1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 */
5
6 #include "queueing.h"
7 #include "timers.h"
8 #include "device.h"
9 #include "peer.h"
10 #include "socket.h"
11 #include "messages.h"
12 #include "cookie.h"
13
14 #include <linux/uio.h>
15 #include <linux/inetdevice.h>
16 #include <linux/socket.h>
17 #include <net/ip_tunnels.h>
18 #include <net/udp.h>
19 #include <net/sock.h>
20
wg_packet_send_handshake_initiation(struct wg_peer * peer)21 static void wg_packet_send_handshake_initiation(struct wg_peer *peer)
22 {
23 struct message_handshake_initiation packet;
24
25 if (!wg_birthdate_has_expired(atomic64_read(&peer->last_sent_handshake),
26 REKEY_TIMEOUT))
27 return; /* This function is rate limited. */
28
29 atomic64_set(&peer->last_sent_handshake, ktime_get_coarse_boottime_ns());
30 net_dbg_ratelimited("%s: Sending handshake initiation to peer %llu (%pISpfsc)\n",
31 peer->device->dev->name, peer->internal_id,
32 &peer->endpoint.addr);
33
34 if (wg_noise_handshake_create_initiation(&packet, &peer->handshake)) {
35 wg_cookie_add_mac_to_packet(&packet, sizeof(packet), peer);
36 wg_timers_any_authenticated_packet_traversal(peer);
37 wg_timers_any_authenticated_packet_sent(peer);
38 atomic64_set(&peer->last_sent_handshake,
39 ktime_get_coarse_boottime_ns());
40 wg_socket_send_buffer_to_peer(peer, &packet, sizeof(packet),
41 HANDSHAKE_DSCP);
42 wg_timers_handshake_initiated(peer);
43 }
44 }
45
wg_packet_handshake_send_worker(struct work_struct * work)46 void wg_packet_handshake_send_worker(struct work_struct *work)
47 {
48 struct wg_peer *peer = container_of(work, struct wg_peer,
49 transmit_handshake_work);
50
51 wg_packet_send_handshake_initiation(peer);
52 wg_peer_put(peer);
53 }
54
wg_packet_send_queued_handshake_initiation(struct wg_peer * peer,bool is_retry)55 void wg_packet_send_queued_handshake_initiation(struct wg_peer *peer,
56 bool is_retry)
57 {
58 if (!is_retry)
59 peer->timer_handshake_attempts = 0;
60
61 rcu_read_lock_bh();
62 /* We check last_sent_handshake here in addition to the actual function
63 * we're queueing up, so that we don't queue things if not strictly
64 * necessary:
65 */
66 if (!wg_birthdate_has_expired(atomic64_read(&peer->last_sent_handshake),
67 REKEY_TIMEOUT) ||
68 unlikely(READ_ONCE(peer->is_dead)))
69 goto out;
70
71 wg_peer_get(peer);
72 /* Queues up calling packet_send_queued_handshakes(peer), where we do a
73 * peer_put(peer) after:
74 */
75 if (!queue_work(peer->device->handshake_send_wq,
76 &peer->transmit_handshake_work))
77 /* If the work was already queued, we want to drop the
78 * extra reference:
79 */
80 wg_peer_put(peer);
81 out:
82 rcu_read_unlock_bh();
83 }
84
wg_packet_send_handshake_response(struct wg_peer * peer)85 void wg_packet_send_handshake_response(struct wg_peer *peer)
86 {
87 struct message_handshake_response packet;
88
89 atomic64_set(&peer->last_sent_handshake, ktime_get_coarse_boottime_ns());
90 net_dbg_ratelimited("%s: Sending handshake response to peer %llu (%pISpfsc)\n",
91 peer->device->dev->name, peer->internal_id,
92 &peer->endpoint.addr);
93
94 if (wg_noise_handshake_create_response(&packet, &peer->handshake)) {
95 wg_cookie_add_mac_to_packet(&packet, sizeof(packet), peer);
96 if (wg_noise_handshake_begin_session(&peer->handshake,
97 &peer->keypairs)) {
98 wg_timers_session_derived(peer);
99 wg_timers_any_authenticated_packet_traversal(peer);
100 wg_timers_any_authenticated_packet_sent(peer);
101 atomic64_set(&peer->last_sent_handshake,
102 ktime_get_coarse_boottime_ns());
103 wg_socket_send_buffer_to_peer(peer, &packet,
104 sizeof(packet),
105 HANDSHAKE_DSCP);
106 }
107 }
108 }
109
wg_packet_send_handshake_cookie(struct wg_device * wg,struct sk_buff * initiating_skb,__le32 sender_index)110 void wg_packet_send_handshake_cookie(struct wg_device *wg,
111 struct sk_buff *initiating_skb,
112 __le32 sender_index)
113 {
114 struct message_handshake_cookie packet;
115
116 net_dbg_skb_ratelimited("%s: Sending cookie response for denied handshake message for %pISpfsc\n",
117 wg->dev->name, initiating_skb);
118 wg_cookie_message_create(&packet, initiating_skb, sender_index,
119 &wg->cookie_checker);
120 wg_socket_send_buffer_as_reply_to_skb(wg, initiating_skb, &packet,
121 sizeof(packet));
122 }
123
keep_key_fresh(struct wg_peer * peer)124 static void keep_key_fresh(struct wg_peer *peer)
125 {
126 struct noise_keypair *keypair;
127 bool send;
128
129 rcu_read_lock_bh();
130 keypair = rcu_dereference_bh(peer->keypairs.current_keypair);
131 send = keypair && READ_ONCE(keypair->sending.is_valid) &&
132 (atomic64_read(&keypair->sending_counter) > REKEY_AFTER_MESSAGES ||
133 (keypair->i_am_the_initiator &&
134 wg_birthdate_has_expired(keypair->sending.birthdate, REKEY_AFTER_TIME)));
135 rcu_read_unlock_bh();
136
137 if (unlikely(send))
138 wg_packet_send_queued_handshake_initiation(peer, false);
139 }
140
calculate_skb_padding(struct sk_buff * skb)141 static unsigned int calculate_skb_padding(struct sk_buff *skb)
142 {
143 unsigned int padded_size, last_unit = skb->len;
144
145 if (unlikely(!PACKET_CB(skb)->mtu))
146 return ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE) - last_unit;
147
148 /* We do this modulo business with the MTU, just in case the networking
149 * layer gives us a packet that's bigger than the MTU. In that case, we
150 * wouldn't want the final subtraction to overflow in the case of the
151 * padded_size being clamped. Fortunately, that's very rarely the case,
152 * so we optimize for that not happening.
153 */
154 if (unlikely(last_unit > PACKET_CB(skb)->mtu))
155 last_unit %= PACKET_CB(skb)->mtu;
156
157 padded_size = min(PACKET_CB(skb)->mtu,
158 ALIGN(last_unit, MESSAGE_PADDING_MULTIPLE));
159 return padded_size - last_unit;
160 }
161
encrypt_packet(struct sk_buff * skb,struct noise_keypair * keypair)162 static bool encrypt_packet(struct sk_buff *skb, struct noise_keypair *keypair)
163 {
164 unsigned int padding_len, plaintext_len, trailer_len;
165 struct scatterlist sg[MAX_SKB_FRAGS + 8];
166 struct message_data *header;
167 struct sk_buff *trailer;
168 int num_frags;
169
170 /* Force hash calculation before encryption so that flow analysis is
171 * consistent over the inner packet.
172 */
173 skb_get_hash(skb);
174
175 /* Calculate lengths. */
176 padding_len = calculate_skb_padding(skb);
177 trailer_len = padding_len + noise_encrypted_len(0);
178 plaintext_len = skb->len + padding_len;
179
180 /* Expand data section to have room for padding and auth tag. */
181 num_frags = skb_cow_data(skb, trailer_len, &trailer);
182 if (unlikely(num_frags < 0 || num_frags > ARRAY_SIZE(sg)))
183 return false;
184
185 /* Set the padding to zeros, and make sure it and the auth tag are part
186 * of the skb.
187 */
188 memset(skb_tail_pointer(trailer), 0, padding_len);
189
190 /* Expand head section to have room for our header and the network
191 * stack's headers.
192 */
193 if (unlikely(skb_cow_head(skb, DATA_PACKET_HEAD_ROOM) < 0))
194 return false;
195
196 /* Finalize checksum calculation for the inner packet, if required. */
197 if (unlikely(skb->ip_summed == CHECKSUM_PARTIAL &&
198 skb_checksum_help(skb)))
199 return false;
200
201 /* Only after checksumming can we safely add on the padding at the end
202 * and the header.
203 */
204 skb_set_inner_network_header(skb, 0);
205 header = (struct message_data *)skb_push(skb, sizeof(*header));
206 header->header.type = cpu_to_le32(MESSAGE_DATA);
207 header->key_idx = keypair->remote_index;
208 header->counter = cpu_to_le64(PACKET_CB(skb)->nonce);
209 pskb_put(skb, trailer, trailer_len);
210
211 /* Now we can encrypt the scattergather segments */
212 sg_init_table(sg, num_frags);
213 if (skb_to_sgvec(skb, sg, sizeof(struct message_data),
214 noise_encrypted_len(plaintext_len)) <= 0)
215 return false;
216 return chacha20poly1305_encrypt_sg_inplace(sg, plaintext_len, NULL, 0,
217 PACKET_CB(skb)->nonce,
218 keypair->sending.key);
219 }
220
wg_packet_send_keepalive(struct wg_peer * peer)221 void wg_packet_send_keepalive(struct wg_peer *peer)
222 {
223 struct sk_buff *skb;
224
225 if (skb_queue_empty(&peer->staged_packet_queue)) {
226 skb = alloc_skb(DATA_PACKET_HEAD_ROOM + MESSAGE_MINIMUM_LENGTH,
227 GFP_ATOMIC);
228 if (unlikely(!skb))
229 return;
230 skb_reserve(skb, DATA_PACKET_HEAD_ROOM);
231 skb->dev = peer->device->dev;
232 PACKET_CB(skb)->mtu = skb->dev->mtu;
233 skb_queue_tail(&peer->staged_packet_queue, skb);
234 net_dbg_ratelimited("%s: Sending keepalive packet to peer %llu (%pISpfsc)\n",
235 peer->device->dev->name, peer->internal_id,
236 &peer->endpoint.addr);
237 }
238
239 wg_packet_send_staged_packets(peer);
240 }
241
wg_packet_create_data_done(struct sk_buff * first,struct wg_peer * peer)242 static void wg_packet_create_data_done(struct sk_buff *first,
243 struct wg_peer *peer)
244 {
245 struct sk_buff *skb, *next;
246 bool is_keepalive, data_sent = false;
247
248 wg_timers_any_authenticated_packet_traversal(peer);
249 wg_timers_any_authenticated_packet_sent(peer);
250 skb_list_walk_safe(first, skb, next) {
251 is_keepalive = skb->len == message_data_len(0);
252 if (likely(!wg_socket_send_skb_to_peer(peer, skb,
253 PACKET_CB(skb)->ds) && !is_keepalive))
254 data_sent = true;
255 }
256
257 if (likely(data_sent))
258 wg_timers_data_sent(peer);
259
260 keep_key_fresh(peer);
261 }
262
wg_packet_tx_worker(struct work_struct * work)263 void wg_packet_tx_worker(struct work_struct *work)
264 {
265 struct crypt_queue *queue = container_of(work, struct crypt_queue,
266 work);
267 struct noise_keypair *keypair;
268 enum packet_state state;
269 struct sk_buff *first;
270 struct wg_peer *peer;
271
272 while ((first = __ptr_ring_peek(&queue->ring)) != NULL &&
273 (state = atomic_read_acquire(&PACKET_CB(first)->state)) !=
274 PACKET_STATE_UNCRYPTED) {
275 __ptr_ring_discard_one(&queue->ring);
276 peer = PACKET_PEER(first);
277 keypair = PACKET_CB(first)->keypair;
278
279 if (likely(state == PACKET_STATE_CRYPTED))
280 wg_packet_create_data_done(first, peer);
281 else
282 kfree_skb_list(first);
283
284 wg_noise_keypair_put(keypair, false);
285 wg_peer_put(peer);
286 if (need_resched())
287 cond_resched();
288 }
289 }
290
wg_packet_encrypt_worker(struct work_struct * work)291 void wg_packet_encrypt_worker(struct work_struct *work)
292 {
293 struct crypt_queue *queue = container_of(work, struct multicore_worker,
294 work)->ptr;
295 struct sk_buff *first, *skb, *next;
296
297 while ((first = ptr_ring_consume_bh(&queue->ring)) != NULL) {
298 enum packet_state state = PACKET_STATE_CRYPTED;
299
300 skb_list_walk_safe(first, skb, next) {
301 if (likely(encrypt_packet(skb,
302 PACKET_CB(first)->keypair))) {
303 wg_reset_packet(skb, true);
304 } else {
305 state = PACKET_STATE_DEAD;
306 break;
307 }
308 }
309 wg_queue_enqueue_per_peer(&PACKET_PEER(first)->tx_queue, first,
310 state);
311 if (need_resched())
312 cond_resched();
313 }
314 }
315
wg_packet_create_data(struct sk_buff * first)316 static void wg_packet_create_data(struct sk_buff *first)
317 {
318 struct wg_peer *peer = PACKET_PEER(first);
319 struct wg_device *wg = peer->device;
320 int ret = -EINVAL;
321
322 rcu_read_lock_bh();
323 if (unlikely(READ_ONCE(peer->is_dead)))
324 goto err;
325
326 ret = wg_queue_enqueue_per_device_and_peer(&wg->encrypt_queue,
327 &peer->tx_queue, first,
328 wg->packet_crypt_wq,
329 &wg->encrypt_queue.last_cpu);
330 if (unlikely(ret == -EPIPE))
331 wg_queue_enqueue_per_peer(&peer->tx_queue, first,
332 PACKET_STATE_DEAD);
333 err:
334 rcu_read_unlock_bh();
335 if (likely(!ret || ret == -EPIPE))
336 return;
337 wg_noise_keypair_put(PACKET_CB(first)->keypair, false);
338 wg_peer_put(peer);
339 kfree_skb_list(first);
340 }
341
wg_packet_purge_staged_packets(struct wg_peer * peer)342 void wg_packet_purge_staged_packets(struct wg_peer *peer)
343 {
344 spin_lock_bh(&peer->staged_packet_queue.lock);
345 peer->device->dev->stats.tx_dropped += peer->staged_packet_queue.qlen;
346 __skb_queue_purge(&peer->staged_packet_queue);
347 spin_unlock_bh(&peer->staged_packet_queue.lock);
348 }
349
wg_packet_send_staged_packets(struct wg_peer * peer)350 void wg_packet_send_staged_packets(struct wg_peer *peer)
351 {
352 struct noise_keypair *keypair;
353 struct sk_buff_head packets;
354 struct sk_buff *skb;
355
356 /* Steal the current queue into our local one. */
357 __skb_queue_head_init(&packets);
358 spin_lock_bh(&peer->staged_packet_queue.lock);
359 skb_queue_splice_init(&peer->staged_packet_queue, &packets);
360 spin_unlock_bh(&peer->staged_packet_queue.lock);
361 if (unlikely(skb_queue_empty(&packets)))
362 return;
363
364 /* First we make sure we have a valid reference to a valid key. */
365 rcu_read_lock_bh();
366 keypair = wg_noise_keypair_get(
367 rcu_dereference_bh(peer->keypairs.current_keypair));
368 rcu_read_unlock_bh();
369 if (unlikely(!keypair))
370 goto out_nokey;
371 if (unlikely(!READ_ONCE(keypair->sending.is_valid)))
372 goto out_nokey;
373 if (unlikely(wg_birthdate_has_expired(keypair->sending.birthdate,
374 REJECT_AFTER_TIME)))
375 goto out_invalid;
376
377 /* After we know we have a somewhat valid key, we now try to assign
378 * nonces to all of the packets in the queue. If we can't assign nonces
379 * for all of them, we just consider it a failure and wait for the next
380 * handshake.
381 */
382 skb_queue_walk(&packets, skb) {
383 /* 0 for no outer TOS: no leak. TODO: at some later point, we
384 * might consider using flowi->tos as outer instead.
385 */
386 PACKET_CB(skb)->ds = ip_tunnel_ecn_encap(0, ip_hdr(skb), skb);
387 PACKET_CB(skb)->nonce =
388 atomic64_inc_return(&keypair->sending_counter) - 1;
389 if (unlikely(PACKET_CB(skb)->nonce >= REJECT_AFTER_MESSAGES))
390 goto out_invalid;
391 }
392
393 packets.prev->next = NULL;
394 wg_peer_get(keypair->entry.peer);
395 PACKET_CB(packets.next)->keypair = keypair;
396 wg_packet_create_data(packets.next);
397 return;
398
399 out_invalid:
400 WRITE_ONCE(keypair->sending.is_valid, false);
401 out_nokey:
402 wg_noise_keypair_put(keypair, false);
403
404 /* We orphan the packets if we're waiting on a handshake, so that they
405 * don't block a socket's pool.
406 */
407 skb_queue_walk(&packets, skb)
408 skb_orphan(skb);
409 /* Then we put them back on the top of the queue. We're not too
410 * concerned about accidentally getting things a little out of order if
411 * packets are being added really fast, because this queue is for before
412 * packets can even be sent and it's small anyway.
413 */
414 spin_lock_bh(&peer->staged_packet_queue.lock);
415 skb_queue_splice(&packets, &peer->staged_packet_queue);
416 spin_unlock_bh(&peer->staged_packet_queue.lock);
417
418 /* If we're exiting because there's something wrong with the key, it
419 * means we should initiate a new handshake.
420 */
421 wg_packet_send_queued_handshake_initiation(peer, false);
422 }
423