1 /*
2 * Copyright (c) 2012-2017 Qualcomm Atheros, Inc.
3 * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include <linux/etherdevice.h>
19 #include <net/ieee80211_radiotap.h>
20 #include <linux/if_arp.h>
21 #include <linux/moduleparam.h>
22 #include <linux/ip.h>
23 #include <linux/ipv6.h>
24 #include <net/ipv6.h>
25 #include <linux/prefetch.h>
26
27 #include "wil6210.h"
28 #include "wmi.h"
29 #include "txrx.h"
30 #include "trace.h"
31 #include "txrx_edma.h"
32
33 bool rx_align_2;
34 module_param(rx_align_2, bool, 0444);
35 MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no");
36
37 bool rx_large_buf;
38 module_param(rx_large_buf, bool, 0444);
39 MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no");
40
41 /* Drop Tx packets in case Tx ring is full */
42 bool drop_if_ring_full;
43
wil_rx_snaplen(void)44 static inline uint wil_rx_snaplen(void)
45 {
46 return rx_align_2 ? 6 : 0;
47 }
48
49 /* wil_ring_wmark_low - low watermark for available descriptor space */
wil_ring_wmark_low(struct wil_ring * ring)50 static inline int wil_ring_wmark_low(struct wil_ring *ring)
51 {
52 return ring->size / 8;
53 }
54
55 /* wil_ring_wmark_high - high watermark for available descriptor space */
wil_ring_wmark_high(struct wil_ring * ring)56 static inline int wil_ring_wmark_high(struct wil_ring *ring)
57 {
58 return ring->size / 4;
59 }
60
61 /* returns true if num avail descriptors is lower than wmark_low */
wil_ring_avail_low(struct wil_ring * ring)62 static inline int wil_ring_avail_low(struct wil_ring *ring)
63 {
64 return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring);
65 }
66
67 /* returns true if num avail descriptors is higher than wmark_high */
wil_ring_avail_high(struct wil_ring * ring)68 static inline int wil_ring_avail_high(struct wil_ring *ring)
69 {
70 return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring);
71 }
72
73 /* returns true when all tx vrings are empty */
wil_is_tx_idle(struct wil6210_priv * wil)74 bool wil_is_tx_idle(struct wil6210_priv *wil)
75 {
76 int i;
77 unsigned long data_comp_to;
78 int min_ring_id = wil_get_min_tx_ring_id(wil);
79
80 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
81 struct wil_ring *vring = &wil->ring_tx[i];
82 int vring_index = vring - wil->ring_tx;
83 struct wil_ring_tx_data *txdata =
84 &wil->ring_tx_data[vring_index];
85
86 spin_lock(&txdata->lock);
87
88 if (!vring->va || !txdata->enabled) {
89 spin_unlock(&txdata->lock);
90 continue;
91 }
92
93 data_comp_to = jiffies + msecs_to_jiffies(
94 WIL_DATA_COMPLETION_TO_MS);
95 if (test_bit(wil_status_napi_en, wil->status)) {
96 while (!wil_ring_is_empty(vring)) {
97 if (time_after(jiffies, data_comp_to)) {
98 wil_dbg_pm(wil,
99 "TO waiting for idle tx\n");
100 spin_unlock(&txdata->lock);
101 return false;
102 }
103 wil_dbg_ratelimited(wil,
104 "tx vring is not empty -> NAPI\n");
105 spin_unlock(&txdata->lock);
106 napi_synchronize(&wil->napi_tx);
107 msleep(20);
108 spin_lock(&txdata->lock);
109 if (!vring->va || !txdata->enabled)
110 break;
111 }
112 }
113
114 spin_unlock(&txdata->lock);
115 }
116
117 return true;
118 }
119
wil_vring_alloc(struct wil6210_priv * wil,struct wil_ring * vring)120 static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring)
121 {
122 struct device *dev = wil_to_dev(wil);
123 size_t sz = vring->size * sizeof(vring->va[0]);
124 uint i;
125
126 wil_dbg_misc(wil, "vring_alloc:\n");
127
128 BUILD_BUG_ON(sizeof(vring->va[0]) != 32);
129
130 vring->swhead = 0;
131 vring->swtail = 0;
132 vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL);
133 if (!vring->ctx) {
134 vring->va = NULL;
135 return -ENOMEM;
136 }
137
138 /* vring->va should be aligned on its size rounded up to power of 2
139 * This is granted by the dma_alloc_coherent.
140 *
141 * HW has limitation that all vrings addresses must share the same
142 * upper 16 msb bits part of 48 bits address. To workaround that,
143 * if we are using more than 32 bit addresses switch to 32 bit
144 * allocation before allocating vring memory.
145 *
146 * There's no check for the return value of dma_set_mask_and_coherent,
147 * since we assume if we were able to set the mask during
148 * initialization in this system it will not fail if we set it again
149 */
150 if (wil->dma_addr_size > 32)
151 dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
152
153 vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL);
154 if (!vring->va) {
155 kfree(vring->ctx);
156 vring->ctx = NULL;
157 return -ENOMEM;
158 }
159
160 if (wil->dma_addr_size > 32)
161 dma_set_mask_and_coherent(dev,
162 DMA_BIT_MASK(wil->dma_addr_size));
163
164 /* initially, all descriptors are SW owned
165 * For Tx and Rx, ownership bit is at the same location, thus
166 * we can use any
167 */
168 for (i = 0; i < vring->size; i++) {
169 volatile struct vring_tx_desc *_d =
170 &vring->va[i].tx.legacy;
171
172 _d->dma.status = TX_DMA_STATUS_DU;
173 }
174
175 wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size,
176 vring->va, &vring->pa, vring->ctx);
177
178 return 0;
179 }
180
wil_txdesc_unmap(struct device * dev,union wil_tx_desc * desc,struct wil_ctx * ctx)181 static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc,
182 struct wil_ctx *ctx)
183 {
184 struct vring_tx_desc *d = &desc->legacy;
185 dma_addr_t pa = wil_desc_addr(&d->dma.addr);
186 u16 dmalen = le16_to_cpu(d->dma.length);
187
188 switch (ctx->mapped_as) {
189 case wil_mapped_as_single:
190 dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE);
191 break;
192 case wil_mapped_as_page:
193 dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE);
194 break;
195 default:
196 break;
197 }
198 }
199
wil_vring_free(struct wil6210_priv * wil,struct wil_ring * vring)200 static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring)
201 {
202 struct device *dev = wil_to_dev(wil);
203 size_t sz = vring->size * sizeof(vring->va[0]);
204
205 lockdep_assert_held(&wil->mutex);
206 if (!vring->is_rx) {
207 int vring_index = vring - wil->ring_tx;
208
209 wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n",
210 vring_index, vring->size, vring->va,
211 &vring->pa, vring->ctx);
212 } else {
213 wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n",
214 vring->size, vring->va,
215 &vring->pa, vring->ctx);
216 }
217
218 while (!wil_ring_is_empty(vring)) {
219 dma_addr_t pa;
220 u16 dmalen;
221 struct wil_ctx *ctx;
222
223 if (!vring->is_rx) {
224 struct vring_tx_desc dd, *d = ⅆ
225 volatile struct vring_tx_desc *_d =
226 &vring->va[vring->swtail].tx.legacy;
227
228 ctx = &vring->ctx[vring->swtail];
229 if (!ctx) {
230 wil_dbg_txrx(wil,
231 "ctx(%d) was already completed\n",
232 vring->swtail);
233 vring->swtail = wil_ring_next_tail(vring);
234 continue;
235 }
236 *d = *_d;
237 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
238 if (ctx->skb)
239 dev_kfree_skb_any(ctx->skb);
240 vring->swtail = wil_ring_next_tail(vring);
241 } else { /* rx */
242 struct vring_rx_desc dd, *d = ⅆ
243 volatile struct vring_rx_desc *_d =
244 &vring->va[vring->swhead].rx.legacy;
245
246 ctx = &vring->ctx[vring->swhead];
247 *d = *_d;
248 pa = wil_desc_addr(&d->dma.addr);
249 dmalen = le16_to_cpu(d->dma.length);
250 dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE);
251 kfree_skb(ctx->skb);
252 wil_ring_advance_head(vring, 1);
253 }
254 }
255 dma_free_coherent(dev, sz, (void *)vring->va, vring->pa);
256 kfree(vring->ctx);
257 vring->pa = 0;
258 vring->va = NULL;
259 vring->ctx = NULL;
260 }
261
262 /**
263 * Allocate one skb for Rx VRING
264 *
265 * Safe to call from IRQ
266 */
wil_vring_alloc_skb(struct wil6210_priv * wil,struct wil_ring * vring,u32 i,int headroom)267 static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring,
268 u32 i, int headroom)
269 {
270 struct device *dev = wil_to_dev(wil);
271 unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen();
272 struct vring_rx_desc dd, *d = ⅆ
273 volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy;
274 dma_addr_t pa;
275 struct sk_buff *skb = dev_alloc_skb(sz + headroom);
276
277 if (unlikely(!skb))
278 return -ENOMEM;
279
280 skb_reserve(skb, headroom);
281 skb_put(skb, sz);
282
283 /**
284 * Make sure that the network stack calculates checksum for packets
285 * which failed the HW checksum calculation
286 */
287 skb->ip_summed = CHECKSUM_NONE;
288
289 pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE);
290 if (unlikely(dma_mapping_error(dev, pa))) {
291 kfree_skb(skb);
292 return -ENOMEM;
293 }
294
295 d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT;
296 wil_desc_addr_set(&d->dma.addr, pa);
297 /* ip_length don't care */
298 /* b11 don't care */
299 /* error don't care */
300 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
301 d->dma.length = cpu_to_le16(sz);
302 *_d = *d;
303 vring->ctx[i].skb = skb;
304
305 return 0;
306 }
307
308 /**
309 * Adds radiotap header
310 *
311 * Any error indicated as "Bad FCS"
312 *
313 * Vendor data for 04:ce:14-1 (Wilocity-1) consists of:
314 * - Rx descriptor: 32 bytes
315 * - Phy info
316 */
wil_rx_add_radiotap_header(struct wil6210_priv * wil,struct sk_buff * skb)317 static void wil_rx_add_radiotap_header(struct wil6210_priv *wil,
318 struct sk_buff *skb)
319 {
320 struct wil6210_rtap {
321 struct ieee80211_radiotap_header rthdr;
322 /* fields should be in the order of bits in rthdr.it_present */
323 /* flags */
324 u8 flags;
325 /* channel */
326 __le16 chnl_freq __aligned(2);
327 __le16 chnl_flags;
328 /* MCS */
329 u8 mcs_present;
330 u8 mcs_flags;
331 u8 mcs_index;
332 } __packed;
333 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
334 struct wil6210_rtap *rtap;
335 int rtap_len = sizeof(struct wil6210_rtap);
336 struct ieee80211_channel *ch = wil->monitor_chandef.chan;
337
338 if (skb_headroom(skb) < rtap_len &&
339 pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) {
340 wil_err(wil, "Unable to expand headroom to %d\n", rtap_len);
341 return;
342 }
343
344 rtap = skb_push(skb, rtap_len);
345 memset(rtap, 0, rtap_len);
346
347 rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION;
348 rtap->rthdr.it_len = cpu_to_le16(rtap_len);
349 rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
350 (1 << IEEE80211_RADIOTAP_CHANNEL) |
351 (1 << IEEE80211_RADIOTAP_MCS));
352 if (d->dma.status & RX_DMA_STATUS_ERROR)
353 rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS;
354
355 rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320);
356 rtap->chnl_flags = cpu_to_le16(0);
357
358 rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS;
359 rtap->mcs_flags = 0;
360 rtap->mcs_index = wil_rxdesc_mcs(d);
361 }
362
wil_is_rx_idle(struct wil6210_priv * wil)363 static bool wil_is_rx_idle(struct wil6210_priv *wil)
364 {
365 struct vring_rx_desc *_d;
366 struct wil_ring *ring = &wil->ring_rx;
367
368 _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy;
369 if (_d->dma.status & RX_DMA_STATUS_DU)
370 return false;
371
372 return true;
373 }
374
wil_rx_get_cid_by_skb(struct wil6210_priv * wil,struct sk_buff * skb)375 static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb)
376 {
377 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
378 int mid = wil_rxdesc_mid(d);
379 struct wil6210_vif *vif = wil->vifs[mid];
380 /* cid from DMA descriptor is limited to 3 bits.
381 * In case of cid>=8, the value would be cid modulo 8 and we need to
382 * find real cid by locating the transmitter (ta) inside sta array
383 */
384 int cid = wil_rxdesc_cid(d);
385 unsigned int snaplen = wil_rx_snaplen();
386 struct ieee80211_hdr_3addr *hdr;
387 int i;
388 unsigned char *ta;
389 u8 ftype;
390
391 /* in monitor mode there are no connections */
392 if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR)
393 return cid;
394
395 ftype = wil_rxdesc_ftype(d) << 2;
396 if (likely(ftype == IEEE80211_FTYPE_DATA)) {
397 if (unlikely(skb->len < ETH_HLEN + snaplen)) {
398 wil_err_ratelimited(wil,
399 "Short data frame, len = %d\n",
400 skb->len);
401 return -ENOENT;
402 }
403 ta = wil_skb_get_sa(skb);
404 } else {
405 if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) {
406 wil_err_ratelimited(wil, "Short frame, len = %d\n",
407 skb->len);
408 return -ENOENT;
409 }
410 hdr = (void *)skb->data;
411 ta = hdr->addr2;
412 }
413
414 if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID)
415 return cid;
416
417 /* assuming no concurrency between AP interfaces and STA interfaces.
418 * multista is used only in P2P_GO or AP mode. In other modes return
419 * cid from the rx descriptor
420 */
421 if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO &&
422 vif->wdev.iftype != NL80211_IFTYPE_AP)
423 return cid;
424
425 /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7),
426 * to find the real cid, compare transmitter address with the stored
427 * stations mac address in the driver sta array
428 */
429 for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) {
430 if (wil->sta[i].status != wil_sta_unused &&
431 ether_addr_equal(wil->sta[i].addr, ta)) {
432 cid = i;
433 break;
434 }
435 }
436 if (i >= wil->max_assoc_sta) {
437 wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n",
438 ta, vif->wdev.iftype, ftype, skb->len);
439 cid = -ENOENT;
440 }
441
442 return cid;
443 }
444
445 /**
446 * reap 1 frame from @swhead
447 *
448 * Rx descriptor copied to skb->cb
449 *
450 * Safe to call from IRQ
451 */
wil_vring_reap_rx(struct wil6210_priv * wil,struct wil_ring * vring)452 static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil,
453 struct wil_ring *vring)
454 {
455 struct device *dev = wil_to_dev(wil);
456 struct wil6210_vif *vif;
457 struct net_device *ndev;
458 volatile struct vring_rx_desc *_d;
459 struct vring_rx_desc *d;
460 struct sk_buff *skb;
461 dma_addr_t pa;
462 unsigned int snaplen = wil_rx_snaplen();
463 unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen;
464 u16 dmalen;
465 u8 ftype;
466 int cid, mid;
467 int i;
468 struct wil_net_stats *stats;
469
470 BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb));
471
472 again:
473 if (unlikely(wil_ring_is_empty(vring)))
474 return NULL;
475
476 i = (int)vring->swhead;
477 _d = &vring->va[i].rx.legacy;
478 if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) {
479 /* it is not error, we just reached end of Rx done area */
480 return NULL;
481 }
482
483 skb = vring->ctx[i].skb;
484 vring->ctx[i].skb = NULL;
485 wil_ring_advance_head(vring, 1);
486 if (!skb) {
487 wil_err(wil, "No Rx skb at [%d]\n", i);
488 goto again;
489 }
490 d = wil_skb_rxdesc(skb);
491 *d = *_d;
492 pa = wil_desc_addr(&d->dma.addr);
493
494 dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE);
495 dmalen = le16_to_cpu(d->dma.length);
496
497 trace_wil6210_rx(i, d);
498 wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen);
499 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
500 (const void *)d, sizeof(*d), false);
501
502 mid = wil_rxdesc_mid(d);
503 vif = wil->vifs[mid];
504
505 if (unlikely(!vif)) {
506 wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d",
507 mid);
508 kfree_skb(skb);
509 goto again;
510 }
511 ndev = vif_to_ndev(vif);
512 if (unlikely(dmalen > sz)) {
513 wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n",
514 dmalen);
515 kfree_skb(skb);
516 goto again;
517 }
518 skb_trim(skb, dmalen);
519
520 prefetch(skb->data);
521
522 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
523 skb->data, skb_headlen(skb), false);
524
525 cid = wil_rx_get_cid_by_skb(wil, skb);
526 if (cid == -ENOENT) {
527 kfree_skb(skb);
528 goto again;
529 }
530 wil_skb_set_cid(skb, (u8)cid);
531 stats = &wil->sta[cid].stats;
532
533 stats->last_mcs_rx = wil_rxdesc_mcs(d);
534 if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs))
535 stats->rx_per_mcs[stats->last_mcs_rx]++;
536
537 /* use radiotap header only if required */
538 if (ndev->type == ARPHRD_IEEE80211_RADIOTAP)
539 wil_rx_add_radiotap_header(wil, skb);
540
541 /* no extra checks if in sniffer mode */
542 if (ndev->type != ARPHRD_ETHER)
543 return skb;
544 /* Non-data frames may be delivered through Rx DMA channel (ex: BAR)
545 * Driver should recognize it by frame type, that is found
546 * in Rx descriptor. If type is not data, it is 802.11 frame as is
547 */
548 ftype = wil_rxdesc_ftype(d) << 2;
549 if (unlikely(ftype != IEEE80211_FTYPE_DATA)) {
550 u8 fc1 = wil_rxdesc_fc1(d);
551 int tid = wil_rxdesc_tid(d);
552 u16 seq = wil_rxdesc_seq(d);
553
554 wil_dbg_txrx(wil,
555 "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
556 fc1, mid, cid, tid, seq);
557 stats->rx_non_data_frame++;
558 if (wil_is_back_req(fc1)) {
559 wil_dbg_txrx(wil,
560 "BAR: MID %d CID %d TID %d Seq 0x%03x\n",
561 mid, cid, tid, seq);
562 wil_rx_bar(wil, vif, cid, tid, seq);
563 } else {
564 /* print again all info. One can enable only this
565 * without overhead for printing every Rx frame
566 */
567 wil_dbg_txrx(wil,
568 "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n",
569 fc1, mid, cid, tid, seq);
570 wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4,
571 (const void *)d, sizeof(*d), false);
572 wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1,
573 skb->data, skb_headlen(skb), false);
574 }
575 kfree_skb(skb);
576 goto again;
577 }
578
579 /* L4 IDENT is on when HW calculated checksum, check status
580 * and in case of error drop the packet
581 * higher stack layers will handle retransmission (if required)
582 */
583 if (likely(d->dma.status & RX_DMA_STATUS_L4I)) {
584 /* L4 protocol identified, csum calculated */
585 if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0))
586 skb->ip_summed = CHECKSUM_UNNECESSARY;
587 /* If HW reports bad checksum, let IP stack re-check it
588 * For example, HW don't understand Microsoft IP stack that
589 * mis-calculates TCP checksum - if it should be 0x0,
590 * it writes 0xffff in violation of RFC 1624
591 */
592 else
593 stats->rx_csum_err++;
594 }
595
596 if (snaplen) {
597 /* Packet layout
598 * +-------+-------+---------+------------+------+
599 * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA |
600 * +-------+-------+---------+------------+------+
601 * Need to remove SNAP, shifting SA and DA forward
602 */
603 memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN);
604 skb_pull(skb, snaplen);
605 }
606
607 return skb;
608 }
609
610 /**
611 * allocate and fill up to @count buffers in rx ring
612 * buffers posted at @swtail
613 * Note: we have a single RX queue for servicing all VIFs, but we
614 * allocate skbs with headroom according to main interface only. This
615 * means it will not work with monitor interface together with other VIFs.
616 * Currently we only support monitor interface on its own without other VIFs,
617 * and we will need to fix this code once we add support.
618 */
wil_rx_refill(struct wil6210_priv * wil,int count)619 static int wil_rx_refill(struct wil6210_priv *wil, int count)
620 {
621 struct net_device *ndev = wil->main_ndev;
622 struct wil_ring *v = &wil->ring_rx;
623 u32 next_tail;
624 int rc = 0;
625 int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ?
626 WIL6210_RTAP_SIZE : 0;
627
628 for (; next_tail = wil_ring_next_tail(v),
629 (next_tail != v->swhead) && (count-- > 0);
630 v->swtail = next_tail) {
631 rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom);
632 if (unlikely(rc)) {
633 wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n",
634 rc, v->swtail);
635 break;
636 }
637 }
638
639 /* make sure all writes to descriptors (shared memory) are done before
640 * committing them to HW
641 */
642 wmb();
643
644 wil_w(wil, v->hwtail, v->swtail);
645
646 return rc;
647 }
648
649 /**
650 * reverse_memcmp - Compare two areas of memory, in reverse order
651 * @cs: One area of memory
652 * @ct: Another area of memory
653 * @count: The size of the area.
654 *
655 * Cut'n'paste from original memcmp (see lib/string.c)
656 * with minimal modifications
657 */
reverse_memcmp(const void * cs,const void * ct,size_t count)658 int reverse_memcmp(const void *cs, const void *ct, size_t count)
659 {
660 const unsigned char *su1, *su2;
661 int res = 0;
662
663 for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0;
664 --su1, --su2, count--) {
665 res = *su1 - *su2;
666 if (res)
667 break;
668 }
669 return res;
670 }
671
wil_rx_crypto_check(struct wil6210_priv * wil,struct sk_buff * skb)672 static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb)
673 {
674 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
675 int cid = wil_skb_get_cid(skb);
676 int tid = wil_rxdesc_tid(d);
677 int key_id = wil_rxdesc_key_id(d);
678 int mc = wil_rxdesc_mcast(d);
679 struct wil_sta_info *s = &wil->sta[cid];
680 struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx :
681 &s->tid_crypto_rx[tid];
682 struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id];
683 const u8 *pn = (u8 *)&d->mac.pn_15_0;
684
685 if (!cc->key_set) {
686 wil_err_ratelimited(wil,
687 "Key missing. CID %d TID %d MCast %d KEY_ID %d\n",
688 cid, tid, mc, key_id);
689 return -EINVAL;
690 }
691
692 if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) {
693 wil_err_ratelimited(wil,
694 "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n",
695 cid, tid, mc, key_id, pn, cc->pn);
696 return -EINVAL;
697 }
698 memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN);
699
700 return 0;
701 }
702
wil_rx_error_check(struct wil6210_priv * wil,struct sk_buff * skb,struct wil_net_stats * stats)703 static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb,
704 struct wil_net_stats *stats)
705 {
706 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
707
708 if ((d->dma.status & RX_DMA_STATUS_ERROR) &&
709 (d->dma.error & RX_DMA_ERROR_MIC)) {
710 stats->rx_mic_error++;
711 wil_dbg_txrx(wil, "MIC error, dropping packet\n");
712 return -EFAULT;
713 }
714
715 return 0;
716 }
717
wil_get_netif_rx_params(struct sk_buff * skb,int * cid,int * security)718 static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid,
719 int *security)
720 {
721 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
722
723 *cid = wil_skb_get_cid(skb);
724 *security = wil_rxdesc_security(d);
725 }
726
727 /*
728 * Check if skb is ptk eapol key message
729 *
730 * returns a pointer to the start of the eapol key structure, NULL
731 * if frame is not PTK eapol key
732 */
wil_is_ptk_eapol_key(struct wil6210_priv * wil,struct sk_buff * skb)733 static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil,
734 struct sk_buff *skb)
735 {
736 u8 *buf;
737 const struct wil_1x_hdr *hdr;
738 struct wil_eapol_key *key;
739 u16 key_info;
740 int len = skb->len;
741
742 if (!skb_mac_header_was_set(skb)) {
743 wil_err(wil, "mac header was not set\n");
744 return NULL;
745 }
746
747 len -= skb_mac_offset(skb);
748
749 if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) +
750 sizeof(struct wil_eapol_key))
751 return NULL;
752
753 buf = skb_mac_header(skb) + sizeof(struct ethhdr);
754
755 hdr = (const struct wil_1x_hdr *)buf;
756 if (hdr->type != WIL_1X_TYPE_EAPOL_KEY)
757 return NULL;
758
759 key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr));
760 if (key->type != WIL_EAPOL_KEY_TYPE_WPA &&
761 key->type != WIL_EAPOL_KEY_TYPE_RSN)
762 return NULL;
763
764 key_info = be16_to_cpu(key->key_info);
765 if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */
766 return NULL;
767
768 return key;
769 }
770
wil_skb_is_eap_3(struct wil6210_priv * wil,struct sk_buff * skb)771 static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb)
772 {
773 struct wil_eapol_key *key;
774 u16 key_info;
775
776 key = wil_is_ptk_eapol_key(wil, skb);
777 if (!key)
778 return false;
779
780 key_info = be16_to_cpu(key->key_info);
781 if (key_info & (WIL_KEY_INFO_MIC |
782 WIL_KEY_INFO_ENCR_KEY_DATA)) {
783 /* 3/4 of 4-Way Handshake */
784 wil_dbg_misc(wil, "EAPOL key message 3\n");
785 return true;
786 }
787 /* 1/4 of 4-Way Handshake */
788 wil_dbg_misc(wil, "EAPOL key message 1\n");
789
790 return false;
791 }
792
wil_skb_is_eap_4(struct wil6210_priv * wil,struct sk_buff * skb)793 static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb)
794 {
795 struct wil_eapol_key *key;
796 u32 *nonce, i;
797
798 key = wil_is_ptk_eapol_key(wil, skb);
799 if (!key)
800 return false;
801
802 nonce = (u32 *)key->key_nonce;
803 for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) {
804 if (*nonce != 0) {
805 /* message 2/4 */
806 wil_dbg_misc(wil, "EAPOL key message 2\n");
807 return false;
808 }
809 }
810 wil_dbg_misc(wil, "EAPOL key message 4\n");
811
812 return true;
813 }
814
wil_enable_tx_key_worker(struct work_struct * work)815 void wil_enable_tx_key_worker(struct work_struct *work)
816 {
817 struct wil6210_vif *vif = container_of(work,
818 struct wil6210_vif, enable_tx_key_worker);
819 struct wil6210_priv *wil = vif_to_wil(vif);
820 int rc, cid;
821
822 rtnl_lock();
823 if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) {
824 wil_dbg_misc(wil, "Invalid rekey state = %d\n",
825 vif->ptk_rekey_state);
826 rtnl_unlock();
827 return;
828 }
829
830 cid = wil_find_cid_by_idx(wil, vif->mid, 0);
831 if (!wil_cid_valid(wil, cid)) {
832 wil_err(wil, "Invalid cid = %d\n", cid);
833 rtnl_unlock();
834 return;
835 }
836
837 wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n");
838 rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL,
839 WMI_KEY_USE_APPLY_PTK);
840
841 vif->ptk_rekey_state = WIL_REKEY_IDLE;
842 rtnl_unlock();
843
844 if (rc)
845 wil_err(wil, "Apply PTK key failed %d\n", rc);
846 }
847
wil_tx_complete_handle_eapol(struct wil6210_vif * vif,struct sk_buff * skb)848 void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
849 {
850 struct wil6210_priv *wil = vif_to_wil(vif);
851 struct wireless_dev *wdev = vif_to_wdev(vif);
852 bool q = false;
853
854 if (wdev->iftype != NL80211_IFTYPE_STATION ||
855 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
856 return;
857
858 /* check if skb is an EAP message 4/4 */
859 if (!wil_skb_is_eap_4(wil, skb))
860 return;
861
862 spin_lock_bh(&wil->eap_lock);
863 switch (vif->ptk_rekey_state) {
864 case WIL_REKEY_IDLE:
865 /* ignore idle state, can happen due to M4 retransmission */
866 break;
867 case WIL_REKEY_M3_RECEIVED:
868 vif->ptk_rekey_state = WIL_REKEY_IDLE;
869 break;
870 case WIL_REKEY_WAIT_M4_SENT:
871 q = true;
872 break;
873 default:
874 wil_err(wil, "Unknown rekey state = %d",
875 vif->ptk_rekey_state);
876 }
877 spin_unlock_bh(&wil->eap_lock);
878
879 if (q) {
880 q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker);
881 wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n",
882 q);
883 }
884 }
885
wil_rx_handle_eapol(struct wil6210_vif * vif,struct sk_buff * skb)886 static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb)
887 {
888 struct wil6210_priv *wil = vif_to_wil(vif);
889 struct wireless_dev *wdev = vif_to_wdev(vif);
890
891 if (wdev->iftype != NL80211_IFTYPE_STATION ||
892 !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities))
893 return;
894
895 /* check if skb is a EAP message 3/4 */
896 if (!wil_skb_is_eap_3(wil, skb))
897 return;
898
899 if (vif->ptk_rekey_state == WIL_REKEY_IDLE)
900 vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED;
901 }
902
903 /*
904 * Pass Rx packet to the netif. Update statistics.
905 * Called in softirq context (NAPI poll).
906 */
wil_netif_rx(struct sk_buff * skb,struct net_device * ndev,int cid,struct wil_net_stats * stats,bool gro)907 void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid,
908 struct wil_net_stats *stats, bool gro)
909 {
910 gro_result_t rc = GRO_NORMAL;
911 struct wil6210_vif *vif = ndev_to_vif(ndev);
912 struct wil6210_priv *wil = ndev_to_wil(ndev);
913 struct wireless_dev *wdev = vif_to_wdev(vif);
914 unsigned int len = skb->len;
915 u8 *sa, *da = wil_skb_get_da(skb);
916 /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication
917 * is not suitable, need to look at data
918 */
919 int mcast = is_multicast_ether_addr(da);
920 struct sk_buff *xmit_skb = NULL;
921 static const char * const gro_res_str[] = {
922 [GRO_MERGED] = "GRO_MERGED",
923 [GRO_MERGED_FREE] = "GRO_MERGED_FREE",
924 [GRO_HELD] = "GRO_HELD",
925 [GRO_NORMAL] = "GRO_NORMAL",
926 [GRO_DROP] = "GRO_DROP",
927 [GRO_CONSUMED] = "GRO_CONSUMED",
928 };
929
930 if (wdev->iftype == NL80211_IFTYPE_STATION) {
931 sa = wil_skb_get_sa(skb);
932 if (mcast && ether_addr_equal(sa, ndev->dev_addr)) {
933 /* mcast packet looped back to us */
934 rc = GRO_DROP;
935 dev_kfree_skb(skb);
936 goto stats;
937 }
938 } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) {
939 if (mcast) {
940 /* send multicast frames both to higher layers in
941 * local net stack and back to the wireless medium
942 */
943 xmit_skb = skb_copy(skb, GFP_ATOMIC);
944 } else {
945 int xmit_cid = wil_find_cid(wil, vif->mid, da);
946
947 if (xmit_cid >= 0) {
948 /* The destination station is associated to
949 * this AP (in this VLAN), so send the frame
950 * directly to it and do not pass it to local
951 * net stack.
952 */
953 xmit_skb = skb;
954 skb = NULL;
955 }
956 }
957 }
958 if (xmit_skb) {
959 /* Send to wireless media and increase priority by 256 to
960 * keep the received priority instead of reclassifying
961 * the frame (see cfg80211_classify8021d).
962 */
963 xmit_skb->dev = ndev;
964 xmit_skb->priority += 256;
965 xmit_skb->protocol = htons(ETH_P_802_3);
966 skb_reset_network_header(xmit_skb);
967 skb_reset_mac_header(xmit_skb);
968 wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len);
969 dev_queue_xmit(xmit_skb);
970 }
971
972 if (skb) { /* deliver to local stack */
973 skb->protocol = eth_type_trans(skb, ndev);
974 skb->dev = ndev;
975
976 if (skb->protocol == cpu_to_be16(ETH_P_PAE))
977 wil_rx_handle_eapol(vif, skb);
978
979 if (gro)
980 rc = napi_gro_receive(&wil->napi_rx, skb);
981 else
982 netif_rx_ni(skb);
983 wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n",
984 len, gro_res_str[rc]);
985 }
986 stats:
987 /* statistics. rc set to GRO_NORMAL for AP bridging */
988 if (unlikely(rc == GRO_DROP)) {
989 ndev->stats.rx_dropped++;
990 stats->rx_dropped++;
991 wil_dbg_txrx(wil, "Rx drop %d bytes\n", len);
992 } else {
993 ndev->stats.rx_packets++;
994 stats->rx_packets++;
995 ndev->stats.rx_bytes += len;
996 stats->rx_bytes += len;
997 if (mcast)
998 ndev->stats.multicast++;
999 }
1000 }
1001
wil_netif_rx_any(struct sk_buff * skb,struct net_device * ndev)1002 void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev)
1003 {
1004 int cid, security;
1005 struct wil6210_priv *wil = ndev_to_wil(ndev);
1006 struct wil_net_stats *stats;
1007
1008 wil->txrx_ops.get_netif_rx_params(skb, &cid, &security);
1009
1010 stats = &wil->sta[cid].stats;
1011
1012 skb_orphan(skb);
1013
1014 if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) {
1015 wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len);
1016 dev_kfree_skb(skb);
1017 ndev->stats.rx_dropped++;
1018 stats->rx_replay++;
1019 stats->rx_dropped++;
1020 return;
1021 }
1022
1023 /* check errors reported by HW and update statistics */
1024 if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) {
1025 dev_kfree_skb(skb);
1026 return;
1027 }
1028
1029 wil_netif_rx(skb, ndev, cid, stats, true);
1030 }
1031
1032 /**
1033 * Proceed all completed skb's from Rx VRING
1034 *
1035 * Safe to call from NAPI poll, i.e. softirq with interrupts enabled
1036 */
wil_rx_handle(struct wil6210_priv * wil,int * quota)1037 void wil_rx_handle(struct wil6210_priv *wil, int *quota)
1038 {
1039 struct net_device *ndev = wil->main_ndev;
1040 struct wireless_dev *wdev = ndev->ieee80211_ptr;
1041 struct wil_ring *v = &wil->ring_rx;
1042 struct sk_buff *skb;
1043
1044 if (unlikely(!v->va)) {
1045 wil_err(wil, "Rx IRQ while Rx not yet initialized\n");
1046 return;
1047 }
1048 wil_dbg_txrx(wil, "rx_handle\n");
1049 while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) {
1050 (*quota)--;
1051
1052 /* monitor is currently supported on main interface only */
1053 if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
1054 skb->dev = ndev;
1055 skb_reset_mac_header(skb);
1056 skb->ip_summed = CHECKSUM_UNNECESSARY;
1057 skb->pkt_type = PACKET_OTHERHOST;
1058 skb->protocol = htons(ETH_P_802_2);
1059 wil_netif_rx_any(skb, ndev);
1060 } else {
1061 wil_rx_reorder(wil, skb);
1062 }
1063 }
1064 wil_rx_refill(wil, v->size);
1065 }
1066
wil_rx_buf_len_init(struct wil6210_priv * wil)1067 static void wil_rx_buf_len_init(struct wil6210_priv *wil)
1068 {
1069 wil->rx_buf_len = rx_large_buf ?
1070 WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD;
1071 if (mtu_max > wil->rx_buf_len) {
1072 /* do not allow RX buffers to be smaller than mtu_max, for
1073 * backward compatibility (mtu_max parameter was also used
1074 * to support receiving large packets)
1075 */
1076 wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max);
1077 wil->rx_buf_len = mtu_max;
1078 }
1079 }
1080
wil_rx_init(struct wil6210_priv * wil,uint order)1081 static int wil_rx_init(struct wil6210_priv *wil, uint order)
1082 {
1083 struct wil_ring *vring = &wil->ring_rx;
1084 int rc;
1085
1086 wil_dbg_misc(wil, "rx_init\n");
1087
1088 if (vring->va) {
1089 wil_err(wil, "Rx ring already allocated\n");
1090 return -EINVAL;
1091 }
1092
1093 wil_rx_buf_len_init(wil);
1094
1095 vring->size = 1 << order;
1096 vring->is_rx = true;
1097 rc = wil_vring_alloc(wil, vring);
1098 if (rc)
1099 return rc;
1100
1101 rc = wmi_rx_chain_add(wil, vring);
1102 if (rc)
1103 goto err_free;
1104
1105 rc = wil_rx_refill(wil, vring->size);
1106 if (rc)
1107 goto err_free;
1108
1109 return 0;
1110 err_free:
1111 wil_vring_free(wil, vring);
1112
1113 return rc;
1114 }
1115
wil_rx_fini(struct wil6210_priv * wil)1116 static void wil_rx_fini(struct wil6210_priv *wil)
1117 {
1118 struct wil_ring *vring = &wil->ring_rx;
1119
1120 wil_dbg_misc(wil, "rx_fini\n");
1121
1122 if (vring->va)
1123 wil_vring_free(wil, vring);
1124 }
1125
wil_tx_desc_map(union wil_tx_desc * desc,dma_addr_t pa,u32 len,int vring_index)1126 static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa,
1127 u32 len, int vring_index)
1128 {
1129 struct vring_tx_desc *d = &desc->legacy;
1130
1131 wil_desc_addr_set(&d->dma.addr, pa);
1132 d->dma.ip_length = 0;
1133 /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/
1134 d->dma.b11 = 0/*14 | BIT(7)*/;
1135 d->dma.error = 0;
1136 d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */
1137 d->dma.length = cpu_to_le16((u16)len);
1138 d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS);
1139 d->mac.d[0] = 0;
1140 d->mac.d[1] = 0;
1141 d->mac.d[2] = 0;
1142 d->mac.ucode_cmd = 0;
1143 /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */
1144 d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) |
1145 (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS);
1146
1147 return 0;
1148 }
1149
wil_tx_data_init(struct wil_ring_tx_data * txdata)1150 void wil_tx_data_init(struct wil_ring_tx_data *txdata)
1151 {
1152 spin_lock_bh(&txdata->lock);
1153 txdata->dot1x_open = 0;
1154 txdata->enabled = 0;
1155 txdata->idle = 0;
1156 txdata->last_idle = 0;
1157 txdata->begin = 0;
1158 txdata->agg_wsize = 0;
1159 txdata->agg_timeout = 0;
1160 txdata->agg_amsdu = 0;
1161 txdata->addba_in_progress = false;
1162 txdata->mid = U8_MAX;
1163 spin_unlock_bh(&txdata->lock);
1164 }
1165
wil_vring_init_tx(struct wil6210_vif * vif,int id,int size,int cid,int tid)1166 static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size,
1167 int cid, int tid)
1168 {
1169 struct wil6210_priv *wil = vif_to_wil(vif);
1170 int rc;
1171 struct wmi_vring_cfg_cmd cmd = {
1172 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1173 .vring_cfg = {
1174 .tx_sw_ring = {
1175 .max_mpdu_size =
1176 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1177 .ring_size = cpu_to_le16(size),
1178 },
1179 .ringid = id,
1180 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1181 .mac_ctrl = 0,
1182 .to_resolution = 0,
1183 .agg_max_wsize = 0,
1184 .schd_params = {
1185 .priority = cpu_to_le16(0),
1186 .timeslot_us = cpu_to_le16(0xfff),
1187 },
1188 },
1189 };
1190 struct {
1191 struct wmi_cmd_hdr wmi;
1192 struct wmi_vring_cfg_done_event cmd;
1193 } __packed reply = {
1194 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1195 };
1196 struct wil_ring *vring = &wil->ring_tx[id];
1197 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1198
1199 if (cid >= WIL6210_RX_DESC_MAX_CID) {
1200 cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID;
1201 cmd.vring_cfg.cid = cid;
1202 cmd.vring_cfg.tid = tid;
1203 } else {
1204 cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid);
1205 }
1206
1207 wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n",
1208 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1209 lockdep_assert_held(&wil->mutex);
1210
1211 if (vring->va) {
1212 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1213 rc = -EINVAL;
1214 goto out;
1215 }
1216
1217 wil_tx_data_init(txdata);
1218 vring->is_rx = false;
1219 vring->size = size;
1220 rc = wil_vring_alloc(wil, vring);
1221 if (rc)
1222 goto out;
1223
1224 wil->ring2cid_tid[id][0] = cid;
1225 wil->ring2cid_tid[id][1] = tid;
1226
1227 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1228
1229 if (!vif->privacy)
1230 txdata->dot1x_open = true;
1231 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1232 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1233 WIL_WMI_CALL_GENERAL_TO_MS);
1234 if (rc)
1235 goto out_free;
1236
1237 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1238 wil_err(wil, "Tx config failed, status 0x%02x\n",
1239 reply.cmd.status);
1240 rc = -EINVAL;
1241 goto out_free;
1242 }
1243
1244 spin_lock_bh(&txdata->lock);
1245 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1246 txdata->mid = vif->mid;
1247 txdata->enabled = 1;
1248 spin_unlock_bh(&txdata->lock);
1249
1250 if (txdata->dot1x_open && (agg_wsize >= 0))
1251 wil_addba_tx_request(wil, id, agg_wsize);
1252
1253 return 0;
1254 out_free:
1255 spin_lock_bh(&txdata->lock);
1256 txdata->dot1x_open = false;
1257 txdata->enabled = 0;
1258 spin_unlock_bh(&txdata->lock);
1259 wil_vring_free(wil, vring);
1260 wil->ring2cid_tid[id][0] = wil->max_assoc_sta;
1261 wil->ring2cid_tid[id][1] = 0;
1262
1263 out:
1264
1265 return rc;
1266 }
1267
wil_tx_vring_modify(struct wil6210_vif * vif,int ring_id,int cid,int tid)1268 static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid,
1269 int tid)
1270 {
1271 struct wil6210_priv *wil = vif_to_wil(vif);
1272 int rc;
1273 struct wmi_vring_cfg_cmd cmd = {
1274 .action = cpu_to_le32(WMI_VRING_CMD_MODIFY),
1275 .vring_cfg = {
1276 .tx_sw_ring = {
1277 .max_mpdu_size =
1278 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1279 .ring_size = 0,
1280 },
1281 .ringid = ring_id,
1282 .cidxtid = mk_cidxtid(cid, tid),
1283 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1284 .mac_ctrl = 0,
1285 .to_resolution = 0,
1286 .agg_max_wsize = 0,
1287 .schd_params = {
1288 .priority = cpu_to_le16(0),
1289 .timeslot_us = cpu_to_le16(0xfff),
1290 },
1291 },
1292 };
1293 struct {
1294 struct wmi_cmd_hdr wmi;
1295 struct wmi_vring_cfg_done_event cmd;
1296 } __packed reply = {
1297 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1298 };
1299 struct wil_ring *vring = &wil->ring_tx[ring_id];
1300 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id];
1301
1302 wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id,
1303 cid, tid);
1304 lockdep_assert_held(&wil->mutex);
1305
1306 if (!vring->va) {
1307 wil_err(wil, "Tx ring [%d] not allocated\n", ring_id);
1308 return -EINVAL;
1309 }
1310
1311 if (wil->ring2cid_tid[ring_id][0] != cid ||
1312 wil->ring2cid_tid[ring_id][1] != tid) {
1313 wil_err(wil, "ring info does not match cid=%u tid=%u\n",
1314 wil->ring2cid_tid[ring_id][0],
1315 wil->ring2cid_tid[ring_id][1]);
1316 }
1317
1318 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1319
1320 rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd),
1321 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1322 WIL_WMI_CALL_GENERAL_TO_MS);
1323 if (rc)
1324 goto fail;
1325
1326 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1327 wil_err(wil, "Tx modify failed, status 0x%02x\n",
1328 reply.cmd.status);
1329 rc = -EINVAL;
1330 goto fail;
1331 }
1332
1333 /* set BA aggregation window size to 0 to force a new BA with the
1334 * new AP
1335 */
1336 txdata->agg_wsize = 0;
1337 if (txdata->dot1x_open && agg_wsize >= 0)
1338 wil_addba_tx_request(wil, ring_id, agg_wsize);
1339
1340 return 0;
1341 fail:
1342 spin_lock_bh(&txdata->lock);
1343 txdata->dot1x_open = false;
1344 txdata->enabled = 0;
1345 spin_unlock_bh(&txdata->lock);
1346 wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta;
1347 wil->ring2cid_tid[ring_id][1] = 0;
1348 return rc;
1349 }
1350
wil_vring_init_bcast(struct wil6210_vif * vif,int id,int size)1351 int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size)
1352 {
1353 struct wil6210_priv *wil = vif_to_wil(vif);
1354 int rc;
1355 struct wmi_bcast_vring_cfg_cmd cmd = {
1356 .action = cpu_to_le32(WMI_VRING_CMD_ADD),
1357 .vring_cfg = {
1358 .tx_sw_ring = {
1359 .max_mpdu_size =
1360 cpu_to_le16(wil_mtu2macbuf(mtu_max)),
1361 .ring_size = cpu_to_le16(size),
1362 },
1363 .ringid = id,
1364 .encap_trans_type = WMI_VRING_ENC_TYPE_802_3,
1365 },
1366 };
1367 struct {
1368 struct wmi_cmd_hdr wmi;
1369 struct wmi_vring_cfg_done_event cmd;
1370 } __packed reply = {
1371 .cmd = {.status = WMI_FW_STATUS_FAILURE},
1372 };
1373 struct wil_ring *vring = &wil->ring_tx[id];
1374 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id];
1375
1376 wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n",
1377 cmd.vring_cfg.tx_sw_ring.max_mpdu_size);
1378 lockdep_assert_held(&wil->mutex);
1379
1380 if (vring->va) {
1381 wil_err(wil, "Tx ring [%d] already allocated\n", id);
1382 rc = -EINVAL;
1383 goto out;
1384 }
1385
1386 wil_tx_data_init(txdata);
1387 vring->is_rx = false;
1388 vring->size = size;
1389 rc = wil_vring_alloc(wil, vring);
1390 if (rc)
1391 goto out;
1392
1393 wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */
1394 wil->ring2cid_tid[id][1] = 0; /* TID */
1395
1396 cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa);
1397
1398 if (!vif->privacy)
1399 txdata->dot1x_open = true;
1400 rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid,
1401 &cmd, sizeof(cmd),
1402 WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply),
1403 WIL_WMI_CALL_GENERAL_TO_MS);
1404 if (rc)
1405 goto out_free;
1406
1407 if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) {
1408 wil_err(wil, "Tx config failed, status 0x%02x\n",
1409 reply.cmd.status);
1410 rc = -EINVAL;
1411 goto out_free;
1412 }
1413
1414 spin_lock_bh(&txdata->lock);
1415 vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr);
1416 txdata->mid = vif->mid;
1417 txdata->enabled = 1;
1418 spin_unlock_bh(&txdata->lock);
1419
1420 return 0;
1421 out_free:
1422 spin_lock_bh(&txdata->lock);
1423 txdata->enabled = 0;
1424 txdata->dot1x_open = false;
1425 spin_unlock_bh(&txdata->lock);
1426 wil_vring_free(wil, vring);
1427 out:
1428
1429 return rc;
1430 }
1431
wil_find_tx_ucast(struct wil6210_priv * wil,struct wil6210_vif * vif,struct sk_buff * skb)1432 static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil,
1433 struct wil6210_vif *vif,
1434 struct sk_buff *skb)
1435 {
1436 int i, cid;
1437 const u8 *da = wil_skb_get_da(skb);
1438 int min_ring_id = wil_get_min_tx_ring_id(wil);
1439
1440 cid = wil_find_cid(wil, vif->mid, da);
1441
1442 if (cid < 0 || cid >= wil->max_assoc_sta)
1443 return NULL;
1444
1445 /* TODO: fix for multiple TID */
1446 for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) {
1447 if (!wil->ring_tx_data[i].dot1x_open &&
1448 skb->protocol != cpu_to_be16(ETH_P_PAE))
1449 continue;
1450 if (wil->ring2cid_tid[i][0] == cid) {
1451 struct wil_ring *v = &wil->ring_tx[i];
1452 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
1453
1454 wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n",
1455 da, i);
1456 if (v->va && txdata->enabled) {
1457 return v;
1458 } else {
1459 wil_dbg_txrx(wil,
1460 "find_tx_ucast: vring[%d] not valid\n",
1461 i);
1462 return NULL;
1463 }
1464 }
1465 }
1466
1467 return NULL;
1468 }
1469
1470 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
1471 struct wil_ring *ring, struct sk_buff *skb);
1472
wil_find_tx_ring_sta(struct wil6210_priv * wil,struct wil6210_vif * vif,struct sk_buff * skb)1473 static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil,
1474 struct wil6210_vif *vif,
1475 struct sk_buff *skb)
1476 {
1477 struct wil_ring *ring;
1478 int i;
1479 u8 cid;
1480 struct wil_ring_tx_data *txdata;
1481 int min_ring_id = wil_get_min_tx_ring_id(wil);
1482
1483 /* In the STA mode, it is expected to have only 1 VRING
1484 * for the AP we connected to.
1485 * find 1-st vring eligible for this skb and use it.
1486 */
1487 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1488 ring = &wil->ring_tx[i];
1489 txdata = &wil->ring_tx_data[i];
1490 if (!ring->va || !txdata->enabled || txdata->mid != vif->mid)
1491 continue;
1492
1493 cid = wil->ring2cid_tid[i][0];
1494 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1495 continue;
1496
1497 if (!wil->ring_tx_data[i].dot1x_open &&
1498 skb->protocol != cpu_to_be16(ETH_P_PAE))
1499 continue;
1500
1501 wil_dbg_txrx(wil, "Tx -> ring %d\n", i);
1502
1503 return ring;
1504 }
1505
1506 wil_dbg_txrx(wil, "Tx while no rings active?\n");
1507
1508 return NULL;
1509 }
1510
1511 /* Use one of 2 strategies:
1512 *
1513 * 1. New (real broadcast):
1514 * use dedicated broadcast vring
1515 * 2. Old (pseudo-DMS):
1516 * Find 1-st vring and return it;
1517 * duplicate skb and send it to other active vrings;
1518 * in all cases override dest address to unicast peer's address
1519 * Use old strategy when new is not supported yet:
1520 * - for PBSS
1521 */
wil_find_tx_bcast_1(struct wil6210_priv * wil,struct wil6210_vif * vif,struct sk_buff * skb)1522 static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil,
1523 struct wil6210_vif *vif,
1524 struct sk_buff *skb)
1525 {
1526 struct wil_ring *v;
1527 struct wil_ring_tx_data *txdata;
1528 int i = vif->bcast_ring;
1529
1530 if (i < 0)
1531 return NULL;
1532 v = &wil->ring_tx[i];
1533 txdata = &wil->ring_tx_data[i];
1534 if (!v->va || !txdata->enabled)
1535 return NULL;
1536 if (!wil->ring_tx_data[i].dot1x_open &&
1537 skb->protocol != cpu_to_be16(ETH_P_PAE))
1538 return NULL;
1539
1540 return v;
1541 }
1542
wil_set_da_for_vring(struct wil6210_priv * wil,struct sk_buff * skb,int vring_index)1543 static void wil_set_da_for_vring(struct wil6210_priv *wil,
1544 struct sk_buff *skb, int vring_index)
1545 {
1546 u8 *da = wil_skb_get_da(skb);
1547 int cid = wil->ring2cid_tid[vring_index][0];
1548
1549 ether_addr_copy(da, wil->sta[cid].addr);
1550 }
1551
wil_find_tx_bcast_2(struct wil6210_priv * wil,struct wil6210_vif * vif,struct sk_buff * skb)1552 static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil,
1553 struct wil6210_vif *vif,
1554 struct sk_buff *skb)
1555 {
1556 struct wil_ring *v, *v2;
1557 struct sk_buff *skb2;
1558 int i;
1559 u8 cid;
1560 const u8 *src = wil_skb_get_sa(skb);
1561 struct wil_ring_tx_data *txdata, *txdata2;
1562 int min_ring_id = wil_get_min_tx_ring_id(wil);
1563
1564 /* find 1-st vring eligible for data */
1565 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
1566 v = &wil->ring_tx[i];
1567 txdata = &wil->ring_tx_data[i];
1568 if (!v->va || !txdata->enabled || txdata->mid != vif->mid)
1569 continue;
1570
1571 cid = wil->ring2cid_tid[i][0];
1572 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1573 continue;
1574 if (!wil->ring_tx_data[i].dot1x_open &&
1575 skb->protocol != cpu_to_be16(ETH_P_PAE))
1576 continue;
1577
1578 /* don't Tx back to source when re-routing Rx->Tx at the AP */
1579 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1580 continue;
1581
1582 goto found;
1583 }
1584
1585 wil_dbg_txrx(wil, "Tx while no vrings active?\n");
1586
1587 return NULL;
1588
1589 found:
1590 wil_dbg_txrx(wil, "BCAST -> ring %d\n", i);
1591 wil_set_da_for_vring(wil, skb, i);
1592
1593 /* find other active vrings and duplicate skb for each */
1594 for (i++; i < WIL6210_MAX_TX_RINGS; i++) {
1595 v2 = &wil->ring_tx[i];
1596 txdata2 = &wil->ring_tx_data[i];
1597 if (!v2->va || txdata2->mid != vif->mid)
1598 continue;
1599 cid = wil->ring2cid_tid[i][0];
1600 if (cid >= wil->max_assoc_sta) /* skip BCAST */
1601 continue;
1602 if (!wil->ring_tx_data[i].dot1x_open &&
1603 skb->protocol != cpu_to_be16(ETH_P_PAE))
1604 continue;
1605
1606 if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN))
1607 continue;
1608
1609 skb2 = skb_copy(skb, GFP_ATOMIC);
1610 if (skb2) {
1611 wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i);
1612 wil_set_da_for_vring(wil, skb2, i);
1613 wil_tx_ring(wil, vif, v2, skb2);
1614 /* successful call to wil_tx_ring takes skb2 ref */
1615 dev_kfree_skb_any(skb2);
1616 } else {
1617 wil_err(wil, "skb_copy failed\n");
1618 }
1619 }
1620
1621 return v;
1622 }
1623
1624 static inline
wil_tx_desc_set_nr_frags(struct vring_tx_desc * d,int nr_frags)1625 void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags)
1626 {
1627 d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS);
1628 }
1629
1630 /**
1631 * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding
1632 * @skb is used to obtain the protocol and headers length.
1633 * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data,
1634 * 2 - middle, 3 - last descriptor.
1635 */
1636
wil_tx_desc_offload_setup_tso(struct vring_tx_desc * d,struct sk_buff * skb,int tso_desc_type,bool is_ipv4,int tcp_hdr_len,int skb_net_hdr_len)1637 static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d,
1638 struct sk_buff *skb,
1639 int tso_desc_type, bool is_ipv4,
1640 int tcp_hdr_len, int skb_net_hdr_len)
1641 {
1642 d->dma.b11 = ETH_HLEN; /* MAC header length */
1643 d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS;
1644
1645 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1646 /* L4 header len: TCP header length */
1647 d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1648
1649 /* Setup TSO: bit and desc type */
1650 d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) |
1651 (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS);
1652 d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS);
1653
1654 d->dma.ip_length = skb_net_hdr_len;
1655 /* Enable TCP/UDP checksum */
1656 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1657 /* Calculate pseudo-header */
1658 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1659 }
1660
1661 /**
1662 * Sets the descriptor @d up for csum. The corresponding
1663 * @skb is used to obtain the protocol and headers length.
1664 * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6.
1665 * Note, if d==NULL, the function only returns the protocol result.
1666 *
1667 * It is very similar to previous wil_tx_desc_offload_setup_tso. This
1668 * is "if unrolling" to optimize the critical path.
1669 */
1670
wil_tx_desc_offload_setup(struct vring_tx_desc * d,struct sk_buff * skb)1671 static int wil_tx_desc_offload_setup(struct vring_tx_desc *d,
1672 struct sk_buff *skb){
1673 int protocol;
1674
1675 if (skb->ip_summed != CHECKSUM_PARTIAL)
1676 return 0;
1677
1678 d->dma.b11 = ETH_HLEN; /* MAC header length */
1679
1680 switch (skb->protocol) {
1681 case cpu_to_be16(ETH_P_IP):
1682 protocol = ip_hdr(skb)->protocol;
1683 d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS);
1684 break;
1685 case cpu_to_be16(ETH_P_IPV6):
1686 protocol = ipv6_hdr(skb)->nexthdr;
1687 break;
1688 default:
1689 return -EINVAL;
1690 }
1691
1692 switch (protocol) {
1693 case IPPROTO_TCP:
1694 d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS);
1695 /* L4 header len: TCP header length */
1696 d->dma.d0 |=
1697 (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1698 break;
1699 case IPPROTO_UDP:
1700 /* L4 header len: UDP header length */
1701 d->dma.d0 |=
1702 (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK);
1703 break;
1704 default:
1705 return -EINVAL;
1706 }
1707
1708 d->dma.ip_length = skb_network_header_len(skb);
1709 /* Enable TCP/UDP checksum */
1710 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS);
1711 /* Calculate pseudo-header */
1712 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS);
1713
1714 return 0;
1715 }
1716
wil_tx_last_desc(struct vring_tx_desc * d)1717 static inline void wil_tx_last_desc(struct vring_tx_desc *d)
1718 {
1719 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) |
1720 BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) |
1721 BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
1722 }
1723
wil_set_tx_desc_last_tso(volatile struct vring_tx_desc * d)1724 static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d)
1725 {
1726 d->dma.d0 |= wil_tso_type_lst <<
1727 DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS;
1728 }
1729
__wil_tx_vring_tso(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * vring,struct sk_buff * skb)1730 static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif,
1731 struct wil_ring *vring, struct sk_buff *skb)
1732 {
1733 struct device *dev = wil_to_dev(wil);
1734
1735 /* point to descriptors in shared memory */
1736 volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc,
1737 *_first_desc = NULL;
1738
1739 /* pointers to shadow descriptors */
1740 struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem,
1741 *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem,
1742 *first_desc = &first_desc_mem;
1743
1744 /* pointer to shadow descriptors' context */
1745 struct wil_ctx *hdr_ctx, *first_ctx = NULL;
1746
1747 int descs_used = 0; /* total number of used descriptors */
1748 int sg_desc_cnt = 0; /* number of descriptors for current mss*/
1749
1750 u32 swhead = vring->swhead;
1751 int used, avail = wil_ring_avail_tx(vring);
1752 int nr_frags = skb_shinfo(skb)->nr_frags;
1753 int min_desc_required = nr_frags + 1;
1754 int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */
1755 int f, len, hdrlen, headlen;
1756 int vring_index = vring - wil->ring_tx;
1757 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index];
1758 uint i = swhead;
1759 dma_addr_t pa;
1760 const skb_frag_t *frag = NULL;
1761 int rem_data = mss;
1762 int lenmss;
1763 int hdr_compensation_need = true;
1764 int desc_tso_type = wil_tso_type_first;
1765 bool is_ipv4;
1766 int tcp_hdr_len;
1767 int skb_net_hdr_len;
1768 int gso_type;
1769 int rc = -EINVAL;
1770
1771 wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len,
1772 vring_index);
1773
1774 if (unlikely(!txdata->enabled))
1775 return -EINVAL;
1776
1777 /* A typical page 4K is 3-4 payloads, we assume each fragment
1778 * is a full payload, that's how min_desc_required has been
1779 * calculated. In real we might need more or less descriptors,
1780 * this is the initial check only.
1781 */
1782 if (unlikely(avail < min_desc_required)) {
1783 wil_err_ratelimited(wil,
1784 "TSO: Tx ring[%2d] full. No space for %d fragments\n",
1785 vring_index, min_desc_required);
1786 return -ENOMEM;
1787 }
1788
1789 /* Header Length = MAC header len + IP header len + TCP header len*/
1790 hdrlen = ETH_HLEN +
1791 (int)skb_network_header_len(skb) +
1792 tcp_hdrlen(skb);
1793
1794 gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4);
1795 switch (gso_type) {
1796 case SKB_GSO_TCPV4:
1797 /* TCP v4, zero out the IP length and IPv4 checksum fields
1798 * as required by the offloading doc
1799 */
1800 ip_hdr(skb)->tot_len = 0;
1801 ip_hdr(skb)->check = 0;
1802 is_ipv4 = true;
1803 break;
1804 case SKB_GSO_TCPV6:
1805 /* TCP v6, zero out the payload length */
1806 ipv6_hdr(skb)->payload_len = 0;
1807 is_ipv4 = false;
1808 break;
1809 default:
1810 /* other than TCPv4 or TCPv6 types are not supported for TSO.
1811 * It is also illegal for both to be set simultaneously
1812 */
1813 return -EINVAL;
1814 }
1815
1816 if (skb->ip_summed != CHECKSUM_PARTIAL)
1817 return -EINVAL;
1818
1819 /* tcp header length and skb network header length are fixed for all
1820 * packet's descriptors - read then once here
1821 */
1822 tcp_hdr_len = tcp_hdrlen(skb);
1823 skb_net_hdr_len = skb_network_header_len(skb);
1824
1825 _hdr_desc = &vring->va[i].tx.legacy;
1826
1827 pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE);
1828 if (unlikely(dma_mapping_error(dev, pa))) {
1829 wil_err(wil, "TSO: Skb head DMA map error\n");
1830 goto err_exit;
1831 }
1832
1833 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa,
1834 hdrlen, vring_index);
1835 wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4,
1836 tcp_hdr_len, skb_net_hdr_len);
1837 wil_tx_last_desc(hdr_desc);
1838
1839 vring->ctx[i].mapped_as = wil_mapped_as_single;
1840 hdr_ctx = &vring->ctx[i];
1841
1842 descs_used++;
1843 headlen = skb_headlen(skb) - hdrlen;
1844
1845 for (f = headlen ? -1 : 0; f < nr_frags; f++) {
1846 if (headlen) {
1847 len = headlen;
1848 wil_dbg_txrx(wil, "TSO: process skb head, len %u\n",
1849 len);
1850 } else {
1851 frag = &skb_shinfo(skb)->frags[f];
1852 len = skb_frag_size(frag);
1853 wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len);
1854 }
1855
1856 while (len) {
1857 wil_dbg_txrx(wil,
1858 "TSO: len %d, rem_data %d, descs_used %d\n",
1859 len, rem_data, descs_used);
1860
1861 if (descs_used == avail) {
1862 wil_err_ratelimited(wil, "TSO: ring overflow\n");
1863 rc = -ENOMEM;
1864 goto mem_error;
1865 }
1866
1867 lenmss = min_t(int, rem_data, len);
1868 i = (swhead + descs_used) % vring->size;
1869 wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i);
1870
1871 if (!headlen) {
1872 pa = skb_frag_dma_map(dev, frag,
1873 skb_frag_size(frag) - len,
1874 lenmss, DMA_TO_DEVICE);
1875 vring->ctx[i].mapped_as = wil_mapped_as_page;
1876 } else {
1877 pa = dma_map_single(dev,
1878 skb->data +
1879 skb_headlen(skb) - headlen,
1880 lenmss,
1881 DMA_TO_DEVICE);
1882 vring->ctx[i].mapped_as = wil_mapped_as_single;
1883 headlen -= lenmss;
1884 }
1885
1886 if (unlikely(dma_mapping_error(dev, pa))) {
1887 wil_err(wil, "TSO: DMA map page error\n");
1888 goto mem_error;
1889 }
1890
1891 _desc = &vring->va[i].tx.legacy;
1892
1893 if (!_first_desc) {
1894 _first_desc = _desc;
1895 first_ctx = &vring->ctx[i];
1896 d = first_desc;
1897 } else {
1898 d = &desc_mem;
1899 }
1900
1901 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
1902 pa, lenmss, vring_index);
1903 wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type,
1904 is_ipv4, tcp_hdr_len,
1905 skb_net_hdr_len);
1906
1907 /* use tso_type_first only once */
1908 desc_tso_type = wil_tso_type_mid;
1909
1910 descs_used++; /* desc used so far */
1911 sg_desc_cnt++; /* desc used for this segment */
1912 len -= lenmss;
1913 rem_data -= lenmss;
1914
1915 wil_dbg_txrx(wil,
1916 "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n",
1917 len, rem_data, descs_used, sg_desc_cnt);
1918
1919 /* Close the segment if reached mss size or last frag*/
1920 if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) {
1921 if (hdr_compensation_need) {
1922 /* first segment include hdr desc for
1923 * release
1924 */
1925 hdr_ctx->nr_frags = sg_desc_cnt;
1926 wil_tx_desc_set_nr_frags(first_desc,
1927 sg_desc_cnt +
1928 1);
1929 hdr_compensation_need = false;
1930 } else {
1931 wil_tx_desc_set_nr_frags(first_desc,
1932 sg_desc_cnt);
1933 }
1934 first_ctx->nr_frags = sg_desc_cnt - 1;
1935
1936 wil_tx_last_desc(d);
1937
1938 /* first descriptor may also be the last
1939 * for this mss - make sure not to copy
1940 * it twice
1941 */
1942 if (first_desc != d)
1943 *_first_desc = *first_desc;
1944
1945 /*last descriptor will be copied at the end
1946 * of this TS processing
1947 */
1948 if (f < nr_frags - 1 || len > 0)
1949 *_desc = *d;
1950
1951 rem_data = mss;
1952 _first_desc = NULL;
1953 sg_desc_cnt = 0;
1954 } else if (first_desc != d) /* update mid descriptor */
1955 *_desc = *d;
1956 }
1957 }
1958
1959 if (!_desc)
1960 goto mem_error;
1961
1962 /* first descriptor may also be the last.
1963 * in this case d pointer is invalid
1964 */
1965 if (_first_desc == _desc)
1966 d = first_desc;
1967
1968 /* Last data descriptor */
1969 wil_set_tx_desc_last_tso(d);
1970 *_desc = *d;
1971
1972 /* Fill the total number of descriptors in first desc (hdr)*/
1973 wil_tx_desc_set_nr_frags(hdr_desc, descs_used);
1974 *_hdr_desc = *hdr_desc;
1975
1976 /* hold reference to skb
1977 * to prevent skb release before accounting
1978 * in case of immediate "tx done"
1979 */
1980 vring->ctx[i].skb = skb_get(skb);
1981
1982 /* performance monitoring */
1983 used = wil_ring_used_tx(vring);
1984 if (wil_val_in_range(wil->ring_idle_trsh,
1985 used, used + descs_used)) {
1986 txdata->idle += get_cycles() - txdata->last_idle;
1987 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
1988 vring_index, used, used + descs_used);
1989 }
1990
1991 /* Make sure to advance the head only after descriptor update is done.
1992 * This will prevent a race condition where the completion thread
1993 * will see the DU bit set from previous run and will handle the
1994 * skb before it was completed.
1995 */
1996 wmb();
1997
1998 /* advance swhead */
1999 wil_ring_advance_head(vring, descs_used);
2000 wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead);
2001
2002 /* make sure all writes to descriptors (shared memory) are done before
2003 * committing them to HW
2004 */
2005 wmb();
2006
2007 if (wil->tx_latency)
2008 *(ktime_t *)&skb->cb = ktime_get();
2009 else
2010 memset(skb->cb, 0, sizeof(ktime_t));
2011
2012 wil_w(wil, vring->hwtail, vring->swhead);
2013 return 0;
2014
2015 mem_error:
2016 while (descs_used > 0) {
2017 struct wil_ctx *ctx;
2018
2019 i = (swhead + descs_used - 1) % vring->size;
2020 d = (struct vring_tx_desc *)&vring->va[i].tx.legacy;
2021 _desc = &vring->va[i].tx.legacy;
2022 *d = *_desc;
2023 _desc->dma.status = TX_DMA_STATUS_DU;
2024 ctx = &vring->ctx[i];
2025 wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx);
2026 memset(ctx, 0, sizeof(*ctx));
2027 descs_used--;
2028 }
2029 err_exit:
2030 return rc;
2031 }
2032
__wil_tx_ring(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,struct sk_buff * skb)2033 static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2034 struct wil_ring *ring, struct sk_buff *skb)
2035 {
2036 struct device *dev = wil_to_dev(wil);
2037 struct vring_tx_desc dd, *d = ⅆ
2038 volatile struct vring_tx_desc *_d;
2039 u32 swhead = ring->swhead;
2040 int avail = wil_ring_avail_tx(ring);
2041 int nr_frags = skb_shinfo(skb)->nr_frags;
2042 uint f = 0;
2043 int ring_index = ring - wil->ring_tx;
2044 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2045 uint i = swhead;
2046 dma_addr_t pa;
2047 int used;
2048 bool mcast = (ring_index == vif->bcast_ring);
2049 uint len = skb_headlen(skb);
2050
2051 wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n",
2052 skb->len, ring_index, nr_frags);
2053
2054 if (unlikely(!txdata->enabled))
2055 return -EINVAL;
2056
2057 if (unlikely(avail < 1 + nr_frags)) {
2058 wil_err_ratelimited(wil,
2059 "Tx ring[%2d] full. No space for %d fragments\n",
2060 ring_index, 1 + nr_frags);
2061 return -ENOMEM;
2062 }
2063 _d = &ring->va[i].tx.legacy;
2064
2065 pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
2066
2067 wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index,
2068 skb_headlen(skb), skb->data, &pa);
2069 wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1,
2070 skb->data, skb_headlen(skb), false);
2071
2072 if (unlikely(dma_mapping_error(dev, pa)))
2073 return -EINVAL;
2074 ring->ctx[i].mapped_as = wil_mapped_as_single;
2075 /* 1-st segment */
2076 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len,
2077 ring_index);
2078 if (unlikely(mcast)) {
2079 d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */
2080 if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */
2081 d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS);
2082 }
2083 /* Process TCP/UDP checksum offloading */
2084 if (unlikely(wil_tx_desc_offload_setup(d, skb))) {
2085 wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n",
2086 ring_index);
2087 goto dma_error;
2088 }
2089
2090 ring->ctx[i].nr_frags = nr_frags;
2091 wil_tx_desc_set_nr_frags(d, nr_frags + 1);
2092
2093 /* middle segments */
2094 for (; f < nr_frags; f++) {
2095 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2096 int len = skb_frag_size(frag);
2097
2098 *_d = *d;
2099 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2100 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2101 (const void *)d, sizeof(*d), false);
2102 i = (swhead + f + 1) % ring->size;
2103 _d = &ring->va[i].tx.legacy;
2104 pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag),
2105 DMA_TO_DEVICE);
2106 if (unlikely(dma_mapping_error(dev, pa))) {
2107 wil_err(wil, "Tx[%2d] failed to map fragment\n",
2108 ring_index);
2109 goto dma_error;
2110 }
2111 ring->ctx[i].mapped_as = wil_mapped_as_page;
2112 wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d,
2113 pa, len, ring_index);
2114 /* no need to check return code -
2115 * if it succeeded for 1-st descriptor,
2116 * it will succeed here too
2117 */
2118 wil_tx_desc_offload_setup(d, skb);
2119 }
2120 /* for the last seg only */
2121 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS);
2122 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS);
2123 d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS);
2124 *_d = *d;
2125 wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i);
2126 wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4,
2127 (const void *)d, sizeof(*d), false);
2128
2129 /* hold reference to skb
2130 * to prevent skb release before accounting
2131 * in case of immediate "tx done"
2132 */
2133 ring->ctx[i].skb = skb_get(skb);
2134
2135 /* performance monitoring */
2136 used = wil_ring_used_tx(ring);
2137 if (wil_val_in_range(wil->ring_idle_trsh,
2138 used, used + nr_frags + 1)) {
2139 txdata->idle += get_cycles() - txdata->last_idle;
2140 wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n",
2141 ring_index, used, used + nr_frags + 1);
2142 }
2143
2144 /* Make sure to advance the head only after descriptor update is done.
2145 * This will prevent a race condition where the completion thread
2146 * will see the DU bit set from previous run and will handle the
2147 * skb before it was completed.
2148 */
2149 wmb();
2150
2151 /* advance swhead */
2152 wil_ring_advance_head(ring, nr_frags + 1);
2153 wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead,
2154 ring->swhead);
2155 trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags);
2156
2157 /* make sure all writes to descriptors (shared memory) are done before
2158 * committing them to HW
2159 */
2160 wmb();
2161
2162 if (wil->tx_latency)
2163 *(ktime_t *)&skb->cb = ktime_get();
2164 else
2165 memset(skb->cb, 0, sizeof(ktime_t));
2166
2167 wil_w(wil, ring->hwtail, ring->swhead);
2168
2169 return 0;
2170 dma_error:
2171 /* unmap what we have mapped */
2172 nr_frags = f + 1; /* frags mapped + one for skb head */
2173 for (f = 0; f < nr_frags; f++) {
2174 struct wil_ctx *ctx;
2175
2176 i = (swhead + f) % ring->size;
2177 ctx = &ring->ctx[i];
2178 _d = &ring->va[i].tx.legacy;
2179 *d = *_d;
2180 _d->dma.status = TX_DMA_STATUS_DU;
2181 wil->txrx_ops.tx_desc_unmap(dev,
2182 (union wil_tx_desc *)d,
2183 ctx);
2184
2185 memset(ctx, 0, sizeof(*ctx));
2186 }
2187
2188 return -EINVAL;
2189 }
2190
wil_tx_ring(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,struct sk_buff * skb)2191 static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif,
2192 struct wil_ring *ring, struct sk_buff *skb)
2193 {
2194 int ring_index = ring - wil->ring_tx;
2195 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index];
2196 int rc;
2197
2198 spin_lock(&txdata->lock);
2199
2200 if (test_bit(wil_status_suspending, wil->status) ||
2201 test_bit(wil_status_suspended, wil->status) ||
2202 test_bit(wil_status_resuming, wil->status)) {
2203 wil_dbg_txrx(wil,
2204 "suspend/resume in progress. drop packet\n");
2205 spin_unlock(&txdata->lock);
2206 return -EINVAL;
2207 }
2208
2209 rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring)
2210 (wil, vif, ring, skb);
2211
2212 spin_unlock(&txdata->lock);
2213
2214 return rc;
2215 }
2216
2217 /**
2218 * Check status of tx vrings and stop/wake net queues if needed
2219 * It will start/stop net queues of a specific VIF net_device.
2220 *
2221 * This function does one of two checks:
2222 * In case check_stop is true, will check if net queues need to be stopped. If
2223 * the conditions for stopping are met, netif_tx_stop_all_queues() is called.
2224 * In case check_stop is false, will check if net queues need to be waked. If
2225 * the conditions for waking are met, netif_tx_wake_all_queues() is called.
2226 * vring is the vring which is currently being modified by either adding
2227 * descriptors (tx) into it or removing descriptors (tx complete) from it. Can
2228 * be null when irrelevant (e.g. connect/disconnect events).
2229 *
2230 * The implementation is to stop net queues if modified vring has low
2231 * descriptor availability. Wake if all vrings are not in low descriptor
2232 * availability and modified vring has high descriptor availability.
2233 */
__wil_update_net_queues(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,bool check_stop)2234 static inline void __wil_update_net_queues(struct wil6210_priv *wil,
2235 struct wil6210_vif *vif,
2236 struct wil_ring *ring,
2237 bool check_stop)
2238 {
2239 int i;
2240 int min_ring_id = wil_get_min_tx_ring_id(wil);
2241
2242 if (unlikely(!vif))
2243 return;
2244
2245 if (ring)
2246 wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d",
2247 (int)(ring - wil->ring_tx), vif->mid, check_stop,
2248 vif->net_queue_stopped);
2249 else
2250 wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d",
2251 check_stop, vif->mid, vif->net_queue_stopped);
2252
2253 if (ring && drop_if_ring_full)
2254 /* no need to stop/wake net queues */
2255 return;
2256
2257 if (check_stop == vif->net_queue_stopped)
2258 /* net queues already in desired state */
2259 return;
2260
2261 if (check_stop) {
2262 if (!ring || unlikely(wil_ring_avail_low(ring))) {
2263 /* not enough room in the vring */
2264 netif_tx_stop_all_queues(vif_to_ndev(vif));
2265 vif->net_queue_stopped = true;
2266 wil_dbg_txrx(wil, "netif_tx_stop called\n");
2267 }
2268 return;
2269 }
2270
2271 /* Do not wake the queues in suspend flow */
2272 if (test_bit(wil_status_suspending, wil->status) ||
2273 test_bit(wil_status_suspended, wil->status))
2274 return;
2275
2276 /* check wake */
2277 for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) {
2278 struct wil_ring *cur_ring = &wil->ring_tx[i];
2279 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i];
2280
2281 if (txdata->mid != vif->mid || !cur_ring->va ||
2282 !txdata->enabled || cur_ring == ring)
2283 continue;
2284
2285 if (wil_ring_avail_low(cur_ring)) {
2286 wil_dbg_txrx(wil, "ring %d full, can't wake\n",
2287 (int)(cur_ring - wil->ring_tx));
2288 return;
2289 }
2290 }
2291
2292 if (!ring || wil_ring_avail_high(ring)) {
2293 /* enough room in the ring */
2294 wil_dbg_txrx(wil, "calling netif_tx_wake\n");
2295 netif_tx_wake_all_queues(vif_to_ndev(vif));
2296 vif->net_queue_stopped = false;
2297 }
2298 }
2299
wil_update_net_queues(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,bool check_stop)2300 void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif,
2301 struct wil_ring *ring, bool check_stop)
2302 {
2303 spin_lock(&wil->net_queue_lock);
2304 __wil_update_net_queues(wil, vif, ring, check_stop);
2305 spin_unlock(&wil->net_queue_lock);
2306 }
2307
wil_update_net_queues_bh(struct wil6210_priv * wil,struct wil6210_vif * vif,struct wil_ring * ring,bool check_stop)2308 void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif,
2309 struct wil_ring *ring, bool check_stop)
2310 {
2311 spin_lock_bh(&wil->net_queue_lock);
2312 __wil_update_net_queues(wil, vif, ring, check_stop);
2313 spin_unlock_bh(&wil->net_queue_lock);
2314 }
2315
wil_start_xmit(struct sk_buff * skb,struct net_device * ndev)2316 netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev)
2317 {
2318 struct wil6210_vif *vif = ndev_to_vif(ndev);
2319 struct wil6210_priv *wil = vif_to_wil(vif);
2320 const u8 *da = wil_skb_get_da(skb);
2321 bool bcast = is_multicast_ether_addr(da);
2322 struct wil_ring *ring;
2323 static bool pr_once_fw;
2324 int rc;
2325
2326 wil_dbg_txrx(wil, "start_xmit\n");
2327 if (unlikely(!test_bit(wil_status_fwready, wil->status))) {
2328 if (!pr_once_fw) {
2329 wil_err(wil, "FW not ready\n");
2330 pr_once_fw = true;
2331 }
2332 goto drop;
2333 }
2334 if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) {
2335 wil_dbg_ratelimited(wil,
2336 "VIF not connected, packet dropped\n");
2337 goto drop;
2338 }
2339 if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) {
2340 wil_err(wil, "Xmit in monitor mode not supported\n");
2341 goto drop;
2342 }
2343 pr_once_fw = false;
2344
2345 /* find vring */
2346 if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) {
2347 /* in STA mode (ESS), all to same VRING (to AP) */
2348 ring = wil_find_tx_ring_sta(wil, vif, skb);
2349 } else if (bcast) {
2350 if (vif->pbss)
2351 /* in pbss, no bcast VRING - duplicate skb in
2352 * all stations VRINGs
2353 */
2354 ring = wil_find_tx_bcast_2(wil, vif, skb);
2355 else if (vif->wdev.iftype == NL80211_IFTYPE_AP)
2356 /* AP has a dedicated bcast VRING */
2357 ring = wil_find_tx_bcast_1(wil, vif, skb);
2358 else
2359 /* unexpected combination, fallback to duplicating
2360 * the skb in all stations VRINGs
2361 */
2362 ring = wil_find_tx_bcast_2(wil, vif, skb);
2363 } else {
2364 /* unicast, find specific VRING by dest. address */
2365 ring = wil_find_tx_ucast(wil, vif, skb);
2366 }
2367 if (unlikely(!ring)) {
2368 wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da);
2369 goto drop;
2370 }
2371 /* set up vring entry */
2372 rc = wil_tx_ring(wil, vif, ring, skb);
2373
2374 switch (rc) {
2375 case 0:
2376 /* shall we stop net queues? */
2377 wil_update_net_queues_bh(wil, vif, ring, true);
2378 /* statistics will be updated on the tx_complete */
2379 dev_kfree_skb_any(skb);
2380 return NETDEV_TX_OK;
2381 case -ENOMEM:
2382 if (drop_if_ring_full)
2383 goto drop;
2384 return NETDEV_TX_BUSY;
2385 default:
2386 break; /* goto drop; */
2387 }
2388 drop:
2389 ndev->stats.tx_dropped++;
2390 dev_kfree_skb_any(skb);
2391
2392 return NET_XMIT_DROP;
2393 }
2394
wil_tx_latency_calc(struct wil6210_priv * wil,struct sk_buff * skb,struct wil_sta_info * sta)2395 void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb,
2396 struct wil_sta_info *sta)
2397 {
2398 int skb_time_us;
2399 int bin;
2400
2401 if (!wil->tx_latency)
2402 return;
2403
2404 if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0)
2405 return;
2406
2407 skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb);
2408 bin = skb_time_us / wil->tx_latency_res;
2409 bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1);
2410
2411 wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin);
2412 sta->tx_latency_bins[bin]++;
2413 sta->stats.tx_latency_total_us += skb_time_us;
2414 if (skb_time_us < sta->stats.tx_latency_min_us)
2415 sta->stats.tx_latency_min_us = skb_time_us;
2416 if (skb_time_us > sta->stats.tx_latency_max_us)
2417 sta->stats.tx_latency_max_us = skb_time_us;
2418 }
2419
2420 /**
2421 * Clean up transmitted skb's from the Tx VRING
2422 *
2423 * Return number of descriptors cleared
2424 *
2425 * Safe to call from IRQ
2426 */
wil_tx_complete(struct wil6210_vif * vif,int ringid)2427 int wil_tx_complete(struct wil6210_vif *vif, int ringid)
2428 {
2429 struct wil6210_priv *wil = vif_to_wil(vif);
2430 struct net_device *ndev = vif_to_ndev(vif);
2431 struct device *dev = wil_to_dev(wil);
2432 struct wil_ring *vring = &wil->ring_tx[ringid];
2433 struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid];
2434 int done = 0;
2435 int cid = wil->ring2cid_tid[ringid][0];
2436 struct wil_net_stats *stats = NULL;
2437 volatile struct vring_tx_desc *_d;
2438 int used_before_complete;
2439 int used_new;
2440
2441 if (unlikely(!vring->va)) {
2442 wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid);
2443 return 0;
2444 }
2445
2446 if (unlikely(!txdata->enabled)) {
2447 wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid);
2448 return 0;
2449 }
2450
2451 wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid);
2452
2453 used_before_complete = wil_ring_used_tx(vring);
2454
2455 if (cid < wil->max_assoc_sta)
2456 stats = &wil->sta[cid].stats;
2457
2458 while (!wil_ring_is_empty(vring)) {
2459 int new_swtail;
2460 struct wil_ctx *ctx = &vring->ctx[vring->swtail];
2461 /**
2462 * For the fragmented skb, HW will set DU bit only for the
2463 * last fragment. look for it.
2464 * In TSO the first DU will include hdr desc
2465 */
2466 int lf = (vring->swtail + ctx->nr_frags) % vring->size;
2467 /* TODO: check we are not past head */
2468
2469 _d = &vring->va[lf].tx.legacy;
2470 if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU)))
2471 break;
2472
2473 new_swtail = (lf + 1) % vring->size;
2474 while (vring->swtail != new_swtail) {
2475 struct vring_tx_desc dd, *d = ⅆ
2476 u16 dmalen;
2477 struct sk_buff *skb;
2478
2479 ctx = &vring->ctx[vring->swtail];
2480 skb = ctx->skb;
2481 _d = &vring->va[vring->swtail].tx.legacy;
2482
2483 *d = *_d;
2484
2485 dmalen = le16_to_cpu(d->dma.length);
2486 trace_wil6210_tx_done(ringid, vring->swtail, dmalen,
2487 d->dma.error);
2488 wil_dbg_txrx(wil,
2489 "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n",
2490 ringid, vring->swtail, dmalen,
2491 d->dma.status, d->dma.error);
2492 wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4,
2493 (const void *)d, sizeof(*d), false);
2494
2495 wil->txrx_ops.tx_desc_unmap(dev,
2496 (union wil_tx_desc *)d,
2497 ctx);
2498
2499 if (skb) {
2500 if (likely(d->dma.error == 0)) {
2501 ndev->stats.tx_packets++;
2502 ndev->stats.tx_bytes += skb->len;
2503 if (stats) {
2504 stats->tx_packets++;
2505 stats->tx_bytes += skb->len;
2506
2507 wil_tx_latency_calc(wil, skb,
2508 &wil->sta[cid]);
2509 }
2510 } else {
2511 ndev->stats.tx_errors++;
2512 if (stats)
2513 stats->tx_errors++;
2514 }
2515
2516 if (skb->protocol == cpu_to_be16(ETH_P_PAE))
2517 wil_tx_complete_handle_eapol(vif, skb);
2518
2519 wil_consume_skb(skb, d->dma.error == 0);
2520 }
2521 memset(ctx, 0, sizeof(*ctx));
2522 /* Make sure the ctx is zeroed before updating the tail
2523 * to prevent a case where wil_tx_ring will see
2524 * this descriptor as used and handle it before ctx zero
2525 * is completed.
2526 */
2527 wmb();
2528 /* There is no need to touch HW descriptor:
2529 * - ststus bit TX_DMA_STATUS_DU is set by design,
2530 * so hardware will not try to process this desc.,
2531 * - rest of descriptor will be initialized on Tx.
2532 */
2533 vring->swtail = wil_ring_next_tail(vring);
2534 done++;
2535 }
2536 }
2537
2538 /* performance monitoring */
2539 used_new = wil_ring_used_tx(vring);
2540 if (wil_val_in_range(wil->ring_idle_trsh,
2541 used_new, used_before_complete)) {
2542 wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n",
2543 ringid, used_before_complete, used_new);
2544 txdata->last_idle = get_cycles();
2545 }
2546
2547 /* shall we wake net queues? */
2548 if (done)
2549 wil_update_net_queues(wil, vif, vring, false);
2550
2551 return done;
2552 }
2553
wil_tx_init(struct wil6210_priv * wil)2554 static inline int wil_tx_init(struct wil6210_priv *wil)
2555 {
2556 return 0;
2557 }
2558
wil_tx_fini(struct wil6210_priv * wil)2559 static inline void wil_tx_fini(struct wil6210_priv *wil) {}
2560
wil_get_reorder_params(struct wil6210_priv * wil,struct sk_buff * skb,int * tid,int * cid,int * mid,u16 * seq,int * mcast,int * retry)2561 static void wil_get_reorder_params(struct wil6210_priv *wil,
2562 struct sk_buff *skb, int *tid, int *cid,
2563 int *mid, u16 *seq, int *mcast, int *retry)
2564 {
2565 struct vring_rx_desc *d = wil_skb_rxdesc(skb);
2566
2567 *tid = wil_rxdesc_tid(d);
2568 *cid = wil_skb_get_cid(skb);
2569 *mid = wil_rxdesc_mid(d);
2570 *seq = wil_rxdesc_seq(d);
2571 *mcast = wil_rxdesc_mcast(d);
2572 *retry = wil_rxdesc_retry(d);
2573 }
2574
wil_init_txrx_ops_legacy_dma(struct wil6210_priv * wil)2575 void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil)
2576 {
2577 wil->txrx_ops.configure_interrupt_moderation =
2578 wil_configure_interrupt_moderation;
2579 /* TX ops */
2580 wil->txrx_ops.tx_desc_map = wil_tx_desc_map;
2581 wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap;
2582 wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso;
2583 wil->txrx_ops.ring_init_tx = wil_vring_init_tx;
2584 wil->txrx_ops.ring_fini_tx = wil_vring_free;
2585 wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast;
2586 wil->txrx_ops.tx_init = wil_tx_init;
2587 wil->txrx_ops.tx_fini = wil_tx_fini;
2588 wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify;
2589 /* RX ops */
2590 wil->txrx_ops.rx_init = wil_rx_init;
2591 wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp;
2592 wil->txrx_ops.get_reorder_params = wil_get_reorder_params;
2593 wil->txrx_ops.get_netif_rx_params =
2594 wil_get_netif_rx_params;
2595 wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check;
2596 wil->txrx_ops.rx_error_check = wil_rx_error_check;
2597 wil->txrx_ops.is_rx_idle = wil_is_rx_idle;
2598 wil->txrx_ops.rx_fini = wil_rx_fini;
2599 }
2600