
66 
67 	req = (struct cpl_set_tcb_field *)__skb_put_zero(skb, sizeof(*req));
68 	INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, ftid);
69 	req->reply_ctrl = htons(REPLY_CHAN_V(0) |
70 				QUEUENO_V(adap->sge.fw_evtq.abs_id) |
71 				NO_REPLY_V(no_reply));
72 	req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(ftid));
73 	req->mask = cpu_to_be64(mask);
74 	req->val = cpu_to_be64(val);
75 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
76 	t4_ofld_send(adap, skb);
77 	return 0;
78 }
79 
80 /* Set one of the t_flags bits in the TCB.
81  */
set_tcb_tflag(struct adapter * adap,struct filter_entry * f,unsigned int ftid,unsigned int bit_pos,unsigned int val,int no_reply)82 static int set_tcb_tflag(struct adapter *adap, struct filter_entry *f,
83 			 unsigned int ftid, unsigned int bit_pos,
84 			 unsigned int val, int no_reply)
85 {
86 	return set_tcb_field(adap, f, ftid,  TCB_T_FLAGS_W, 1ULL << bit_pos,
87 			     (unsigned long long)val << bit_pos, no_reply);
88 }
89 
mk_abort_req_ulp(struct cpl_abort_req * abort_req,unsigned int tid)90 static void mk_abort_req_ulp(struct cpl_abort_req *abort_req, unsigned int tid)
91 {
92 	struct ulp_txpkt *txpkt = (struct ulp_txpkt *)abort_req;
93 	struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
94 
95 	txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
96 	txpkt->len = htonl(DIV_ROUND_UP(sizeof(*abort_req), 16));
97 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
98 	sc->len = htonl(sizeof(*abort_req) - sizeof(struct work_request_hdr));
99 	OPCODE_TID(abort_req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, tid));
100 	abort_req->rsvd0 = htonl(0);
101 	abort_req->rsvd1 = 0;
102 	abort_req->cmd = CPL_ABORT_NO_RST;
103 }
104 
mk_abort_rpl_ulp(struct cpl_abort_rpl * abort_rpl,unsigned int tid)105 static void mk_abort_rpl_ulp(struct cpl_abort_rpl *abort_rpl, unsigned int tid)
106 {
107 	struct ulp_txpkt *txpkt = (struct ulp_txpkt *)abort_rpl;
108 	struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
109 
110 	txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
111 	txpkt->len = htonl(DIV_ROUND_UP(sizeof(*abort_rpl), 16));
112 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
113 	sc->len = htonl(sizeof(*abort_rpl) - sizeof(struct work_request_hdr));
114 	OPCODE_TID(abort_rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
115 	abort_rpl->rsvd0 = htonl(0);
116 	abort_rpl->rsvd1 = 0;
117 	abort_rpl->cmd = CPL_ABORT_NO_RST;
118 }
119 
mk_set_tcb_ulp(struct filter_entry * f,struct cpl_set_tcb_field * req,unsigned int word,u64 mask,u64 val,u8 cookie,int no_reply)120 static void mk_set_tcb_ulp(struct filter_entry *f,
121 			   struct cpl_set_tcb_field *req,
122 			   unsigned int word, u64 mask, u64 val,
123 			   u8 cookie, int no_reply)
124 {
125 	struct ulp_txpkt *txpkt = (struct ulp_txpkt *)req;
126 	struct ulptx_idata *sc = (struct ulptx_idata *)(txpkt + 1);
127 
128 	txpkt->cmd_dest = htonl(ULPTX_CMD_V(ULP_TX_PKT) | ULP_TXPKT_DEST_V(0));
129 	txpkt->len = htonl(DIV_ROUND_UP(sizeof(*req), 16));
130 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_IMM));
131 	sc->len = htonl(sizeof(*req) - sizeof(struct work_request_hdr));
132 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, f->tid));
133 	req->reply_ctrl = htons(NO_REPLY_V(no_reply) | REPLY_CHAN_V(0) |
134 				QUEUENO_V(0));
135 	req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
136 	req->mask = cpu_to_be64(mask);
137 	req->val = cpu_to_be64(val);
138 	sc = (struct ulptx_idata *)(req + 1);
139 	sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
140 	sc->len = htonl(0);
141 }
142 
configure_filter_smac(struct adapter * adap,struct filter_entry * f)143 static int configure_filter_smac(struct adapter *adap, struct filter_entry *f)
144 {
145 	int err;
146 
147 	/* do a set-tcb for smac-sel and CWR bit.. */
148 	err = set_tcb_tflag(adap, f, f->tid, TF_CCTRL_CWR_S, 1, 1);
149 	if (err)
150 		goto smac_err;
151 
152 	err = set_tcb_field(adap, f, f->tid, TCB_SMAC_SEL_W,
153 			    TCB_SMAC_SEL_V(TCB_SMAC_SEL_M),
154 			    TCB_SMAC_SEL_V(f->smt->idx), 1);
155 	if (!err)
156 		return 0;
157 
158 smac_err:
159 	dev_err(adap->pdev_dev, "filter %u smac config failed with error %u\n",
160 		f->tid, err);
161 	return err;
162 }
163 
set_nat_params(struct adapter * adap,struct filter_entry * f,unsigned int tid,bool dip,bool sip,bool dp,bool sp)164 static void set_nat_params(struct adapter *adap, struct filter_entry *f,
165 			   unsigned int tid, bool dip, bool sip, bool dp,
166 			   bool sp)
167 {
168 	if (dip) {
169 		if (f->fs.type) {
170 			set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W,
171 				      WORD_MASK, f->fs.nat_lip[15] |
172 				      f->fs.nat_lip[14] << 8 |
173 				      f->fs.nat_lip[13] << 16 |
174 				      f->fs.nat_lip[12] << 24, 1);
175 
176 			set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 1,
177 				      WORD_MASK, f->fs.nat_lip[11] |
178 				      f->fs.nat_lip[10] << 8 |
179 				      f->fs.nat_lip[9] << 16 |
180 				      f->fs.nat_lip[8] << 24, 1);
181 
182 			set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 2,
183 				      WORD_MASK, f->fs.nat_lip[7] |
184 				      f->fs.nat_lip[6] << 8 |
185 				      f->fs.nat_lip[5] << 16 |
186 				      f->fs.nat_lip[4] << 24, 1);
187 
188 			set_tcb_field(adap, f, tid, TCB_SND_UNA_RAW_W + 3,
189 				      WORD_MASK, f->fs.nat_lip[3] |
190 				      f->fs.nat_lip[2] << 8 |
191 				      f->fs.nat_lip[1] << 16 |
192 				      f->fs.nat_lip[0] << 24, 1);
193 		} else {
194 			set_tcb_field(adap, f, tid, TCB_RX_FRAG3_LEN_RAW_W,
195 				      WORD_MASK, f->fs.nat_lip[3] |
196 				      f->fs.nat_lip[2] << 8 |
197 				      f->fs.nat_lip[1] << 16 |
198 				      f->fs.nat_lip[0] << 24, 1);
199 		}
200 	}
201 
202 	if (sip) {
203 		if (f->fs.type) {
204 			set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W,
205 				      WORD_MASK, f->fs.nat_fip[15] |
206 				      f->fs.nat_fip[14] << 8 |
207 				      f->fs.nat_fip[13] << 16 |
208 				      f->fs.nat_fip[12] << 24, 1);
209 
210 			set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 1,
211 				      WORD_MASK, f->fs.nat_fip[11] |
212 				      f->fs.nat_fip[10] << 8 |
213 				      f->fs.nat_fip[9] << 16 |
214 				      f->fs.nat_fip[8] << 24, 1);
215 
216 			set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 2,
217 				      WORD_MASK, f->fs.nat_fip[7] |
218 				      f->fs.nat_fip[6] << 8 |
219 				      f->fs.nat_fip[5] << 16 |
220 				      f->fs.nat_fip[4] << 24, 1);
221 
222 			set_tcb_field(adap, f, tid, TCB_RX_FRAG2_PTR_RAW_W + 3,
223 				      WORD_MASK, f->fs.nat_fip[3] |
224 				      f->fs.nat_fip[2] << 8 |
225 				      f->fs.nat_fip[1] << 16 |
226 				      f->fs.nat_fip[0] << 24, 1);
227 
228 		} else {
229 			set_tcb_field(adap, f, tid,
230 				      TCB_RX_FRAG3_START_IDX_OFFSET_RAW_W,
231 				      WORD_MASK, f->fs.nat_fip[3] |
232 				      f->fs.nat_fip[2] << 8 |
233 				      f->fs.nat_fip[1] << 16 |
234 				      f->fs.nat_fip[0] << 24, 1);
235 		}
236 	}
237 
238 	set_tcb_field(adap, f, tid, TCB_PDU_HDR_LEN_W, WORD_MASK,
239 		      (dp ? f->fs.nat_lport : 0) |
240 		      (sp ? f->fs.nat_fport << 16 : 0), 1);
241 }
242 
243 /* Validate filter spec against configuration done on the card. */
validate_filter(struct net_device * dev,struct ch_filter_specification * fs)244 static int validate_filter(struct net_device *dev,
245 			   struct ch_filter_specification *fs)
246 {
247 	struct adapter *adapter = netdev2adap(dev);
248 	u32 fconf, iconf;
249 
250 	/* Check for unconfigured fields being used. */
251 	fconf = adapter->params.tp.vlan_pri_map;
252 	iconf = adapter->params.tp.ingress_config;
253 
254 	if (unsupported(fconf, FCOE_F, fs->val.fcoe, fs->mask.fcoe) ||
255 	    unsupported(fconf, PORT_F, fs->val.iport, fs->mask.iport) ||
256 	    unsupported(fconf, TOS_F, fs->val.tos, fs->mask.tos) ||
257 	    unsupported(fconf, ETHERTYPE_F, fs->val.ethtype,
258 			fs->mask.ethtype) ||
259 	    unsupported(fconf, MACMATCH_F, fs->val.macidx, fs->mask.macidx) ||
260 	    unsupported(fconf, MPSHITTYPE_F, fs->val.matchtype,
261 			fs->mask.matchtype) ||
262 	    unsupported(fconf, FRAGMENTATION_F, fs->val.frag, fs->mask.frag) ||
263 	    unsupported(fconf, PROTOCOL_F, fs->val.proto, fs->mask.proto) ||
264 	    unsupported(fconf, VNIC_ID_F, fs->val.pfvf_vld,
265 			fs->mask.pfvf_vld) ||
266 	    unsupported(fconf, VNIC_ID_F, fs->val.ovlan_vld,
267 			fs->mask.ovlan_vld) ||
268 	    unsupported(fconf, VNIC_ID_F, fs->val.encap_vld,
269 			fs->mask.encap_vld) ||
270 	    unsupported(fconf, VLAN_F, fs->val.ivlan_vld, fs->mask.ivlan_vld))
271 		return -EOPNOTSUPP;
272 
273 	/* T4 inconveniently uses the same FT_VNIC_ID_W bits for both the Outer
274 	 * VLAN Tag and PF/VF/VFvld fields based on VNIC_F being set
275 	 * in TP_INGRESS_CONFIG.  Hense the somewhat crazy checks
276 	 * below.  Additionally, since the T4 firmware interface also
277 	 * carries that overlap, we need to translate any PF/VF
278 	 * specification into that internal format below.
279 	 */
280 	if ((is_field_set(fs->val.pfvf_vld, fs->mask.pfvf_vld) &&
281 	     is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld)) ||
282 	    (is_field_set(fs->val.pfvf_vld, fs->mask.pfvf_vld) &&
283 	     is_field_set(fs->val.encap_vld, fs->mask.encap_vld)) ||
284 	    (is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld) &&
285 	     is_field_set(fs->val.encap_vld, fs->mask.encap_vld)))
286 		return -EOPNOTSUPP;
287 	if (unsupported(iconf, VNIC_F, fs->val.pfvf_vld, fs->mask.pfvf_vld) ||
288 	    (is_field_set(fs->val.ovlan_vld, fs->mask.ovlan_vld) &&
289 	     (iconf & VNIC_F)))
290 		return -EOPNOTSUPP;
291 	if (fs->val.pf > 0x7 || fs->val.vf > 0x7f)
292 		return -ERANGE;
293 	fs->mask.pf &= 0x7;
294 	fs->mask.vf &= 0x7f;
295 
296 	/* If the user is requesting that the filter action loop
297 	 * matching packets back out one of our ports, make sure that
298 	 * the egress port is in range.
299 	 */
300 	if (fs->action == FILTER_SWITCH &&
301 	    fs->eport >= adapter->params.nports)
302 		return -ERANGE;
303 
304 	/* Don't allow various trivially obvious bogus out-of-range values... */
305 	if (fs->val.iport >= adapter->params.nports)
306 		return -ERANGE;
307 
308 	/* T4 doesn't support removing VLAN Tags for loop back filters. */
309 	if (is_t4(adapter->params.chip) &&
310 	    fs->action == FILTER_SWITCH &&
311 	    (fs->newvlan == VLAN_REMOVE ||
312 	     fs->newvlan == VLAN_REWRITE))
313 		return -EOPNOTSUPP;
314 
315 	if (fs->val.encap_vld &&
316 	    CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
317 		return -EOPNOTSUPP;
318 	return 0;
319 }
320 
get_filter_steerq(struct net_device * dev,struct ch_filter_specification * fs)321 static int get_filter_steerq(struct net_device *dev,
322 			     struct ch_filter_specification *fs)
323 {
324 	struct adapter *adapter = netdev2adap(dev);
325 	int iq;
326 
327 	/* If the user has requested steering matching Ingress Packets
328 	 * to a specific Queue Set, we need to make sure it's in range
329 	 * for the port and map that into the Absolute Queue ID of the
330 	 * Queue Set's Response Queue.
331 	 */
332 	if (!fs->dirsteer) {
333 		if (fs->iq)
334 			return -EINVAL;
335 		iq = 0;
336 	} else {
337 		struct port_info *pi = netdev_priv(dev);
338 
339 		/* If the iq id is greater than the number of qsets,
340 		 * then assume it is an absolute qid.
341 		 */
342 		if (fs->iq < pi->nqsets)
343 			iq = adapter->sge.ethrxq[pi->first_qset +
344 						 fs->iq].rspq.abs_id;
345 		else
346 			iq = fs->iq;
347 	}
348 
349 	return iq;
350 }
351 
get_filter_count(struct adapter * adapter,unsigned int fidx,u64 * pkts,u64 * bytes,bool hash)352 static int get_filter_count(struct adapter *adapter, unsigned int fidx,
353 			    u64 *pkts, u64 *bytes, bool hash)
354 {
355 	unsigned int tcb_base, tcbaddr;
356 	unsigned int word_offset;
357 	struct filter_entry *f;
358 	__be64 be64_byte_count;
359 	int ret;
360 
361 	tcb_base = t4_read_reg(adapter, TP_CMM_TCB_BASE_A);
362 	if (is_hashfilter(adapter) && hash) {
363 		if (fidx < adapter->tids.ntids) {
364 			f = adapter->tids.tid_tab[fidx];
365 			if (!f)
366 				return -EINVAL;
367 		} else {
368 			return -E2BIG;
369 		}
370 	} else {
371 		if ((fidx != (adapter->tids.nftids +
372 			      adapter->tids.nsftids - 1)) &&
373 		    fidx >= adapter->tids.nftids)
374 			return -E2BIG;
375 
376 		f = &adapter->tids.ftid_tab[fidx];
377 		if (!f->valid)
378 			return -EINVAL;
379 	}
380 	tcbaddr = tcb_base + f->tid * TCB_SIZE;
381 
382 	spin_lock(&adapter->win0_lock);
383 	if (is_t4(adapter->params.chip)) {
384 		__be64 be64_count;
385 
386 		/* T4 doesn't maintain byte counts in hw */
387 		*bytes = 0;
388 
389 		/* Get pkts */
390 		word_offset = 4;
391 		ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
392 				   tcbaddr + (word_offset * sizeof(__be32)),
393 				   sizeof(be64_count),
394 				   (__be32 *)&be64_count,
395 				   T4_MEMORY_READ);
396 		if (ret < 0)
397 			goto out;
398 		*pkts = be64_to_cpu(be64_count);
399 	} else {
400 		__be32 be32_count;
401 
402 		/* Get bytes */
403 		word_offset = 4;
404 		ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
405 				   tcbaddr + (word_offset * sizeof(__be32)),
406 				   sizeof(be64_byte_count),
407 				   &be64_byte_count,
408 				   T4_MEMORY_READ);
409 		if (ret < 0)
410 			goto out;
411 		*bytes = be64_to_cpu(be64_byte_count);
412 
413 		/* Get pkts */
414 		word_offset = 6;
415 		ret = t4_memory_rw(adapter, MEMWIN_NIC, MEM_EDC0,
416 				   tcbaddr + (word_offset * sizeof(__be32)),
417 				   sizeof(be32_count),
418 				   &be32_count,
419 				   T4_MEMORY_READ);
420 		if (ret < 0)
421 			goto out;
422 		*pkts = (u64)be32_to_cpu(be32_count);
423 	}
424 
425 out:
426 	spin_unlock(&adapter->win0_lock);
427 	return ret;
428 }
429 
cxgb4_get_filter_counters(struct net_device * dev,unsigned int fidx,u64 * hitcnt,u64 * bytecnt,bool hash)430 int cxgb4_get_filter_counters(struct net_device *dev, unsigned int fidx,
431 			      u64 *hitcnt, u64 *bytecnt, bool hash)
432 {
433 	struct adapter *adapter = netdev2adap(dev);
434 
435 	return get_filter_count(adapter, fidx, hitcnt, bytecnt, hash);
436 }
437 
cxgb4_get_free_ftid(struct net_device * dev,int family)438 int cxgb4_get_free_ftid(struct net_device *dev, int family)
439 {
440 	struct adapter *adap = netdev2adap(dev);
441 	struct tid_info *t = &adap->tids;
442 	int ftid;
443 
444 	spin_lock_bh(&t->ftid_lock);
445 	if (family == PF_INET) {
446 		ftid = find_first_zero_bit(t->ftid_bmap, t->nftids);
447 		if (ftid >= t->nftids)
448 			ftid = -1;
449 	} else {
450 		if (is_t6(adap->params.chip)) {
451 			ftid = bitmap_find_free_region(t->ftid_bmap,
452 						       t->nftids, 1);
453 			if (ftid < 0)
454 				goto out_unlock;
455 
456 			/* this is only a lookup, keep the found region
457 			 * unallocated
458 			 */
459 			bitmap_release_region(t->ftid_bmap, ftid, 1);
460 		} else {
461 			ftid = bitmap_find_free_region(t->ftid_bmap,
462 						       t->nftids, 2);
463 			if (ftid < 0)
464 				goto out_unlock;
465 
466 			bitmap_release_region(t->ftid_bmap, ftid, 2);
467 		}
468 	}
469 out_unlock:
470 	spin_unlock_bh(&t->ftid_lock);
471 	return ftid;
472 }
473 
cxgb4_set_ftid(struct tid_info * t,int fidx,int family,unsigned int chip_ver)474 static int cxgb4_set_ftid(struct tid_info *t, int fidx, int family,
475 			  unsigned int chip_ver)
476 {
477 	spin_lock_bh(&t->ftid_lock);
478 
479 	if (test_bit(fidx, t->ftid_bmap)) {
480 		spin_unlock_bh(&t->ftid_lock);
481 		return -EBUSY;
482 	}
483 
484 	if (family == PF_INET) {
485 		__set_bit(fidx, t->ftid_bmap);
486 	} else {
487 		if (chip_ver < CHELSIO_T6)
488 			bitmap_allocate_region(t->ftid_bmap, fidx, 2);
489 		else
490 			bitmap_allocate_region(t->ftid_bmap, fidx, 1);
491 	}
492 
493 	spin_unlock_bh(&t->ftid_lock);
494 	return 0;
495 }
496 
cxgb4_clear_ftid(struct tid_info * t,int fidx,int family,unsigned int chip_ver)497 static void cxgb4_clear_ftid(struct tid_info *t, int fidx, int family,
498 			     unsigned int chip_ver)
499 {
500 	spin_lock_bh(&t->ftid_lock);
501 	if (family == PF_INET) {
502 		__clear_bit(fidx, t->ftid_bmap);
503 	} else {
504 		if (chip_ver < CHELSIO_T6)
505 			bitmap_release_region(t->ftid_bmap, fidx, 2);
506 		else
507 			bitmap_release_region(t->ftid_bmap, fidx, 1);
508 	}
509 	spin_unlock_bh(&t->ftid_lock);
510 }
511 
512 /* Delete the filter at a specified index. */
del_filter_wr(struct adapter * adapter,int fidx)513 static int del_filter_wr(struct adapter *adapter, int fidx)
514 {
515 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
516 	struct fw_filter_wr *fwr;
517 	struct sk_buff *skb;
518 	unsigned int len;
519 
520 	len = sizeof(*fwr);
521 
522 	skb = alloc_skb(len, GFP_KERNEL);
523 	if (!skb)
524 		return -ENOMEM;
525 
526 	fwr = __skb_put(skb, len);
527 	t4_mk_filtdelwr(f->tid, fwr, (adapter->flags & SHUTTING_DOWN) ? -1
528 			: adapter->sge.fw_evtq.abs_id);
529 
530 	/* Mark the filter as "pending" and ship off the Filter Work Request.
531 	 * When we get the Work Request Reply we'll clear the pending status.
532 	 */
533 	f->pending = 1;
534 	t4_mgmt_tx(adapter, skb);
535 	return 0;
536 }
537 
538 /* Send a Work Request to write the filter at a specified index.  We construct
539  * a Firmware Filter Work Request to have the work done and put the indicated
540  * filter into "pending" mode which will prevent any further actions against
541  * it till we get a reply from the firmware on the completion status of the
542  * request.
543  */
set_filter_wr(struct adapter * adapter,int fidx)544 int set_filter_wr(struct adapter *adapter, int fidx)
545 {
546 	struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
547 	struct fw_filter2_wr *fwr;
548 	struct sk_buff *skb;
549 
550 	skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
551 	if (!skb)
552 		return -ENOMEM;
553 
554 	/* If the new filter requires loopback Destination MAC and/or VLAN
555 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
556 	 * the filter.
557 	 */
558 	if (f->fs.newdmac || f->fs.newvlan) {
559 		/* allocate L2T entry for new filter */
560 		f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
561 						f->fs.eport, f->fs.dmac);
562 		if (!f->l2t) {
563 			kfree_skb(skb);
564 			return -ENOMEM;
565 		}
566 	}
567 
568 	/* If the new filter requires loopback Source MAC rewriting then
569 	 * we need to allocate a SMT entry for the filter.
570 	 */
571 	if (f->fs.newsmac) {
572 		f->smt = cxgb4_smt_alloc_switching(f->dev, f->fs.smac);
573 		if (!f->smt) {
574 			if (f->l2t) {
575 				cxgb4_l2t_release(f->l2t);
576 				f->l2t = NULL;
577 			}
578 			kfree_skb(skb);
579 			return -ENOMEM;
580 		}
581 	}
582 
583 	fwr = __skb_put_zero(skb, sizeof(*fwr));
584 
585 	/* It would be nice to put most of the following in t4_hw.c but most
586 	 * of the work is translating the cxgbtool ch_filter_specification
587 	 * into the Work Request and the definition of that structure is
588 	 * currently in cxgbtool.h which isn't appropriate to pull into the
589 	 * common code.  We may eventually try to come up with a more neutral
590 	 * filter specification structure but for now it's easiest to simply
591 	 * put this fairly direct code in line ...
592 	 */
593 	if (adapter->params.filter2_wr_support)
594 		fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER2_WR));
595 	else
596 		fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
597 	fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr) / 16));
598 	fwr->tid_to_iq =
599 		htonl(FW_FILTER_WR_TID_V(f->tid) |
600 		      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
601 		      FW_FILTER_WR_NOREPLY_V(0) |
602 		      FW_FILTER_WR_IQ_V(f->fs.iq));
603 	fwr->del_filter_to_l2tix =
604 		htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
605 		      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
606 		      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
607 		      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
608 		      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
609 		      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
610 		      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
611 		      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
612 					     f->fs.newvlan == VLAN_REWRITE) |
613 		      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
614 					    f->fs.newvlan == VLAN_REWRITE) |
615 		      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
616 		      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
617 		      FW_FILTER_WR_PRIO_V(f->fs.prio) |
618 		      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
619 	fwr->ethtype = htons(f->fs.val.ethtype);
620 	fwr->ethtypem = htons(f->fs.mask.ethtype);
621 	fwr->frag_to_ovlan_vldm =
622 		(FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
623 		 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
624 		 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
625 		 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
626 		 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
627 		 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
628 	fwr->smac_sel = 0;
629 	fwr->rx_chan_rx_rpl_iq =
630 		htons(FW_FILTER_WR_RX_CHAN_V(0) |
631 		      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
632 	fwr->maci_to_matchtypem =
633 		htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
634 		      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
635 		      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
636 		      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
637 		      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
638 		      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
639 		      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
640 		      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
641 	fwr->ptcl = f->fs.val.proto;
642 	fwr->ptclm = f->fs.mask.proto;
643 	fwr->ttyp = f->fs.val.tos;
644 	fwr->ttypm = f->fs.mask.tos;
645 	fwr->ivlan = htons(f->fs.val.ivlan);
646 	fwr->ivlanm = htons(f->fs.mask.ivlan);
647 	fwr->ovlan = htons(f->fs.val.ovlan);
648 	fwr->ovlanm = htons(f->fs.mask.ovlan);
649 	memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
650 	memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
651 	memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
652 	memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
653 	fwr->lp = htons(f->fs.val.lport);
654 	fwr->lpm = htons(f->fs.mask.lport);
655 	fwr->fp = htons(f->fs.val.fport);
656 	fwr->fpm = htons(f->fs.mask.fport);
657 
658 	if (adapter->params.filter2_wr_support) {
659 		fwr->natmode_to_ulp_type =
660 			FW_FILTER2_WR_ULP_TYPE_V(f->fs.nat_mode ?
661 						 ULP_MODE_TCPDDP :
662 						 ULP_MODE_NONE) |
663 			FW_FILTER2_WR_NATMODE_V(f->fs.nat_mode);
664 		memcpy(fwr->newlip, f->fs.nat_lip, sizeof(fwr->newlip));
665 		memcpy(fwr->newfip, f->fs.nat_fip, sizeof(fwr->newfip));
666 		fwr->newlport = htons(f->fs.nat_lport);
667 		fwr->newfport = htons(f->fs.nat_fport);
668 	}
669 
670 	/* Mark the filter as "pending" and ship off the Filter Work Request.
671 	 * When we get the Work Request Reply we'll clear the pending status.
672 	 */
673 	f->pending = 1;
674 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
675 	t4_ofld_send(adapter, skb);
676 	return 0;
677 }
678 
679 /* Return an error number if the indicated filter isn't writable ... */
writable_filter(struct filter_entry * f)680 int writable_filter(struct filter_entry *f)
681 {
682 	if (f->locked)
683 		return -EPERM;
684 	if (f->pending)
685 		return -EBUSY;
686 
687 	return 0;
688 }
689 
690 /* Delete the filter at the specified index (if valid).  The checks for all
691  * the common problems with doing this like the filter being locked, currently
692  * pending in another operation, etc.
693  */
delete_filter(struct adapter * adapter,unsigned int fidx)694 int delete_filter(struct adapter *adapter, unsigned int fidx)
695 {
696 	struct filter_entry *f;
697 	int ret;
698 
699 	if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
700 		return -EINVAL;
701 
702 	f = &adapter->tids.ftid_tab[fidx];
703 	ret = writable_filter(f);
704 	if (ret)
705 		return ret;
706 	if (f->valid)
707 		return del_filter_wr(adapter, fidx);
708 
709 	return 0;
710 }
711 
712 /* Clear a filter and release any of its resources that we own.  This also
713  * clears the filter's "pending" status.
714  */
clear_filter(struct adapter * adap,struct filter_entry * f)715 void clear_filter(struct adapter *adap, struct filter_entry *f)
716 {
717 	struct port_info *pi = netdev_priv(f->dev);
718 
719 	/* If the new or old filter have loopback rewriteing rules then we'll
720 	 * need to free any existing L2T, SMT, CLIP entries of filter
721 	 * rule.
722 	 */
723 	if (f->l2t)
724 		cxgb4_l2t_release(f->l2t);
725 
726 	if (f->smt)
727 		cxgb4_smt_release(f->smt);
728 
729 	if (f->fs.val.encap_vld && f->fs.val.ovlan_vld)
730 		if (atomic_dec_and_test(&adap->mps_encap[f->fs.val.ovlan &
731 							 0x1ff].refcnt))
732 			t4_free_encap_mac_filt(adap, pi->viid,
733 					       f->fs.val.ovlan & 0x1ff, 0);
734 
735 	if ((f->fs.hash || is_t6(adap->params.chip)) && f->fs.type)
736 		cxgb4_clip_release(f->dev, (const u32 *)&f->fs.val.lip, 1);
737 
738 	/* The zeroing of the filter rule below clears the filter valid,
739 	 * pending, locked flags, l2t pointer, etc. so it's all we need for
740 	 * this operation.
741 	 */
742 	memset(f, 0, sizeof(*f));
743 }
744 
clear_all_filters(struct adapter * adapter)745 void clear_all_filters(struct adapter *adapter)
746 {
747 	unsigned int i;
748 
749 	if (adapter->tids.ftid_tab) {
750 		struct filter_entry *f = &adapter->tids.ftid_tab[0];
751 		unsigned int max_ftid = adapter->tids.nftids +
752 					adapter->tids.nsftids;
753 
754 		for (i = 0; i < max_ftid; i++, f++)
755 			if (f->valid || f->pending)
756 				clear_filter(adapter, f);
757 	}
758 }
759 
760 /* Fill up default masks for set match fields. */
fill_default_mask(struct ch_filter_specification * fs)761 static void fill_default_mask(struct ch_filter_specification *fs)
762 {
763 	unsigned int lip = 0, lip_mask = 0;
764 	unsigned int fip = 0, fip_mask = 0;
765 	unsigned int i;
766 
767 	if (fs->val.iport && !fs->mask.iport)
768 		fs->mask.iport |= ~0;
769 	if (fs->val.fcoe && !fs->mask.fcoe)
770 		fs->mask.fcoe |= ~0;
771 	if (fs->val.matchtype && !fs->mask.matchtype)
772 		fs->mask.matchtype |= ~0;
773 	if (fs->val.macidx && !fs->mask.macidx)
774 		fs->mask.macidx |= ~0;
775 	if (fs->val.ethtype && !fs->mask.ethtype)
776 		fs->mask.ethtype |= ~0;
777 	if (fs->val.ivlan && !fs->mask.ivlan)
778 		fs->mask.ivlan |= ~0;
779 	if (fs->val.ovlan && !fs->mask.ovlan)
780 		fs->mask.ovlan |= ~0;
781 	if (fs->val.frag && !fs->mask.frag)
782 		fs->mask.frag |= ~0;
783 	if (fs->val.tos && !fs->mask.tos)
784 		fs->mask.tos |= ~0;
785 	if (fs->val.proto && !fs->mask.proto)
786 		fs->mask.proto |= ~0;
787 
788 	for (i = 0; i < ARRAY_SIZE(fs->val.lip); i++) {
789 		lip |= fs->val.lip[i];
790 		lip_mask |= fs->mask.lip[i];
791 		fip |= fs->val.fip[i];
792 		fip_mask |= fs->mask.fip[i];
793 	}
794 
795 	if (lip && !lip_mask)
796 		memset(fs->mask.lip, ~0, sizeof(fs->mask.lip));
797 
798 	if (fip && !fip_mask)
799 		memset(fs->mask.fip, ~0, sizeof(fs->mask.lip));
800 
801 	if (fs->val.lport && !fs->mask.lport)
802 		fs->mask.lport = ~0;
803 	if (fs->val.fport && !fs->mask.fport)
804 		fs->mask.fport = ~0;
805 }
806 
is_addr_all_mask(u8 * ipmask,int family)807 static bool is_addr_all_mask(u8 *ipmask, int family)
808 {
809 	if (family == AF_INET) {
810 		struct in_addr *addr;
811 
812 		addr = (struct in_addr *)ipmask;
813 		if (addr->s_addr == 0xffffffff)
814 			return true;
815 	} else if (family == AF_INET6) {
816 		struct in6_addr *addr6;
817 
818 		addr6 = (struct in6_addr *)ipmask;
819 		if (addr6->s6_addr32[0] == 0xffffffff &&
820 		    addr6->s6_addr32[1] == 0xffffffff &&
821 		    addr6->s6_addr32[2] == 0xffffffff &&
822 		    addr6->s6_addr32[3] == 0xffffffff)
823 			return true;
824 	}
825 	return false;
826 }
827 
is_inaddr_any(u8 * ip,int family)828 static bool is_inaddr_any(u8 *ip, int family)
829 {
830 	int addr_type;
831 
832 	if (family == AF_INET) {
833 		struct in_addr *addr;
834 
835 		addr = (struct in_addr *)ip;
836 		if (addr->s_addr == htonl(INADDR_ANY))
837 			return true;
838 	} else if (family == AF_INET6) {
839 		struct in6_addr *addr6;
840 
841 		addr6 = (struct in6_addr *)ip;
842 		addr_type = ipv6_addr_type((const struct in6_addr *)
843 					   &addr6);
844 		if (addr_type == IPV6_ADDR_ANY)
845 			return true;
846 	}
847 	return false;
848 }
849 
is_filter_exact_match(struct adapter * adap,struct ch_filter_specification * fs)850 bool is_filter_exact_match(struct adapter *adap,
851 			   struct ch_filter_specification *fs)
852 {
853 	struct tp_params *tp = &adap->params.tp;
854 	u64 hash_filter_mask = tp->hash_filter_mask;
855 	u64 ntuple_mask = 0;
856 
857 	if (!is_hashfilter(adap))
858 		return false;
859 
860 	 /* Keep tunnel VNI match disabled for hash-filters for now */
861 	if (fs->mask.encap_vld)
862 		return false;
863 
864 	if (fs->type) {
865 		if (is_inaddr_any(fs->val.fip, AF_INET6) ||
866 		    !is_addr_all_mask(fs->mask.fip, AF_INET6))
867 			return false;
868 
869 		if (is_inaddr_any(fs->val.lip, AF_INET6) ||
870 		    !is_addr_all_mask(fs->mask.lip, AF_INET6))
871 			return false;
872 	} else {
873 		if (is_inaddr_any(fs->val.fip, AF_INET) ||
874 		    !is_addr_all_mask(fs->mask.fip, AF_INET))
875 			return false;
876 
877 		if (is_inaddr_any(fs->val.lip, AF_INET) ||
878 		    !is_addr_all_mask(fs->mask.lip, AF_INET))
879 			return false;
880 	}
881 
882 	if (!fs->val.lport || fs->mask.lport != 0xffff)
883 		return false;
884 
885 	if (!fs->val.fport || fs->mask.fport != 0xffff)
886 		return false;
887 
888 	/* calculate tuple mask and compare with mask configured in hw */
889 	if (tp->fcoe_shift >= 0)
890 		ntuple_mask |= (u64)fs->mask.fcoe << tp->fcoe_shift;
891 
892 	if (tp->port_shift >= 0)
893 		ntuple_mask |= (u64)fs->mask.iport << tp->port_shift;
894 
895 	if (tp->vnic_shift >= 0) {
896 		if ((adap->params.tp.ingress_config & VNIC_F))
897 			ntuple_mask |= (u64)fs->mask.pfvf_vld << tp->vnic_shift;
898 		else
899 			ntuple_mask |= (u64)fs->mask.ovlan_vld <<
900 				tp->vnic_shift;
901 	}
902 
903 	if (tp->vlan_shift >= 0)
904 		ntuple_mask |= (u64)fs->mask.ivlan << tp->vlan_shift;
905 
906 	if (tp->tos_shift >= 0)
907 		ntuple_mask |= (u64)fs->mask.tos << tp->tos_shift;
908 
909 	if (tp->protocol_shift >= 0)
910 		ntuple_mask |= (u64)fs->mask.proto << tp->protocol_shift;
911 
912 	if (tp->ethertype_shift >= 0)
913 		ntuple_mask |= (u64)fs->mask.ethtype << tp->ethertype_shift;
914 
915 	if (tp->macmatch_shift >= 0)
916 		ntuple_mask |= (u64)fs->mask.macidx << tp->macmatch_shift;
917 
918 	if (tp->matchtype_shift >= 0)
919 		ntuple_mask |= (u64)fs->mask.matchtype << tp->matchtype_shift;
920 
921 	if (tp->frag_shift >= 0)
922 		ntuple_mask |= (u64)fs->mask.frag << tp->frag_shift;
923 
924 	if (ntuple_mask != hash_filter_mask)
925 		return false;
926 
927 	return true;
928 }
929 
hash_filter_ntuple(struct ch_filter_specification * fs,struct net_device * dev)930 static u64 hash_filter_ntuple(struct ch_filter_specification *fs,
931 			      struct net_device *dev)
932 {
933 	struct adapter *adap = netdev2adap(dev);
934 	struct tp_params *tp = &adap->params.tp;
935 	u64 ntuple = 0;
936 
937 	/* Initialize each of the fields which we care about which are present
938 	 * in the Compressed Filter Tuple.
939 	 */
940 	if (tp->vlan_shift >= 0 && fs->mask.ivlan)
941 		ntuple |= (FT_VLAN_VLD_F | fs->val.ivlan) << tp->vlan_shift;
942 
943 	if (tp->port_shift >= 0 && fs->mask.iport)
944 		ntuple |= (u64)fs->val.iport << tp->port_shift;
945 
946 	if (tp->protocol_shift >= 0) {
947 		if (!fs->val.proto)
948 			ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift;
949 		else
950 			ntuple |= (u64)fs->val.proto << tp->protocol_shift;
951 	}
952 
953 	if (tp->tos_shift >= 0 && fs->mask.tos)
954 		ntuple |= (u64)(fs->val.tos) << tp->tos_shift;
955 
956 	if (tp->vnic_shift >= 0) {
957 		if ((adap->params.tp.ingress_config & USE_ENC_IDX_F) &&
958 		    fs->mask.encap_vld)
959 			ntuple |= (u64)((fs->val.encap_vld << 16) |
960 					(fs->val.ovlan)) << tp->vnic_shift;
961 		else if ((adap->params.tp.ingress_config & VNIC_F) &&
962 			 fs->mask.pfvf_vld)
963 			ntuple |= (u64)((fs->val.pfvf_vld << 16) |
964 					(fs->val.pf << 13) |
965 					(fs->val.vf)) << tp->vnic_shift;
966 		else
967 			ntuple |= (u64)((fs->val.ovlan_vld << 16) |
968 					(fs->val.ovlan)) << tp->vnic_shift;
969 	}
970 
971 	if (tp->macmatch_shift >= 0 && fs->mask.macidx)
972 		ntuple |= (u64)(fs->val.macidx) << tp->macmatch_shift;
973 
974 	if (tp->ethertype_shift >= 0 && fs->mask.ethtype)
975 		ntuple |= (u64)(fs->val.ethtype) << tp->ethertype_shift;
976 
977 	if (tp->matchtype_shift >= 0 && fs->mask.matchtype)
978 		ntuple |= (u64)(fs->val.matchtype) << tp->matchtype_shift;
979 
980 	if (tp->frag_shift >= 0 && fs->mask.frag)
981 		ntuple |= (u64)(fs->val.frag) << tp->frag_shift;
982 
983 	if (tp->fcoe_shift >= 0 && fs->mask.fcoe)
984 		ntuple |= (u64)(fs->val.fcoe) << tp->fcoe_shift;
985 	return ntuple;
986 }
987 
mk_act_open_req6(struct filter_entry * f,struct sk_buff * skb,unsigned int qid_filterid,struct adapter * adap)988 static void mk_act_open_req6(struct filter_entry *f, struct sk_buff *skb,
989 			     unsigned int qid_filterid, struct adapter *adap)
990 {
991 	struct cpl_t6_act_open_req6 *t6req = NULL;
992 	struct cpl_act_open_req6 *req = NULL;
993 
994 	t6req = (struct cpl_t6_act_open_req6 *)__skb_put(skb, sizeof(*t6req));
995 	INIT_TP_WR(t6req, 0);
996 	req = (struct cpl_act_open_req6 *)t6req;
997 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, qid_filterid));
998 	req->local_port = cpu_to_be16(f->fs.val.lport);
999 	req->peer_port = cpu_to_be16(f->fs.val.fport);
1000 	req->local_ip_hi = *(__be64 *)(&f->fs.val.lip);
1001 	req->local_ip_lo = *(((__be64 *)&f->fs.val.lip) + 1);
1002 	req->peer_ip_hi = *(__be64 *)(&f->fs.val.fip);
1003 	req->peer_ip_lo = *(((__be64 *)&f->fs.val.fip) + 1);
1004 	req->opt0 = cpu_to_be64(NAGLE_V(f->fs.newvlan == VLAN_REMOVE ||
1005 					f->fs.newvlan == VLAN_REWRITE) |
1006 				DELACK_V(f->fs.hitcnts) |
1007 				L2T_IDX_V(f->l2t ? f->l2t->idx : 0) |
1008 				SMAC_SEL_V((cxgb4_port_viid(f->dev) &
1009 					    0x7F) << 1) |
1010 				TX_CHAN_V(f->fs.eport) |
1011 				NO_CONG_V(f->fs.rpttid) |
1012 				ULP_MODE_V(f->fs.nat_mode ?
1013 					   ULP_MODE_TCPDDP : ULP_MODE_NONE) |
1014 				TCAM_BYPASS_F | NON_OFFLOAD_F);
1015 	t6req->params = cpu_to_be64(FILTER_TUPLE_V(hash_filter_ntuple(&f->fs,
1016 								      f->dev)));
1017 	t6req->opt2 = htonl(RSS_QUEUE_VALID_F |
1018 			    RSS_QUEUE_V(f->fs.iq) |
1019 			    TX_QUEUE_V(f->fs.nat_mode) |
1020 			    T5_OPT_2_VALID_F |
1021 			    RX_CHANNEL_F |
1022 			    CONG_CNTRL_V((f->fs.action == FILTER_DROP) |
1023 					 (f->fs.dirsteer << 1)) |
1024 			    PACE_V((f->fs.maskhash) |
1025 				   ((f->fs.dirsteerhash) << 1)) |
1026 			    CCTRL_ECN_V(f->fs.action == FILTER_SWITCH));
1027 }
1028 
mk_act_open_req(struct filter_entry * f,struct sk_buff * skb,unsigned int qid_filterid,struct adapter * adap)1029 static void mk_act_open_req(struct filter_entry *f, struct sk_buff *skb,
1030 			    unsigned int qid_filterid, struct adapter *adap)
1031 {
1032 	struct cpl_t6_act_open_req *t6req = NULL;
1033 	struct cpl_act_open_req *req = NULL;
1034 
1035 	t6req = (struct cpl_t6_act_open_req *)__skb_put(skb, sizeof(*t6req));
1036 	INIT_TP_WR(t6req, 0);
1037 	req = (struct cpl_act_open_req *)t6req;
1038 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, qid_filterid));
1039 	req->local_port = cpu_to_be16(f->fs.val.lport);
1040 	req->peer_port = cpu_to_be16(f->fs.val.fport);
1041 	memcpy(&req->local_ip, f->fs.val.lip, 4);
1042 	memcpy(&req->peer_ip, f->fs.val.fip, 4);
1043 	req->opt0 = cpu_to_be64(NAGLE_V(f->fs.newvlan == VLAN_REMOVE ||
1044 					f->fs.newvlan == VLAN_REWRITE) |
1045 				DELACK_V(f->fs.hitcnts) |
1046 				L2T_IDX_V(f->l2t ? f->l2t->idx : 0) |
1047 				SMAC_SEL_V((cxgb4_port_viid(f->dev) &
1048 					    0x7F) << 1) |
1049 				TX_CHAN_V(f->fs.eport) |
1050 				NO_CONG_V(f->fs.rpttid) |
1051 				ULP_MODE_V(f->fs.nat_mode ?
1052 					   ULP_MODE_TCPDDP : ULP_MODE_NONE) |
1053 				TCAM_BYPASS_F | NON_OFFLOAD_F);
1054 
1055 	t6req->params = cpu_to_be64(FILTER_TUPLE_V(hash_filter_ntuple(&f->fs,
1056 								      f->dev)));
1057 	t6req->opt2 = htonl(RSS_QUEUE_VALID_F |
1058 			    RSS_QUEUE_V(f->fs.iq) |
1059 			    TX_QUEUE_V(f->fs.nat_mode) |
1060 			    T5_OPT_2_VALID_F |
1061 			    RX_CHANNEL_F |
1062 			    CONG_CNTRL_V((f->fs.action == FILTER_DROP) |
1063 					 (f->fs.dirsteer << 1)) |
1064 			    PACE_V((f->fs.maskhash) |
1065 				   ((f->fs.dirsteerhash) << 1)) |
1066 			    CCTRL_ECN_V(f->fs.action == FILTER_SWITCH));
1067 }
1068 
cxgb4_set_hash_filter(struct net_device * dev,struct ch_filter_specification * fs,struct filter_ctx * ctx)1069 static int cxgb4_set_hash_filter(struct net_device *dev,
1070 				 struct ch_filter_specification *fs,
1071 				 struct filter_ctx *ctx)
1072 {
1073 	struct adapter *adapter = netdev2adap(dev);
1074 	struct port_info *pi = netdev_priv(dev);
1075 	struct tid_info *t = &adapter->tids;
1076 	struct filter_entry *f;
1077 	struct sk_buff *skb;
1078 	int iq, atid, size;
1079 	int ret = 0;
1080 	u32 iconf;
1081 
1082 	fill_default_mask(fs);
1083 	ret = validate_filter(dev, fs);
1084 	if (ret)
1085 		return ret;
1086 
1087 	iq = get_filter_steerq(dev, fs);
1088 	if (iq < 0)
1089 		return iq;
1090 
1091 	f = kzalloc(sizeof(*f), GFP_KERNEL);
1092 	if (!f)
1093 		return -ENOMEM;
1094 
1095 	f->fs = *fs;
1096 	f->ctx = ctx;
1097 	f->dev = dev;
1098 	f->fs.iq = iq;
1099 
1100 	/* If the new filter requires loopback Destination MAC and/or VLAN
1101 	 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1102 	 * the filter.
1103 	 */
1104 	if (f->fs.newdmac || f->fs.newvlan) {
1105 		/* allocate L2T entry for new filter */
1106 		f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1107 						f->fs.eport, f->fs.dmac);
1108 		if (!f->l2t) {
1109 			ret = -ENOMEM;
1110 			goto out_err;
1111 		}
1112 	}
1113 
1114 	/* If the new filter requires loopback Source MAC rewriting then
1115 	 * we need to allocate a SMT entry for the filter.
1116 	 */
1117 	if (f->fs.newsmac) {
1118 		f->smt = cxgb4_smt_alloc_switching(f->dev, f->fs.smac);
1119 		if (!f->smt) {
1120 			if (f->l2t) {
1121 				cxgb4_l2t_release(f->l2t);
1122 				f->l2t = NULL;
1123 			}
1124 			ret = -ENOMEM;
1125 			goto free_l2t;
1126 		}
1127 	}
1128 
1129 	atid = cxgb4_alloc_atid(t, f);
1130 	if (atid < 0) {
1131 		ret = atid;
1132 		goto free_smt;
1133 	}
1134 
1135 	iconf = adapter->params.tp.ingress_config;
1136 	if (iconf & VNIC_F) {
1137 		f->fs.val.ovlan = (fs->val.pf << 13) | fs->val.vf;
1138 		f->fs.mask.ovlan = (fs->mask.pf << 13) | fs->mask.vf;
1139 		f->fs.val.ovlan_vld = fs->val.pfvf_vld;
1140 		f->fs.mask.ovlan_vld = fs->mask.pfvf_vld;
1141 	} else if (iconf & USE_ENC_IDX_F) {
1142 		if (f->fs.val.encap_vld) {
1143 			struct port_info *pi = netdev_priv(f->dev);
1144 			u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
1145 
1146 			/* allocate MPS TCAM entry */
1147 			ret = t4_alloc_encap_mac_filt(adapter, pi->viid,
1148 						      match_all_mac,
1149 						      match_all_mac,
1150 						      f->fs.val.vni,
1151 						      f->fs.mask.vni,
1152 						      0, 1, 1);
1153 			if (ret < 0)
1154 				goto free_atid;
1155 
1156 			atomic_inc(&adapter->mps_encap[ret].refcnt);
1157 			f->fs.val.ovlan = ret;
1158 			f->fs.mask.ovlan = 0xffff;
1159 			f->fs.val.ovlan_vld = 1;
1160 			f->fs.mask.ovlan_vld = 1;
1161 		}
1162 	}
1163 
1164 	size = sizeof(struct cpl_t6_act_open_req);
1165 	if (f->fs.type) {
1166 		ret = cxgb4_clip_get(f->dev, (const u32 *)&f->fs.val.lip, 1);
1167 		if (ret)
1168 			goto free_mps;
1169 
1170 		skb = alloc_skb(size, GFP_KERNEL);
1171 		if (!skb) {
1172 			ret = -ENOMEM;
1173 			goto free_clip;
1174 		}
1175 
1176 		mk_act_open_req6(f, skb,
1177 				 ((adapter->sge.fw_evtq.abs_id << 14) | atid),
1178 				 adapter);
1179 	} else {
1180 		skb = alloc_skb(size, GFP_KERNEL);
1181 		if (!skb) {
1182 			ret = -ENOMEM;
1183 			goto free_mps;
1184 		}
1185 
1186 		mk_act_open_req(f, skb,
1187 				((adapter->sge.fw_evtq.abs_id << 14) | atid),
1188 				adapter);
1189 	}
1190 
1191 	f->pending = 1;
1192 	set_wr_txq(skb, CPL_PRIORITY_SETUP, f->fs.val.iport & 0x3);
1193 	t4_ofld_send(adapter, skb);
1194 	return 0;
1195 
1196 free_clip:
1197 	cxgb4_clip_release(f->dev, (const u32 *)&f->fs.val.lip, 1);
1198 
1199 free_mps:
1200 	if (f->fs.val.encap_vld && f->fs.val.ovlan_vld)
1201 		t4_free_encap_mac_filt(adapter, pi->viid, f->fs.val.ovlan, 1);
1202 
1203 free_atid:
1204 	cxgb4_free_atid(t, atid);
1205 
1206 free_smt:
1207 	if (f->smt) {
1208 		cxgb4_smt_release(f->smt);
1209 		f->smt = NULL;
1210 	}
1211 
1212 free_l2t:
1213 	if (f->l2t) {
1214 		cxgb4_l2t_release(f->l2t);
1215 		f->l2t = NULL;
1216 	}
1217 
1218 out_err:
1219 	kfree(f);
1220 	return ret;
1221 }
1222 
1223 /* Check a Chelsio Filter Request for validity, convert it into our internal
1224  * format and send it to the hardware.  Return 0 on success, an error number
1225  * otherwise.  We attach any provided filter operation context to the internal
1226  * filter specification in order to facilitate signaling completion of the
1227  * operation.
1228  */
__cxgb4_set_filter(struct net_device * dev,int filter_id,struct ch_filter_specification * fs,struct filter_ctx * ctx)1229 int __cxgb4_set_filter(struct net_device *dev, int filter_id,
1230 		       struct ch_filter_specification *fs,
1231 		       struct filter_ctx *ctx)
1232 {
1233 	struct adapter *adapter = netdev2adap(dev);
1234 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1235 	unsigned int max_fidx, fidx;
1236 	struct filter_entry *f;
1237 	u32 iconf;
1238 	int iq, ret;
1239 
1240 	if (fs->hash) {
1241 		if (is_hashfilter(adapter))
1242 			return cxgb4_set_hash_filter(dev, fs, ctx);
1243 		netdev_err(dev, "%s: Exact-match filters only supported with Hash Filter configuration\n",
1244 			   __func__);
1245 		return -EINVAL;
1246 	}
1247 
1248 	max_fidx = adapter->tids.nftids;
1249 	if (filter_id != (max_fidx + adapter->tids.nsftids - 1) &&
1250 	    filter_id >= max_fidx)
1251 		return -E2BIG;
1252 
1253 	fill_default_mask(fs);
1254 
1255 	ret = validate_filter(dev, fs);
1256 	if (ret)
1257 		return ret;
1258 
1259 	iq = get_filter_steerq(dev, fs);
1260 	if (iq < 0)
1261 		return iq;
1262 
1263 	/* IPv6 filters occupy four slots and must be aligned on
1264 	 * four-slot boundaries.  IPv4 filters only occupy a single
1265 	 * slot and have no alignment requirements but writing a new
1266 	 * IPv4 filter into the middle of an existing IPv6 filter
1267 	 * requires clearing the old IPv6 filter and hence we prevent
1268 	 * insertion.
1269 	 */
1270 	if (fs->type == 0) { /* IPv4 */
1271 		/* For T6, If our IPv4 filter isn't being written to a
1272 		 * multiple of two filter index and there's an IPv6
1273 		 * filter at the multiple of 2 base slot, then we need
1274 		 * to delete that IPv6 filter ...
1275 		 * For adapters below T6, IPv6 filter occupies 4 entries.
1276 		 * Hence we need to delete the filter in multiple of 4 slot.
1277 		 */
1278 		if (chip_ver < CHELSIO_T6)
1279 			fidx = filter_id & ~0x3;
1280 		else
1281 			fidx = filter_id & ~0x1;
1282 
1283 		if (fidx != filter_id &&
1284 		    adapter->tids.ftid_tab[fidx].fs.type) {
1285 			f = &adapter->tids.ftid_tab[fidx];
1286 			if (f->valid) {
1287 				dev_err(adapter->pdev_dev,
1288 					"Invalid location. IPv6 requires 4 slots and is occupying slots %u to %u\n",
1289 					fidx, fidx + 3);
1290 				return -EINVAL;
1291 			}
1292 		}
1293 	} else { /* IPv6 */
1294 		if (chip_ver < CHELSIO_T6) {
1295 			/* Ensure that the IPv6 filter is aligned on a
1296 			 * multiple of 4 boundary.
1297 			 */
1298 			if (filter_id & 0x3) {
1299 				dev_err(adapter->pdev_dev,
1300 					"Invalid location. IPv6 must be aligned on a 4-slot boundary\n");
1301 				return -EINVAL;
1302 			}
1303 
1304 			/* Check all except the base overlapping IPv4 filter
1305 			 * slots.
1306 			 */
1307 			for (fidx = filter_id + 1; fidx < filter_id + 4;
1308 			     fidx++) {
1309 				f = &adapter->tids.ftid_tab[fidx];
1310 				if (f->valid) {
1311 					dev_err(adapter->pdev_dev,
1312 						"Invalid location.  IPv6 requires 4 slots and an IPv4 filter exists at %u\n",
1313 						fidx);
1314 					return -EBUSY;
1315 				}
1316 			}
1317 		} else {
1318 			/* For T6, CLIP being enabled, IPv6 filter would occupy
1319 			 * 2 entries.
1320 			 */
1321 			if (filter_id & 0x1)
1322 				return -EINVAL;
1323 			/* Check overlapping IPv4 filter slot */
1324 			fidx = filter_id + 1;
1325 			f = &adapter->tids.ftid_tab[fidx];
1326 			if (f->valid) {
1327 				pr_err("%s: IPv6 filter requires 2 indices. IPv4 filter already present at %d. Please remove IPv4 filter first.\n",
1328 				       __func__, fidx);
1329 				return -EBUSY;
1330 			}
1331 		}
1332 	}
1333 
1334 	/* Check to make sure that provided filter index is not
1335 	 * already in use by someone else
1336 	 */
1337 	f = &adapter->tids.ftid_tab[filter_id];
1338 	if (f->valid)
1339 		return -EBUSY;
1340 
1341 	fidx = filter_id + adapter->tids.ftid_base;
1342 	ret = cxgb4_set_ftid(&adapter->tids, filter_id,
1343 			     fs->type ? PF_INET6 : PF_INET,
1344 			     chip_ver);
1345 	if (ret)
1346 		return ret;
1347 
1348 	/* Check t  make sure the filter requested is writable ... */
1349 	ret = writable_filter(f);
1350 	if (ret) {
1351 		/* Clear the bits we have set above */
1352 		cxgb4_clear_ftid(&adapter->tids, filter_id,
1353 				 fs->type ? PF_INET6 : PF_INET,
1354 				 chip_ver);
1355 		return ret;
1356 	}
1357 
1358 	if (is_t6(adapter->params.chip) && fs->type &&
1359 	    ipv6_addr_type((const struct in6_addr *)fs->val.lip) !=
1360 	    IPV6_ADDR_ANY) {
1361 		ret = cxgb4_clip_get(dev, (const u32 *)&fs->val.lip, 1);
1362 		if (ret) {
1363 			cxgb4_clear_ftid(&adapter->tids, filter_id, PF_INET6,
1364 					 chip_ver);
1365 			return ret;
1366 		}
1367 	}
1368 
1369 	/* Convert the filter specification into our internal format.
1370 	 * We copy the PF/VF specification into the Outer VLAN field
1371 	 * here so the rest of the code -- including the interface to
1372 	 * the firmware -- doesn't have to constantly do these checks.
1373 	 */
1374 	f->fs = *fs;
1375 	f->fs.iq = iq;
1376 	f->dev = dev;
1377 
1378 	iconf = adapter->params.tp.ingress_config;
1379 	if (iconf & VNIC_F) {
1380 		f->fs.val.ovlan = (fs->val.pf << 13) | fs->val.vf;
1381 		f->fs.mask.ovlan = (fs->mask.pf << 13) | fs->mask.vf;
1382 		f->fs.val.ovlan_vld = fs->val.pfvf_vld;
1383 		f->fs.mask.ovlan_vld = fs->mask.pfvf_vld;
1384 	} else if (iconf & USE_ENC_IDX_F) {
1385 		if (f->fs.val.encap_vld) {
1386 			struct port_info *pi = netdev_priv(f->dev);
1387 			u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
1388 
1389 			/* allocate MPS TCAM entry */
1390 			ret = t4_alloc_encap_mac_filt(adapter, pi->viid,
1391 						      match_all_mac,
1392 						      match_all_mac,
1393 						      f->fs.val.vni,
1394 						      f->fs.mask.vni,
1395 						      0, 1, 1);
1396 			if (ret < 0)
1397 				goto free_clip;
1398 
1399 			atomic_inc(&adapter->mps_encap[ret].refcnt);
1400 			f->fs.val.ovlan = ret;
1401 			f->fs.mask.ovlan = 0x1ff;
1402 			f->fs.val.ovlan_vld = 1;
1403 			f->fs.mask.ovlan_vld = 1;
1404 		}
1405 	}
1406 
1407 	/* Attempt to set the filter.  If we don't succeed, we clear
1408 	 * it and return the failure.
1409 	 */
1410 	f->ctx = ctx;
1411 	f->tid = fidx; /* Save the actual tid */
1412 	ret = set_filter_wr(adapter, filter_id);
1413 	if (ret) {
1414 		cxgb4_clear_ftid(&adapter->tids, filter_id,
1415 				 fs->type ? PF_INET6 : PF_INET,
1416 				 chip_ver);
1417 		clear_filter(adapter, f);
1418 	}
1419 
1420 	return ret;
1421 
1422 free_clip:
1423 	if (is_t6(adapter->params.chip) && f->fs.type)
1424 		cxgb4_clip_release(f->dev, (const u32 *)&f->fs.val.lip, 1);
1425 	cxgb4_clear_ftid(&adapter->tids, filter_id,
1426 			 fs->type ? PF_INET6 : PF_INET, chip_ver);
1427 	return ret;
1428 }
1429 
cxgb4_del_hash_filter(struct net_device * dev,int filter_id,struct filter_ctx * ctx)1430 static int cxgb4_del_hash_filter(struct net_device *dev, int filter_id,
1431 				 struct filter_ctx *ctx)
1432 {
1433 	struct adapter *adapter = netdev2adap(dev);
1434 	struct tid_info *t = &adapter->tids;
1435 	struct cpl_abort_req *abort_req;
1436 	struct cpl_abort_rpl *abort_rpl;
1437 	struct cpl_set_tcb_field *req;
1438 	struct ulptx_idata *aligner;
1439 	struct work_request_hdr *wr;
1440 	struct filter_entry *f;
1441 	struct sk_buff *skb;
1442 	unsigned int wrlen;
1443 	int ret;
1444 
1445 	netdev_dbg(dev, "%s: filter_id = %d ; nftids = %d\n",
1446 		   __func__, filter_id, adapter->tids.nftids);
1447 
1448 	if (filter_id > adapter->tids.ntids)
1449 		return -E2BIG;
1450 
1451 	f = lookup_tid(t, filter_id);
1452 	if (!f) {
1453 		netdev_err(dev, "%s: no filter entry for filter_id = %d",
1454 			   __func__, filter_id);
1455 		return -EINVAL;
1456 	}
1457 
1458 	ret = writable_filter(f);
1459 	if (ret)
1460 		return ret;
1461 
1462 	if (!f->valid)
1463 		return -EINVAL;
1464 
1465 	f->ctx = ctx;
1466 	f->pending = 1;
1467 	wrlen = roundup(sizeof(*wr) + (sizeof(*req) + sizeof(*aligner))
1468 			+ sizeof(*abort_req) + sizeof(*abort_rpl), 16);
1469 	skb = alloc_skb(wrlen, GFP_KERNEL);
1470 	if (!skb) {
1471 		netdev_err(dev, "%s: could not allocate skb ..\n", __func__);
1472 		return -ENOMEM;
1473 	}
1474 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1475 	req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
1476 	INIT_ULPTX_WR(req, wrlen, 0, 0);
1477 	wr = (struct work_request_hdr *)req;
1478 	wr++;
1479 	req = (struct cpl_set_tcb_field *)wr;
1480 	mk_set_tcb_ulp(f, req, TCB_RSS_INFO_W, TCB_RSS_INFO_V(TCB_RSS_INFO_M),
1481 		       TCB_RSS_INFO_V(adapter->sge.fw_evtq.abs_id), 0, 1);
1482 	aligner = (struct ulptx_idata *)(req + 1);
1483 	abort_req = (struct cpl_abort_req *)(aligner + 1);
1484 	mk_abort_req_ulp(abort_req, f->tid);
1485 	abort_rpl = (struct cpl_abort_rpl *)(abort_req + 1);
1486 	mk_abort_rpl_ulp(abort_rpl, f->tid);
1487 	t4_ofld_send(adapter, skb);
1488 	return 0;
1489 }
1490 
1491 /* Check a delete filter request for validity and send it to the hardware.
1492  * Return 0 on success, an error number otherwise.  We attach any provided
1493  * filter operation context to the internal filter specification in order to
1494  * facilitate signaling completion of the operation.
1495  */
__cxgb4_del_filter(struct net_device * dev,int filter_id,struct ch_filter_specification * fs,struct filter_ctx * ctx)1496 int __cxgb4_del_filter(struct net_device *dev, int filter_id,
1497 		       struct ch_filter_specification *fs,
1498 		       struct filter_ctx *ctx)
1499 {
1500 	struct adapter *adapter = netdev2adap(dev);
1501 	unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
1502 	struct filter_entry *f;
1503 	unsigned int max_fidx;
1504 	int ret;
1505 
1506 	if (fs && fs->hash) {
1507 		if (is_hashfilter(adapter))
1508 			return cxgb4_del_hash_filter(dev, filter_id, ctx);
1509 		netdev_err(dev, "%s: Exact-match filters only supported with Hash Filter configuration\n",
1510 			   __func__);
1511 		return -EINVAL;
1512 	}
1513 
1514 	max_fidx = adapter->tids.nftids;
1515 	if (filter_id != (max_fidx + adapter->tids.nsftids - 1) &&
1516 	    filter_id >= max_fidx)
1517 		return -E2BIG;
1518 
1519 	f = &adapter->tids.ftid_tab[filter_id];
1520 	ret = writable_filter(f);
1521 	if (ret)
1522 		return ret;
1523 
1524 	if (f->valid) {
1525 		f->ctx = ctx;
1526 		cxgb4_clear_ftid(&adapter->tids, filter_id,
1527 				 f->fs.type ? PF_INET6 : PF_INET,
1528 				 chip_ver);
1529 		return del_filter_wr(adapter, filter_id);
1530 	}
1531 
1532 	/* If the caller has passed in a Completion Context then we need to
1533 	 * mark it as a successful completion so they don't stall waiting
1534 	 * for it.
1535 	 */
1536 	if (ctx) {
1537 		ctx->result = 0;
1538 		complete(&ctx->completion);
1539 	}
1540 	return ret;
1541 }
1542 
cxgb4_set_filter(struct net_device * dev,int filter_id,struct ch_filter_specification * fs)1543 int cxgb4_set_filter(struct net_device *dev, int filter_id,
1544 		     struct ch_filter_specification *fs)
1545 {
1546 	struct filter_ctx ctx;
1547 	int ret;
1548 
1549 	init_completion(&ctx.completion);
1550 
1551 	ret = __cxgb4_set_filter(dev, filter_id, fs, &ctx);
1552 	if (ret)
1553 		goto out;
1554 
1555 	/* Wait for reply */
1556 	ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ);
1557 	if (!ret)
1558 		return -ETIMEDOUT;
1559 
1560 	ret = ctx.result;
1561 out:
1562 	return ret;
1563 }
1564 
cxgb4_del_filter(struct net_device * dev,int filter_id,struct ch_filter_specification * fs)1565 int cxgb4_del_filter(struct net_device *dev, int filter_id,
1566 		     struct ch_filter_specification *fs)
1567 {
1568 	struct filter_ctx ctx;
1569 	int ret;
1570 
1571 	/* If we are shutting down the adapter do not wait for completion */
1572 	if (netdev2adap(dev)->flags & SHUTTING_DOWN)
1573 		return __cxgb4_del_filter(dev, filter_id, fs, NULL);
1574 
1575 	init_completion(&ctx.completion);
1576 
1577 	ret = __cxgb4_del_filter(dev, filter_id, fs, &ctx);
1578 	if (ret)
1579 		goto out;
1580 
1581 	/* Wait for reply */
1582 	ret = wait_for_completion_timeout(&ctx.completion, 10 * HZ);
1583 	if (!ret)
1584 		return -ETIMEDOUT;
1585 
1586 	ret = ctx.result;
1587 out:
1588 	return ret;
1589 }
1590 
configure_filter_tcb(struct adapter * adap,unsigned int tid,struct filter_entry * f)1591 static int configure_filter_tcb(struct adapter *adap, unsigned int tid,
1592 				struct filter_entry *f)
1593 {
1594 	if (f->fs.hitcnts)
1595 		set_tcb_field(adap, f, tid, TCB_TIMESTAMP_W,
1596 			      TCB_TIMESTAMP_V(TCB_TIMESTAMP_M) |
1597 			      TCB_RTT_TS_RECENT_AGE_V(TCB_RTT_TS_RECENT_AGE_M),
1598 			      TCB_TIMESTAMP_V(0ULL) |
1599 			      TCB_RTT_TS_RECENT_AGE_V(0ULL),
1600 			      1);
1601 
1602 	if (f->fs.newdmac)
1603 		set_tcb_tflag(adap, f, tid, TF_CCTRL_ECE_S, 1,
1604 			      1);
1605 
1606 	if (f->fs.newvlan == VLAN_INSERT ||
1607 	    f->fs.newvlan == VLAN_REWRITE)
1608 		set_tcb_tflag(adap, f, tid, TF_CCTRL_RFR_S, 1,
1609 			      1);
1610 	if (f->fs.newsmac)
1611 		configure_filter_smac(adap, f);
1612 
1613 	if (f->fs.nat_mode) {
1614 		switch (f->fs.nat_mode) {
1615 		case NAT_MODE_DIP:
1616 			set_nat_params(adap, f, tid, true, false, false, false);
1617 			break;
1618 
1619 		case NAT_MODE_DIP_DP:
1620 			set_nat_params(adap, f, tid, true, false, true, false);
1621 			break;
1622 
1623 		case NAT_MODE_DIP_DP_SIP:
1624 			set_nat_params(adap, f, tid, true, true, true, false);
1625 			break;
1626 		case NAT_MODE_DIP_DP_SP:
1627 			set_nat_params(adap, f, tid, true, false, true, true);
1628 			break;
1629 
1630 		case NAT_MODE_SIP_SP:
1631 			set_nat_params(adap, f, tid, false, true, false, true);
1632 			break;
1633 
1634 		case NAT_MODE_DIP_SIP_SP:
1635 			set_nat_params(adap, f, tid, true, true, false, true);
1636 			break;
1637 
1638 		case NAT_MODE_ALL:
1639 			set_nat_params(adap, f, tid, true, true, true, true);
1640 			break;
1641 
1642 		default:
1643 			pr_err("%s: Invalid NAT mode: %d\n",
1644 			       __func__, f->fs.nat_mode);
1645 			return -EINVAL;
1646 		}
1647 	}
1648 	return 0;
1649 }
1650 
hash_del_filter_rpl(struct adapter * adap,const struct cpl_abort_rpl_rss * rpl)1651 void hash_del_filter_rpl(struct adapter *adap,
1652 			 const struct cpl_abort_rpl_rss *rpl)
1653 {
1654 	unsigned int status = rpl->status;
1655 	struct tid_info *t = &adap->tids;
1656 	unsigned int tid = GET_TID(rpl);
1657 	struct filter_ctx *ctx = NULL;
1658 	struct filter_entry *f;
1659 
1660 	dev_dbg(adap->pdev_dev, "%s: status = %u; tid = %u\n",
1661 		__func__, status, tid);
1662 
1663 	f = lookup_tid(t, tid);
1664 	if (!f) {
1665 		dev_err(adap->pdev_dev, "%s:could not find filter entry",
1666 			__func__);
1667 		return;
1668 	}
1669 	ctx = f->ctx;
1670 	f->ctx = NULL;
1671 	clear_filter(adap, f);
1672 	cxgb4_remove_tid(t, 0, tid, 0);
1673 	kfree(f);
1674 	if (ctx) {
1675 		ctx->result = 0;
1676 		complete(&ctx->completion);
1677 	}
1678 }
1679 
hash_filter_rpl(struct adapter * adap,const struct cpl_act_open_rpl * rpl)1680 void hash_filter_rpl(struct adapter *adap, const struct cpl_act_open_rpl *rpl)
1681 {
1682 	unsigned int ftid = TID_TID_G(AOPEN_ATID_G(ntohl(rpl->atid_status)));
1683 	unsigned int status  = AOPEN_STATUS_G(ntohl(rpl->atid_status));
1684 	struct tid_info *t = &adap->tids;
1685 	unsigned int tid = GET_TID(rpl);
1686 	struct filter_ctx *ctx = NULL;
1687 	struct filter_entry *f;
1688 
1689 	dev_dbg(adap->pdev_dev, "%s: tid = %u; atid = %u; status = %u\n",
1690 		__func__, tid, ftid, status);
1691 
1692 	f = lookup_atid(t, ftid);
1693 	if (!f) {
1694 		dev_err(adap->pdev_dev, "%s:could not find filter entry",
1695 			__func__);
1696 		return;
1697 	}
1698 	ctx = f->ctx;
1699 	f->ctx = NULL;
1700 
1701 	switch (status) {
1702 	case CPL_ERR_NONE:
1703 		f->tid = tid;
1704 		f->pending = 0;
1705 		f->valid = 1;
1706 		cxgb4_insert_tid(t, f, f->tid, 0);
1707 		cxgb4_free_atid(t, ftid);
1708 		if (ctx) {
1709 			ctx->tid = f->tid;
1710 			ctx->result = 0;
1711 		}
1712 		if (configure_filter_tcb(adap, tid, f)) {
1713 			clear_filter(adap, f);
1714 			cxgb4_remove_tid(t, 0, tid, 0);
1715 			kfree(f);
1716 			if (ctx) {
1717 				ctx->result = -EINVAL;
1718 				complete(&ctx->completion);
1719 			}
1720 			return;
1721 		}
1722 		break;
1723 
1724 	default:
1725 		dev_err(adap->pdev_dev, "%s: filter creation PROBLEM; status = %u\n",
1726 			__func__, status);
1727 
1728 		if (ctx) {
1729 			if (status == CPL_ERR_TCAM_FULL)
1730 				ctx->result = -EAGAIN;
1731 			else
1732 				ctx->result = -EINVAL;
1733 		}
1734 		clear_filter(adap, f);
1735 		cxgb4_free_atid(t, ftid);
1736 		kfree(f);
1737 	}
1738 	if (ctx)
1739 		complete(&ctx->completion);
1740 }
1741 
1742 /* Handle a filter write/deletion reply. */
filter_rpl(struct adapter * adap,const struct cpl_set_tcb_rpl * rpl)1743 void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
1744 {
1745 	unsigned int tid = GET_TID(rpl);
1746 	struct filter_entry *f = NULL;
1747 	unsigned int max_fidx;
1748 	int idx;
1749 
1750 	max_fidx = adap->tids.nftids + adap->tids.nsftids;
1751 	/* Get the corresponding filter entry for this tid */
1752 	if (adap->tids.ftid_tab) {
1753 		/* Check this in normal filter region */
1754 		idx = tid - adap->tids.ftid_base;
1755 		if (idx >= max_fidx)
1756 			return;
1757 		f = &adap->tids.ftid_tab[idx];
1758 		if (f->tid != tid)
1759 			return;
1760 	}
1761 
1762 	/* We found the filter entry for this tid */
1763 	if (f) {
1764 		unsigned int ret = TCB_COOKIE_G(rpl->cookie);
1765 		struct filter_ctx *ctx;
1766 
1767 		/* Pull off any filter operation context attached to the
1768 		 * filter.
1769 		 */
1770 		ctx = f->ctx;
1771 		f->ctx = NULL;
1772 
1773 		if (ret == FW_FILTER_WR_FLT_DELETED) {
1774 			/* Clear the filter when we get confirmation from the
1775 			 * hardware that the filter has been deleted.
1776 			 */
1777 			clear_filter(adap, f);
1778 			if (ctx)
1779 				ctx->result = 0;
1780 		} else if (ret == FW_FILTER_WR_FLT_ADDED) {
1781 			int err = 0;
1782 
1783 			if (f->fs.newsmac)
1784 				err = configure_filter_smac(adap, f);
1785 
1786 			if (!err) {
1787 				f->pending = 0;  /* async setup completed */
1788 				f->valid = 1;
1789 				if (ctx) {
1790 					ctx->result = 0;
1791 					ctx->tid = idx;
1792 				}
1793 			} else {
1794 				clear_filter(adap, f);
1795 				if (ctx)
1796 					ctx->result = err;
1797 			}
1798 		} else {
1799 			/* Something went wrong.  Issue a warning about the
1800 			 * problem and clear everything out.
1801 			 */
1802 			dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
1803 				idx, ret);
1804 			clear_filter(adap, f);
1805 			if (ctx)
1806 				ctx->result = -EINVAL;
1807 		}
1808 		if (ctx)
1809 			complete(&ctx->completion);
1810 	}
1811 }
1812 
init_hash_filter(struct adapter * adap)1813 int init_hash_filter(struct adapter *adap)
1814 {
1815 	/* On T6, verify the necessary register configs and warn the user in
1816 	 * case of improper config
1817 	 */
1818 	if (is_t6(adap->params.chip)) {
1819 		if (TCAM_ACTV_HIT_G(t4_read_reg(adap, LE_DB_RSP_CODE_0_A)) != 4)
1820 			goto err;
1821 
1822 		if (HASH_ACTV_HIT_G(t4_read_reg(adap, LE_DB_RSP_CODE_1_A)) != 4)
1823 			goto err;
1824 	} else {
1825 		dev_err(adap->pdev_dev, "Hash filter supported only on T6\n");
1826 		return -EINVAL;
1827 	}
1828 	adap->params.hash_filter = 1;
1829 	return 0;
1830 err:
1831 	dev_warn(adap->pdev_dev, "Invalid hash filter config!\n");
1832 	return -EINVAL;
1833 }
1834