1 // SPDX-License-Identifier: (GPL-2.0 OR MPL-1.1)
2 /* src/p80211/p80211knetdev.c
3 *
4 * Linux Kernel net device interface
5 *
6 * Copyright (C) 1999 AbsoluteValue Systems, Inc. All Rights Reserved.
7 * --------------------------------------------------------------------
8 *
9 * linux-wlan
10 *
11 * The contents of this file are subject to the Mozilla Public
12 * License Version 1.1 (the "License"); you may not use this file
13 * except in compliance with the License. You may obtain a copy of
14 * the License at http://www.mozilla.org/MPL/
15 *
16 * Software distributed under the License is distributed on an "AS
17 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
18 * implied. See the License for the specific language governing
19 * rights and limitations under the License.
20 *
21 * Alternatively, the contents of this file may be used under the
22 * terms of the GNU Public License version 2 (the "GPL"), in which
23 * case the provisions of the GPL are applicable instead of the
24 * above. If you wish to allow the use of your version of this file
25 * only under the terms of the GPL and not to allow others to use
26 * your version of this file under the MPL, indicate your decision
27 * by deleting the provisions above and replace them with the notice
28 * and other provisions required by the GPL. If you do not delete
29 * the provisions above, a recipient may use your version of this
30 * file under either the MPL or the GPL.
31 *
32 * --------------------------------------------------------------------
33 *
34 * Inquiries regarding the linux-wlan Open Source project can be
35 * made directly to:
36 *
37 * AbsoluteValue Systems Inc.
38 * info@linux-wlan.com
39 * http://www.linux-wlan.com
40 *
41 * --------------------------------------------------------------------
42 *
43 * Portions of the development of this software were funded by
44 * Intersil Corporation as part of PRISM(R) chipset product development.
45 *
46 * --------------------------------------------------------------------
47 *
48 * The functions required for a Linux network device are defined here.
49 *
50 * --------------------------------------------------------------------
51 */
52
53 #include <linux/module.h>
54 #include <linux/kernel.h>
55 #include <linux/sched.h>
56 #include <linux/types.h>
57 #include <linux/skbuff.h>
58 #include <linux/slab.h>
59 #include <linux/proc_fs.h>
60 #include <linux/interrupt.h>
61 #include <linux/netdevice.h>
62 #include <linux/kmod.h>
63 #include <linux/if_arp.h>
64 #include <linux/wireless.h>
65 #include <linux/sockios.h>
66 #include <linux/etherdevice.h>
67 #include <linux/if_ether.h>
68 #include <linux/byteorder/generic.h>
69 #include <linux/bitops.h>
70 #include <linux/uaccess.h>
71 #include <asm/byteorder.h>
72
73 #ifdef SIOCETHTOOL
74 #include <linux/ethtool.h>
75 #endif
76
77 #include <net/iw_handler.h>
78 #include <net/net_namespace.h>
79 #include <net/cfg80211.h>
80
81 #include "p80211types.h"
82 #include "p80211hdr.h"
83 #include "p80211conv.h"
84 #include "p80211mgmt.h"
85 #include "p80211msg.h"
86 #include "p80211netdev.h"
87 #include "p80211ioctl.h"
88 #include "p80211req.h"
89 #include "p80211metastruct.h"
90 #include "p80211metadef.h"
91
92 #include "cfg80211.c"
93
94 /* netdevice method functions */
95 static int p80211knetdev_init(struct net_device *netdev);
96 static int p80211knetdev_open(struct net_device *netdev);
97 static int p80211knetdev_stop(struct net_device *netdev);
98 static netdev_tx_t p80211knetdev_hard_start_xmit(struct sk_buff *skb,
99 struct net_device *netdev);
100 static void p80211knetdev_set_multicast_list(struct net_device *dev);
101 static int p80211knetdev_do_ioctl(struct net_device *dev, struct ifreq *ifr,
102 int cmd);
103 static int p80211knetdev_set_mac_address(struct net_device *dev, void *addr);
104 static void p80211knetdev_tx_timeout(struct net_device *netdev);
105 static int p80211_rx_typedrop(struct wlandevice *wlandev, u16 fc);
106
107 int wlan_watchdog = 5000;
108 module_param(wlan_watchdog, int, 0644);
109 MODULE_PARM_DESC(wlan_watchdog, "transmit timeout in milliseconds");
110
111 int wlan_wext_write = 1;
112 module_param(wlan_wext_write, int, 0644);
113 MODULE_PARM_DESC(wlan_wext_write, "enable write wireless extensions");
114
115 /*----------------------------------------------------------------
116 * p80211knetdev_init
117 *
118 * Init method for a Linux netdevice. Called in response to
119 * register_netdev.
120 *
121 * Arguments:
122 * none
123 *
124 * Returns:
125 * nothing
126 *----------------------------------------------------------------
127 */
p80211knetdev_init(struct net_device * netdev)128 static int p80211knetdev_init(struct net_device *netdev)
129 {
130 /* Called in response to register_netdev */
131 /* This is usually the probe function, but the probe has */
132 /* already been done by the MSD and the create_kdev */
133 /* function. All we do here is return success */
134 return 0;
135 }
136
137 /*----------------------------------------------------------------
138 * p80211knetdev_open
139 *
140 * Linux netdevice open method. Following a successful call here,
141 * the device is supposed to be ready for tx and rx. In our
142 * situation that may not be entirely true due to the state of the
143 * MAC below.
144 *
145 * Arguments:
146 * netdev Linux network device structure
147 *
148 * Returns:
149 * zero on success, non-zero otherwise
150 *----------------------------------------------------------------
151 */
p80211knetdev_open(struct net_device * netdev)152 static int p80211knetdev_open(struct net_device *netdev)
153 {
154 int result = 0; /* success */
155 struct wlandevice *wlandev = netdev->ml_priv;
156
157 /* Check to make sure the MSD is running */
158 if (wlandev->msdstate != WLAN_MSD_RUNNING)
159 return -ENODEV;
160
161 /* Tell the MSD to open */
162 if (wlandev->open) {
163 result = wlandev->open(wlandev);
164 if (result == 0) {
165 netif_start_queue(wlandev->netdev);
166 wlandev->state = WLAN_DEVICE_OPEN;
167 }
168 } else {
169 result = -EAGAIN;
170 }
171
172 return result;
173 }
174
175 /*----------------------------------------------------------------
176 * p80211knetdev_stop
177 *
178 * Linux netdevice stop (close) method. Following this call,
179 * no frames should go up or down through this interface.
180 *
181 * Arguments:
182 * netdev Linux network device structure
183 *
184 * Returns:
185 * zero on success, non-zero otherwise
186 *----------------------------------------------------------------
187 */
p80211knetdev_stop(struct net_device * netdev)188 static int p80211knetdev_stop(struct net_device *netdev)
189 {
190 int result = 0;
191 struct wlandevice *wlandev = netdev->ml_priv;
192
193 if (wlandev->close)
194 result = wlandev->close(wlandev);
195
196 netif_stop_queue(wlandev->netdev);
197 wlandev->state = WLAN_DEVICE_CLOSED;
198
199 return result;
200 }
201
202 /*----------------------------------------------------------------
203 * p80211netdev_rx
204 *
205 * Frame receive function called by the mac specific driver.
206 *
207 * Arguments:
208 * wlandev WLAN network device structure
209 * skb skbuff containing a full 802.11 frame.
210 * Returns:
211 * nothing
212 * Side effects:
213 *
214 *----------------------------------------------------------------
215 */
p80211netdev_rx(struct wlandevice * wlandev,struct sk_buff * skb)216 void p80211netdev_rx(struct wlandevice *wlandev, struct sk_buff *skb)
217 {
218 /* Enqueue for post-irq processing */
219 skb_queue_tail(&wlandev->nsd_rxq, skb);
220 tasklet_schedule(&wlandev->rx_bh);
221 }
222
223 #define CONV_TO_ETHER_SKIPPED 0x01
224 #define CONV_TO_ETHER_FAILED 0x02
225
226 /**
227 * p80211_convert_to_ether - conversion from 802.11 frame to ethernet frame
228 * @wlandev: pointer to WLAN device
229 * @skb: pointer to socket buffer
230 *
231 * Returns: 0 if conversion succeeded
232 * CONV_TO_ETHER_FAILED if conversion failed
233 * CONV_TO_ETHER_SKIPPED if frame is ignored
234 */
p80211_convert_to_ether(struct wlandevice * wlandev,struct sk_buff * skb)235 static int p80211_convert_to_ether(struct wlandevice *wlandev,
236 struct sk_buff *skb)
237 {
238 struct p80211_hdr_a3 *hdr;
239
240 hdr = (struct p80211_hdr_a3 *)skb->data;
241 if (p80211_rx_typedrop(wlandev, le16_to_cpu(hdr->fc)))
242 return CONV_TO_ETHER_SKIPPED;
243
244 /* perform mcast filtering: allow my local address through but reject
245 * anything else that isn't multicast
246 */
247 if (wlandev->netdev->flags & IFF_ALLMULTI) {
248 if (!ether_addr_equal_unaligned(wlandev->netdev->dev_addr,
249 hdr->a1)) {
250 if (!is_multicast_ether_addr(hdr->a1))
251 return CONV_TO_ETHER_SKIPPED;
252 }
253 }
254
255 if (skb_p80211_to_ether(wlandev, wlandev->ethconv, skb) == 0) {
256 wlandev->netdev->stats.rx_packets++;
257 wlandev->netdev->stats.rx_bytes += skb->len;
258 netif_rx_ni(skb);
259 return 0;
260 }
261
262 netdev_dbg(wlandev->netdev, "%s failed.\n", __func__);
263 return CONV_TO_ETHER_FAILED;
264 }
265
266 /**
267 * p80211netdev_rx_bh - deferred processing of all received frames
268 *
269 * @arg: pointer to WLAN network device structure (cast to unsigned long)
270 */
p80211netdev_rx_bh(unsigned long arg)271 static void p80211netdev_rx_bh(unsigned long arg)
272 {
273 struct wlandevice *wlandev = (struct wlandevice *)arg;
274 struct sk_buff *skb = NULL;
275 struct net_device *dev = wlandev->netdev;
276
277 /* Let's empty our our queue */
278 while ((skb = skb_dequeue(&wlandev->nsd_rxq))) {
279 if (wlandev->state == WLAN_DEVICE_OPEN) {
280 if (dev->type != ARPHRD_ETHER) {
281 /* RAW frame; we shouldn't convert it */
282 /* XXX Append the Prism Header here instead. */
283
284 /* set up various data fields */
285 skb->dev = dev;
286 skb_reset_mac_header(skb);
287 skb->ip_summed = CHECKSUM_NONE;
288 skb->pkt_type = PACKET_OTHERHOST;
289 skb->protocol = htons(ETH_P_80211_RAW);
290
291 dev->stats.rx_packets++;
292 dev->stats.rx_bytes += skb->len;
293 netif_rx_ni(skb);
294 continue;
295 } else {
296 if (!p80211_convert_to_ether(wlandev, skb))
297 continue;
298 }
299 }
300 dev_kfree_skb(skb);
301 }
302 }
303
304 /*----------------------------------------------------------------
305 * p80211knetdev_hard_start_xmit
306 *
307 * Linux netdevice method for transmitting a frame.
308 *
309 * Arguments:
310 * skb Linux sk_buff containing the frame.
311 * netdev Linux netdevice.
312 *
313 * Side effects:
314 * If the lower layers report that buffers are full. netdev->tbusy
315 * will be set to prevent higher layers from sending more traffic.
316 *
317 * Note: If this function returns non-zero, higher layers retain
318 * ownership of the skb.
319 *
320 * Returns:
321 * zero on success, non-zero on failure.
322 *----------------------------------------------------------------
323 */
p80211knetdev_hard_start_xmit(struct sk_buff * skb,struct net_device * netdev)324 static netdev_tx_t p80211knetdev_hard_start_xmit(struct sk_buff *skb,
325 struct net_device *netdev)
326 {
327 int result = 0;
328 int txresult = -1;
329 struct wlandevice *wlandev = netdev->ml_priv;
330 union p80211_hdr p80211_hdr;
331 struct p80211_metawep p80211_wep;
332
333 p80211_wep.data = NULL;
334
335 if (!skb)
336 return NETDEV_TX_OK;
337
338 if (wlandev->state != WLAN_DEVICE_OPEN) {
339 result = 1;
340 goto failed;
341 }
342
343 memset(&p80211_hdr, 0, sizeof(p80211_hdr));
344 memset(&p80211_wep, 0, sizeof(p80211_wep));
345
346 if (netif_queue_stopped(netdev)) {
347 netdev_dbg(netdev, "called when queue stopped.\n");
348 result = 1;
349 goto failed;
350 }
351
352 netif_stop_queue(netdev);
353
354 /* Check to see that a valid mode is set */
355 switch (wlandev->macmode) {
356 case WLAN_MACMODE_IBSS_STA:
357 case WLAN_MACMODE_ESS_STA:
358 case WLAN_MACMODE_ESS_AP:
359 break;
360 default:
361 /* Mode isn't set yet, just drop the frame
362 * and return success .
363 * TODO: we need a saner way to handle this
364 */
365 if (be16_to_cpu(skb->protocol) != ETH_P_80211_RAW) {
366 netif_start_queue(wlandev->netdev);
367 netdev_notice(netdev, "Tx attempt prior to association, frame dropped.\n");
368 netdev->stats.tx_dropped++;
369 result = 0;
370 goto failed;
371 }
372 break;
373 }
374
375 /* Check for raw transmits */
376 if (be16_to_cpu(skb->protocol) == ETH_P_80211_RAW) {
377 if (!capable(CAP_NET_ADMIN)) {
378 result = 1;
379 goto failed;
380 }
381 /* move the header over */
382 memcpy(&p80211_hdr, skb->data, sizeof(p80211_hdr));
383 skb_pull(skb, sizeof(p80211_hdr));
384 } else {
385 if (skb_ether_to_p80211
386 (wlandev, wlandev->ethconv, skb, &p80211_hdr,
387 &p80211_wep) != 0) {
388 /* convert failed */
389 netdev_dbg(netdev, "ether_to_80211(%d) failed.\n",
390 wlandev->ethconv);
391 result = 1;
392 goto failed;
393 }
394 }
395 if (!wlandev->txframe) {
396 result = 1;
397 goto failed;
398 }
399
400 netif_trans_update(netdev);
401
402 netdev->stats.tx_packets++;
403 /* count only the packet payload */
404 netdev->stats.tx_bytes += skb->len;
405
406 txresult = wlandev->txframe(wlandev, skb, &p80211_hdr, &p80211_wep);
407
408 if (txresult == 0) {
409 /* success and more buf */
410 /* avail, re: hw_txdata */
411 netif_wake_queue(wlandev->netdev);
412 result = NETDEV_TX_OK;
413 } else if (txresult == 1) {
414 /* success, no more avail */
415 netdev_dbg(netdev, "txframe success, no more bufs\n");
416 /* netdev->tbusy = 1; don't set here, irqhdlr */
417 /* may have already cleared it */
418 result = NETDEV_TX_OK;
419 } else if (txresult == 2) {
420 /* alloc failure, drop frame */
421 netdev_dbg(netdev, "txframe returned alloc_fail\n");
422 result = NETDEV_TX_BUSY;
423 } else {
424 /* buffer full or queue busy, drop frame. */
425 netdev_dbg(netdev, "txframe returned full or busy\n");
426 result = NETDEV_TX_BUSY;
427 }
428
429 failed:
430 /* Free up the WEP buffer if it's not the same as the skb */
431 if ((p80211_wep.data) && (p80211_wep.data != skb->data))
432 kzfree(p80211_wep.data);
433
434 /* we always free the skb here, never in a lower level. */
435 if (!result)
436 dev_kfree_skb(skb);
437
438 return result;
439 }
440
441 /*----------------------------------------------------------------
442 * p80211knetdev_set_multicast_list
443 *
444 * Called from higher layers whenever there's a need to set/clear
445 * promiscuous mode or rewrite the multicast list.
446 *
447 * Arguments:
448 * none
449 *
450 * Returns:
451 * nothing
452 *----------------------------------------------------------------
453 */
p80211knetdev_set_multicast_list(struct net_device * dev)454 static void p80211knetdev_set_multicast_list(struct net_device *dev)
455 {
456 struct wlandevice *wlandev = dev->ml_priv;
457
458 /* TODO: real multicast support as well */
459
460 if (wlandev->set_multicast_list)
461 wlandev->set_multicast_list(wlandev, dev);
462 }
463
464 #ifdef SIOCETHTOOL
465
p80211netdev_ethtool(struct wlandevice * wlandev,void __user * useraddr)466 static int p80211netdev_ethtool(struct wlandevice *wlandev,
467 void __user *useraddr)
468 {
469 u32 ethcmd;
470 struct ethtool_drvinfo info;
471 struct ethtool_value edata;
472
473 memset(&info, 0, sizeof(info));
474 memset(&edata, 0, sizeof(edata));
475
476 if (copy_from_user(ðcmd, useraddr, sizeof(ethcmd)))
477 return -EFAULT;
478
479 switch (ethcmd) {
480 case ETHTOOL_GDRVINFO:
481 info.cmd = ethcmd;
482 snprintf(info.driver, sizeof(info.driver), "p80211_%s",
483 wlandev->nsdname);
484 snprintf(info.version, sizeof(info.version), "%s",
485 WLAN_RELEASE);
486
487 if (copy_to_user(useraddr, &info, sizeof(info)))
488 return -EFAULT;
489 return 0;
490 #ifdef ETHTOOL_GLINK
491 case ETHTOOL_GLINK:
492 edata.cmd = ethcmd;
493
494 if (wlandev->linkstatus &&
495 (wlandev->macmode != WLAN_MACMODE_NONE)) {
496 edata.data = 1;
497 } else {
498 edata.data = 0;
499 }
500
501 if (copy_to_user(useraddr, &edata, sizeof(edata)))
502 return -EFAULT;
503 return 0;
504 #endif
505 }
506
507 return -EOPNOTSUPP;
508 }
509
510 #endif
511
512 /*----------------------------------------------------------------
513 * p80211knetdev_do_ioctl
514 *
515 * Handle an ioctl call on one of our devices. Everything Linux
516 * ioctl specific is done here. Then we pass the contents of the
517 * ifr->data to the request message handler.
518 *
519 * Arguments:
520 * dev Linux kernel netdevice
521 * ifr Our private ioctl request structure, typed for the
522 * generic struct ifreq so we can use ptr to func
523 * w/o cast.
524 *
525 * Returns:
526 * zero on success, a negative errno on failure. Possible values:
527 * -ENETDOWN Device isn't up.
528 * -EBUSY cmd already in progress
529 * -ETIME p80211 cmd timed out (MSD may have its own timers)
530 * -EFAULT memory fault copying msg from user buffer
531 * -ENOMEM unable to allocate kernel msg buffer
532 * -EINVAL bad magic, it the cmd really for us?
533 * -EintR sleeping on cmd, awakened by signal, cmd cancelled.
534 *
535 * Call Context:
536 * Process thread (ioctl caller). TODO: SMP support may require
537 * locks.
538 *----------------------------------------------------------------
539 */
p80211knetdev_do_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)540 static int p80211knetdev_do_ioctl(struct net_device *dev,
541 struct ifreq *ifr, int cmd)
542 {
543 int result = 0;
544 struct p80211ioctl_req *req = (struct p80211ioctl_req *)ifr;
545 struct wlandevice *wlandev = dev->ml_priv;
546 u8 *msgbuf;
547
548 netdev_dbg(dev, "rx'd ioctl, cmd=%d, len=%d\n", cmd, req->len);
549
550 #ifdef SIOCETHTOOL
551 if (cmd == SIOCETHTOOL) {
552 result =
553 p80211netdev_ethtool(wlandev, (void __user *)ifr->ifr_data);
554 goto bail;
555 }
556 #endif
557
558 /* Test the magic, assume ifr is good if it's there */
559 if (req->magic != P80211_IOCTL_MAGIC) {
560 result = -EINVAL;
561 goto bail;
562 }
563
564 if (cmd == P80211_IFTEST) {
565 result = 0;
566 goto bail;
567 } else if (cmd != P80211_IFREQ) {
568 result = -EINVAL;
569 goto bail;
570 }
571
572 /* Allocate a buf of size req->len */
573 msgbuf = kmalloc(req->len, GFP_KERNEL);
574 if (msgbuf) {
575 if (copy_from_user(msgbuf, (void __user *)req->data, req->len))
576 result = -EFAULT;
577 else
578 result = p80211req_dorequest(wlandev, msgbuf);
579
580 if (result == 0) {
581 if (copy_to_user
582 ((void __user *)req->data, msgbuf, req->len)) {
583 result = -EFAULT;
584 }
585 }
586 kfree(msgbuf);
587 } else {
588 result = -ENOMEM;
589 }
590 bail:
591 /* If allocate,copyfrom or copyto fails, return errno */
592 return result;
593 }
594
595 /*----------------------------------------------------------------
596 * p80211knetdev_set_mac_address
597 *
598 * Handles the ioctl for changing the MACAddress of a netdevice
599 *
600 * references: linux/netdevice.h and drivers/net/net_init.c
601 *
602 * NOTE: [MSM] We only prevent address changes when the netdev is
603 * up. We don't control anything based on dot11 state. If the
604 * address is changed on a STA that's currently associated, you
605 * will probably lose the ability to send and receive data frames.
606 * Just be aware. Therefore, this should usually only be done
607 * prior to scan/join/auth/assoc.
608 *
609 * Arguments:
610 * dev netdevice struct
611 * addr the new MACAddress (a struct)
612 *
613 * Returns:
614 * zero on success, a negative errno on failure. Possible values:
615 * -EBUSY device is bussy (cmd not possible)
616 * -and errors returned by: p80211req_dorequest(..)
617 *
618 * by: Collin R. Mulliner <collin@mulliner.org>
619 *----------------------------------------------------------------
620 */
p80211knetdev_set_mac_address(struct net_device * dev,void * addr)621 static int p80211knetdev_set_mac_address(struct net_device *dev, void *addr)
622 {
623 struct sockaddr *new_addr = addr;
624 struct p80211msg_dot11req_mibset dot11req;
625 struct p80211item_unk392 *mibattr;
626 struct p80211item_pstr6 *macaddr;
627 struct p80211item_uint32 *resultcode;
628 int result;
629
630 /* If we're running, we don't allow MAC address changes */
631 if (netif_running(dev))
632 return -EBUSY;
633
634 /* Set up some convenience pointers. */
635 mibattr = &dot11req.mibattribute;
636 macaddr = (struct p80211item_pstr6 *)&mibattr->data;
637 resultcode = &dot11req.resultcode;
638
639 /* Set up a dot11req_mibset */
640 memset(&dot11req, 0, sizeof(dot11req));
641 dot11req.msgcode = DIDmsg_dot11req_mibset;
642 dot11req.msglen = sizeof(dot11req);
643 memcpy(dot11req.devname,
644 ((struct wlandevice *)dev->ml_priv)->name,
645 WLAN_DEVNAMELEN_MAX - 1);
646
647 /* Set up the mibattribute argument */
648 mibattr->did = DIDmsg_dot11req_mibset_mibattribute;
649 mibattr->status = P80211ENUM_msgitem_status_data_ok;
650 mibattr->len = sizeof(mibattr->data);
651
652 macaddr->did = DIDmib_dot11mac_dot11OperationTable_dot11MACAddress;
653 macaddr->status = P80211ENUM_msgitem_status_data_ok;
654 macaddr->len = sizeof(macaddr->data);
655 macaddr->data.len = ETH_ALEN;
656 memcpy(&macaddr->data.data, new_addr->sa_data, ETH_ALEN);
657
658 /* Set up the resultcode argument */
659 resultcode->did = DIDmsg_dot11req_mibset_resultcode;
660 resultcode->status = P80211ENUM_msgitem_status_no_value;
661 resultcode->len = sizeof(resultcode->data);
662 resultcode->data = 0;
663
664 /* now fire the request */
665 result = p80211req_dorequest(dev->ml_priv, (u8 *)&dot11req);
666
667 /* If the request wasn't successful, report an error and don't
668 * change the netdev address
669 */
670 if (result != 0 || resultcode->data != P80211ENUM_resultcode_success) {
671 netdev_err(dev, "Low-level driver failed dot11req_mibset(dot11MACAddress).\n");
672 result = -EADDRNOTAVAIL;
673 } else {
674 /* everything's ok, change the addr in netdev */
675 memcpy(dev->dev_addr, new_addr->sa_data, dev->addr_len);
676 }
677
678 return result;
679 }
680
681 static const struct net_device_ops p80211_netdev_ops = {
682 .ndo_init = p80211knetdev_init,
683 .ndo_open = p80211knetdev_open,
684 .ndo_stop = p80211knetdev_stop,
685 .ndo_start_xmit = p80211knetdev_hard_start_xmit,
686 .ndo_set_rx_mode = p80211knetdev_set_multicast_list,
687 .ndo_do_ioctl = p80211knetdev_do_ioctl,
688 .ndo_set_mac_address = p80211knetdev_set_mac_address,
689 .ndo_tx_timeout = p80211knetdev_tx_timeout,
690 .ndo_validate_addr = eth_validate_addr,
691 };
692
693 /*----------------------------------------------------------------
694 * wlan_setup
695 *
696 * Roughly matches the functionality of ether_setup. Here
697 * we set up any members of the wlandevice structure that are common
698 * to all devices. Additionally, we allocate a linux 'struct device'
699 * and perform the same setup as ether_setup.
700 *
701 * Note: It's important that the caller have setup the wlandev->name
702 * ptr prior to calling this function.
703 *
704 * Arguments:
705 * wlandev ptr to the wlandev structure for the
706 * interface.
707 * physdev ptr to usb device
708 * Returns:
709 * zero on success, non-zero otherwise.
710 * Call Context:
711 * Should be process thread. We'll assume it might be
712 * interrupt though. When we add support for statically
713 * compiled drivers, this function will be called in the
714 * context of the kernel startup code.
715 *----------------------------------------------------------------
716 */
wlan_setup(struct wlandevice * wlandev,struct device * physdev)717 int wlan_setup(struct wlandevice *wlandev, struct device *physdev)
718 {
719 int result = 0;
720 struct net_device *netdev;
721 struct wiphy *wiphy;
722 struct wireless_dev *wdev;
723
724 /* Set up the wlandev */
725 wlandev->state = WLAN_DEVICE_CLOSED;
726 wlandev->ethconv = WLAN_ETHCONV_8021h;
727 wlandev->macmode = WLAN_MACMODE_NONE;
728
729 /* Set up the rx queue */
730 skb_queue_head_init(&wlandev->nsd_rxq);
731 tasklet_init(&wlandev->rx_bh,
732 p80211netdev_rx_bh, (unsigned long)wlandev);
733
734 /* Allocate and initialize the wiphy struct */
735 wiphy = wlan_create_wiphy(physdev, wlandev);
736 if (!wiphy) {
737 dev_err(physdev, "Failed to alloc wiphy.\n");
738 return 1;
739 }
740
741 /* Allocate and initialize the struct device */
742 netdev = alloc_netdev(sizeof(struct wireless_dev), "wlan%d",
743 NET_NAME_UNKNOWN, ether_setup);
744 if (!netdev) {
745 dev_err(physdev, "Failed to alloc netdev.\n");
746 wlan_free_wiphy(wiphy);
747 result = 1;
748 } else {
749 wlandev->netdev = netdev;
750 netdev->ml_priv = wlandev;
751 netdev->netdev_ops = &p80211_netdev_ops;
752 wdev = netdev_priv(netdev);
753 wdev->wiphy = wiphy;
754 wdev->iftype = NL80211_IFTYPE_STATION;
755 netdev->ieee80211_ptr = wdev;
756 netdev->min_mtu = 68;
757 /* 2312 is max 802.11 payload, 20 is overhead,
758 * (ether + llc + snap) and another 8 for wep.
759 */
760 netdev->max_mtu = (2312 - 20 - 8);
761
762 netif_stop_queue(netdev);
763 netif_carrier_off(netdev);
764 }
765
766 return result;
767 }
768
769 /*----------------------------------------------------------------
770 * wlan_unsetup
771 *
772 * This function is paired with the wlan_setup routine. It should
773 * be called after unregister_wlandev. Basically, all it does is
774 * free the 'struct device' that's associated with the wlandev.
775 * We do it here because the 'struct device' isn't allocated
776 * explicitly in the driver code, it's done in wlan_setup. To
777 * do the free in the driver might seem like 'magic'.
778 *
779 * Arguments:
780 * wlandev ptr to the wlandev structure for the
781 * interface.
782 * Call Context:
783 * Should be process thread. We'll assume it might be
784 * interrupt though. When we add support for statically
785 * compiled drivers, this function will be called in the
786 * context of the kernel startup code.
787 *----------------------------------------------------------------
788 */
wlan_unsetup(struct wlandevice * wlandev)789 void wlan_unsetup(struct wlandevice *wlandev)
790 {
791 struct wireless_dev *wdev;
792
793 tasklet_kill(&wlandev->rx_bh);
794
795 if (wlandev->netdev) {
796 wdev = netdev_priv(wlandev->netdev);
797 if (wdev->wiphy)
798 wlan_free_wiphy(wdev->wiphy);
799 free_netdev(wlandev->netdev);
800 wlandev->netdev = NULL;
801 }
802 }
803
804 /*----------------------------------------------------------------
805 * register_wlandev
806 *
807 * Roughly matches the functionality of register_netdev. This function
808 * is called after the driver has successfully probed and set up the
809 * resources for the device. It's now ready to become a named device
810 * in the Linux system.
811 *
812 * First we allocate a name for the device (if not already set), then
813 * we call the Linux function register_netdevice.
814 *
815 * Arguments:
816 * wlandev ptr to the wlandev structure for the
817 * interface.
818 * Returns:
819 * zero on success, non-zero otherwise.
820 * Call Context:
821 * Can be either interrupt or not.
822 *----------------------------------------------------------------
823 */
register_wlandev(struct wlandevice * wlandev)824 int register_wlandev(struct wlandevice *wlandev)
825 {
826 return register_netdev(wlandev->netdev);
827 }
828
829 /*----------------------------------------------------------------
830 * unregister_wlandev
831 *
832 * Roughly matches the functionality of unregister_netdev. This
833 * function is called to remove a named device from the system.
834 *
835 * First we tell linux that the device should no longer exist.
836 * Then we remove it from the list of known wlan devices.
837 *
838 * Arguments:
839 * wlandev ptr to the wlandev structure for the
840 * interface.
841 * Returns:
842 * zero on success, non-zero otherwise.
843 * Call Context:
844 * Can be either interrupt or not.
845 *----------------------------------------------------------------
846 */
unregister_wlandev(struct wlandevice * wlandev)847 int unregister_wlandev(struct wlandevice *wlandev)
848 {
849 struct sk_buff *skb;
850
851 unregister_netdev(wlandev->netdev);
852
853 /* Now to clean out the rx queue */
854 while ((skb = skb_dequeue(&wlandev->nsd_rxq)))
855 dev_kfree_skb(skb);
856
857 return 0;
858 }
859
860 /*----------------------------------------------------------------
861 * p80211netdev_hwremoved
862 *
863 * Hardware removed notification. This function should be called
864 * immediately after an MSD has detected that the underlying hardware
865 * has been yanked out from under us. The primary things we need
866 * to do are:
867 * - Mark the wlandev
868 * - Prevent any further traffic from the knetdev i/f
869 * - Prevent any further requests from mgmt i/f
870 * - If there are any waitq'd mgmt requests or mgmt-frame exchanges,
871 * shut them down.
872 * - Call the MSD hwremoved function.
873 *
874 * The remainder of the cleanup will be handled by unregister().
875 * Our primary goal here is to prevent as much tickling of the MSD
876 * as possible since the MSD is already in a 'wounded' state.
877 *
878 * TODO: As new features are added, this function should be
879 * updated.
880 *
881 * Arguments:
882 * wlandev WLAN network device structure
883 * Returns:
884 * nothing
885 * Side effects:
886 *
887 * Call context:
888 * Usually interrupt.
889 *----------------------------------------------------------------
890 */
p80211netdev_hwremoved(struct wlandevice * wlandev)891 void p80211netdev_hwremoved(struct wlandevice *wlandev)
892 {
893 wlandev->hwremoved = 1;
894 if (wlandev->state == WLAN_DEVICE_OPEN)
895 netif_stop_queue(wlandev->netdev);
896
897 netif_device_detach(wlandev->netdev);
898 }
899
900 /*----------------------------------------------------------------
901 * p80211_rx_typedrop
902 *
903 * Classifies the frame, increments the appropriate counter, and
904 * returns 0|1|2 indicating whether the driver should handle, ignore, or
905 * drop the frame
906 *
907 * Arguments:
908 * wlandev wlan device structure
909 * fc frame control field
910 *
911 * Returns:
912 * zero if the frame should be handled by the driver,
913 * one if the frame should be ignored
914 * anything else means we drop it.
915 *
916 * Side effects:
917 *
918 * Call context:
919 * interrupt
920 *----------------------------------------------------------------
921 */
p80211_rx_typedrop(struct wlandevice * wlandev,u16 fc)922 static int p80211_rx_typedrop(struct wlandevice *wlandev, u16 fc)
923 {
924 u16 ftype;
925 u16 fstype;
926 int drop = 0;
927 /* Classify frame, increment counter */
928 ftype = WLAN_GET_FC_FTYPE(fc);
929 fstype = WLAN_GET_FC_FSTYPE(fc);
930 #if 0
931 netdev_dbg(wlandev->netdev, "rx_typedrop : ftype=%d fstype=%d.\n",
932 ftype, fstype);
933 #endif
934 switch (ftype) {
935 case WLAN_FTYPE_MGMT:
936 if ((wlandev->netdev->flags & IFF_PROMISC) ||
937 (wlandev->netdev->flags & IFF_ALLMULTI)) {
938 drop = 1;
939 break;
940 }
941 netdev_dbg(wlandev->netdev, "rx'd mgmt:\n");
942 wlandev->rx.mgmt++;
943 switch (fstype) {
944 case WLAN_FSTYPE_ASSOCREQ:
945 /* printk("assocreq"); */
946 wlandev->rx.assocreq++;
947 break;
948 case WLAN_FSTYPE_ASSOCRESP:
949 /* printk("assocresp"); */
950 wlandev->rx.assocresp++;
951 break;
952 case WLAN_FSTYPE_REASSOCREQ:
953 /* printk("reassocreq"); */
954 wlandev->rx.reassocreq++;
955 break;
956 case WLAN_FSTYPE_REASSOCRESP:
957 /* printk("reassocresp"); */
958 wlandev->rx.reassocresp++;
959 break;
960 case WLAN_FSTYPE_PROBEREQ:
961 /* printk("probereq"); */
962 wlandev->rx.probereq++;
963 break;
964 case WLAN_FSTYPE_PROBERESP:
965 /* printk("proberesp"); */
966 wlandev->rx.proberesp++;
967 break;
968 case WLAN_FSTYPE_BEACON:
969 /* printk("beacon"); */
970 wlandev->rx.beacon++;
971 break;
972 case WLAN_FSTYPE_ATIM:
973 /* printk("atim"); */
974 wlandev->rx.atim++;
975 break;
976 case WLAN_FSTYPE_DISASSOC:
977 /* printk("disassoc"); */
978 wlandev->rx.disassoc++;
979 break;
980 case WLAN_FSTYPE_AUTHEN:
981 /* printk("authen"); */
982 wlandev->rx.authen++;
983 break;
984 case WLAN_FSTYPE_DEAUTHEN:
985 /* printk("deauthen"); */
986 wlandev->rx.deauthen++;
987 break;
988 default:
989 /* printk("unknown"); */
990 wlandev->rx.mgmt_unknown++;
991 break;
992 }
993 /* printk("\n"); */
994 drop = 2;
995 break;
996
997 case WLAN_FTYPE_CTL:
998 if ((wlandev->netdev->flags & IFF_PROMISC) ||
999 (wlandev->netdev->flags & IFF_ALLMULTI)) {
1000 drop = 1;
1001 break;
1002 }
1003 netdev_dbg(wlandev->netdev, "rx'd ctl:\n");
1004 wlandev->rx.ctl++;
1005 switch (fstype) {
1006 case WLAN_FSTYPE_PSPOLL:
1007 /* printk("pspoll"); */
1008 wlandev->rx.pspoll++;
1009 break;
1010 case WLAN_FSTYPE_RTS:
1011 /* printk("rts"); */
1012 wlandev->rx.rts++;
1013 break;
1014 case WLAN_FSTYPE_CTS:
1015 /* printk("cts"); */
1016 wlandev->rx.cts++;
1017 break;
1018 case WLAN_FSTYPE_ACK:
1019 /* printk("ack"); */
1020 wlandev->rx.ack++;
1021 break;
1022 case WLAN_FSTYPE_CFEND:
1023 /* printk("cfend"); */
1024 wlandev->rx.cfend++;
1025 break;
1026 case WLAN_FSTYPE_CFENDCFACK:
1027 /* printk("cfendcfack"); */
1028 wlandev->rx.cfendcfack++;
1029 break;
1030 default:
1031 /* printk("unknown"); */
1032 wlandev->rx.ctl_unknown++;
1033 break;
1034 }
1035 /* printk("\n"); */
1036 drop = 2;
1037 break;
1038
1039 case WLAN_FTYPE_DATA:
1040 wlandev->rx.data++;
1041 switch (fstype) {
1042 case WLAN_FSTYPE_DATAONLY:
1043 wlandev->rx.dataonly++;
1044 break;
1045 case WLAN_FSTYPE_DATA_CFACK:
1046 wlandev->rx.data_cfack++;
1047 break;
1048 case WLAN_FSTYPE_DATA_CFPOLL:
1049 wlandev->rx.data_cfpoll++;
1050 break;
1051 case WLAN_FSTYPE_DATA_CFACK_CFPOLL:
1052 wlandev->rx.data__cfack_cfpoll++;
1053 break;
1054 case WLAN_FSTYPE_NULL:
1055 netdev_dbg(wlandev->netdev, "rx'd data:null\n");
1056 wlandev->rx.null++;
1057 break;
1058 case WLAN_FSTYPE_CFACK:
1059 netdev_dbg(wlandev->netdev, "rx'd data:cfack\n");
1060 wlandev->rx.cfack++;
1061 break;
1062 case WLAN_FSTYPE_CFPOLL:
1063 netdev_dbg(wlandev->netdev, "rx'd data:cfpoll\n");
1064 wlandev->rx.cfpoll++;
1065 break;
1066 case WLAN_FSTYPE_CFACK_CFPOLL:
1067 netdev_dbg(wlandev->netdev, "rx'd data:cfack_cfpoll\n");
1068 wlandev->rx.cfack_cfpoll++;
1069 break;
1070 default:
1071 /* printk("unknown"); */
1072 wlandev->rx.data_unknown++;
1073 break;
1074 }
1075
1076 break;
1077 }
1078 return drop;
1079 }
1080
p80211knetdev_tx_timeout(struct net_device * netdev)1081 static void p80211knetdev_tx_timeout(struct net_device *netdev)
1082 {
1083 struct wlandevice *wlandev = netdev->ml_priv;
1084
1085 if (wlandev->tx_timeout) {
1086 wlandev->tx_timeout(wlandev);
1087 } else {
1088 netdev_warn(netdev, "Implement tx_timeout for %s\n",
1089 wlandev->nsdname);
1090 netif_wake_queue(wlandev->netdev);
1091 }
1092 }
1093