1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2014-2016 Freescale Semiconductor, Inc.
4 * Copyright 2016 NXP
5 *
6 */
7
8 #include <asm/cacheflush.h>
9 #include <linux/io.h>
10 #include <linux/slab.h>
11 #include <soc/fsl/dpaa2-global.h>
12
13 #include "qbman-portal.h"
14
15 #define QMAN_REV_4000 0x04000000
16 #define QMAN_REV_4100 0x04010000
17 #define QMAN_REV_4101 0x04010001
18 #define QMAN_REV_MASK 0xffff0000
19
20 /* All QBMan command and result structures use this "valid bit" encoding */
21 #define QB_VALID_BIT ((u32)0x80)
22
23 /* QBMan portal management command codes */
24 #define QBMAN_MC_ACQUIRE 0x30
25 #define QBMAN_WQCHAN_CONFIGURE 0x46
26
27 /* CINH register offsets */
28 #define QBMAN_CINH_SWP_EQAR 0x8c0
29 #define QBMAN_CINH_SWP_DQPI 0xa00
30 #define QBMAN_CINH_SWP_DCAP 0xac0
31 #define QBMAN_CINH_SWP_SDQCR 0xb00
32 #define QBMAN_CINH_SWP_RAR 0xcc0
33 #define QBMAN_CINH_SWP_ISR 0xe00
34 #define QBMAN_CINH_SWP_IER 0xe40
35 #define QBMAN_CINH_SWP_ISDR 0xe80
36 #define QBMAN_CINH_SWP_IIR 0xec0
37
38 /* CENA register offsets */
39 #define QBMAN_CENA_SWP_EQCR(n) (0x000 + ((u32)(n) << 6))
40 #define QBMAN_CENA_SWP_DQRR(n) (0x200 + ((u32)(n) << 6))
41 #define QBMAN_CENA_SWP_RCR(n) (0x400 + ((u32)(n) << 6))
42 #define QBMAN_CENA_SWP_CR 0x600
43 #define QBMAN_CENA_SWP_RR(vb) (0x700 + ((u32)(vb) >> 1))
44 #define QBMAN_CENA_SWP_VDQCR 0x780
45
46 /* Reverse mapping of QBMAN_CENA_SWP_DQRR() */
47 #define QBMAN_IDX_FROM_DQRR(p) (((unsigned long)(p) & 0x1ff) >> 6)
48
49 /* Define token used to determine if response written to memory is valid */
50 #define QMAN_DQ_TOKEN_VALID 1
51
52 /* SDQCR attribute codes */
53 #define QB_SDQCR_FC_SHIFT 29
54 #define QB_SDQCR_FC_MASK 0x1
55 #define QB_SDQCR_DCT_SHIFT 24
56 #define QB_SDQCR_DCT_MASK 0x3
57 #define QB_SDQCR_TOK_SHIFT 16
58 #define QB_SDQCR_TOK_MASK 0xff
59 #define QB_SDQCR_SRC_SHIFT 0
60 #define QB_SDQCR_SRC_MASK 0xffff
61
62 /* opaque token for static dequeues */
63 #define QMAN_SDQCR_TOKEN 0xbb
64
65 enum qbman_sdqcr_dct {
66 qbman_sdqcr_dct_null = 0,
67 qbman_sdqcr_dct_prio_ics,
68 qbman_sdqcr_dct_active_ics,
69 qbman_sdqcr_dct_active
70 };
71
72 enum qbman_sdqcr_fc {
73 qbman_sdqcr_fc_one = 0,
74 qbman_sdqcr_fc_up_to_3 = 1
75 };
76
77 /* Portal Access */
78
qbman_read_register(struct qbman_swp * p,u32 offset)79 static inline u32 qbman_read_register(struct qbman_swp *p, u32 offset)
80 {
81 return readl_relaxed(p->addr_cinh + offset);
82 }
83
qbman_write_register(struct qbman_swp * p,u32 offset,u32 value)84 static inline void qbman_write_register(struct qbman_swp *p, u32 offset,
85 u32 value)
86 {
87 writel_relaxed(value, p->addr_cinh + offset);
88 }
89
qbman_get_cmd(struct qbman_swp * p,u32 offset)90 static inline void *qbman_get_cmd(struct qbman_swp *p, u32 offset)
91 {
92 return p->addr_cena + offset;
93 }
94
95 #define QBMAN_CINH_SWP_CFG 0xd00
96
97 #define SWP_CFG_DQRR_MF_SHIFT 20
98 #define SWP_CFG_EST_SHIFT 16
99 #define SWP_CFG_WN_SHIFT 14
100 #define SWP_CFG_RPM_SHIFT 12
101 #define SWP_CFG_DCM_SHIFT 10
102 #define SWP_CFG_EPM_SHIFT 8
103 #define SWP_CFG_SD_SHIFT 5
104 #define SWP_CFG_SP_SHIFT 4
105 #define SWP_CFG_SE_SHIFT 3
106 #define SWP_CFG_DP_SHIFT 2
107 #define SWP_CFG_DE_SHIFT 1
108 #define SWP_CFG_EP_SHIFT 0
109
qbman_set_swp_cfg(u8 max_fill,u8 wn,u8 est,u8 rpm,u8 dcm,u8 epm,int sd,int sp,int se,int dp,int de,int ep)110 static inline u32 qbman_set_swp_cfg(u8 max_fill, u8 wn, u8 est, u8 rpm, u8 dcm,
111 u8 epm, int sd, int sp, int se,
112 int dp, int de, int ep)
113 {
114 return (max_fill << SWP_CFG_DQRR_MF_SHIFT |
115 est << SWP_CFG_EST_SHIFT |
116 wn << SWP_CFG_WN_SHIFT |
117 rpm << SWP_CFG_RPM_SHIFT |
118 dcm << SWP_CFG_DCM_SHIFT |
119 epm << SWP_CFG_EPM_SHIFT |
120 sd << SWP_CFG_SD_SHIFT |
121 sp << SWP_CFG_SP_SHIFT |
122 se << SWP_CFG_SE_SHIFT |
123 dp << SWP_CFG_DP_SHIFT |
124 de << SWP_CFG_DE_SHIFT |
125 ep << SWP_CFG_EP_SHIFT);
126 }
127
128 /**
129 * qbman_swp_init() - Create a functional object representing the given
130 * QBMan portal descriptor.
131 * @d: the given qbman swp descriptor
132 *
133 * Return qbman_swp portal for success, NULL if the object cannot
134 * be created.
135 */
qbman_swp_init(const struct qbman_swp_desc * d)136 struct qbman_swp *qbman_swp_init(const struct qbman_swp_desc *d)
137 {
138 struct qbman_swp *p = kmalloc(sizeof(*p), GFP_KERNEL);
139 u32 reg;
140
141 if (!p)
142 return NULL;
143 p->desc = d;
144 p->mc.valid_bit = QB_VALID_BIT;
145 p->sdq = 0;
146 p->sdq |= qbman_sdqcr_dct_prio_ics << QB_SDQCR_DCT_SHIFT;
147 p->sdq |= qbman_sdqcr_fc_up_to_3 << QB_SDQCR_FC_SHIFT;
148 p->sdq |= QMAN_SDQCR_TOKEN << QB_SDQCR_TOK_SHIFT;
149
150 atomic_set(&p->vdq.available, 1);
151 p->vdq.valid_bit = QB_VALID_BIT;
152 p->dqrr.next_idx = 0;
153 p->dqrr.valid_bit = QB_VALID_BIT;
154
155 if ((p->desc->qman_version & QMAN_REV_MASK) < QMAN_REV_4100) {
156 p->dqrr.dqrr_size = 4;
157 p->dqrr.reset_bug = 1;
158 } else {
159 p->dqrr.dqrr_size = 8;
160 p->dqrr.reset_bug = 0;
161 }
162
163 p->addr_cena = d->cena_bar;
164 p->addr_cinh = d->cinh_bar;
165
166 reg = qbman_set_swp_cfg(p->dqrr.dqrr_size,
167 1, /* Writes Non-cacheable */
168 0, /* EQCR_CI stashing threshold */
169 3, /* RPM: Valid bit mode, RCR in array mode */
170 2, /* DCM: Discrete consumption ack mode */
171 3, /* EPM: Valid bit mode, EQCR in array mode */
172 0, /* mem stashing drop enable == FALSE */
173 1, /* mem stashing priority == TRUE */
174 0, /* mem stashing enable == FALSE */
175 1, /* dequeue stashing priority == TRUE */
176 0, /* dequeue stashing enable == FALSE */
177 0); /* EQCR_CI stashing priority == FALSE */
178
179 qbman_write_register(p, QBMAN_CINH_SWP_CFG, reg);
180 reg = qbman_read_register(p, QBMAN_CINH_SWP_CFG);
181 if (!reg) {
182 pr_err("qbman: the portal is not enabled!\n");
183 return NULL;
184 }
185
186 /*
187 * SDQCR needs to be initialized to 0 when no channels are
188 * being dequeued from or else the QMan HW will indicate an
189 * error. The values that were calculated above will be
190 * applied when dequeues from a specific channel are enabled.
191 */
192 qbman_write_register(p, QBMAN_CINH_SWP_SDQCR, 0);
193 return p;
194 }
195
196 /**
197 * qbman_swp_finish() - Create and destroy a functional object representing
198 * the given QBMan portal descriptor.
199 * @p: the qbman_swp object to be destroyed
200 */
qbman_swp_finish(struct qbman_swp * p)201 void qbman_swp_finish(struct qbman_swp *p)
202 {
203 kfree(p);
204 }
205
206 /**
207 * qbman_swp_interrupt_read_status()
208 * @p: the given software portal
209 *
210 * Return the value in the SWP_ISR register.
211 */
qbman_swp_interrupt_read_status(struct qbman_swp * p)212 u32 qbman_swp_interrupt_read_status(struct qbman_swp *p)
213 {
214 return qbman_read_register(p, QBMAN_CINH_SWP_ISR);
215 }
216
217 /**
218 * qbman_swp_interrupt_clear_status()
219 * @p: the given software portal
220 * @mask: The mask to clear in SWP_ISR register
221 */
qbman_swp_interrupt_clear_status(struct qbman_swp * p,u32 mask)222 void qbman_swp_interrupt_clear_status(struct qbman_swp *p, u32 mask)
223 {
224 qbman_write_register(p, QBMAN_CINH_SWP_ISR, mask);
225 }
226
227 /**
228 * qbman_swp_interrupt_get_trigger() - read interrupt enable register
229 * @p: the given software portal
230 *
231 * Return the value in the SWP_IER register.
232 */
qbman_swp_interrupt_get_trigger(struct qbman_swp * p)233 u32 qbman_swp_interrupt_get_trigger(struct qbman_swp *p)
234 {
235 return qbman_read_register(p, QBMAN_CINH_SWP_IER);
236 }
237
238 /**
239 * qbman_swp_interrupt_set_trigger() - enable interrupts for a swp
240 * @p: the given software portal
241 * @mask: The mask of bits to enable in SWP_IER
242 */
qbman_swp_interrupt_set_trigger(struct qbman_swp * p,u32 mask)243 void qbman_swp_interrupt_set_trigger(struct qbman_swp *p, u32 mask)
244 {
245 qbman_write_register(p, QBMAN_CINH_SWP_IER, mask);
246 }
247
248 /**
249 * qbman_swp_interrupt_get_inhibit() - read interrupt mask register
250 * @p: the given software portal object
251 *
252 * Return the value in the SWP_IIR register.
253 */
qbman_swp_interrupt_get_inhibit(struct qbman_swp * p)254 int qbman_swp_interrupt_get_inhibit(struct qbman_swp *p)
255 {
256 return qbman_read_register(p, QBMAN_CINH_SWP_IIR);
257 }
258
259 /**
260 * qbman_swp_interrupt_set_inhibit() - write interrupt mask register
261 * @p: the given software portal object
262 * @mask: The mask to set in SWP_IIR register
263 */
qbman_swp_interrupt_set_inhibit(struct qbman_swp * p,int inhibit)264 void qbman_swp_interrupt_set_inhibit(struct qbman_swp *p, int inhibit)
265 {
266 qbman_write_register(p, QBMAN_CINH_SWP_IIR, inhibit ? 0xffffffff : 0);
267 }
268
269 /*
270 * Different management commands all use this common base layer of code to issue
271 * commands and poll for results.
272 */
273
274 /*
275 * Returns a pointer to where the caller should fill in their management command
276 * (caller should ignore the verb byte)
277 */
qbman_swp_mc_start(struct qbman_swp * p)278 void *qbman_swp_mc_start(struct qbman_swp *p)
279 {
280 return qbman_get_cmd(p, QBMAN_CENA_SWP_CR);
281 }
282
283 /*
284 * Commits merges in the caller-supplied command verb (which should not include
285 * the valid-bit) and submits the command to hardware
286 */
qbman_swp_mc_submit(struct qbman_swp * p,void * cmd,u8 cmd_verb)287 void qbman_swp_mc_submit(struct qbman_swp *p, void *cmd, u8 cmd_verb)
288 {
289 u8 *v = cmd;
290
291 dma_wmb();
292 *v = cmd_verb | p->mc.valid_bit;
293 }
294
295 /*
296 * Checks for a completed response (returns non-NULL if only if the response
297 * is complete).
298 */
qbman_swp_mc_result(struct qbman_swp * p)299 void *qbman_swp_mc_result(struct qbman_swp *p)
300 {
301 u32 *ret, verb;
302
303 ret = qbman_get_cmd(p, QBMAN_CENA_SWP_RR(p->mc.valid_bit));
304
305 /* Remove the valid-bit - command completed if the rest is non-zero */
306 verb = ret[0] & ~QB_VALID_BIT;
307 if (!verb)
308 return NULL;
309 p->mc.valid_bit ^= QB_VALID_BIT;
310 return ret;
311 }
312
313 #define QB_ENQUEUE_CMD_OPTIONS_SHIFT 0
314 enum qb_enqueue_commands {
315 enqueue_empty = 0,
316 enqueue_response_always = 1,
317 enqueue_rejects_to_fq = 2
318 };
319
320 #define QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT 2
321 #define QB_ENQUEUE_CMD_IRQ_ON_DISPATCH_SHIFT 3
322 #define QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT 4
323
324 /**
325 * qbman_eq_desc_clear() - Clear the contents of a descriptor to
326 * default/starting state.
327 */
qbman_eq_desc_clear(struct qbman_eq_desc * d)328 void qbman_eq_desc_clear(struct qbman_eq_desc *d)
329 {
330 memset(d, 0, sizeof(*d));
331 }
332
333 /**
334 * qbman_eq_desc_set_no_orp() - Set enqueue descriptor without orp
335 * @d: the enqueue descriptor.
336 * @response_success: 1 = enqueue with response always; 0 = enqueue with
337 * rejections returned on a FQ.
338 */
qbman_eq_desc_set_no_orp(struct qbman_eq_desc * d,int respond_success)339 void qbman_eq_desc_set_no_orp(struct qbman_eq_desc *d, int respond_success)
340 {
341 d->verb &= ~(1 << QB_ENQUEUE_CMD_ORP_ENABLE_SHIFT);
342 if (respond_success)
343 d->verb |= enqueue_response_always;
344 else
345 d->verb |= enqueue_rejects_to_fq;
346 }
347
348 /*
349 * Exactly one of the following descriptor "targets" should be set. (Calling any
350 * one of these will replace the effect of any prior call to one of these.)
351 * -enqueue to a frame queue
352 * -enqueue to a queuing destination
353 */
354
355 /**
356 * qbman_eq_desc_set_fq() - set the FQ for the enqueue command
357 * @d: the enqueue descriptor
358 * @fqid: the id of the frame queue to be enqueued
359 */
qbman_eq_desc_set_fq(struct qbman_eq_desc * d,u32 fqid)360 void qbman_eq_desc_set_fq(struct qbman_eq_desc *d, u32 fqid)
361 {
362 d->verb &= ~(1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT);
363 d->tgtid = cpu_to_le32(fqid);
364 }
365
366 /**
367 * qbman_eq_desc_set_qd() - Set Queuing Destination for the enqueue command
368 * @d: the enqueue descriptor
369 * @qdid: the id of the queuing destination to be enqueued
370 * @qd_bin: the queuing destination bin
371 * @qd_prio: the queuing destination priority
372 */
qbman_eq_desc_set_qd(struct qbman_eq_desc * d,u32 qdid,u32 qd_bin,u32 qd_prio)373 void qbman_eq_desc_set_qd(struct qbman_eq_desc *d, u32 qdid,
374 u32 qd_bin, u32 qd_prio)
375 {
376 d->verb |= 1 << QB_ENQUEUE_CMD_TARGET_TYPE_SHIFT;
377 d->tgtid = cpu_to_le32(qdid);
378 d->qdbin = cpu_to_le16(qd_bin);
379 d->qpri = qd_prio;
380 }
381
382 #define EQAR_IDX(eqar) ((eqar) & 0x7)
383 #define EQAR_VB(eqar) ((eqar) & 0x80)
384 #define EQAR_SUCCESS(eqar) ((eqar) & 0x100)
385
386 /**
387 * qbman_swp_enqueue() - Issue an enqueue command
388 * @s: the software portal used for enqueue
389 * @d: the enqueue descriptor
390 * @fd: the frame descriptor to be enqueued
391 *
392 * Please note that 'fd' should only be NULL if the "action" of the
393 * descriptor is "orp_hole" or "orp_nesn".
394 *
395 * Return 0 for successful enqueue, -EBUSY if the EQCR is not ready.
396 */
qbman_swp_enqueue(struct qbman_swp * s,const struct qbman_eq_desc * d,const struct dpaa2_fd * fd)397 int qbman_swp_enqueue(struct qbman_swp *s, const struct qbman_eq_desc *d,
398 const struct dpaa2_fd *fd)
399 {
400 struct qbman_eq_desc *p;
401 u32 eqar = qbman_read_register(s, QBMAN_CINH_SWP_EQAR);
402
403 if (!EQAR_SUCCESS(eqar))
404 return -EBUSY;
405
406 p = qbman_get_cmd(s, QBMAN_CENA_SWP_EQCR(EQAR_IDX(eqar)));
407 memcpy(&p->dca, &d->dca, 31);
408 memcpy(&p->fd, fd, sizeof(*fd));
409
410 /* Set the verb byte, have to substitute in the valid-bit */
411 dma_wmb();
412 p->verb = d->verb | EQAR_VB(eqar);
413
414 return 0;
415 }
416
417 /* Static (push) dequeue */
418
419 /**
420 * qbman_swp_push_get() - Get the push dequeue setup
421 * @p: the software portal object
422 * @channel_idx: the channel index to query
423 * @enabled: returned boolean to show whether the push dequeue is enabled
424 * for the given channel
425 */
qbman_swp_push_get(struct qbman_swp * s,u8 channel_idx,int * enabled)426 void qbman_swp_push_get(struct qbman_swp *s, u8 channel_idx, int *enabled)
427 {
428 u16 src = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
429
430 WARN_ON(channel_idx > 15);
431 *enabled = src | (1 << channel_idx);
432 }
433
434 /**
435 * qbman_swp_push_set() - Enable or disable push dequeue
436 * @p: the software portal object
437 * @channel_idx: the channel index (0 to 15)
438 * @enable: enable or disable push dequeue
439 */
qbman_swp_push_set(struct qbman_swp * s,u8 channel_idx,int enable)440 void qbman_swp_push_set(struct qbman_swp *s, u8 channel_idx, int enable)
441 {
442 u16 dqsrc;
443
444 WARN_ON(channel_idx > 15);
445 if (enable)
446 s->sdq |= 1 << channel_idx;
447 else
448 s->sdq &= ~(1 << channel_idx);
449
450 /* Read make the complete src map. If no channels are enabled
451 * the SDQCR must be 0 or else QMan will assert errors
452 */
453 dqsrc = (s->sdq >> QB_SDQCR_SRC_SHIFT) & QB_SDQCR_SRC_MASK;
454 if (dqsrc != 0)
455 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, s->sdq);
456 else
457 qbman_write_register(s, QBMAN_CINH_SWP_SDQCR, 0);
458 }
459
460 #define QB_VDQCR_VERB_DCT_SHIFT 0
461 #define QB_VDQCR_VERB_DT_SHIFT 2
462 #define QB_VDQCR_VERB_RLS_SHIFT 4
463 #define QB_VDQCR_VERB_WAE_SHIFT 5
464
465 enum qb_pull_dt_e {
466 qb_pull_dt_channel,
467 qb_pull_dt_workqueue,
468 qb_pull_dt_framequeue
469 };
470
471 /**
472 * qbman_pull_desc_clear() - Clear the contents of a descriptor to
473 * default/starting state
474 * @d: the pull dequeue descriptor to be cleared
475 */
qbman_pull_desc_clear(struct qbman_pull_desc * d)476 void qbman_pull_desc_clear(struct qbman_pull_desc *d)
477 {
478 memset(d, 0, sizeof(*d));
479 }
480
481 /**
482 * qbman_pull_desc_set_storage()- Set the pull dequeue storage
483 * @d: the pull dequeue descriptor to be set
484 * @storage: the pointer of the memory to store the dequeue result
485 * @storage_phys: the physical address of the storage memory
486 * @stash: to indicate whether write allocate is enabled
487 *
488 * If not called, or if called with 'storage' as NULL, the result pull dequeues
489 * will produce results to DQRR. If 'storage' is non-NULL, then results are
490 * produced to the given memory location (using the DMA address which
491 * the caller provides in 'storage_phys'), and 'stash' controls whether or not
492 * those writes to main-memory express a cache-warming attribute.
493 */
qbman_pull_desc_set_storage(struct qbman_pull_desc * d,struct dpaa2_dq * storage,dma_addr_t storage_phys,int stash)494 void qbman_pull_desc_set_storage(struct qbman_pull_desc *d,
495 struct dpaa2_dq *storage,
496 dma_addr_t storage_phys,
497 int stash)
498 {
499 /* save the virtual address */
500 d->rsp_addr_virt = (u64)(uintptr_t)storage;
501
502 if (!storage) {
503 d->verb &= ~(1 << QB_VDQCR_VERB_RLS_SHIFT);
504 return;
505 }
506 d->verb |= 1 << QB_VDQCR_VERB_RLS_SHIFT;
507 if (stash)
508 d->verb |= 1 << QB_VDQCR_VERB_WAE_SHIFT;
509 else
510 d->verb &= ~(1 << QB_VDQCR_VERB_WAE_SHIFT);
511
512 d->rsp_addr = cpu_to_le64(storage_phys);
513 }
514
515 /**
516 * qbman_pull_desc_set_numframes() - Set the number of frames to be dequeued
517 * @d: the pull dequeue descriptor to be set
518 * @numframes: number of frames to be set, must be between 1 and 16, inclusive
519 */
qbman_pull_desc_set_numframes(struct qbman_pull_desc * d,u8 numframes)520 void qbman_pull_desc_set_numframes(struct qbman_pull_desc *d, u8 numframes)
521 {
522 d->numf = numframes - 1;
523 }
524
525 /*
526 * Exactly one of the following descriptor "actions" should be set. (Calling any
527 * one of these will replace the effect of any prior call to one of these.)
528 * - pull dequeue from the given frame queue (FQ)
529 * - pull dequeue from any FQ in the given work queue (WQ)
530 * - pull dequeue from any FQ in any WQ in the given channel
531 */
532
533 /**
534 * qbman_pull_desc_set_fq() - Set fqid from which the dequeue command dequeues
535 * @fqid: the frame queue index of the given FQ
536 */
qbman_pull_desc_set_fq(struct qbman_pull_desc * d,u32 fqid)537 void qbman_pull_desc_set_fq(struct qbman_pull_desc *d, u32 fqid)
538 {
539 d->verb |= 1 << QB_VDQCR_VERB_DCT_SHIFT;
540 d->verb |= qb_pull_dt_framequeue << QB_VDQCR_VERB_DT_SHIFT;
541 d->dq_src = cpu_to_le32(fqid);
542 }
543
544 /**
545 * qbman_pull_desc_set_wq() - Set wqid from which the dequeue command dequeues
546 * @wqid: composed of channel id and wqid within the channel
547 * @dct: the dequeue command type
548 */
qbman_pull_desc_set_wq(struct qbman_pull_desc * d,u32 wqid,enum qbman_pull_type_e dct)549 void qbman_pull_desc_set_wq(struct qbman_pull_desc *d, u32 wqid,
550 enum qbman_pull_type_e dct)
551 {
552 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
553 d->verb |= qb_pull_dt_workqueue << QB_VDQCR_VERB_DT_SHIFT;
554 d->dq_src = cpu_to_le32(wqid);
555 }
556
557 /**
558 * qbman_pull_desc_set_channel() - Set channelid from which the dequeue command
559 * dequeues
560 * @chid: the channel id to be dequeued
561 * @dct: the dequeue command type
562 */
qbman_pull_desc_set_channel(struct qbman_pull_desc * d,u32 chid,enum qbman_pull_type_e dct)563 void qbman_pull_desc_set_channel(struct qbman_pull_desc *d, u32 chid,
564 enum qbman_pull_type_e dct)
565 {
566 d->verb |= dct << QB_VDQCR_VERB_DCT_SHIFT;
567 d->verb |= qb_pull_dt_channel << QB_VDQCR_VERB_DT_SHIFT;
568 d->dq_src = cpu_to_le32(chid);
569 }
570
571 /**
572 * qbman_swp_pull() - Issue the pull dequeue command
573 * @s: the software portal object
574 * @d: the software portal descriptor which has been configured with
575 * the set of qbman_pull_desc_set_*() calls
576 *
577 * Return 0 for success, and -EBUSY if the software portal is not ready
578 * to do pull dequeue.
579 */
qbman_swp_pull(struct qbman_swp * s,struct qbman_pull_desc * d)580 int qbman_swp_pull(struct qbman_swp *s, struct qbman_pull_desc *d)
581 {
582 struct qbman_pull_desc *p;
583
584 if (!atomic_dec_and_test(&s->vdq.available)) {
585 atomic_inc(&s->vdq.available);
586 return -EBUSY;
587 }
588 s->vdq.storage = (void *)(uintptr_t)d->rsp_addr_virt;
589 p = qbman_get_cmd(s, QBMAN_CENA_SWP_VDQCR);
590 p->numf = d->numf;
591 p->tok = QMAN_DQ_TOKEN_VALID;
592 p->dq_src = d->dq_src;
593 p->rsp_addr = d->rsp_addr;
594 p->rsp_addr_virt = d->rsp_addr_virt;
595 dma_wmb();
596
597 /* Set the verb byte, have to substitute in the valid-bit */
598 p->verb = d->verb | s->vdq.valid_bit;
599 s->vdq.valid_bit ^= QB_VALID_BIT;
600
601 return 0;
602 }
603
604 #define QMAN_DQRR_PI_MASK 0xf
605
606 /**
607 * qbman_swp_dqrr_next() - Get an valid DQRR entry
608 * @s: the software portal object
609 *
610 * Return NULL if there are no unconsumed DQRR entries. Return a DQRR entry
611 * only once, so repeated calls can return a sequence of DQRR entries, without
612 * requiring they be consumed immediately or in any particular order.
613 */
qbman_swp_dqrr_next(struct qbman_swp * s)614 const struct dpaa2_dq *qbman_swp_dqrr_next(struct qbman_swp *s)
615 {
616 u32 verb;
617 u32 response_verb;
618 u32 flags;
619 struct dpaa2_dq *p;
620
621 /* Before using valid-bit to detect if something is there, we have to
622 * handle the case of the DQRR reset bug...
623 */
624 if (unlikely(s->dqrr.reset_bug)) {
625 /*
626 * We pick up new entries by cache-inhibited producer index,
627 * which means that a non-coherent mapping would require us to
628 * invalidate and read *only* once that PI has indicated that
629 * there's an entry here. The first trip around the DQRR ring
630 * will be much less efficient than all subsequent trips around
631 * it...
632 */
633 u8 pi = qbman_read_register(s, QBMAN_CINH_SWP_DQPI) &
634 QMAN_DQRR_PI_MASK;
635
636 /* there are new entries if pi != next_idx */
637 if (pi == s->dqrr.next_idx)
638 return NULL;
639
640 /*
641 * if next_idx is/was the last ring index, and 'pi' is
642 * different, we can disable the workaround as all the ring
643 * entries have now been DMA'd to so valid-bit checking is
644 * repaired. Note: this logic needs to be based on next_idx
645 * (which increments one at a time), rather than on pi (which
646 * can burst and wrap-around between our snapshots of it).
647 */
648 if (s->dqrr.next_idx == (s->dqrr.dqrr_size - 1)) {
649 pr_debug("next_idx=%d, pi=%d, clear reset bug\n",
650 s->dqrr.next_idx, pi);
651 s->dqrr.reset_bug = 0;
652 }
653 prefetch(qbman_get_cmd(s,
654 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
655 }
656
657 p = qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx));
658 verb = p->dq.verb;
659
660 /*
661 * If the valid-bit isn't of the expected polarity, nothing there. Note,
662 * in the DQRR reset bug workaround, we shouldn't need to skip these
663 * check, because we've already determined that a new entry is available
664 * and we've invalidated the cacheline before reading it, so the
665 * valid-bit behaviour is repaired and should tell us what we already
666 * knew from reading PI.
667 */
668 if ((verb & QB_VALID_BIT) != s->dqrr.valid_bit) {
669 prefetch(qbman_get_cmd(s,
670 QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
671 return NULL;
672 }
673 /*
674 * There's something there. Move "next_idx" attention to the next ring
675 * entry (and prefetch it) before returning what we found.
676 */
677 s->dqrr.next_idx++;
678 s->dqrr.next_idx &= s->dqrr.dqrr_size - 1; /* Wrap around */
679 if (!s->dqrr.next_idx)
680 s->dqrr.valid_bit ^= QB_VALID_BIT;
681
682 /*
683 * If this is the final response to a volatile dequeue command
684 * indicate that the vdq is available
685 */
686 flags = p->dq.stat;
687 response_verb = verb & QBMAN_RESULT_MASK;
688 if ((response_verb == QBMAN_RESULT_DQ) &&
689 (flags & DPAA2_DQ_STAT_VOLATILE) &&
690 (flags & DPAA2_DQ_STAT_EXPIRED))
691 atomic_inc(&s->vdq.available);
692
693 prefetch(qbman_get_cmd(s, QBMAN_CENA_SWP_DQRR(s->dqrr.next_idx)));
694
695 return p;
696 }
697
698 /**
699 * qbman_swp_dqrr_consume() - Consume DQRR entries previously returned from
700 * qbman_swp_dqrr_next().
701 * @s: the software portal object
702 * @dq: the DQRR entry to be consumed
703 */
qbman_swp_dqrr_consume(struct qbman_swp * s,const struct dpaa2_dq * dq)704 void qbman_swp_dqrr_consume(struct qbman_swp *s, const struct dpaa2_dq *dq)
705 {
706 qbman_write_register(s, QBMAN_CINH_SWP_DCAP, QBMAN_IDX_FROM_DQRR(dq));
707 }
708
709 /**
710 * qbman_result_has_new_result() - Check and get the dequeue response from the
711 * dq storage memory set in pull dequeue command
712 * @s: the software portal object
713 * @dq: the dequeue result read from the memory
714 *
715 * Return 1 for getting a valid dequeue result, or 0 for not getting a valid
716 * dequeue result.
717 *
718 * Only used for user-provided storage of dequeue results, not DQRR. For
719 * efficiency purposes, the driver will perform any required endianness
720 * conversion to ensure that the user's dequeue result storage is in host-endian
721 * format. As such, once the user has called qbman_result_has_new_result() and
722 * been returned a valid dequeue result, they should not call it again on
723 * the same memory location (except of course if another dequeue command has
724 * been executed to produce a new result to that location).
725 */
qbman_result_has_new_result(struct qbman_swp * s,const struct dpaa2_dq * dq)726 int qbman_result_has_new_result(struct qbman_swp *s, const struct dpaa2_dq *dq)
727 {
728 if (dq->dq.tok != QMAN_DQ_TOKEN_VALID)
729 return 0;
730
731 /*
732 * Set token to be 0 so we will detect change back to 1
733 * next time the looping is traversed. Const is cast away here
734 * as we want users to treat the dequeue responses as read only.
735 */
736 ((struct dpaa2_dq *)dq)->dq.tok = 0;
737
738 /*
739 * Determine whether VDQCR is available based on whether the
740 * current result is sitting in the first storage location of
741 * the busy command.
742 */
743 if (s->vdq.storage == dq) {
744 s->vdq.storage = NULL;
745 atomic_inc(&s->vdq.available);
746 }
747
748 return 1;
749 }
750
751 /**
752 * qbman_release_desc_clear() - Clear the contents of a descriptor to
753 * default/starting state.
754 */
qbman_release_desc_clear(struct qbman_release_desc * d)755 void qbman_release_desc_clear(struct qbman_release_desc *d)
756 {
757 memset(d, 0, sizeof(*d));
758 d->verb = 1 << 5; /* Release Command Valid */
759 }
760
761 /**
762 * qbman_release_desc_set_bpid() - Set the ID of the buffer pool to release to
763 */
qbman_release_desc_set_bpid(struct qbman_release_desc * d,u16 bpid)764 void qbman_release_desc_set_bpid(struct qbman_release_desc *d, u16 bpid)
765 {
766 d->bpid = cpu_to_le16(bpid);
767 }
768
769 /**
770 * qbman_release_desc_set_rcdi() - Determines whether or not the portal's RCDI
771 * interrupt source should be asserted after the release command is completed.
772 */
qbman_release_desc_set_rcdi(struct qbman_release_desc * d,int enable)773 void qbman_release_desc_set_rcdi(struct qbman_release_desc *d, int enable)
774 {
775 if (enable)
776 d->verb |= 1 << 6;
777 else
778 d->verb &= ~(1 << 6);
779 }
780
781 #define RAR_IDX(rar) ((rar) & 0x7)
782 #define RAR_VB(rar) ((rar) & 0x80)
783 #define RAR_SUCCESS(rar) ((rar) & 0x100)
784
785 /**
786 * qbman_swp_release() - Issue a buffer release command
787 * @s: the software portal object
788 * @d: the release descriptor
789 * @buffers: a pointer pointing to the buffer address to be released
790 * @num_buffers: number of buffers to be released, must be less than 8
791 *
792 * Return 0 for success, -EBUSY if the release command ring is not ready.
793 */
qbman_swp_release(struct qbman_swp * s,const struct qbman_release_desc * d,const u64 * buffers,unsigned int num_buffers)794 int qbman_swp_release(struct qbman_swp *s, const struct qbman_release_desc *d,
795 const u64 *buffers, unsigned int num_buffers)
796 {
797 int i;
798 struct qbman_release_desc *p;
799 u32 rar;
800
801 if (!num_buffers || (num_buffers > 7))
802 return -EINVAL;
803
804 rar = qbman_read_register(s, QBMAN_CINH_SWP_RAR);
805 if (!RAR_SUCCESS(rar))
806 return -EBUSY;
807
808 /* Start the release command */
809 p = qbman_get_cmd(s, QBMAN_CENA_SWP_RCR(RAR_IDX(rar)));
810 /* Copy the caller's buffer pointers to the command */
811 for (i = 0; i < num_buffers; i++)
812 p->buf[i] = cpu_to_le64(buffers[i]);
813 p->bpid = d->bpid;
814
815 /*
816 * Set the verb byte, have to substitute in the valid-bit and the number
817 * of buffers.
818 */
819 dma_wmb();
820 p->verb = d->verb | RAR_VB(rar) | num_buffers;
821
822 return 0;
823 }
824
825 struct qbman_acquire_desc {
826 u8 verb;
827 u8 reserved;
828 __le16 bpid;
829 u8 num;
830 u8 reserved2[59];
831 };
832
833 struct qbman_acquire_rslt {
834 u8 verb;
835 u8 rslt;
836 __le16 reserved;
837 u8 num;
838 u8 reserved2[3];
839 __le64 buf[7];
840 };
841
842 /**
843 * qbman_swp_acquire() - Issue a buffer acquire command
844 * @s: the software portal object
845 * @bpid: the buffer pool index
846 * @buffers: a pointer pointing to the acquired buffer addresses
847 * @num_buffers: number of buffers to be acquired, must be less than 8
848 *
849 * Return 0 for success, or negative error code if the acquire command
850 * fails.
851 */
qbman_swp_acquire(struct qbman_swp * s,u16 bpid,u64 * buffers,unsigned int num_buffers)852 int qbman_swp_acquire(struct qbman_swp *s, u16 bpid, u64 *buffers,
853 unsigned int num_buffers)
854 {
855 struct qbman_acquire_desc *p;
856 struct qbman_acquire_rslt *r;
857 int i;
858
859 if (!num_buffers || (num_buffers > 7))
860 return -EINVAL;
861
862 /* Start the management command */
863 p = qbman_swp_mc_start(s);
864
865 if (!p)
866 return -EBUSY;
867
868 /* Encode the caller-provided attributes */
869 p->bpid = cpu_to_le16(bpid);
870 p->num = num_buffers;
871
872 /* Complete the management command */
873 r = qbman_swp_mc_complete(s, p, QBMAN_MC_ACQUIRE);
874 if (unlikely(!r)) {
875 pr_err("qbman: acquire from BPID %d failed, no response\n",
876 bpid);
877 return -EIO;
878 }
879
880 /* Decode the outcome */
881 WARN_ON((r->verb & 0x7f) != QBMAN_MC_ACQUIRE);
882
883 /* Determine success or failure */
884 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
885 pr_err("qbman: acquire from BPID 0x%x failed, code=0x%02x\n",
886 bpid, r->rslt);
887 return -EIO;
888 }
889
890 WARN_ON(r->num > num_buffers);
891
892 /* Copy the acquired buffers to the caller's array */
893 for (i = 0; i < r->num; i++)
894 buffers[i] = le64_to_cpu(r->buf[i]);
895
896 return (int)r->num;
897 }
898
899 struct qbman_alt_fq_state_desc {
900 u8 verb;
901 u8 reserved[3];
902 __le32 fqid;
903 u8 reserved2[56];
904 };
905
906 struct qbman_alt_fq_state_rslt {
907 u8 verb;
908 u8 rslt;
909 u8 reserved[62];
910 };
911
912 #define ALT_FQ_FQID_MASK 0x00FFFFFF
913
qbman_swp_alt_fq_state(struct qbman_swp * s,u32 fqid,u8 alt_fq_verb)914 int qbman_swp_alt_fq_state(struct qbman_swp *s, u32 fqid,
915 u8 alt_fq_verb)
916 {
917 struct qbman_alt_fq_state_desc *p;
918 struct qbman_alt_fq_state_rslt *r;
919
920 /* Start the management command */
921 p = qbman_swp_mc_start(s);
922 if (!p)
923 return -EBUSY;
924
925 p->fqid = cpu_to_le32(fqid & ALT_FQ_FQID_MASK);
926
927 /* Complete the management command */
928 r = qbman_swp_mc_complete(s, p, alt_fq_verb);
929 if (unlikely(!r)) {
930 pr_err("qbman: mgmt cmd failed, no response (verb=0x%x)\n",
931 alt_fq_verb);
932 return -EIO;
933 }
934
935 /* Decode the outcome */
936 WARN_ON((r->verb & QBMAN_RESULT_MASK) != alt_fq_verb);
937
938 /* Determine success or failure */
939 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
940 pr_err("qbman: ALT FQID %d failed: verb = 0x%08x code = 0x%02x\n",
941 fqid, r->verb, r->rslt);
942 return -EIO;
943 }
944
945 return 0;
946 }
947
948 struct qbman_cdan_ctrl_desc {
949 u8 verb;
950 u8 reserved;
951 __le16 ch;
952 u8 we;
953 u8 ctrl;
954 __le16 reserved2;
955 __le64 cdan_ctx;
956 u8 reserved3[48];
957
958 };
959
960 struct qbman_cdan_ctrl_rslt {
961 u8 verb;
962 u8 rslt;
963 __le16 ch;
964 u8 reserved[60];
965 };
966
qbman_swp_CDAN_set(struct qbman_swp * s,u16 channelid,u8 we_mask,u8 cdan_en,u64 ctx)967 int qbman_swp_CDAN_set(struct qbman_swp *s, u16 channelid,
968 u8 we_mask, u8 cdan_en,
969 u64 ctx)
970 {
971 struct qbman_cdan_ctrl_desc *p = NULL;
972 struct qbman_cdan_ctrl_rslt *r = NULL;
973
974 /* Start the management command */
975 p = qbman_swp_mc_start(s);
976 if (!p)
977 return -EBUSY;
978
979 /* Encode the caller-provided attributes */
980 p->ch = cpu_to_le16(channelid);
981 p->we = we_mask;
982 if (cdan_en)
983 p->ctrl = 1;
984 else
985 p->ctrl = 0;
986 p->cdan_ctx = cpu_to_le64(ctx);
987
988 /* Complete the management command */
989 r = qbman_swp_mc_complete(s, p, QBMAN_WQCHAN_CONFIGURE);
990 if (unlikely(!r)) {
991 pr_err("qbman: wqchan config failed, no response\n");
992 return -EIO;
993 }
994
995 WARN_ON((r->verb & 0x7f) != QBMAN_WQCHAN_CONFIGURE);
996
997 /* Determine success or failure */
998 if (unlikely(r->rslt != QBMAN_MC_RSLT_OK)) {
999 pr_err("qbman: CDAN cQID %d failed: code = 0x%02x\n",
1000 channelid, r->rslt);
1001 return -EIO;
1002 }
1003
1004 return 0;
1005 }
1006