1 // SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
2 /* src/p80211/p80211knetdev.c
3  *
4  * Linux Kernel net device interface
5  *
6  * Copyright (C) 1999 AbsoluteValue Systems, Inc.  All Rights Reserved.
7  * --------------------------------------------------------------------
8  *
9  * linux-wlan
10  *
11  *   The contents of this file are subject to the Mozilla Public
12  *   License Version 1.1 (the "License"); you may not use this file
13  *   except in compliance with the License. You may obtain a copy of
14  *   the License at http://www.mozilla.org/MPL/
15  *
16  *   Software distributed under the License is distributed on an "AS
17  *   IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
18  *   implied. See the License for the specific language governing
19  *   rights and limitations under the License.
20  *
21  *   Alternatively, the contents of this file may be used under the
22  *   terms of the GNU Public License version 2 (the "GPL"), in which
23  *   case the provisions of the GPL are applicable instead of the
24  *   above.  If you wish to allow the use of your version of this file
25  *   only under the terms of the GPL and not to allow others to use
26  *   your version of this file under the MPL, indicate your decision
27  *   by deleting the provisions above and replace them with the notice
28  *   and other provisions required by the GPL.  If you do not delete
29  *   the provisions above, a recipient may use your version of this
30  *   file under either the MPL or the GPL.
31  *
32  * --------------------------------------------------------------------
33  *
34  * Inquiries regarding the linux-wlan Open Source project can be
35  * made directly to:
36  *
37  * AbsoluteValue Systems Inc.
38  * info@linux-wlan.com
39  * http://www.linux-wlan.com
40  *
41  * --------------------------------------------------------------------
42  *
43  * Portions of the development of this software were funded by
44  * Intersil Corporation as part of PRISM(R) chipset product development.
45  *
46  * --------------------------------------------------------------------
47  *
48  * The functions required for a Linux network device are defined here.
49  *
50  * --------------------------------------------------------------------
51  */
52 
53 #include <linux/module.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/types.h>
57 #include <linux/skbuff.h>
58 #include <linux/slab.h>
59 #include <linux/proc_fs.h>
60 #include <linux/interrupt.h>
61 #include <linux/netdevice.h>
62 #include <linux/kmod.h>
63 #include <linux/if_arp.h>
64 #include <linux/wireless.h>
65 #include <linux/sockios.h>
66 #include <linux/etherdevice.h>
67 #include <linux/if_ether.h>
68 #include <linux/byteorder/generic.h>
69 #include <linux/bitops.h>
70 #include <linux/uaccess.h>
71 #include <asm/byteorder.h>
72 
73 #ifdef SIOCETHTOOL
74 #include <linux/ethtool.h>
75 #endif
76 
77 #include <net/iw_handler.h>
78 #include <net/net_namespace.h>
79 #include <net/cfg80211.h>
80 
81 #include "p80211types.h"
82 #include "p80211hdr.h"
83 #include "p80211conv.h"
84 #include "p80211mgmt.h"
85 #include "p80211msg.h"
86 #include "p80211netdev.h"
87 #include "p80211ioctl.h"
88 #include "p80211req.h"
89 #include "p80211metastruct.h"
90 #include "p80211metadef.h"
91 
92 #include "cfg80211.c"
93 
94 /* netdevice method functions */
95 static int p80211knetdev_init(struct net_device *netdev);
96 static int p80211knetdev_open(struct net_device *netdev);
97 static int p80211knetdev_stop(struct net_device *netdev);
98 static netdev_tx_t p80211knetdev_hard_start_xmit(struct sk_buff *skb,
99 						 struct net_device *netdev);
100 static void p80211knetdev_set_multicast_list(struct net_device *dev);
101 static int p80211knetdev_do_ioctl(struct net_device *dev, struct ifreq *ifr,
102 				  int cmd);
103 static int p80211knetdev_set_mac_address(struct net_device *dev, void *addr);
104 static void p80211knetdev_tx_timeout(struct net_device *netdev);
105 static int p80211_rx_typedrop(struct wlandevice *wlandev, u16 fc);
106 
107 int wlan_watchdog = 5000;
108 module_param(wlan_watchdog, int, 0644);
109 MODULE_PARM_DESC(wlan_watchdog, "transmit timeout in milliseconds");
110 
111 int wlan_wext_write = 1;
112 module_param(wlan_wext_write, int, 0644);
113 MODULE_PARM_DESC(wlan_wext_write, "enable write wireless extensions");
114 
115 /*----------------------------------------------------------------
116  * p80211knetdev_init
117  *
118  * Init method for a Linux netdevice.  Called in response to
119  * register_netdev.
120  *
121  * Arguments:
122  *	none
123  *
124  * Returns:
125  *	nothing
126  *----------------------------------------------------------------
127  */
p80211knetdev_init(struct net_device * netdev)128 static int p80211knetdev_init(struct net_device *netdev)
129 {
130 	/* Called in response to register_netdev */
131 	/* This is usually the probe function, but the probe has */
132 	/* already been done by the MSD and the create_kdev */
133 	/* function.  All we do here is return success */
134 	return 0;
135 }
136 
137 /*----------------------------------------------------------------
138  * p80211knetdev_open
139  *
140  * Linux netdevice open method.  Following a successful call here,
141  * the device is supposed to be ready for tx and rx.  In our
142  * situation that may not be entirely true due to the state of the
143  * MAC below.
144  *
145  * Arguments:
146  *	netdev		Linux network device structure
147  *
148  * Returns:
149  *	zero on success, non-zero otherwise
150  *----------------------------------------------------------------
151  */
p80211knetdev_open(struct net_device * netdev)152 static int p80211knetdev_open(struct net_device *netdev)
153 {
154 	int result = 0;		/* success */
155 	struct wlandevice *wlandev = netdev->ml_priv;
156 
157 	/* Check to make sure the MSD is running */
158 	if (wlandev->msdstate != WLAN_MSD_RUNNING)
159 		return -ENODEV;
160 
161 	/* Tell the MSD to open */
162 	if (wlandev->open) {
163 		result = wlandev->open(wlandev);
164 		if (result == 0) {
165 			netif_start_queue(wlandev->netdev);
166 			wlandev->state = WLAN_DEVICE_OPEN;
167 		}
168 	} else {
169 		result = -EAGAIN;
170 	}
171 
172 	return result;
173 }
174 
175 /*----------------------------------------------------------------
176  * p80211knetdev_stop
177  *
178  * Linux netdevice stop (close) method.  Following this call,
179  * no frames should go up or down through this interface.
180  *
181  * Arguments:
182  *	netdev		Linux network device structure
183  *
184  * Returns:
185  *	zero on success, non-zero otherwise
186  *----------------------------------------------------------------
187  */
p80211knetdev_stop(struct net_device * netdev)188 static int p80211knetdev_stop(struct net_device *netdev)
189 {
190 	int result = 0;
191 	struct wlandevice *wlandev = netdev->ml_priv;
192 
193 	if (wlandev->close)
194 		result = wlandev->close(wlandev);
195 
196 	netif_stop_queue(wlandev->netdev);
197 	wlandev->state = WLAN_DEVICE_CLOSED;
198 
199 	return result;
200 }
201 
202 /*----------------------------------------------------------------
203  * p80211netdev_rx
204  *
205  * Frame receive function called by the mac specific driver.
206  *
207  * Arguments:
208  *	wlandev		WLAN network device structure
209  *	skb		skbuff containing a full 802.11 frame.
210  * Returns:
211  *	nothing
212  * Side effects:
213  *
214  *----------------------------------------------------------------
215  */
p80211netdev_rx(struct wlandevice * wlandev,struct sk_buff * skb)216 void p80211netdev_rx(struct wlandevice *wlandev, struct sk_buff *skb)
217 {
218 	/* Enqueue for post-irq processing */
219 	skb_queue_tail(&wlandev->nsd_rxq, skb);
220 	tasklet_schedule(&wlandev->rx_bh);
221 }
222 
223 #define CONV_TO_ETHER_SKIPPED	0x01
224 #define CONV_TO_ETHER_FAILED	0x02
225 
226 /**
227  * p80211_convert_to_ether - conversion from 802.11 frame to ethernet frame
228  * @wlandev: pointer to WLAN device
229  * @skb: pointer to socket buffer
230  *
231  * Returns: 0 if conversion succeeded
232  *	    CONV_TO_ETHER_FAILED if conversion failed
233  *	    CONV_TO_ETHER_SKIPPED if frame is ignored
234  */
p80211_convert_to_ether(struct wlandevice * wlandev,struct sk_buff * skb)235 static int p80211_convert_to_ether(struct wlandevice *wlandev,
236 				   struct sk_buff *skb)
237 {
238 	struct p80211_hdr_a3 *hdr;
239 
240 	hdr = (struct p80211_hdr_a3 *)skb->data;
241 	if (p80211_rx_typedrop(wlandev, le16_to_cpu(hdr->fc)))
242 		return CONV_TO_ETHER_SKIPPED;
243 
244 	/* perform mcast filtering: allow my local address through but reject
245 	 * anything else that isn't multicast
246 	 */
247 	if (wlandev->netdev->flags & IFF_ALLMULTI) {
248 		if (!ether_addr_equal_unaligned(wlandev->netdev->dev_addr,
249 						hdr->a1)) {
250 			if (!is_multicast_ether_addr(hdr->a1))
251 				return CONV_TO_ETHER_SKIPPED;
252 		}
253 	}
254 
255 	if (skb_p80211_to_ether(wlandev, wlandev->ethconv, skb) == 0) {
256 		wlandev->netdev->stats.rx_packets++;
257 		wlandev->netdev->stats.rx_bytes += skb->len;
258 		netif_rx_ni(skb);
259 		return 0;
260 	}
261 
262 	netdev_dbg(wlandev->netdev, "%s failed.\n", __func__);
263 	return CONV_TO_ETHER_FAILED;
264 }
265 
266 /**
267  * p80211netdev_rx_bh - deferred processing of all received frames
268  *
269  * @arg: pointer to WLAN network device structure (cast to unsigned long)
270  */
p80211netdev_rx_bh(unsigned long arg)271 static void p80211netdev_rx_bh(unsigned long arg)
272 {
273 	struct wlandevice *wlandev = (struct wlandevice *)arg;
274 	struct sk_buff *skb = NULL;
275 	struct net_device *dev = wlandev->netdev;
276 
277 	/* Let's empty our our queue */
278 	while ((skb = skb_dequeue(&wlandev->nsd_rxq))) {
279 		if (wlandev->state == WLAN_DEVICE_OPEN) {
280 			if (dev->type != ARPHRD_ETHER) {
281 				/* RAW frame; we shouldn't convert it */
282 				/* XXX Append the Prism Header here instead. */
283 
284 				/* set up various data fields */
285 				skb->dev = dev;
286 				skb_reset_mac_header(skb);
287 				skb->ip_summed = CHECKSUM_NONE;
288 				skb->pkt_type = PACKET_OTHERHOST;
289 				skb->protocol = htons(ETH_P_80211_RAW);
290 
291 				dev->stats.rx_packets++;
292 				dev->stats.rx_bytes += skb->len;
293 				netif_rx_ni(skb);
294 				continue;
295 			} else {
296 				if (!p80211_convert_to_ether(wlandev, skb))
297 					continue;
298 			}
299 		}
300 		dev_kfree_skb(skb);
301 	}
302 }
303 
304 /*----------------------------------------------------------------
305  * p80211knetdev_hard_start_xmit
306  *
307  * Linux netdevice method for transmitting a frame.
308  *
309  * Arguments:
310  *	skb	Linux sk_buff containing the frame.
311  *	netdev	Linux netdevice.
312  *
313  * Side effects:
314  *	If the lower layers report that buffers are full. netdev->tbusy
315  *	will be set to prevent higher layers from sending more traffic.
316  *
317  *	Note: If this function returns non-zero, higher layers retain
318  *	      ownership of the skb.
319  *
320  * Returns:
321  *	zero on success, non-zero on failure.
322  *----------------------------------------------------------------
323  */
p80211knetdev_hard_start_xmit(struct sk_buff * skb,struct net_device * netdev)324 static netdev_tx_t p80211knetdev_hard_start_xmit(struct sk_buff *skb,
325 						 struct net_device *netdev)
326 {
327 	int result = 0;
328 	int txresult = -1;
329 	struct wlandevice *wlandev = netdev->ml_priv;
330 	union p80211_hdr p80211_hdr;
331 	struct p80211_metawep p80211_wep;
332 
333 	p80211_wep.data = NULL;
334 
335 	if (!skb)
336 		return NETDEV_TX_OK;
337 
338 	if (wlandev->state != WLAN_DEVICE_OPEN) {
339 		result = 1;
340 		goto failed;
341 	}
342 
343 	memset(&p80211_hdr, 0, sizeof(p80211_hdr));
344 	memset(&p80211_wep, 0, sizeof(p80211_wep));
345 
346 	if (netif_queue_stopped(netdev)) {
347 		netdev_dbg(netdev, "called when queue stopped.\n");
348 		result = 1;
349 		goto failed;
350 	}
351 
352 	netif_stop_queue(netdev);
353 
354 	/* Check to see that a valid mode is set */
355 	switch (wlandev->macmode) {
356 	case WLAN_MACMODE_IBSS_STA:
357 	case WLAN_MACMODE_ESS_STA:
358 	case WLAN_MACMODE_ESS_AP:
359 		break;
360 	default:
361 		/* Mode isn't set yet, just drop the frame
362 		 * and return success .
363 		 * TODO: we need a saner way to handle this
364 		 */
365 		if (be16_to_cpu(skb->protocol) != ETH_P_80211_RAW) {
366 			netif_start_queue(wlandev->netdev);
367 			netdev_notice(netdev, "Tx attempt prior to association, frame dropped.\n");
368 			netdev->stats.tx_dropped++;
369 			result = 0;
370 			goto failed;
371 		}
372 		break;
373 	}
374 
375 	/* Check for raw transmits */
376 	if (be16_to_cpu(skb->protocol) == ETH_P_80211_RAW) {
377 		if (!capable(CAP_NET_ADMIN)) {
378 			result = 1;
379 			goto failed;
380 		}
381 		/* move the header over */
382 		memcpy(&p80211_hdr, skb->data, sizeof(p80211_hdr));
383 		skb_pull(skb, sizeof(p80211_hdr));
384 	} else {
385 		if (skb_ether_to_p80211
386 		    (wlandev, wlandev->ethconv, skb, &p80211_hdr,
387 		     &p80211_wep) != 0) {
388 			/* convert failed */
389 			netdev_dbg(netdev, "ether_to_80211(%d) failed.\n",
390 				   wlandev->ethconv);
391 			result = 1;
392 			goto failed;
393 		}
394 	}
395 	if (!wlandev->txframe) {
396 		result = 1;
397 		goto failed;
398 	}
399 
400 	netif_trans_update(netdev);
401 
402 	netdev->stats.tx_packets++;
403 	/* count only the packet payload */
404 	netdev->stats.tx_bytes += skb->len;
405 
406 	txresult = wlandev->txframe(wlandev, skb, &p80211_hdr, &p80211_wep);
407 
408 	if (txresult == 0) {
409 		/* success and more buf */
410 		/* avail, re: hw_txdata */
411 		netif_wake_queue(wlandev->netdev);
412 		result = NETDEV_TX_OK;
413 	} else if (txresult == 1) {
414 		/* success, no more avail */
415 		netdev_dbg(netdev, "txframe success, no more bufs\n");
416 		/* netdev->tbusy = 1;  don't set here, irqhdlr */
417 		/*   may have already cleared it */
418 		result = NETDEV_TX_OK;
419 	} else if (txresult == 2) {
420 		/* alloc failure, drop frame */
421 		netdev_dbg(netdev, "txframe returned alloc_fail\n");
422 		result = NETDEV_TX_BUSY;
423 	} else {
424 		/* buffer full or queue busy, drop frame. */
425 		netdev_dbg(netdev, "txframe returned full or busy\n");
426 		result = NETDEV_TX_BUSY;
427 	}
428 
429 failed:
430 	/* Free up the WEP buffer if it's not the same as the skb */
431 	if ((p80211_wep.data) && (p80211_wep.data != skb->data))
432 		kzfree(p80211_wep.data);
433 
434 	/* we always free the skb here, never in a lower level. */
435 	if (!result)
436 		dev_kfree_skb(skb);
437 
438 	return result;
439 }
440 
441 /*----------------------------------------------------------------
442  * p80211knetdev_set_multicast_list
443  *
444  * Called from higher layers whenever there's a need to set/clear
445  * promiscuous mode or rewrite the multicast list.
446  *
447  * Arguments:
448  *	none
449  *
450  * Returns:
451  *	nothing
452  *----------------------------------------------------------------
453  */
p80211knetdev_set_multicast_list(struct net_device * dev)454 static void p80211knetdev_set_multicast_list(struct net_device *dev)
455 {
456 	struct wlandevice *wlandev = dev->ml_priv;
457 
458 	/* TODO:  real multicast support as well */
459 
460 	if (wlandev->set_multicast_list)
461 		wlandev->set_multicast_list(wlandev, dev);
462 }
463 
464 #ifdef SIOCETHTOOL
465 
p80211netdev_ethtool(struct wlandevice * wlandev,void __user * useraddr)466 static int p80211netdev_ethtool(struct wlandevice *wlandev,
467 				void __user *useraddr)
468 {
469 	u32 ethcmd;
470 	struct ethtool_drvinfo info;
471 	struct ethtool_value edata;
472 
473 	memset(&info, 0, sizeof(info));
474 	memset(&edata, 0, sizeof(edata));
475 
476 	if (copy_from_user(&ethcmd, useraddr, sizeof(ethcmd)))
477 		return -EFAULT;
478 
479 	switch (ethcmd) {
480 	case ETHTOOL_GDRVINFO:
481 		info.cmd = ethcmd;
482 		snprintf(info.driver, sizeof(info.driver), "p80211_%s",
483 			 wlandev->nsdname);
484 		snprintf(info.version, sizeof(info.version), "%s",
485 			 WLAN_RELEASE);
486 
487 		if (copy_to_user(useraddr, &info, sizeof(info)))
488 			return -EFAULT;
489 		return 0;
490 #ifdef ETHTOOL_GLINK
491 	case ETHTOOL_GLINK:
492 		edata.cmd = ethcmd;
493 
494 		if (wlandev->linkstatus &&
495 		    (wlandev->macmode != WLAN_MACMODE_NONE)) {
496 			edata.data = 1;
497 		} else {
498 			edata.data = 0;
499 		}
500 
501 		if (copy_to_user(useraddr, &edata, sizeof(edata)))
502 			return -EFAULT;
503 		return 0;
504 #endif
505 	}
506 
507 	return -EOPNOTSUPP;
508 }
509 
510 #endif
511 
512 /*----------------------------------------------------------------
513  * p80211knetdev_do_ioctl
514  *
515  * Handle an ioctl call on one of our devices.  Everything Linux
516  * ioctl specific is done here.  Then we pass the contents of the
517  * ifr->data to the request message handler.
518  *
519  * Arguments:
520  *	dev	Linux kernel netdevice
521  *	ifr	Our private ioctl request structure, typed for the
522  *		generic struct ifreq so we can use ptr to func
523  *		w/o cast.
524  *
525  * Returns:
526  *	zero on success, a negative errno on failure.  Possible values:
527  *		-ENETDOWN Device isn't up.
528  *		-EBUSY	cmd already in progress
529  *		-ETIME	p80211 cmd timed out (MSD may have its own timers)
530  *		-EFAULT memory fault copying msg from user buffer
531  *		-ENOMEM unable to allocate kernel msg buffer
532  *		-EINVAL	bad magic, it the cmd really for us?
533  *		-EintR	sleeping on cmd, awakened by signal, cmd cancelled.
534  *
535  * Call Context:
536  *	Process thread (ioctl caller).  TODO: SMP support may require
537  *	locks.
538  *----------------------------------------------------------------
539  */
p80211knetdev_do_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)540 static int p80211knetdev_do_ioctl(struct net_device *dev,
541 				  struct ifreq *ifr, int cmd)
542 {
543 	int result = 0;
544 	struct p80211ioctl_req *req = (struct p80211ioctl_req *)ifr;
545 	struct wlandevice *wlandev = dev->ml_priv;
546 	u8 *msgbuf;
547 
548 	netdev_dbg(dev, "rx'd ioctl, cmd=%d, len=%d\n", cmd, req->len);
549 
550 #ifdef SIOCETHTOOL
551 	if (cmd == SIOCETHTOOL) {
552 		result =
553 		    p80211netdev_ethtool(wlandev, (void __user *)ifr->ifr_data);
554 		goto bail;
555 	}
556 #endif
557 
558 	/* Test the magic, assume ifr is good if it's there */
559 	if (req->magic != P80211_IOCTL_MAGIC) {
560 		result = -EINVAL;
561 		goto bail;
562 	}
563 
564 	if (cmd == P80211_IFTEST) {
565 		result = 0;
566 		goto bail;
567 	} else if (cmd != P80211_IFREQ) {
568 		result = -EINVAL;
569 		goto bail;
570 	}
571 
572 	/* Allocate a buf of size req->len */
573 	msgbuf = kmalloc(req->len, GFP_KERNEL);
574 	if (msgbuf) {
575 		if (copy_from_user(msgbuf, (void __user *)req->data, req->len))
576 			result = -EFAULT;
577 		else
578 			result = p80211req_dorequest(wlandev, msgbuf);
579 
580 		if (result == 0) {
581 			if (copy_to_user
582 			    ((void __user *)req->data, msgbuf, req->len)) {
583 				result = -EFAULT;
584 			}
585 		}
586 		kfree(msgbuf);
587 	} else {
588 		result = -ENOMEM;
589 	}
590 bail:
591 	/* If allocate,copyfrom or copyto fails, return errno */
592 	return result;
593 }
594 
595 /*----------------------------------------------------------------
596  * p80211knetdev_set_mac_address
597  *
598  * Handles the ioctl for changing the MACAddress of a netdevice
599  *
600  * references: linux/netdevice.h and drivers/net/net_init.c
601  *
602  * NOTE: [MSM] We only prevent address changes when the netdev is
603  * up.  We don't control anything based on dot11 state.  If the
604  * address is changed on a STA that's currently associated, you
605  * will probably lose the ability to send and receive data frames.
606  * Just be aware.  Therefore, this should usually only be done
607  * prior to scan/join/auth/assoc.
608  *
609  * Arguments:
610  *	dev	netdevice struct
611  *	addr	the new MACAddress (a struct)
612  *
613  * Returns:
614  *	zero on success, a negative errno on failure.  Possible values:
615  *		-EBUSY	device is bussy (cmd not possible)
616  *		-and errors returned by: p80211req_dorequest(..)
617  *
618  * by: Collin R. Mulliner <collin@mulliner.org>
619  *----------------------------------------------------------------
620  */
p80211knetdev_set_mac_address(struct net_device * dev,void * addr)621 static int p80211knetdev_set_mac_address(struct net_device *dev, void *addr)
622 {
623 	struct sockaddr *new_addr = addr;
624 	struct p80211msg_dot11req_mibset dot11req;
625 	struct p80211item_unk392 *mibattr;
626 	struct p80211item_pstr6 *macaddr;
627 	struct p80211item_uint32 *resultcode;
628 	int result;
629 
630 	/* If we're running, we don't allow MAC address changes */
631 	if (netif_running(dev))
632 		return -EBUSY;
633 
634 	/* Set up some convenience pointers. */
635 	mibattr = &dot11req.mibattribute;
636 	macaddr = (struct p80211item_pstr6 *)&mibattr->data;
637 	resultcode = &dot11req.resultcode;
638 
639 	/* Set up a dot11req_mibset */
640 	memset(&dot11req, 0, sizeof(dot11req));
641 	dot11req.msgcode = DIDmsg_dot11req_mibset;
642 	dot11req.msglen = sizeof(dot11req);
643 	memcpy(dot11req.devname,
644 	       ((struct wlandevice *)dev->ml_priv)->name,
645 	       WLAN_DEVNAMELEN_MAX - 1);
646 
647 	/* Set up the mibattribute argument */
648 	mibattr->did = DIDmsg_dot11req_mibset_mibattribute;
649 	mibattr->status = P80211ENUM_msgitem_status_data_ok;
650 	mibattr->len = sizeof(mibattr->data);
651 
652 	macaddr->did = DIDmib_dot11mac_dot11OperationTable_dot11MACAddress;
653 	macaddr->status = P80211ENUM_msgitem_status_data_ok;
654 	macaddr->len = sizeof(macaddr->data);
655 	macaddr->data.len = ETH_ALEN;
656 	memcpy(&macaddr->data.data, new_addr->sa_data, ETH_ALEN);
657 
658 	/* Set up the resultcode argument */
659 	resultcode->did = DIDmsg_dot11req_mibset_resultcode;
660 	resultcode->status = P80211ENUM_msgitem_status_no_value;
661 	resultcode->len = sizeof(resultcode->data);
662 	resultcode->data = 0;
663 
664 	/* now fire the request */
665 	result = p80211req_dorequest(dev->ml_priv, (u8 *)&dot11req);
666 
667 	/* If the request wasn't successful, report an error and don't
668 	 * change the netdev address
669 	 */
670 	if (result != 0 || resultcode->data != P80211ENUM_resultcode_success) {
671 		netdev_err(dev, "Low-level driver failed dot11req_mibset(dot11MACAddress).\n");
672 		result = -EADDRNOTAVAIL;
673 	} else {
674 		/* everything's ok, change the addr in netdev */
675 		memcpy(dev->dev_addr, new_addr->sa_data, dev->addr_len);
676 	}
677 
678 	return result;
679 }
680 
681 static const struct net_device_ops p80211_netdev_ops = {
682 	.ndo_init = p80211knetdev_init,
683 	.ndo_open = p80211knetdev_open,
684 	.ndo_stop = p80211knetdev_stop,
685 	.ndo_start_xmit = p80211knetdev_hard_start_xmit,
686 	.ndo_set_rx_mode = p80211knetdev_set_multicast_list,
687 	.ndo_do_ioctl = p80211knetdev_do_ioctl,
688 	.ndo_set_mac_address = p80211knetdev_set_mac_address,
689 	.ndo_tx_timeout = p80211knetdev_tx_timeout,
690 	.ndo_validate_addr = eth_validate_addr,
691 };
692 
693 /*----------------------------------------------------------------
694  * wlan_setup
695  *
696  * Roughly matches the functionality of ether_setup.  Here
697  * we set up any members of the wlandevice structure that are common
698  * to all devices.  Additionally, we allocate a linux 'struct device'
699  * and perform the same setup as ether_setup.
700  *
701  * Note: It's important that the caller have setup the wlandev->name
702  *	ptr prior to calling this function.
703  *
704  * Arguments:
705  *	wlandev		ptr to the wlandev structure for the
706  *			interface.
707  *	physdev		ptr to usb device
708  * Returns:
709  *	zero on success, non-zero otherwise.
710  * Call Context:
711  *	Should be process thread.  We'll assume it might be
712  *	interrupt though.  When we add support for statically
713  *	compiled drivers, this function will be called in the
714  *	context of the kernel startup code.
715  *----------------------------------------------------------------
716  */
wlan_setup(struct wlandevice * wlandev,struct device * physdev)717 int wlan_setup(struct wlandevice *wlandev, struct device *physdev)
718 {
719 	int result = 0;
720 	struct net_device *netdev;
721 	struct wiphy *wiphy;
722 	struct wireless_dev *wdev;
723 
724 	/* Set up the wlandev */
725 	wlandev->state = WLAN_DEVICE_CLOSED;
726 	wlandev->ethconv = WLAN_ETHCONV_8021h;
727 	wlandev->macmode = WLAN_MACMODE_NONE;
728 
729 	/* Set up the rx queue */
730 	skb_queue_head_init(&wlandev->nsd_rxq);
731 	tasklet_init(&wlandev->rx_bh,
732 		     p80211netdev_rx_bh, (unsigned long)wlandev);
733 
734 	/* Allocate and initialize the wiphy struct */
735 	wiphy = wlan_create_wiphy(physdev, wlandev);
736 	if (!wiphy) {
737 		dev_err(physdev, "Failed to alloc wiphy.\n");
738 		return 1;
739 	}
740 
741 	/* Allocate and initialize the struct device */
742 	netdev = alloc_netdev(sizeof(struct wireless_dev), "wlan%d",
743 			      NET_NAME_UNKNOWN, ether_setup);
744 	if (!netdev) {
745 		dev_err(physdev, "Failed to alloc netdev.\n");
746 		wlan_free_wiphy(wiphy);
747 		result = 1;
748 	} else {
749 		wlandev->netdev = netdev;
750 		netdev->ml_priv = wlandev;
751 		netdev->netdev_ops = &p80211_netdev_ops;
752 		wdev = netdev_priv(netdev);
753 		wdev->wiphy = wiphy;
754 		wdev->iftype = NL80211_IFTYPE_STATION;
755 		netdev->ieee80211_ptr = wdev;
756 		netdev->min_mtu = 68;
757 		/* 2312 is max 802.11 payload, 20 is overhead,
758 		 * (ether + llc + snap) and another 8 for wep.
759 		 */
760 		netdev->max_mtu = (2312 - 20 - 8);
761 
762 		netif_stop_queue(netdev);
763 		netif_carrier_off(netdev);
764 	}
765 
766 	return result;
767 }
768 
769 /*----------------------------------------------------------------
770  * wlan_unsetup
771  *
772  * This function is paired with the wlan_setup routine.  It should
773  * be called after unregister_wlandev.  Basically, all it does is
774  * free the 'struct device' that's associated with the wlandev.
775  * We do it here because the 'struct device' isn't allocated
776  * explicitly in the driver code, it's done in wlan_setup.  To
777  * do the free in the driver might seem like 'magic'.
778  *
779  * Arguments:
780  *	wlandev		ptr to the wlandev structure for the
781  *			interface.
782  * Call Context:
783  *	Should be process thread.  We'll assume it might be
784  *	interrupt though.  When we add support for statically
785  *	compiled drivers, this function will be called in the
786  *	context of the kernel startup code.
787  *----------------------------------------------------------------
788  */
wlan_unsetup(struct wlandevice * wlandev)789 void wlan_unsetup(struct wlandevice *wlandev)
790 {
791 	struct wireless_dev *wdev;
792 
793 	tasklet_kill(&wlandev->rx_bh);
794 
795 	if (wlandev->netdev) {
796 		wdev = netdev_priv(wlandev->netdev);
797 		if (wdev->wiphy)
798 			wlan_free_wiphy(wdev->wiphy);
799 		free_netdev(wlandev->netdev);
800 		wlandev->netdev = NULL;
801 	}
802 }
803 
804 /*----------------------------------------------------------------
805  * register_wlandev
806  *
807  * Roughly matches the functionality of register_netdev.  This function
808  * is called after the driver has successfully probed and set up the
809  * resources for the device.  It's now ready to become a named device
810  * in the Linux system.
811  *
812  * First we allocate a name for the device (if not already set), then
813  * we call the Linux function register_netdevice.
814  *
815  * Arguments:
816  *	wlandev		ptr to the wlandev structure for the
817  *			interface.
818  * Returns:
819  *	zero on success, non-zero otherwise.
820  * Call Context:
821  *	Can be either interrupt or not.
822  *----------------------------------------------------------------
823  */
register_wlandev(struct wlandevice * wlandev)824 int register_wlandev(struct wlandevice *wlandev)
825 {
826 	return register_netdev(wlandev->netdev);
827 }
828 
829 /*----------------------------------------------------------------
830  * unregister_wlandev
831  *
832  * Roughly matches the functionality of unregister_netdev.  This
833  * function is called to remove a named device from the system.
834  *
835  * First we tell linux that the device should no longer exist.
836  * Then we remove it from the list of known wlan devices.
837  *
838  * Arguments:
839  *	wlandev		ptr to the wlandev structure for the
840  *			interface.
841  * Returns:
842  *	zero on success, non-zero otherwise.
843  * Call Context:
844  *	Can be either interrupt or not.
845  *----------------------------------------------------------------
846  */
unregister_wlandev(struct wlandevice * wlandev)847 int unregister_wlandev(struct wlandevice *wlandev)
848 {
849 	struct sk_buff *skb;
850 
851 	unregister_netdev(wlandev->netdev);
852 
853 	/* Now to clean out the rx queue */
854 	while ((skb = skb_dequeue(&wlandev->nsd_rxq)))
855 		dev_kfree_skb(skb);
856 
857 	return 0;
858 }
859 
860 /*----------------------------------------------------------------
861  * p80211netdev_hwremoved
862  *
863  * Hardware removed notification. This function should be called
864  * immediately after an MSD has detected that the underlying hardware
865  * has been yanked out from under us.  The primary things we need
866  * to do are:
867  *   - Mark the wlandev
868  *   - Prevent any further traffic from the knetdev i/f
869  *   - Prevent any further requests from mgmt i/f
870  *   - If there are any waitq'd mgmt requests or mgmt-frame exchanges,
871  *     shut them down.
872  *   - Call the MSD hwremoved function.
873  *
874  * The remainder of the cleanup will be handled by unregister().
875  * Our primary goal here is to prevent as much tickling of the MSD
876  * as possible since the MSD is already in a 'wounded' state.
877  *
878  * TODO: As new features are added, this function should be
879  *       updated.
880  *
881  * Arguments:
882  *	wlandev		WLAN network device structure
883  * Returns:
884  *	nothing
885  * Side effects:
886  *
887  * Call context:
888  *	Usually interrupt.
889  *----------------------------------------------------------------
890  */
p80211netdev_hwremoved(struct wlandevice * wlandev)891 void p80211netdev_hwremoved(struct wlandevice *wlandev)
892 {
893 	wlandev->hwremoved = 1;
894 	if (wlandev->state == WLAN_DEVICE_OPEN)
895 		netif_stop_queue(wlandev->netdev);
896 
897 	netif_device_detach(wlandev->netdev);
898 }
899 
900 /*----------------------------------------------------------------
901  * p80211_rx_typedrop
902  *
903  * Classifies the frame, increments the appropriate counter, and
904  * returns 0|1|2 indicating whether the driver should handle, ignore, or
905  * drop the frame
906  *
907  * Arguments:
908  *	wlandev		wlan device structure
909  *	fc		frame control field
910  *
911  * Returns:
912  *	zero if the frame should be handled by the driver,
913  *       one if the frame should be ignored
914  *       anything else means we drop it.
915  *
916  * Side effects:
917  *
918  * Call context:
919  *	interrupt
920  *----------------------------------------------------------------
921  */
p80211_rx_typedrop(struct wlandevice * wlandev,u16 fc)922 static int p80211_rx_typedrop(struct wlandevice *wlandev, u16 fc)
923 {
924 	u16 ftype;
925 	u16 fstype;
926 	int drop = 0;
927 	/* Classify frame, increment counter */
928 	ftype = WLAN_GET_FC_FTYPE(fc);
929 	fstype = WLAN_GET_FC_FSTYPE(fc);
930 #if 0
931 	netdev_dbg(wlandev->netdev, "rx_typedrop : ftype=%d fstype=%d.\n",
932 		   ftype, fstype);
933 #endif
934 	switch (ftype) {
935 	case WLAN_FTYPE_MGMT:
936 		if ((wlandev->netdev->flags & IFF_PROMISC) ||
937 		    (wlandev->netdev->flags & IFF_ALLMULTI)) {
938 			drop = 1;
939 			break;
940 		}
941 		netdev_dbg(wlandev->netdev, "rx'd mgmt:\n");
942 		wlandev->rx.mgmt++;
943 		switch (fstype) {
944 		case WLAN_FSTYPE_ASSOCREQ:
945 			/* printk("assocreq"); */
946 			wlandev->rx.assocreq++;
947 			break;
948 		case WLAN_FSTYPE_ASSOCRESP:
949 			/* printk("assocresp"); */
950 			wlandev->rx.assocresp++;
951 			break;
952 		case WLAN_FSTYPE_REASSOCREQ:
953 			/* printk("reassocreq"); */
954 			wlandev->rx.reassocreq++;
955 			break;
956 		case WLAN_FSTYPE_REASSOCRESP:
957 			/* printk("reassocresp"); */
958 			wlandev->rx.reassocresp++;
959 			break;
960 		case WLAN_FSTYPE_PROBEREQ:
961 			/* printk("probereq"); */
962 			wlandev->rx.probereq++;
963 			break;
964 		case WLAN_FSTYPE_PROBERESP:
965 			/* printk("proberesp"); */
966 			wlandev->rx.proberesp++;
967 			break;
968 		case WLAN_FSTYPE_BEACON:
969 			/* printk("beacon"); */
970 			wlandev->rx.beacon++;
971 			break;
972 		case WLAN_FSTYPE_ATIM:
973 			/* printk("atim"); */
974 			wlandev->rx.atim++;
975 			break;
976 		case WLAN_FSTYPE_DISASSOC:
977 			/* printk("disassoc"); */
978 			wlandev->rx.disassoc++;
979 			break;
980 		case WLAN_FSTYPE_AUTHEN:
981 			/* printk("authen"); */
982 			wlandev->rx.authen++;
983 			break;
984 		case WLAN_FSTYPE_DEAUTHEN:
985 			/* printk("deauthen"); */
986 			wlandev->rx.deauthen++;
987 			break;
988 		default:
989 			/* printk("unknown"); */
990 			wlandev->rx.mgmt_unknown++;
991 			break;
992 		}
993 		/* printk("\n"); */
994 		drop = 2;
995 		break;
996 
997 	case WLAN_FTYPE_CTL:
998 		if ((wlandev->netdev->flags & IFF_PROMISC) ||
999 		    (wlandev->netdev->flags & IFF_ALLMULTI)) {
1000 			drop = 1;
1001 			break;
1002 		}
1003 		netdev_dbg(wlandev->netdev, "rx'd ctl:\n");
1004 		wlandev->rx.ctl++;
1005 		switch (fstype) {
1006 		case WLAN_FSTYPE_PSPOLL:
1007 			/* printk("pspoll"); */
1008 			wlandev->rx.pspoll++;
1009 			break;
1010 		case WLAN_FSTYPE_RTS:
1011 			/* printk("rts"); */
1012 			wlandev->rx.rts++;
1013 			break;
1014 		case WLAN_FSTYPE_CTS:
1015 			/* printk("cts"); */
1016 			wlandev->rx.cts++;
1017 			break;
1018 		case WLAN_FSTYPE_ACK:
1019 			/* printk("ack"); */
1020 			wlandev->rx.ack++;
1021 			break;
1022 		case WLAN_FSTYPE_CFEND:
1023 			/* printk("cfend"); */
1024 			wlandev->rx.cfend++;
1025 			break;
1026 		case WLAN_FSTYPE_CFENDCFACK:
1027 			/* printk("cfendcfack"); */
1028 			wlandev->rx.cfendcfack++;
1029 			break;
1030 		default:
1031 			/* printk("unknown"); */
1032 			wlandev->rx.ctl_unknown++;
1033 			break;
1034 		}
1035 		/* printk("\n"); */
1036 		drop = 2;
1037 		break;
1038 
1039 	case WLAN_FTYPE_DATA:
1040 		wlandev->rx.data++;
1041 		switch (fstype) {
1042 		case WLAN_FSTYPE_DATAONLY:
1043 			wlandev->rx.dataonly++;
1044 			break;
1045 		case WLAN_FSTYPE_DATA_CFACK:
1046 			wlandev->rx.data_cfack++;
1047 			break;
1048 		case WLAN_FSTYPE_DATA_CFPOLL:
1049 			wlandev->rx.data_cfpoll++;
1050 			break;
1051 		case WLAN_FSTYPE_DATA_CFACK_CFPOLL:
1052 			wlandev->rx.data__cfack_cfpoll++;
1053 			break;
1054 		case WLAN_FSTYPE_NULL:
1055 			netdev_dbg(wlandev->netdev, "rx'd data:null\n");
1056 			wlandev->rx.null++;
1057 			break;
1058 		case WLAN_FSTYPE_CFACK:
1059 			netdev_dbg(wlandev->netdev, "rx'd data:cfack\n");
1060 			wlandev->rx.cfack++;
1061 			break;
1062 		case WLAN_FSTYPE_CFPOLL:
1063 			netdev_dbg(wlandev->netdev, "rx'd data:cfpoll\n");
1064 			wlandev->rx.cfpoll++;
1065 			break;
1066 		case WLAN_FSTYPE_CFACK_CFPOLL:
1067 			netdev_dbg(wlandev->netdev, "rx'd data:cfack_cfpoll\n");
1068 			wlandev->rx.cfack_cfpoll++;
1069 			break;
1070 		default:
1071 			/* printk("unknown"); */
1072 			wlandev->rx.data_unknown++;
1073 			break;
1074 		}
1075 
1076 		break;
1077 	}
1078 	return drop;
1079 }
1080 
p80211knetdev_tx_timeout(struct net_device * netdev)1081 static void p80211knetdev_tx_timeout(struct net_device *netdev)
1082 {
1083 	struct wlandevice *wlandev = netdev->ml_priv;
1084 
1085 	if (wlandev->tx_timeout) {
1086 		wlandev->tx_timeout(wlandev);
1087 	} else {
1088 		netdev_warn(netdev, "Implement tx_timeout for %s\n",
1089 			    wlandev->nsdname);
1090 		netif_wake_queue(wlandev->netdev);
1091 	}
1092 }
1093