1 // SPDX-License-Identifier: Apache-2.0 OR MIT
2 
3 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
4 
5 use core::alloc::LayoutError;
6 use core::cmp;
7 use core::intrinsics;
8 use core::mem::{self, ManuallyDrop, MaybeUninit};
9 use core::ops::Drop;
10 use core::ptr::{self, NonNull, Unique};
11 use core::slice;
12 
13 #[cfg(not(no_global_oom_handling))]
14 use crate::alloc::handle_alloc_error;
15 use crate::alloc::{Allocator, Global, Layout};
16 use crate::boxed::Box;
17 use crate::collections::TryReserveError;
18 use crate::collections::TryReserveErrorKind::*;
19 
20 #[cfg(test)]
21 mod tests;
22 
23 #[cfg(not(no_global_oom_handling))]
24 enum AllocInit {
25     /// The contents of the new memory are uninitialized.
26     Uninitialized,
27     /// The new memory is guaranteed to be zeroed.
28     Zeroed,
29 }
30 
31 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
32 /// a buffer of memory on the heap without having to worry about all the corner cases
33 /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
34 /// In particular:
35 ///
36 /// * Produces `Unique::dangling()` on zero-sized types.
37 /// * Produces `Unique::dangling()` on zero-length allocations.
38 /// * Avoids freeing `Unique::dangling()`.
39 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
40 /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
41 /// * Guards against overflowing your length.
42 /// * Calls `handle_alloc_error` for fallible allocations.
43 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
44 /// * Uses the excess returned from the allocator to use the largest available capacity.
45 ///
46 /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
47 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
48 /// to handle the actual things *stored* inside of a `RawVec`.
49 ///
50 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
51 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
52 /// `Box<[T]>`, since `capacity()` won't yield the length.
53 #[allow(missing_debug_implementations)]
54 pub(crate) struct RawVec<T, A: Allocator = Global> {
55     ptr: Unique<T>,
56     cap: usize,
57     alloc: A,
58 }
59 
60 impl<T> RawVec<T, Global> {
61     /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
62     /// they cannot call `Self::new()`.
63     ///
64     /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
65     /// that would truly const-call something unstable.
66     pub const NEW: Self = Self::new();
67 
68     /// Creates the biggest possible `RawVec` (on the system heap)
69     /// without allocating. If `T` has positive size, then this makes a
70     /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
71     /// `RawVec` with capacity `usize::MAX`. Useful for implementing
72     /// delayed allocation.
73     #[must_use]
new() -> Self74     pub const fn new() -> Self {
75         Self::new_in(Global)
76     }
77 
78     /// Creates a `RawVec` (on the system heap) with exactly the
79     /// capacity and alignment requirements for a `[T; capacity]`. This is
80     /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
81     /// zero-sized. Note that if `T` is zero-sized this means you will
82     /// *not* get a `RawVec` with the requested capacity.
83     ///
84     /// # Panics
85     ///
86     /// Panics if the requested capacity exceeds `isize::MAX` bytes.
87     ///
88     /// # Aborts
89     ///
90     /// Aborts on OOM.
91     #[cfg(not(any(no_global_oom_handling, test)))]
92     #[must_use]
93     #[inline]
with_capacity(capacity: usize) -> Self94     pub fn with_capacity(capacity: usize) -> Self {
95         Self::with_capacity_in(capacity, Global)
96     }
97 
98     /// Like `with_capacity`, but guarantees the buffer is zeroed.
99     #[cfg(not(any(no_global_oom_handling, test)))]
100     #[must_use]
101     #[inline]
with_capacity_zeroed(capacity: usize) -> Self102     pub fn with_capacity_zeroed(capacity: usize) -> Self {
103         Self::with_capacity_zeroed_in(capacity, Global)
104     }
105 }
106 
107 impl<T, A: Allocator> RawVec<T, A> {
108     // Tiny Vecs are dumb. Skip to:
109     // - 8 if the element size is 1, because any heap allocators is likely
110     //   to round up a request of less than 8 bytes to at least 8 bytes.
111     // - 4 if elements are moderate-sized (<= 1 KiB).
112     // - 1 otherwise, to avoid wasting too much space for very short Vecs.
113     pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
114         8
115     } else if mem::size_of::<T>() <= 1024 {
116         4
117     } else {
118         1
119     };
120 
121     /// Like `new`, but parameterized over the choice of allocator for
122     /// the returned `RawVec`.
new_in(alloc: A) -> Self123     pub const fn new_in(alloc: A) -> Self {
124         // `cap: 0` means "unallocated". zero-sized types are ignored.
125         Self { ptr: Unique::dangling(), cap: 0, alloc }
126     }
127 
128     /// Like `with_capacity`, but parameterized over the choice of
129     /// allocator for the returned `RawVec`.
130     #[cfg(not(no_global_oom_handling))]
131     #[inline]
with_capacity_in(capacity: usize, alloc: A) -> Self132     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
133         Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
134     }
135 
136     /// Like `with_capacity_zeroed`, but parameterized over the choice
137     /// of allocator for the returned `RawVec`.
138     #[cfg(not(no_global_oom_handling))]
139     #[inline]
with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self140     pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
141         Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
142     }
143 
144     /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
145     ///
146     /// Note that this will correctly reconstitute any `cap` changes
147     /// that may have been performed. (See description of type for details.)
148     ///
149     /// # Safety
150     ///
151     /// * `len` must be greater than or equal to the most recently requested capacity, and
152     /// * `len` must be less than or equal to `self.capacity()`.
153     ///
154     /// Note, that the requested capacity and `self.capacity()` could differ, as
155     /// an allocator could overallocate and return a greater memory block than requested.
into_box(self, len: usize) -> Box<[MaybeUninit<T>], A>156     pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
157         // Sanity-check one half of the safety requirement (we cannot check the other half).
158         debug_assert!(
159             len <= self.capacity(),
160             "`len` must be smaller than or equal to `self.capacity()`"
161         );
162 
163         let me = ManuallyDrop::new(self);
164         unsafe {
165             let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
166             Box::from_raw_in(slice, ptr::read(&me.alloc))
167         }
168     }
169 
170     #[cfg(not(no_global_oom_handling))]
allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self171     fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
172         // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
173         if mem::size_of::<T>() == 0 || capacity == 0 {
174             Self::new_in(alloc)
175         } else {
176             // We avoid `unwrap_or_else` here because it bloats the amount of
177             // LLVM IR generated.
178             let layout = match Layout::array::<T>(capacity) {
179                 Ok(layout) => layout,
180                 Err(_) => capacity_overflow(),
181             };
182             match alloc_guard(layout.size()) {
183                 Ok(_) => {}
184                 Err(_) => capacity_overflow(),
185             }
186             let result = match init {
187                 AllocInit::Uninitialized => alloc.allocate(layout),
188                 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
189             };
190             let ptr = match result {
191                 Ok(ptr) => ptr,
192                 Err(_) => handle_alloc_error(layout),
193             };
194 
195             // Allocators currently return a `NonNull<[u8]>` whose length
196             // matches the size requested. If that ever changes, the capacity
197             // here should change to `ptr.len() / mem::size_of::<T>()`.
198             Self {
199                 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
200                 cap: capacity,
201                 alloc,
202             }
203         }
204     }
205 
206     /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
207     ///
208     /// # Safety
209     ///
210     /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
211     /// `capacity`.
212     /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
213     /// systems). ZST vectors may have a capacity up to `usize::MAX`.
214     /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
215     /// guaranteed.
216     #[inline]
from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self217     pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
218         Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
219     }
220 
221     /// Gets a raw pointer to the start of the allocation. Note that this is
222     /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
223     /// be careful.
224     #[inline]
ptr(&self) -> *mut T225     pub fn ptr(&self) -> *mut T {
226         self.ptr.as_ptr()
227     }
228 
229     /// Gets the capacity of the allocation.
230     ///
231     /// This will always be `usize::MAX` if `T` is zero-sized.
232     #[inline(always)]
capacity(&self) -> usize233     pub fn capacity(&self) -> usize {
234         if mem::size_of::<T>() == 0 { usize::MAX } else { self.cap }
235     }
236 
237     /// Returns a shared reference to the allocator backing this `RawVec`.
allocator(&self) -> &A238     pub fn allocator(&self) -> &A {
239         &self.alloc
240     }
241 
current_memory(&self) -> Option<(NonNull<u8>, Layout)>242     fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
243         if mem::size_of::<T>() == 0 || self.cap == 0 {
244             None
245         } else {
246             // We have an allocated chunk of memory, so we can bypass runtime
247             // checks to get our current layout.
248             unsafe {
249                 let layout = Layout::array::<T>(self.cap).unwrap_unchecked();
250                 Some((self.ptr.cast().into(), layout))
251             }
252         }
253     }
254 
255     /// Ensures that the buffer contains at least enough space to hold `len +
256     /// additional` elements. If it doesn't already have enough capacity, will
257     /// reallocate enough space plus comfortable slack space to get amortized
258     /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
259     /// itself to panic.
260     ///
261     /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
262     /// the requested space. This is not really unsafe, but the unsafe
263     /// code *you* write that relies on the behavior of this function may break.
264     ///
265     /// This is ideal for implementing a bulk-push operation like `extend`.
266     ///
267     /// # Panics
268     ///
269     /// Panics if the new capacity exceeds `isize::MAX` bytes.
270     ///
271     /// # Aborts
272     ///
273     /// Aborts on OOM.
274     #[cfg(not(no_global_oom_handling))]
275     #[inline]
reserve(&mut self, len: usize, additional: usize)276     pub fn reserve(&mut self, len: usize, additional: usize) {
277         // Callers expect this function to be very cheap when there is already sufficient capacity.
278         // Therefore, we move all the resizing and error-handling logic from grow_amortized and
279         // handle_reserve behind a call, while making sure that this function is likely to be
280         // inlined as just a comparison and a call if the comparison fails.
281         #[cold]
282         fn do_reserve_and_handle<T, A: Allocator>(
283             slf: &mut RawVec<T, A>,
284             len: usize,
285             additional: usize,
286         ) {
287             handle_reserve(slf.grow_amortized(len, additional));
288         }
289 
290         if self.needs_to_grow(len, additional) {
291             do_reserve_and_handle(self, len, additional);
292         }
293     }
294 
295     /// A specialized version of `reserve()` used only by the hot and
296     /// oft-instantiated `Vec::push()`, which does its own capacity check.
297     #[cfg(not(no_global_oom_handling))]
298     #[inline(never)]
reserve_for_push(&mut self, len: usize)299     pub fn reserve_for_push(&mut self, len: usize) {
300         handle_reserve(self.grow_amortized(len, 1));
301     }
302 
303     /// The same as `reserve`, but returns on errors instead of panicking or aborting.
try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>304     pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
305         if self.needs_to_grow(len, additional) {
306             self.grow_amortized(len, additional)
307         } else {
308             Ok(())
309         }
310     }
311 
312     /// The same as `reserve_for_push`, but returns on errors instead of panicking or aborting.
313     #[inline(never)]
try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError>314     pub fn try_reserve_for_push(&mut self, len: usize) -> Result<(), TryReserveError> {
315         self.grow_amortized(len, 1)
316     }
317 
318     /// Ensures that the buffer contains at least enough space to hold `len +
319     /// additional` elements. If it doesn't already, will reallocate the
320     /// minimum possible amount of memory necessary. Generally this will be
321     /// exactly the amount of memory necessary, but in principle the allocator
322     /// is free to give back more than we asked for.
323     ///
324     /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
325     /// the requested space. This is not really unsafe, but the unsafe code
326     /// *you* write that relies on the behavior of this function may break.
327     ///
328     /// # Panics
329     ///
330     /// Panics if the new capacity exceeds `isize::MAX` bytes.
331     ///
332     /// # Aborts
333     ///
334     /// Aborts on OOM.
335     #[cfg(not(no_global_oom_handling))]
reserve_exact(&mut self, len: usize, additional: usize)336     pub fn reserve_exact(&mut self, len: usize, additional: usize) {
337         handle_reserve(self.try_reserve_exact(len, additional));
338     }
339 
340     /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
try_reserve_exact( &mut self, len: usize, additional: usize, ) -> Result<(), TryReserveError>341     pub fn try_reserve_exact(
342         &mut self,
343         len: usize,
344         additional: usize,
345     ) -> Result<(), TryReserveError> {
346         if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
347     }
348 
349     /// Shrinks the buffer down to the specified capacity. If the given amount
350     /// is 0, actually completely deallocates.
351     ///
352     /// # Panics
353     ///
354     /// Panics if the given amount is *larger* than the current capacity.
355     ///
356     /// # Aborts
357     ///
358     /// Aborts on OOM.
359     #[cfg(not(no_global_oom_handling))]
shrink_to_fit(&mut self, cap: usize)360     pub fn shrink_to_fit(&mut self, cap: usize) {
361         handle_reserve(self.shrink(cap));
362     }
363 }
364 
365 impl<T, A: Allocator> RawVec<T, A> {
366     /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
367     /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
needs_to_grow(&self, len: usize, additional: usize) -> bool368     fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
369         additional > self.capacity().wrapping_sub(len)
370     }
371 
set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize)372     fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
373         // Allocators currently return a `NonNull<[u8]>` whose length matches
374         // the size requested. If that ever changes, the capacity here should
375         // change to `ptr.len() / mem::size_of::<T>()`.
376         self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
377         self.cap = cap;
378     }
379 
380     // This method is usually instantiated many times. So we want it to be as
381     // small as possible, to improve compile times. But we also want as much of
382     // its contents to be statically computable as possible, to make the
383     // generated code run faster. Therefore, this method is carefully written
384     // so that all of the code that depends on `T` is within it, while as much
385     // of the code that doesn't depend on `T` as possible is in functions that
386     // are non-generic over `T`.
grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>387     fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
388         // This is ensured by the calling contexts.
389         debug_assert!(additional > 0);
390 
391         if mem::size_of::<T>() == 0 {
392             // Since we return a capacity of `usize::MAX` when `elem_size` is
393             // 0, getting to here necessarily means the `RawVec` is overfull.
394             return Err(CapacityOverflow.into());
395         }
396 
397         // Nothing we can really do about these checks, sadly.
398         let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
399 
400         // This guarantees exponential growth. The doubling cannot overflow
401         // because `cap <= isize::MAX` and the type of `cap` is `usize`.
402         let cap = cmp::max(self.cap * 2, required_cap);
403         let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
404 
405         let new_layout = Layout::array::<T>(cap);
406 
407         // `finish_grow` is non-generic over `T`.
408         let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
409         self.set_ptr_and_cap(ptr, cap);
410         Ok(())
411     }
412 
413     // The constraints on this method are much the same as those on
414     // `grow_amortized`, but this method is usually instantiated less often so
415     // it's less critical.
grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>416     fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
417         if mem::size_of::<T>() == 0 {
418             // Since we return a capacity of `usize::MAX` when the type size is
419             // 0, getting to here necessarily means the `RawVec` is overfull.
420             return Err(CapacityOverflow.into());
421         }
422 
423         let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
424         let new_layout = Layout::array::<T>(cap);
425 
426         // `finish_grow` is non-generic over `T`.
427         let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
428         self.set_ptr_and_cap(ptr, cap);
429         Ok(())
430     }
431 
432     #[allow(dead_code)]
shrink(&mut self, cap: usize) -> Result<(), TryReserveError>433     fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
434         assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
435 
436         let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
437 
438         let ptr = unsafe {
439             // `Layout::array` cannot overflow here because it would have
440             // overflowed earlier when capacity was larger.
441             let new_layout = Layout::array::<T>(cap).unwrap_unchecked();
442             self.alloc
443                 .shrink(ptr, layout, new_layout)
444                 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
445         };
446         self.set_ptr_and_cap(ptr, cap);
447         Ok(())
448     }
449 }
450 
451 // This function is outside `RawVec` to minimize compile times. See the comment
452 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
453 // significant, because the number of different `A` types seen in practice is
454 // much smaller than the number of `T` types.)
455 #[inline(never)]
finish_grow<A>( new_layout: Result<Layout, LayoutError>, current_memory: Option<(NonNull<u8>, Layout)>, alloc: &mut A, ) -> Result<NonNull<[u8]>, TryReserveError> where A: Allocator,456 fn finish_grow<A>(
457     new_layout: Result<Layout, LayoutError>,
458     current_memory: Option<(NonNull<u8>, Layout)>,
459     alloc: &mut A,
460 ) -> Result<NonNull<[u8]>, TryReserveError>
461 where
462     A: Allocator,
463 {
464     // Check for the error here to minimize the size of `RawVec::grow_*`.
465     let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
466 
467     alloc_guard(new_layout.size())?;
468 
469     let memory = if let Some((ptr, old_layout)) = current_memory {
470         debug_assert_eq!(old_layout.align(), new_layout.align());
471         unsafe {
472             // The allocator checks for alignment equality
473             intrinsics::assume(old_layout.align() == new_layout.align());
474             alloc.grow(ptr, old_layout, new_layout)
475         }
476     } else {
477         alloc.allocate(new_layout)
478     };
479 
480     memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
481 }
482 
483 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
484     /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
drop(&mut self)485     fn drop(&mut self) {
486         if let Some((ptr, layout)) = self.current_memory() {
487             unsafe { self.alloc.deallocate(ptr, layout) }
488         }
489     }
490 }
491 
492 // Central function for reserve error handling.
493 #[cfg(not(no_global_oom_handling))]
494 #[inline]
handle_reserve(result: Result<(), TryReserveError>)495 fn handle_reserve(result: Result<(), TryReserveError>) {
496     match result.map_err(|e| e.kind()) {
497         Err(CapacityOverflow) => capacity_overflow(),
498         Err(AllocError { layout, .. }) => handle_alloc_error(layout),
499         Ok(()) => { /* yay */ }
500     }
501 }
502 
503 // We need to guarantee the following:
504 // * We don't ever allocate `> isize::MAX` byte-size objects.
505 // * We don't overflow `usize::MAX` and actually allocate too little.
506 //
507 // On 64-bit we just need to check for overflow since trying to allocate
508 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
509 // an extra guard for this in case we're running on a platform which can use
510 // all 4GB in user-space, e.g., PAE or x32.
511 
512 #[inline]
alloc_guard(alloc_size: usize) -> Result<(), TryReserveError>513 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
514     if usize::BITS < 64 && alloc_size > isize::MAX as usize {
515         Err(CapacityOverflow.into())
516     } else {
517         Ok(())
518     }
519 }
520 
521 // One central function responsible for reporting capacity overflows. This'll
522 // ensure that the code generation related to these panics is minimal as there's
523 // only one location which panics rather than a bunch throughout the module.
524 #[cfg(not(no_global_oom_handling))]
capacity_overflow() -> !525 fn capacity_overflow() -> ! {
526     panic!("capacity overflow");
527 }
528