1 /*
2 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
3 * john@geolog.com
4 * jshiffle@netcom.com
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 */
16
17 /*
18 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
19 * provided much of the inspiration and some of the code for this
20 * driver. Everything I know about Amiga DMA was gleaned from careful
21 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
22 * borrowed shamelessly from all over that source. Thanks Hamish!
23 *
24 * _This_ driver is (I feel) an improvement over the old one in
25 * several respects:
26 *
27 * - Target Disconnection/Reconnection is now supported. Any
28 * system with more than one device active on the SCSI bus
29 * will benefit from this. The driver defaults to what I
30 * call 'adaptive disconnect' - meaning that each command
31 * is evaluated individually as to whether or not it should
32 * be run with the option to disconnect/reselect (if the
33 * device chooses), or as a "SCSI-bus-hog".
34 *
35 * - Synchronous data transfers are now supported. Because of
36 * a few devices that choke after telling the driver that
37 * they can do sync transfers, we don't automatically use
38 * this faster protocol - it can be enabled via the command-
39 * line on a device-by-device basis.
40 *
41 * - Runtime operating parameters can now be specified through
42 * the 'amiboot' or the 'insmod' command line. For amiboot do:
43 * "amiboot [usual stuff] wd33c93=blah,blah,blah"
44 * The defaults should be good for most people. See the comment
45 * for 'setup_strings' below for more details.
46 *
47 * - The old driver relied exclusively on what the Western Digital
48 * docs call "Combination Level 2 Commands", which are a great
49 * idea in that the CPU is relieved of a lot of interrupt
50 * overhead. However, by accepting a certain (user-settable)
51 * amount of additional interrupts, this driver achieves
52 * better control over the SCSI bus, and data transfers are
53 * almost as fast while being much easier to define, track,
54 * and debug.
55 *
56 *
57 * TODO:
58 * more speed. linked commands.
59 *
60 *
61 * People with bug reports, wish-lists, complaints, comments,
62 * or improvements are asked to pah-leeez email me (John Shifflett)
63 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
64 * this thing into as good a shape as possible, and I'm positive
65 * there are lots of lurking bugs and "Stupid Places".
66 *
67 * Updates:
68 *
69 * Added support for pre -A chips, which don't have advanced features
70 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
71 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000
72 *
73 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
74 * default_sx_per for asynchronous data transfers. Added adjustment
75 * of transfer periods in sx_table to the actual input-clock.
76 * peter fuerst <post@pfrst.de> February 2007
77 */
78
79 #include <linux/module.h>
80
81 #include <linux/string.h>
82 #include <linux/delay.h>
83 #include <linux/init.h>
84 #include <linux/interrupt.h>
85 #include <linux/blkdev.h>
86
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_device.h>
90 #include <scsi/scsi_host.h>
91
92 #include <asm/irq.h>
93
94 #include "wd33c93.h"
95
96 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns
97
98
99 #define WD33C93_VERSION "1.26++"
100 #define WD33C93_DATE "10/Feb/2007"
101
102 MODULE_AUTHOR("John Shifflett");
103 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
104 MODULE_LICENSE("GPL");
105
106 /*
107 * 'setup_strings' is a single string used to pass operating parameters and
108 * settings from the kernel/module command-line to the driver. 'setup_args[]'
109 * is an array of strings that define the compile-time default values for
110 * these settings. If Linux boots with an amiboot or insmod command-line,
111 * those settings are combined with 'setup_args[]'. Note that amiboot
112 * command-lines are prefixed with "wd33c93=" while insmod uses a
113 * "setup_strings=" prefix. The driver recognizes the following keywords
114 * (lower case required) and arguments:
115 *
116 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
117 * the 7 possible SCSI devices. Set a bit to negotiate for
118 * asynchronous transfers on that device. To maintain
119 * backwards compatibility, a command-line such as
120 * "wd33c93=255" will be automatically translated to
121 * "wd33c93=nosync:0xff".
122 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is
123 * optional - if not present, same as "nodma:1".
124 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
125 * period. Default is 500; acceptable values are 250 - 1000.
126 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
127 * x = 1 does 'adaptive' disconnects, which is the default
128 * and generally the best choice.
129 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
130 * various types of debug output to printed - see the DB_xxx
131 * defines in wd33c93.h
132 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values
133 * would be from 8 through 20. Default is 8.
134 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
135 * Single Byte DMA, which is the default. Argument is
136 * optional - if not present, same as "burst:1".
137 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with
138 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
139 * it, which is the default. Argument is optional - if not
140 * present, same as "fast:1".
141 * - next -No argument. Used to separate blocks of keywords when
142 * there's more than one host adapter in the system.
143 *
144 * Syntax Notes:
145 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
146 * _must_ be a colon between a keyword and its numeric argument, with no
147 * spaces.
148 * - Keywords are separated by commas, no spaces, in the standard kernel
149 * command-line manner.
150 * - A keyword in the 'nth' comma-separated command-line member will overwrite
151 * the 'nth' element of setup_args[]. A blank command-line member (in
152 * other words, a comma with no preceding keyword) will _not_ overwrite
153 * the corresponding setup_args[] element.
154 * - If a keyword is used more than once, the first one applies to the first
155 * SCSI host found, the second to the second card, etc, unless the 'next'
156 * keyword is used to change the order.
157 *
158 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
159 * - wd33c93=nosync:255
160 * - wd33c93=nodma
161 * - wd33c93=nodma:1
162 * - wd33c93=disconnect:2,nosync:0x08,period:250
163 * - wd33c93=debug:0x1c
164 */
165
166 /* Normally, no defaults are specified */
167 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };
168
169 static char *setup_strings;
170 module_param(setup_strings, charp, 0);
171
172 static void wd33c93_execute(struct Scsi_Host *instance);
173
174 #ifdef CONFIG_WD33C93_PIO
175 static inline uchar
read_wd33c93(const wd33c93_regs regs,uchar reg_num)176 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
177 {
178 uchar data;
179
180 outb(reg_num, regs.SASR);
181 data = inb(regs.SCMD);
182 return data;
183 }
184
185 static inline unsigned long
read_wd33c93_count(const wd33c93_regs regs)186 read_wd33c93_count(const wd33c93_regs regs)
187 {
188 unsigned long value;
189
190 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
191 value = inb(regs.SCMD) << 16;
192 value |= inb(regs.SCMD) << 8;
193 value |= inb(regs.SCMD);
194 return value;
195 }
196
197 static inline uchar
read_aux_stat(const wd33c93_regs regs)198 read_aux_stat(const wd33c93_regs regs)
199 {
200 return inb(regs.SASR);
201 }
202
203 static inline void
write_wd33c93(const wd33c93_regs regs,uchar reg_num,uchar value)204 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
205 {
206 outb(reg_num, regs.SASR);
207 outb(value, regs.SCMD);
208 }
209
210 static inline void
write_wd33c93_count(const wd33c93_regs regs,unsigned long value)211 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
212 {
213 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
214 outb((value >> 16) & 0xff, regs.SCMD);
215 outb((value >> 8) & 0xff, regs.SCMD);
216 outb( value & 0xff, regs.SCMD);
217 }
218
219 #define write_wd33c93_cmd(regs, cmd) \
220 write_wd33c93((regs), WD_COMMAND, (cmd))
221
222 static inline void
write_wd33c93_cdb(const wd33c93_regs regs,uint len,uchar cmnd[])223 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
224 {
225 int i;
226
227 outb(WD_CDB_1, regs.SASR);
228 for (i=0; i<len; i++)
229 outb(cmnd[i], regs.SCMD);
230 }
231
232 #else /* CONFIG_WD33C93_PIO */
233 static inline uchar
read_wd33c93(const wd33c93_regs regs,uchar reg_num)234 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
235 {
236 *regs.SASR = reg_num;
237 mb();
238 return (*regs.SCMD);
239 }
240
241 static unsigned long
read_wd33c93_count(const wd33c93_regs regs)242 read_wd33c93_count(const wd33c93_regs regs)
243 {
244 unsigned long value;
245
246 *regs.SASR = WD_TRANSFER_COUNT_MSB;
247 mb();
248 value = *regs.SCMD << 16;
249 value |= *regs.SCMD << 8;
250 value |= *regs.SCMD;
251 mb();
252 return value;
253 }
254
255 static inline uchar
read_aux_stat(const wd33c93_regs regs)256 read_aux_stat(const wd33c93_regs regs)
257 {
258 return *regs.SASR;
259 }
260
261 static inline void
write_wd33c93(const wd33c93_regs regs,uchar reg_num,uchar value)262 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
263 {
264 *regs.SASR = reg_num;
265 mb();
266 *regs.SCMD = value;
267 mb();
268 }
269
270 static void
write_wd33c93_count(const wd33c93_regs regs,unsigned long value)271 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
272 {
273 *regs.SASR = WD_TRANSFER_COUNT_MSB;
274 mb();
275 *regs.SCMD = value >> 16;
276 *regs.SCMD = value >> 8;
277 *regs.SCMD = value;
278 mb();
279 }
280
281 static inline void
write_wd33c93_cmd(const wd33c93_regs regs,uchar cmd)282 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
283 {
284 *regs.SASR = WD_COMMAND;
285 mb();
286 *regs.SCMD = cmd;
287 mb();
288 }
289
290 static inline void
write_wd33c93_cdb(const wd33c93_regs regs,uint len,uchar cmnd[])291 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
292 {
293 int i;
294
295 *regs.SASR = WD_CDB_1;
296 for (i = 0; i < len; i++)
297 *regs.SCMD = cmnd[i];
298 }
299 #endif /* CONFIG_WD33C93_PIO */
300
301 static inline uchar
read_1_byte(const wd33c93_regs regs)302 read_1_byte(const wd33c93_regs regs)
303 {
304 uchar asr;
305 uchar x = 0;
306
307 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
308 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
309 do {
310 asr = read_aux_stat(regs);
311 if (asr & ASR_DBR)
312 x = read_wd33c93(regs, WD_DATA);
313 } while (!(asr & ASR_INT));
314 return x;
315 }
316
317 static int
round_period(unsigned int period,const struct sx_period * sx_table)318 round_period(unsigned int period, const struct sx_period *sx_table)
319 {
320 int x;
321
322 for (x = 1; sx_table[x].period_ns; x++) {
323 if ((period <= sx_table[x - 0].period_ns) &&
324 (period > sx_table[x - 1].period_ns)) {
325 return x;
326 }
327 }
328 return 7;
329 }
330
331 /*
332 * Calculate Synchronous Transfer Register value from SDTR code.
333 */
334 static uchar
calc_sync_xfer(unsigned int period,unsigned int offset,unsigned int fast,const struct sx_period * sx_table)335 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
336 const struct sx_period *sx_table)
337 {
338 /* When doing Fast SCSI synchronous data transfers, the corresponding
339 * value in 'sx_table' is two times the actually used transfer period.
340 */
341 uchar result;
342
343 if (offset && fast) {
344 fast = STR_FSS;
345 period *= 2;
346 } else {
347 fast = 0;
348 }
349 period *= 4; /* convert SDTR code to ns */
350 result = sx_table[round_period(period,sx_table)].reg_value;
351 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
352 result |= fast;
353 return result;
354 }
355
356 /*
357 * Calculate SDTR code bytes [3],[4] from period and offset.
358 */
359 static inline void
calc_sync_msg(unsigned int period,unsigned int offset,unsigned int fast,uchar msg[2])360 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
361 uchar msg[2])
362 {
363 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
364 * actually used transfer period for Fast SCSI synchronous data
365 * transfers is half that value.
366 */
367 period /= 4;
368 if (offset && fast)
369 period /= 2;
370 msg[0] = period;
371 msg[1] = offset;
372 }
373
374 static int
wd33c93_queuecommand_lck(struct scsi_cmnd * cmd,void (* done)(struct scsi_cmnd *))375 wd33c93_queuecommand_lck(struct scsi_cmnd *cmd,
376 void (*done)(struct scsi_cmnd *))
377 {
378 struct WD33C93_hostdata *hostdata;
379 struct scsi_cmnd *tmp;
380
381 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
382
383 DB(DB_QUEUE_COMMAND,
384 printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0]))
385
386 /* Set up a few fields in the scsi_cmnd structure for our own use:
387 * - host_scribble is the pointer to the next cmd in the input queue
388 * - scsi_done points to the routine we call when a cmd is finished
389 * - result is what you'd expect
390 */
391 cmd->host_scribble = NULL;
392 cmd->scsi_done = done;
393 cmd->result = 0;
394
395 /* We use the Scsi_Pointer structure that's included with each command
396 * as a scratchpad (as it's intended to be used!). The handy thing about
397 * the SCp.xxx fields is that they're always associated with a given
398 * cmd, and are preserved across disconnect-reselect. This means we
399 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
400 * if we keep all the critical pointers and counters in SCp:
401 * - SCp.ptr is the pointer into the RAM buffer
402 * - SCp.this_residual is the size of that buffer
403 * - SCp.buffer points to the current scatter-gather buffer
404 * - SCp.buffers_residual tells us how many S.G. buffers there are
405 * - SCp.have_data_in is not used
406 * - SCp.sent_command is not used
407 * - SCp.phase records this command's SRCID_ER bit setting
408 */
409
410 if (scsi_bufflen(cmd)) {
411 cmd->SCp.buffer = scsi_sglist(cmd);
412 cmd->SCp.buffers_residual = scsi_sg_count(cmd) - 1;
413 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
414 cmd->SCp.this_residual = cmd->SCp.buffer->length;
415 } else {
416 cmd->SCp.buffer = NULL;
417 cmd->SCp.buffers_residual = 0;
418 cmd->SCp.ptr = NULL;
419 cmd->SCp.this_residual = 0;
420 }
421
422 /* WD docs state that at the conclusion of a "LEVEL2" command, the
423 * status byte can be retrieved from the LUN register. Apparently,
424 * this is the case only for *uninterrupted* LEVEL2 commands! If
425 * there are any unexpected phases entered, even if they are 100%
426 * legal (different devices may choose to do things differently),
427 * the LEVEL2 command sequence is exited. This often occurs prior
428 * to receiving the status byte, in which case the driver does a
429 * status phase interrupt and gets the status byte on its own.
430 * While such a command can then be "resumed" (ie restarted to
431 * finish up as a LEVEL2 command), the LUN register will NOT be
432 * a valid status byte at the command's conclusion, and we must
433 * use the byte obtained during the earlier interrupt. Here, we
434 * preset SCp.Status to an illegal value (0xff) so that when
435 * this command finally completes, we can tell where the actual
436 * status byte is stored.
437 */
438
439 cmd->SCp.Status = ILLEGAL_STATUS_BYTE;
440
441 /*
442 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
443 * commands are added to the head of the queue so that the desired
444 * sense data is not lost before REQUEST_SENSE executes.
445 */
446
447 spin_lock_irq(&hostdata->lock);
448
449 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
450 cmd->host_scribble = (uchar *) hostdata->input_Q;
451 hostdata->input_Q = cmd;
452 } else { /* find the end of the queue */
453 for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
454 tmp->host_scribble;
455 tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
456 tmp->host_scribble = (uchar *) cmd;
457 }
458
459 /* We know that there's at least one command in 'input_Q' now.
460 * Go see if any of them are runnable!
461 */
462
463 wd33c93_execute(cmd->device->host);
464
465 DB(DB_QUEUE_COMMAND, printk(")Q "))
466
467 spin_unlock_irq(&hostdata->lock);
468 return 0;
469 }
470
DEF_SCSI_QCMD(wd33c93_queuecommand)471 DEF_SCSI_QCMD(wd33c93_queuecommand)
472
473 /*
474 * This routine attempts to start a scsi command. If the host_card is
475 * already connected, we give up immediately. Otherwise, look through
476 * the input_Q, using the first command we find that's intended
477 * for a currently non-busy target/lun.
478 *
479 * wd33c93_execute() is always called with interrupts disabled or from
480 * the wd33c93_intr itself, which means that a wd33c93 interrupt
481 * cannot occur while we are in here.
482 */
483 static void
484 wd33c93_execute(struct Scsi_Host *instance)
485 {
486 struct WD33C93_hostdata *hostdata =
487 (struct WD33C93_hostdata *) instance->hostdata;
488 const wd33c93_regs regs = hostdata->regs;
489 struct scsi_cmnd *cmd, *prev;
490
491 DB(DB_EXECUTE, printk("EX("))
492 if (hostdata->selecting || hostdata->connected) {
493 DB(DB_EXECUTE, printk(")EX-0 "))
494 return;
495 }
496
497 /*
498 * Search through the input_Q for a command destined
499 * for an idle target/lun.
500 */
501
502 cmd = (struct scsi_cmnd *) hostdata->input_Q;
503 prev = NULL;
504 while (cmd) {
505 if (!(hostdata->busy[cmd->device->id] &
506 (1 << (cmd->device->lun & 0xff))))
507 break;
508 prev = cmd;
509 cmd = (struct scsi_cmnd *) cmd->host_scribble;
510 }
511
512 /* quit if queue empty or all possible targets are busy */
513
514 if (!cmd) {
515 DB(DB_EXECUTE, printk(")EX-1 "))
516 return;
517 }
518
519 /* remove command from queue */
520
521 if (prev)
522 prev->host_scribble = cmd->host_scribble;
523 else
524 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
525
526 #ifdef PROC_STATISTICS
527 hostdata->cmd_cnt[cmd->device->id]++;
528 #endif
529
530 /*
531 * Start the selection process
532 */
533
534 if (cmd->sc_data_direction == DMA_TO_DEVICE)
535 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
536 else
537 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
538
539 /* Now we need to figure out whether or not this command is a good
540 * candidate for disconnect/reselect. We guess to the best of our
541 * ability, based on a set of hierarchical rules. When several
542 * devices are operating simultaneously, disconnects are usually
543 * an advantage. In a single device system, or if only 1 device
544 * is being accessed, transfers usually go faster if disconnects
545 * are not allowed:
546 *
547 * + Commands should NEVER disconnect if hostdata->disconnect =
548 * DIS_NEVER (this holds for tape drives also), and ALWAYS
549 * disconnect if hostdata->disconnect = DIS_ALWAYS.
550 * + Tape drive commands should always be allowed to disconnect.
551 * + Disconnect should be allowed if disconnected_Q isn't empty.
552 * + Commands should NOT disconnect if input_Q is empty.
553 * + Disconnect should be allowed if there are commands in input_Q
554 * for a different target/lun. In this case, the other commands
555 * should be made disconnect-able, if not already.
556 *
557 * I know, I know - this code would flunk me out of any
558 * "C Programming 101" class ever offered. But it's easy
559 * to change around and experiment with for now.
560 */
561
562 cmd->SCp.phase = 0; /* assume no disconnect */
563 if (hostdata->disconnect == DIS_NEVER)
564 goto no;
565 if (hostdata->disconnect == DIS_ALWAYS)
566 goto yes;
567 if (cmd->device->type == 1) /* tape drive? */
568 goto yes;
569 if (hostdata->disconnected_Q) /* other commands disconnected? */
570 goto yes;
571 if (!(hostdata->input_Q)) /* input_Q empty? */
572 goto no;
573 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
574 prev = (struct scsi_cmnd *) prev->host_scribble) {
575 if ((prev->device->id != cmd->device->id) ||
576 (prev->device->lun != cmd->device->lun)) {
577 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
578 prev = (struct scsi_cmnd *) prev->host_scribble)
579 prev->SCp.phase = 1;
580 goto yes;
581 }
582 }
583
584 goto no;
585
586 yes:
587 cmd->SCp.phase = 1;
588
589 #ifdef PROC_STATISTICS
590 hostdata->disc_allowed_cnt[cmd->device->id]++;
591 #endif
592
593 no:
594
595 write_wd33c93(regs, WD_SOURCE_ID, ((cmd->SCp.phase) ? SRCID_ER : 0));
596
597 write_wd33c93(regs, WD_TARGET_LUN, (u8)cmd->device->lun);
598 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
599 hostdata->sync_xfer[cmd->device->id]);
600 hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF));
601
602 if ((hostdata->level2 == L2_NONE) ||
603 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
604
605 /*
606 * Do a 'Select-With-ATN' command. This will end with
607 * one of the following interrupts:
608 * CSR_RESEL_AM: failure - can try again later.
609 * CSR_TIMEOUT: failure - give up.
610 * CSR_SELECT: success - proceed.
611 */
612
613 hostdata->selecting = cmd;
614
615 /* Every target has its own synchronous transfer setting, kept in the
616 * sync_xfer array, and a corresponding status byte in sync_stat[].
617 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
618 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
619 * means that the parameters are undetermined as yet, and that we
620 * need to send an SDTR message to this device after selection is
621 * complete: We set SS_FIRST to tell the interrupt routine to do so.
622 * If we've been asked not to try synchronous transfers on this
623 * target (and _all_ luns within it), we'll still send the SDTR message
624 * later, but at that time we'll negotiate for async by specifying a
625 * sync fifo depth of 0.
626 */
627 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
628 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
629 hostdata->state = S_SELECTING;
630 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
631 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
632 } else {
633
634 /*
635 * Do a 'Select-With-ATN-Xfer' command. This will end with
636 * one of the following interrupts:
637 * CSR_RESEL_AM: failure - can try again later.
638 * CSR_TIMEOUT: failure - give up.
639 * anything else: success - proceed.
640 */
641
642 hostdata->connected = cmd;
643 write_wd33c93(regs, WD_COMMAND_PHASE, 0);
644
645 /* copy command_descriptor_block into WD chip
646 * (take advantage of auto-incrementing)
647 */
648
649 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
650
651 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
652 * it's doing a 'select-and-transfer'. To be safe, we write the
653 * size of the CDB into the OWN_ID register for every case. This
654 * way there won't be problems with vendor-unique, audio, etc.
655 */
656
657 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
658
659 /* When doing a non-disconnect command with DMA, we can save
660 * ourselves a DATA phase interrupt later by setting everything
661 * up ahead of time.
662 */
663
664 if ((cmd->SCp.phase == 0) && (hostdata->no_dma == 0)) {
665 if (hostdata->dma_setup(cmd,
666 (cmd->sc_data_direction == DMA_TO_DEVICE) ?
667 DATA_OUT_DIR : DATA_IN_DIR))
668 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
669 else {
670 write_wd33c93_count(regs,
671 cmd->SCp.this_residual);
672 write_wd33c93(regs, WD_CONTROL,
673 CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
674 hostdata->dma = D_DMA_RUNNING;
675 }
676 } else
677 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
678
679 hostdata->state = S_RUNNING_LEVEL2;
680 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
681 }
682
683 /*
684 * Since the SCSI bus can handle only 1 connection at a time,
685 * we get out of here now. If the selection fails, or when
686 * the command disconnects, we'll come back to this routine
687 * to search the input_Q again...
688 */
689
690 DB(DB_EXECUTE,
691 printk("%s)EX-2 ", (cmd->SCp.phase) ? "d:" : ""))
692 }
693
694 static void
transfer_pio(const wd33c93_regs regs,uchar * buf,int cnt,int data_in_dir,struct WD33C93_hostdata * hostdata)695 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
696 int data_in_dir, struct WD33C93_hostdata *hostdata)
697 {
698 uchar asr;
699
700 DB(DB_TRANSFER,
701 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
702
703 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
704 write_wd33c93_count(regs, cnt);
705 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
706 if (data_in_dir) {
707 do {
708 asr = read_aux_stat(regs);
709 if (asr & ASR_DBR)
710 *buf++ = read_wd33c93(regs, WD_DATA);
711 } while (!(asr & ASR_INT));
712 } else {
713 do {
714 asr = read_aux_stat(regs);
715 if (asr & ASR_DBR)
716 write_wd33c93(regs, WD_DATA, *buf++);
717 } while (!(asr & ASR_INT));
718 }
719
720 /* Note: we are returning with the interrupt UN-cleared.
721 * Since (presumably) an entire I/O operation has
722 * completed, the bus phase is probably different, and
723 * the interrupt routine will discover this when it
724 * responds to the uncleared int.
725 */
726
727 }
728
729 static void
transfer_bytes(const wd33c93_regs regs,struct scsi_cmnd * cmd,int data_in_dir)730 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
731 int data_in_dir)
732 {
733 struct WD33C93_hostdata *hostdata;
734 unsigned long length;
735
736 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
737
738 /* Normally, you'd expect 'this_residual' to be non-zero here.
739 * In a series of scatter-gather transfers, however, this
740 * routine will usually be called with 'this_residual' equal
741 * to 0 and 'buffers_residual' non-zero. This means that a
742 * previous transfer completed, clearing 'this_residual', and
743 * now we need to setup the next scatter-gather buffer as the
744 * source or destination for THIS transfer.
745 */
746 if (!cmd->SCp.this_residual && cmd->SCp.buffers_residual) {
747 ++cmd->SCp.buffer;
748 --cmd->SCp.buffers_residual;
749 cmd->SCp.this_residual = cmd->SCp.buffer->length;
750 cmd->SCp.ptr = sg_virt(cmd->SCp.buffer);
751 }
752 if (!cmd->SCp.this_residual) /* avoid bogus setups */
753 return;
754
755 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
756 hostdata->sync_xfer[cmd->device->id]);
757
758 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
759 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
760 */
761
762 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
763 #ifdef PROC_STATISTICS
764 hostdata->pio_cnt++;
765 #endif
766 transfer_pio(regs, (uchar *) cmd->SCp.ptr,
767 cmd->SCp.this_residual, data_in_dir, hostdata);
768 length = cmd->SCp.this_residual;
769 cmd->SCp.this_residual = read_wd33c93_count(regs);
770 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
771 }
772
773 /* We are able to do DMA (in fact, the Amiga hardware is
774 * already going!), so start up the wd33c93 in DMA mode.
775 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
776 * transfer completes and causes an interrupt, we're
777 * reminded to tell the Amiga to shut down its end. We'll
778 * postpone the updating of 'this_residual' and 'ptr'
779 * until then.
780 */
781
782 else {
783 #ifdef PROC_STATISTICS
784 hostdata->dma_cnt++;
785 #endif
786 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
787 write_wd33c93_count(regs, cmd->SCp.this_residual);
788
789 if ((hostdata->level2 >= L2_DATA) ||
790 (hostdata->level2 == L2_BASIC && cmd->SCp.phase == 0)) {
791 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
792 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
793 hostdata->state = S_RUNNING_LEVEL2;
794 } else
795 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
796
797 hostdata->dma = D_DMA_RUNNING;
798 }
799 }
800
801 void
wd33c93_intr(struct Scsi_Host * instance)802 wd33c93_intr(struct Scsi_Host *instance)
803 {
804 struct WD33C93_hostdata *hostdata =
805 (struct WD33C93_hostdata *) instance->hostdata;
806 const wd33c93_regs regs = hostdata->regs;
807 struct scsi_cmnd *patch, *cmd;
808 uchar asr, sr, phs, id, lun, *ucp, msg;
809 unsigned long length, flags;
810
811 asr = read_aux_stat(regs);
812 if (!(asr & ASR_INT) || (asr & ASR_BSY))
813 return;
814
815 spin_lock_irqsave(&hostdata->lock, flags);
816
817 #ifdef PROC_STATISTICS
818 hostdata->int_cnt++;
819 #endif
820
821 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
822 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */
823 phs = read_wd33c93(regs, WD_COMMAND_PHASE);
824
825 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
826
827 /* After starting a DMA transfer, the next interrupt
828 * is guaranteed to be in response to completion of
829 * the transfer. Since the Amiga DMA hardware runs in
830 * in an open-ended fashion, it needs to be told when
831 * to stop; do that here if D_DMA_RUNNING is true.
832 * Also, we have to update 'this_residual' and 'ptr'
833 * based on the contents of the TRANSFER_COUNT register,
834 * in case the device decided to do an intermediate
835 * disconnect (a device may do this if it has to do a
836 * seek, or just to be nice and let other devices have
837 * some bus time during long transfers). After doing
838 * whatever is needed, we go on and service the WD3393
839 * interrupt normally.
840 */
841 if (hostdata->dma == D_DMA_RUNNING) {
842 DB(DB_TRANSFER,
843 printk("[%p/%d:", cmd->SCp.ptr, cmd->SCp.this_residual))
844 hostdata->dma_stop(cmd->device->host, cmd, 1);
845 hostdata->dma = D_DMA_OFF;
846 length = cmd->SCp.this_residual;
847 cmd->SCp.this_residual = read_wd33c93_count(regs);
848 cmd->SCp.ptr += (length - cmd->SCp.this_residual);
849 DB(DB_TRANSFER,
850 printk("%p/%d]", cmd->SCp.ptr, cmd->SCp.this_residual))
851 }
852
853 /* Respond to the specific WD3393 interrupt - there are quite a few! */
854 switch (sr) {
855 case CSR_TIMEOUT:
856 DB(DB_INTR, printk("TIMEOUT"))
857
858 if (hostdata->state == S_RUNNING_LEVEL2)
859 hostdata->connected = NULL;
860 else {
861 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
862 hostdata->selecting = NULL;
863 }
864
865 cmd->result = DID_NO_CONNECT << 16;
866 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
867 hostdata->state = S_UNCONNECTED;
868 cmd->scsi_done(cmd);
869
870 /* From esp.c:
871 * There is a window of time within the scsi_done() path
872 * of execution where interrupts are turned back on full
873 * blast and left that way. During that time we could
874 * reconnect to a disconnected command, then we'd bomb
875 * out below. We could also end up executing two commands
876 * at _once_. ...just so you know why the restore_flags()
877 * is here...
878 */
879
880 spin_unlock_irqrestore(&hostdata->lock, flags);
881
882 /* We are not connected to a target - check to see if there
883 * are commands waiting to be executed.
884 */
885
886 wd33c93_execute(instance);
887 break;
888
889 /* Note: this interrupt should not occur in a LEVEL2 command */
890
891 case CSR_SELECT:
892 DB(DB_INTR, printk("SELECT"))
893 hostdata->connected = cmd =
894 (struct scsi_cmnd *) hostdata->selecting;
895 hostdata->selecting = NULL;
896
897 /* construct an IDENTIFY message with correct disconnect bit */
898
899 hostdata->outgoing_msg[0] = IDENTIFY(0, cmd->device->lun);
900 if (cmd->SCp.phase)
901 hostdata->outgoing_msg[0] |= 0x40;
902
903 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
904
905 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
906
907 /* Tack on a 2nd message to ask about synchronous transfers. If we've
908 * been asked to do only asynchronous transfers on this device, we
909 * request a fifo depth of 0, which is equivalent to async - should
910 * solve the problems some people have had with GVP's Guru ROM.
911 */
912
913 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
914 hostdata->outgoing_msg[2] = 3;
915 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
916 if (hostdata->no_sync & (1 << cmd->device->id)) {
917 calc_sync_msg(hostdata->default_sx_per, 0,
918 0, hostdata->outgoing_msg + 4);
919 } else {
920 calc_sync_msg(optimum_sx_per(hostdata),
921 OPTIMUM_SX_OFF,
922 hostdata->fast,
923 hostdata->outgoing_msg + 4);
924 }
925 hostdata->outgoing_len = 6;
926 #ifdef SYNC_DEBUG
927 ucp = hostdata->outgoing_msg + 1;
928 printk(" sending SDTR %02x03%02x%02x%02x ",
929 ucp[0], ucp[2], ucp[3], ucp[4]);
930 #endif
931 } else
932 hostdata->outgoing_len = 1;
933
934 hostdata->state = S_CONNECTED;
935 spin_unlock_irqrestore(&hostdata->lock, flags);
936 break;
937
938 case CSR_XFER_DONE | PHS_DATA_IN:
939 case CSR_UNEXP | PHS_DATA_IN:
940 case CSR_SRV_REQ | PHS_DATA_IN:
941 DB(DB_INTR,
942 printk("IN-%d.%d", cmd->SCp.this_residual,
943 cmd->SCp.buffers_residual))
944 transfer_bytes(regs, cmd, DATA_IN_DIR);
945 if (hostdata->state != S_RUNNING_LEVEL2)
946 hostdata->state = S_CONNECTED;
947 spin_unlock_irqrestore(&hostdata->lock, flags);
948 break;
949
950 case CSR_XFER_DONE | PHS_DATA_OUT:
951 case CSR_UNEXP | PHS_DATA_OUT:
952 case CSR_SRV_REQ | PHS_DATA_OUT:
953 DB(DB_INTR,
954 printk("OUT-%d.%d", cmd->SCp.this_residual,
955 cmd->SCp.buffers_residual))
956 transfer_bytes(regs, cmd, DATA_OUT_DIR);
957 if (hostdata->state != S_RUNNING_LEVEL2)
958 hostdata->state = S_CONNECTED;
959 spin_unlock_irqrestore(&hostdata->lock, flags);
960 break;
961
962 /* Note: this interrupt should not occur in a LEVEL2 command */
963
964 case CSR_XFER_DONE | PHS_COMMAND:
965 case CSR_UNEXP | PHS_COMMAND:
966 case CSR_SRV_REQ | PHS_COMMAND:
967 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
968 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
969 hostdata);
970 hostdata->state = S_CONNECTED;
971 spin_unlock_irqrestore(&hostdata->lock, flags);
972 break;
973
974 case CSR_XFER_DONE | PHS_STATUS:
975 case CSR_UNEXP | PHS_STATUS:
976 case CSR_SRV_REQ | PHS_STATUS:
977 DB(DB_INTR, printk("STATUS="))
978 cmd->SCp.Status = read_1_byte(regs);
979 DB(DB_INTR, printk("%02x", cmd->SCp.Status))
980 if (hostdata->level2 >= L2_BASIC) {
981 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
982 udelay(7);
983 hostdata->state = S_RUNNING_LEVEL2;
984 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
985 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
986 } else {
987 hostdata->state = S_CONNECTED;
988 }
989 spin_unlock_irqrestore(&hostdata->lock, flags);
990 break;
991
992 case CSR_XFER_DONE | PHS_MESS_IN:
993 case CSR_UNEXP | PHS_MESS_IN:
994 case CSR_SRV_REQ | PHS_MESS_IN:
995 DB(DB_INTR, printk("MSG_IN="))
996
997 msg = read_1_byte(regs);
998 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
999 udelay(7);
1000
1001 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
1002 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
1003 msg = EXTENDED_MESSAGE;
1004 else
1005 hostdata->incoming_ptr = 0;
1006
1007 cmd->SCp.Message = msg;
1008 switch (msg) {
1009
1010 case COMMAND_COMPLETE:
1011 DB(DB_INTR, printk("CCMP"))
1012 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1013 hostdata->state = S_PRE_CMP_DISC;
1014 break;
1015
1016 case SAVE_POINTERS:
1017 DB(DB_INTR, printk("SDP"))
1018 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1019 hostdata->state = S_CONNECTED;
1020 break;
1021
1022 case RESTORE_POINTERS:
1023 DB(DB_INTR, printk("RDP"))
1024 if (hostdata->level2 >= L2_BASIC) {
1025 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1026 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1027 hostdata->state = S_RUNNING_LEVEL2;
1028 } else {
1029 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1030 hostdata->state = S_CONNECTED;
1031 }
1032 break;
1033
1034 case DISCONNECT:
1035 DB(DB_INTR, printk("DIS"))
1036 cmd->device->disconnect = 1;
1037 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1038 hostdata->state = S_PRE_TMP_DISC;
1039 break;
1040
1041 case MESSAGE_REJECT:
1042 DB(DB_INTR, printk("REJ"))
1043 #ifdef SYNC_DEBUG
1044 printk("-REJ-");
1045 #endif
1046 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
1047 hostdata->sync_stat[cmd->device->id] = SS_SET;
1048 /* we want default_sx_per, not DEFAULT_SX_PER */
1049 hostdata->sync_xfer[cmd->device->id] =
1050 calc_sync_xfer(hostdata->default_sx_per
1051 / 4, 0, 0, hostdata->sx_table);
1052 }
1053 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1054 hostdata->state = S_CONNECTED;
1055 break;
1056
1057 case EXTENDED_MESSAGE:
1058 DB(DB_INTR, printk("EXT"))
1059
1060 ucp = hostdata->incoming_msg;
1061
1062 #ifdef SYNC_DEBUG
1063 printk("%02x", ucp[hostdata->incoming_ptr]);
1064 #endif
1065 /* Is this the last byte of the extended message? */
1066
1067 if ((hostdata->incoming_ptr >= 2) &&
1068 (hostdata->incoming_ptr == (ucp[1] + 1))) {
1069
1070 switch (ucp[2]) { /* what's the EXTENDED code? */
1071 case EXTENDED_SDTR:
1072 /* default to default async period */
1073 id = calc_sync_xfer(hostdata->
1074 default_sx_per / 4, 0,
1075 0, hostdata->sx_table);
1076 if (hostdata->sync_stat[cmd->device->id] !=
1077 SS_WAITING) {
1078
1079 /* A device has sent an unsolicited SDTR message; rather than go
1080 * through the effort of decoding it and then figuring out what
1081 * our reply should be, we're just gonna say that we have a
1082 * synchronous fifo depth of 0. This will result in asynchronous
1083 * transfers - not ideal but so much easier.
1084 * Actually, this is OK because it assures us that if we don't
1085 * specifically ask for sync transfers, we won't do any.
1086 */
1087
1088 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1089 hostdata->outgoing_msg[0] =
1090 EXTENDED_MESSAGE;
1091 hostdata->outgoing_msg[1] = 3;
1092 hostdata->outgoing_msg[2] =
1093 EXTENDED_SDTR;
1094 calc_sync_msg(hostdata->
1095 default_sx_per, 0,
1096 0, hostdata->outgoing_msg + 3);
1097 hostdata->outgoing_len = 5;
1098 } else {
1099 if (ucp[4]) /* well, sync transfer */
1100 id = calc_sync_xfer(ucp[3], ucp[4],
1101 hostdata->fast,
1102 hostdata->sx_table);
1103 else if (ucp[3]) /* very unlikely... */
1104 id = calc_sync_xfer(ucp[3], ucp[4],
1105 0, hostdata->sx_table);
1106 }
1107 hostdata->sync_xfer[cmd->device->id] = id;
1108 #ifdef SYNC_DEBUG
1109 printk(" sync_xfer=%02x\n",
1110 hostdata->sync_xfer[cmd->device->id]);
1111 #endif
1112 hostdata->sync_stat[cmd->device->id] =
1113 SS_SET;
1114 write_wd33c93_cmd(regs,
1115 WD_CMD_NEGATE_ACK);
1116 hostdata->state = S_CONNECTED;
1117 break;
1118 case EXTENDED_WDTR:
1119 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1120 printk("sending WDTR ");
1121 hostdata->outgoing_msg[0] =
1122 EXTENDED_MESSAGE;
1123 hostdata->outgoing_msg[1] = 2;
1124 hostdata->outgoing_msg[2] =
1125 EXTENDED_WDTR;
1126 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1127 hostdata->outgoing_len = 4;
1128 write_wd33c93_cmd(regs,
1129 WD_CMD_NEGATE_ACK);
1130 hostdata->state = S_CONNECTED;
1131 break;
1132 default:
1133 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1134 printk
1135 ("Rejecting Unknown Extended Message(%02x). ",
1136 ucp[2]);
1137 hostdata->outgoing_msg[0] =
1138 MESSAGE_REJECT;
1139 hostdata->outgoing_len = 1;
1140 write_wd33c93_cmd(regs,
1141 WD_CMD_NEGATE_ACK);
1142 hostdata->state = S_CONNECTED;
1143 break;
1144 }
1145 hostdata->incoming_ptr = 0;
1146 }
1147
1148 /* We need to read more MESS_IN bytes for the extended message */
1149
1150 else {
1151 hostdata->incoming_ptr++;
1152 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1153 hostdata->state = S_CONNECTED;
1154 }
1155 break;
1156
1157 default:
1158 printk("Rejecting Unknown Message(%02x) ", msg);
1159 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1160 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1161 hostdata->outgoing_len = 1;
1162 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1163 hostdata->state = S_CONNECTED;
1164 }
1165 spin_unlock_irqrestore(&hostdata->lock, flags);
1166 break;
1167
1168 /* Note: this interrupt will occur only after a LEVEL2 command */
1169
1170 case CSR_SEL_XFER_DONE:
1171
1172 /* Make sure that reselection is enabled at this point - it may
1173 * have been turned off for the command that just completed.
1174 */
1175
1176 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1177 if (phs == 0x60) {
1178 DB(DB_INTR, printk("SX-DONE"))
1179 cmd->SCp.Message = COMMAND_COMPLETE;
1180 lun = read_wd33c93(regs, WD_TARGET_LUN);
1181 DB(DB_INTR, printk(":%d.%d", cmd->SCp.Status, lun))
1182 hostdata->connected = NULL;
1183 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1184 hostdata->state = S_UNCONNECTED;
1185 if (cmd->SCp.Status == ILLEGAL_STATUS_BYTE)
1186 cmd->SCp.Status = lun;
1187 if (cmd->cmnd[0] == REQUEST_SENSE
1188 && cmd->SCp.Status != GOOD)
1189 cmd->result =
1190 (cmd->
1191 result & 0x00ffff) | (DID_ERROR << 16);
1192 else
1193 cmd->result =
1194 cmd->SCp.Status | (cmd->SCp.Message << 8);
1195 cmd->scsi_done(cmd);
1196
1197 /* We are no longer connected to a target - check to see if
1198 * there are commands waiting to be executed.
1199 */
1200 spin_unlock_irqrestore(&hostdata->lock, flags);
1201 wd33c93_execute(instance);
1202 } else {
1203 printk
1204 ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---",
1205 asr, sr, phs);
1206 spin_unlock_irqrestore(&hostdata->lock, flags);
1207 }
1208 break;
1209
1210 /* Note: this interrupt will occur only after a LEVEL2 command */
1211
1212 case CSR_SDP:
1213 DB(DB_INTR, printk("SDP"))
1214 hostdata->state = S_RUNNING_LEVEL2;
1215 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
1216 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1217 spin_unlock_irqrestore(&hostdata->lock, flags);
1218 break;
1219
1220 case CSR_XFER_DONE | PHS_MESS_OUT:
1221 case CSR_UNEXP | PHS_MESS_OUT:
1222 case CSR_SRV_REQ | PHS_MESS_OUT:
1223 DB(DB_INTR, printk("MSG_OUT="))
1224
1225 /* To get here, we've probably requested MESSAGE_OUT and have
1226 * already put the correct bytes in outgoing_msg[] and filled
1227 * in outgoing_len. We simply send them out to the SCSI bus.
1228 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1229 * it - like when our SDTR message is rejected by a target. Some
1230 * targets send the REJECT before receiving all of the extended
1231 * message, and then seem to go back to MESSAGE_OUT for a byte
1232 * or two. Not sure why, or if I'm doing something wrong to
1233 * cause this to happen. Regardless, it seems that sending
1234 * NOP messages in these situations results in no harm and
1235 * makes everyone happy.
1236 */
1237 if (hostdata->outgoing_len == 0) {
1238 hostdata->outgoing_len = 1;
1239 hostdata->outgoing_msg[0] = NOP;
1240 }
1241 transfer_pio(regs, hostdata->outgoing_msg,
1242 hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1243 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1244 hostdata->outgoing_len = 0;
1245 hostdata->state = S_CONNECTED;
1246 spin_unlock_irqrestore(&hostdata->lock, flags);
1247 break;
1248
1249 case CSR_UNEXP_DISC:
1250
1251 /* I think I've seen this after a request-sense that was in response
1252 * to an error condition, but not sure. We certainly need to do
1253 * something when we get this interrupt - the question is 'what?'.
1254 * Let's think positively, and assume some command has finished
1255 * in a legal manner (like a command that provokes a request-sense),
1256 * so we treat it as a normal command-complete-disconnect.
1257 */
1258
1259 /* Make sure that reselection is enabled at this point - it may
1260 * have been turned off for the command that just completed.
1261 */
1262
1263 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1264 if (cmd == NULL) {
1265 printk(" - Already disconnected! ");
1266 hostdata->state = S_UNCONNECTED;
1267 spin_unlock_irqrestore(&hostdata->lock, flags);
1268 return;
1269 }
1270 DB(DB_INTR, printk("UNEXP_DISC"))
1271 hostdata->connected = NULL;
1272 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1273 hostdata->state = S_UNCONNECTED;
1274 if (cmd->cmnd[0] == REQUEST_SENSE && cmd->SCp.Status != GOOD)
1275 cmd->result =
1276 (cmd->result & 0x00ffff) | (DID_ERROR << 16);
1277 else
1278 cmd->result = cmd->SCp.Status | (cmd->SCp.Message << 8);
1279 cmd->scsi_done(cmd);
1280
1281 /* We are no longer connected to a target - check to see if
1282 * there are commands waiting to be executed.
1283 */
1284 /* look above for comments on scsi_done() */
1285 spin_unlock_irqrestore(&hostdata->lock, flags);
1286 wd33c93_execute(instance);
1287 break;
1288
1289 case CSR_DISC:
1290
1291 /* Make sure that reselection is enabled at this point - it may
1292 * have been turned off for the command that just completed.
1293 */
1294
1295 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1296 DB(DB_INTR, printk("DISC"))
1297 if (cmd == NULL) {
1298 printk(" - Already disconnected! ");
1299 hostdata->state = S_UNCONNECTED;
1300 }
1301 switch (hostdata->state) {
1302 case S_PRE_CMP_DISC:
1303 hostdata->connected = NULL;
1304 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1305 hostdata->state = S_UNCONNECTED;
1306 DB(DB_INTR, printk(":%d", cmd->SCp.Status))
1307 if (cmd->cmnd[0] == REQUEST_SENSE
1308 && cmd->SCp.Status != GOOD)
1309 cmd->result =
1310 (cmd->
1311 result & 0x00ffff) | (DID_ERROR << 16);
1312 else
1313 cmd->result =
1314 cmd->SCp.Status | (cmd->SCp.Message << 8);
1315 cmd->scsi_done(cmd);
1316 break;
1317 case S_PRE_TMP_DISC:
1318 case S_RUNNING_LEVEL2:
1319 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1320 hostdata->disconnected_Q = cmd;
1321 hostdata->connected = NULL;
1322 hostdata->state = S_UNCONNECTED;
1323
1324 #ifdef PROC_STATISTICS
1325 hostdata->disc_done_cnt[cmd->device->id]++;
1326 #endif
1327
1328 break;
1329 default:
1330 printk("*** Unexpected DISCONNECT interrupt! ***");
1331 hostdata->state = S_UNCONNECTED;
1332 }
1333
1334 /* We are no longer connected to a target - check to see if
1335 * there are commands waiting to be executed.
1336 */
1337 spin_unlock_irqrestore(&hostdata->lock, flags);
1338 wd33c93_execute(instance);
1339 break;
1340
1341 case CSR_RESEL_AM:
1342 case CSR_RESEL:
1343 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
1344
1345 /* Old chips (pre -A ???) don't have advanced features and will
1346 * generate CSR_RESEL. In that case we have to extract the LUN the
1347 * hard way (see below).
1348 * First we have to make sure this reselection didn't
1349 * happen during Arbitration/Selection of some other device.
1350 * If yes, put losing command back on top of input_Q.
1351 */
1352 if (hostdata->level2 <= L2_NONE) {
1353
1354 if (hostdata->selecting) {
1355 cmd = (struct scsi_cmnd *) hostdata->selecting;
1356 hostdata->selecting = NULL;
1357 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1358 cmd->host_scribble =
1359 (uchar *) hostdata->input_Q;
1360 hostdata->input_Q = cmd;
1361 }
1362 }
1363
1364 else {
1365
1366 if (cmd) {
1367 if (phs == 0x00) {
1368 hostdata->busy[cmd->device->id] &=
1369 ~(1 << (cmd->device->lun & 0xff));
1370 cmd->host_scribble =
1371 (uchar *) hostdata->input_Q;
1372 hostdata->input_Q = cmd;
1373 } else {
1374 printk
1375 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
1376 asr, sr, phs);
1377 while (1)
1378 printk("\r");
1379 }
1380 }
1381
1382 }
1383
1384 /* OK - find out which device reselected us. */
1385
1386 id = read_wd33c93(regs, WD_SOURCE_ID);
1387 id &= SRCID_MASK;
1388
1389 /* and extract the lun from the ID message. (Note that we don't
1390 * bother to check for a valid message here - I guess this is
1391 * not the right way to go, but...)
1392 */
1393
1394 if (sr == CSR_RESEL_AM) {
1395 lun = read_wd33c93(regs, WD_DATA);
1396 if (hostdata->level2 < L2_RESELECT)
1397 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1398 lun &= 7;
1399 } else {
1400 /* Old chip; wait for msgin phase to pick up the LUN. */
1401 for (lun = 255; lun; lun--) {
1402 if ((asr = read_aux_stat(regs)) & ASR_INT)
1403 break;
1404 udelay(10);
1405 }
1406 if (!(asr & ASR_INT)) {
1407 printk
1408 ("wd33c93: Reselected without IDENTIFY\n");
1409 lun = 0;
1410 } else {
1411 /* Verify this is a change to MSG_IN and read the message */
1412 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1413 udelay(7);
1414 if (sr == (CSR_ABORT | PHS_MESS_IN) ||
1415 sr == (CSR_UNEXP | PHS_MESS_IN) ||
1416 sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
1417 /* Got MSG_IN, grab target LUN */
1418 lun = read_1_byte(regs);
1419 /* Now we expect a 'paused with ACK asserted' int.. */
1420 asr = read_aux_stat(regs);
1421 if (!(asr & ASR_INT)) {
1422 udelay(10);
1423 asr = read_aux_stat(regs);
1424 if (!(asr & ASR_INT))
1425 printk
1426 ("wd33c93: No int after LUN on RESEL (%02x)\n",
1427 asr);
1428 }
1429 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1430 udelay(7);
1431 if (sr != CSR_MSGIN)
1432 printk
1433 ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
1434 sr);
1435 lun &= 7;
1436 write_wd33c93_cmd(regs,
1437 WD_CMD_NEGATE_ACK);
1438 } else {
1439 printk
1440 ("wd33c93: Not MSG_IN on reselect (%02x)\n",
1441 sr);
1442 lun = 0;
1443 }
1444 }
1445 }
1446
1447 /* Now we look for the command that's reconnecting. */
1448
1449 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
1450 patch = NULL;
1451 while (cmd) {
1452 if (id == cmd->device->id && lun == (u8)cmd->device->lun)
1453 break;
1454 patch = cmd;
1455 cmd = (struct scsi_cmnd *) cmd->host_scribble;
1456 }
1457
1458 /* Hmm. Couldn't find a valid command.... What to do? */
1459
1460 if (!cmd) {
1461 printk
1462 ("---TROUBLE: target %d.%d not in disconnect queue---",
1463 id, (u8)lun);
1464 spin_unlock_irqrestore(&hostdata->lock, flags);
1465 return;
1466 }
1467
1468 /* Ok, found the command - now start it up again. */
1469
1470 if (patch)
1471 patch->host_scribble = cmd->host_scribble;
1472 else
1473 hostdata->disconnected_Q =
1474 (struct scsi_cmnd *) cmd->host_scribble;
1475 hostdata->connected = cmd;
1476
1477 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1478 * because these things are preserved over a disconnect.
1479 * But we DO need to fix the DPD bit so it's correct for this command.
1480 */
1481
1482 if (cmd->sc_data_direction == DMA_TO_DEVICE)
1483 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
1484 else
1485 write_wd33c93(regs, WD_DESTINATION_ID,
1486 cmd->device->id | DSTID_DPD);
1487 if (hostdata->level2 >= L2_RESELECT) {
1488 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
1489 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1490 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1491 hostdata->state = S_RUNNING_LEVEL2;
1492 } else
1493 hostdata->state = S_CONNECTED;
1494
1495 spin_unlock_irqrestore(&hostdata->lock, flags);
1496 break;
1497
1498 default:
1499 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1500 spin_unlock_irqrestore(&hostdata->lock, flags);
1501 }
1502
1503 DB(DB_INTR, printk("} "))
1504
1505 }
1506
1507 static void
reset_wd33c93(struct Scsi_Host * instance)1508 reset_wd33c93(struct Scsi_Host *instance)
1509 {
1510 struct WD33C93_hostdata *hostdata =
1511 (struct WD33C93_hostdata *) instance->hostdata;
1512 const wd33c93_regs regs = hostdata->regs;
1513 uchar sr;
1514
1515 #ifdef CONFIG_SGI_IP22
1516 {
1517 int busycount = 0;
1518 extern void sgiwd93_reset(unsigned long);
1519 /* wait 'til the chip gets some time for us */
1520 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
1521 udelay (10);
1522 /*
1523 * there are scsi devices out there, which manage to lock up
1524 * the wd33c93 in a busy condition. In this state it won't
1525 * accept the reset command. The only way to solve this is to
1526 * give the chip a hardware reset (if possible). The code below
1527 * does this for the SGI Indy, where this is possible
1528 */
1529 /* still busy ? */
1530 if (read_aux_stat(regs) & ASR_BSY)
1531 sgiwd93_reset(instance->base); /* yeah, give it the hard one */
1532 }
1533 #endif
1534
1535 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
1536 instance->this_id | hostdata->clock_freq);
1537 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1538 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
1539 calc_sync_xfer(hostdata->default_sx_per / 4,
1540 DEFAULT_SX_OFF, 0, hostdata->sx_table));
1541 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
1542
1543
1544 #ifdef CONFIG_MVME147_SCSI
1545 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */
1546 #endif
1547
1548 while (!(read_aux_stat(regs) & ASR_INT))
1549 ;
1550 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1551
1552 hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
1553 if (sr == 0x00)
1554 hostdata->chip = C_WD33C93;
1555 else if (sr == 0x01) {
1556 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */
1557 sr = read_wd33c93(regs, WD_QUEUE_TAG);
1558 if (sr == 0xa5) {
1559 hostdata->chip = C_WD33C93B;
1560 write_wd33c93(regs, WD_QUEUE_TAG, 0);
1561 } else
1562 hostdata->chip = C_WD33C93A;
1563 } else
1564 hostdata->chip = C_UNKNOWN_CHIP;
1565
1566 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */
1567 hostdata->fast = 0;
1568
1569 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1570 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1571 }
1572
1573 int
wd33c93_host_reset(struct scsi_cmnd * SCpnt)1574 wd33c93_host_reset(struct scsi_cmnd * SCpnt)
1575 {
1576 struct Scsi_Host *instance;
1577 struct WD33C93_hostdata *hostdata;
1578 int i;
1579
1580 instance = SCpnt->device->host;
1581 spin_lock_irq(instance->host_lock);
1582 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1583
1584 printk("scsi%d: reset. ", instance->host_no);
1585 disable_irq(instance->irq);
1586
1587 hostdata->dma_stop(instance, NULL, 0);
1588 for (i = 0; i < 8; i++) {
1589 hostdata->busy[i] = 0;
1590 hostdata->sync_xfer[i] =
1591 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1592 0, hostdata->sx_table);
1593 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1594 }
1595 hostdata->input_Q = NULL;
1596 hostdata->selecting = NULL;
1597 hostdata->connected = NULL;
1598 hostdata->disconnected_Q = NULL;
1599 hostdata->state = S_UNCONNECTED;
1600 hostdata->dma = D_DMA_OFF;
1601 hostdata->incoming_ptr = 0;
1602 hostdata->outgoing_len = 0;
1603
1604 reset_wd33c93(instance);
1605 SCpnt->result = DID_RESET << 16;
1606 enable_irq(instance->irq);
1607 spin_unlock_irq(instance->host_lock);
1608 return SUCCESS;
1609 }
1610
1611 int
wd33c93_abort(struct scsi_cmnd * cmd)1612 wd33c93_abort(struct scsi_cmnd * cmd)
1613 {
1614 struct Scsi_Host *instance;
1615 struct WD33C93_hostdata *hostdata;
1616 wd33c93_regs regs;
1617 struct scsi_cmnd *tmp, *prev;
1618
1619 disable_irq(cmd->device->host->irq);
1620
1621 instance = cmd->device->host;
1622 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1623 regs = hostdata->regs;
1624
1625 /*
1626 * Case 1 : If the command hasn't been issued yet, we simply remove it
1627 * from the input_Q.
1628 */
1629
1630 tmp = (struct scsi_cmnd *) hostdata->input_Q;
1631 prev = NULL;
1632 while (tmp) {
1633 if (tmp == cmd) {
1634 if (prev)
1635 prev->host_scribble = cmd->host_scribble;
1636 else
1637 hostdata->input_Q =
1638 (struct scsi_cmnd *) cmd->host_scribble;
1639 cmd->host_scribble = NULL;
1640 cmd->result = DID_ABORT << 16;
1641 printk
1642 ("scsi%d: Abort - removing command from input_Q. ",
1643 instance->host_no);
1644 enable_irq(cmd->device->host->irq);
1645 cmd->scsi_done(cmd);
1646 return SUCCESS;
1647 }
1648 prev = tmp;
1649 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1650 }
1651
1652 /*
1653 * Case 2 : If the command is connected, we're going to fail the abort
1654 * and let the high level SCSI driver retry at a later time or
1655 * issue a reset.
1656 *
1657 * Timeouts, and therefore aborted commands, will be highly unlikely
1658 * and handling them cleanly in this situation would make the common
1659 * case of noresets less efficient, and would pollute our code. So,
1660 * we fail.
1661 */
1662
1663 if (hostdata->connected == cmd) {
1664 uchar sr, asr;
1665 unsigned long timeout;
1666
1667 printk("scsi%d: Aborting connected command - ",
1668 instance->host_no);
1669
1670 printk("stopping DMA - ");
1671 if (hostdata->dma == D_DMA_RUNNING) {
1672 hostdata->dma_stop(instance, cmd, 0);
1673 hostdata->dma = D_DMA_OFF;
1674 }
1675
1676 printk("sending wd33c93 ABORT command - ");
1677 write_wd33c93(regs, WD_CONTROL,
1678 CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1679 write_wd33c93_cmd(regs, WD_CMD_ABORT);
1680
1681 /* Now we have to attempt to flush out the FIFO... */
1682
1683 printk("flushing fifo - ");
1684 timeout = 1000000;
1685 do {
1686 asr = read_aux_stat(regs);
1687 if (asr & ASR_DBR)
1688 read_wd33c93(regs, WD_DATA);
1689 } while (!(asr & ASR_INT) && timeout-- > 0);
1690 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1691 printk
1692 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1693 asr, sr, read_wd33c93_count(regs), timeout);
1694
1695 /*
1696 * Abort command processed.
1697 * Still connected.
1698 * We must disconnect.
1699 */
1700
1701 printk("sending wd33c93 DISCONNECT command - ");
1702 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
1703
1704 timeout = 1000000;
1705 asr = read_aux_stat(regs);
1706 while ((asr & ASR_CIP) && timeout-- > 0)
1707 asr = read_aux_stat(regs);
1708 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1709 printk("asr=%02x, sr=%02x.", asr, sr);
1710
1711 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1712 hostdata->connected = NULL;
1713 hostdata->state = S_UNCONNECTED;
1714 cmd->result = DID_ABORT << 16;
1715
1716 /* sti();*/
1717 wd33c93_execute(instance);
1718
1719 enable_irq(cmd->device->host->irq);
1720 cmd->scsi_done(cmd);
1721 return SUCCESS;
1722 }
1723
1724 /*
1725 * Case 3: If the command is currently disconnected from the bus,
1726 * we're not going to expend much effort here: Let's just return
1727 * an ABORT_SNOOZE and hope for the best...
1728 */
1729
1730 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
1731 while (tmp) {
1732 if (tmp == cmd) {
1733 printk
1734 ("scsi%d: Abort - command found on disconnected_Q - ",
1735 instance->host_no);
1736 printk("Abort SNOOZE. ");
1737 enable_irq(cmd->device->host->irq);
1738 return FAILED;
1739 }
1740 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1741 }
1742
1743 /*
1744 * Case 4 : If we reached this point, the command was not found in any of
1745 * the queues.
1746 *
1747 * We probably reached this point because of an unlikely race condition
1748 * between the command completing successfully and the abortion code,
1749 * so we won't panic, but we will notify the user in case something really
1750 * broke.
1751 */
1752
1753 /* sti();*/
1754 wd33c93_execute(instance);
1755
1756 enable_irq(cmd->device->host->irq);
1757 printk("scsi%d: warning : SCSI command probably completed successfully"
1758 " before abortion. ", instance->host_no);
1759 return FAILED;
1760 }
1761
1762 #define MAX_WD33C93_HOSTS 4
1763 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1764 #define SETUP_BUFFER_SIZE 200
1765 static char setup_buffer[SETUP_BUFFER_SIZE];
1766 static char setup_used[MAX_SETUP_ARGS];
1767 static int done_setup = 0;
1768
1769 static int
wd33c93_setup(char * str)1770 wd33c93_setup(char *str)
1771 {
1772 int i;
1773 char *p1, *p2;
1774
1775 /* The kernel does some processing of the command-line before calling
1776 * this function: If it begins with any decimal or hex number arguments,
1777 * ints[0] = how many numbers found and ints[1] through [n] are the values
1778 * themselves. str points to where the non-numeric arguments (if any)
1779 * start: We do our own parsing of those. We construct synthetic 'nosync'
1780 * keywords out of numeric args (to maintain compatibility with older
1781 * versions) and then add the rest of the arguments.
1782 */
1783
1784 p1 = setup_buffer;
1785 *p1 = '\0';
1786 if (str)
1787 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
1788 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1789 p1 = setup_buffer;
1790 i = 0;
1791 while (*p1 && (i < MAX_SETUP_ARGS)) {
1792 p2 = strchr(p1, ',');
1793 if (p2) {
1794 *p2 = '\0';
1795 if (p1 != p2)
1796 setup_args[i] = p1;
1797 p1 = p2 + 1;
1798 i++;
1799 } else {
1800 setup_args[i] = p1;
1801 break;
1802 }
1803 }
1804 for (i = 0; i < MAX_SETUP_ARGS; i++)
1805 setup_used[i] = 0;
1806 done_setup = 1;
1807
1808 return 1;
1809 }
1810 __setup("wd33c93=", wd33c93_setup);
1811
1812 /* check_setup_args() returns index if key found, 0 if not
1813 */
1814 static int
check_setup_args(char * key,int * flags,int * val,char * buf)1815 check_setup_args(char *key, int *flags, int *val, char *buf)
1816 {
1817 int x;
1818 char *cp;
1819
1820 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1821 if (setup_used[x])
1822 continue;
1823 if (!strncmp(setup_args[x], key, strlen(key)))
1824 break;
1825 if (!strncmp(setup_args[x], "next", strlen("next")))
1826 return 0;
1827 }
1828 if (x == MAX_SETUP_ARGS)
1829 return 0;
1830 setup_used[x] = 1;
1831 cp = setup_args[x] + strlen(key);
1832 *val = -1;
1833 if (*cp != ':')
1834 return ++x;
1835 cp++;
1836 if ((*cp >= '0') && (*cp <= '9')) {
1837 *val = simple_strtoul(cp, NULL, 0);
1838 }
1839 return ++x;
1840 }
1841
1842 /*
1843 * Calculate internal data-transfer-clock cycle from input-clock
1844 * frequency (/MHz) and fill 'sx_table'.
1845 *
1846 * The original driver used to rely on a fixed sx_table, containing periods
1847 * for (only) the lower limits of the respective input-clock-frequency ranges
1848 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with
1849 * this setting so far, it might be desirable to adjust the transfer periods
1850 * closer to the really attached, possibly 25% higher, input-clock, since
1851 * - the wd33c93 may really use a significant shorter period, than it has
1852 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
1853 * instead).
1854 * - the wd33c93 may ask the target for a lower transfer rate, than the target
1855 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of
1856 * possible 200ns, which indeed shows up in tests as an approx. 10% lower
1857 * transfer rate).
1858 */
1859 static inline unsigned int
round_4(unsigned int x)1860 round_4(unsigned int x)
1861 {
1862 switch (x & 3) {
1863 case 1: --x;
1864 break;
1865 case 2: ++x;
1866 case 3: ++x;
1867 }
1868 return x;
1869 }
1870
1871 static void
calc_sx_table(unsigned int mhz,struct sx_period sx_table[9])1872 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
1873 {
1874 unsigned int d, i;
1875 if (mhz < 11)
1876 d = 2; /* divisor for 8-10 MHz input-clock */
1877 else if (mhz < 16)
1878 d = 3; /* divisor for 12-15 MHz input-clock */
1879 else
1880 d = 4; /* divisor for 16-20 MHz input-clock */
1881
1882 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */
1883
1884 sx_table[0].period_ns = 1;
1885 sx_table[0].reg_value = 0x20;
1886 for (i = 1; i < 8; i++) {
1887 sx_table[i].period_ns = round_4((i+1)*d / 100);
1888 sx_table[i].reg_value = (i+1)*0x10;
1889 }
1890 sx_table[7].reg_value = 0;
1891 sx_table[8].period_ns = 0;
1892 sx_table[8].reg_value = 0;
1893 }
1894
1895 /*
1896 * check and, maybe, map an init- or "clock:"- argument.
1897 */
1898 static uchar
set_clk_freq(int freq,int * mhz)1899 set_clk_freq(int freq, int *mhz)
1900 {
1901 int x = freq;
1902 if (WD33C93_FS_8_10 == freq)
1903 freq = 8;
1904 else if (WD33C93_FS_12_15 == freq)
1905 freq = 12;
1906 else if (WD33C93_FS_16_20 == freq)
1907 freq = 16;
1908 else if (freq > 7 && freq < 11)
1909 x = WD33C93_FS_8_10;
1910 else if (freq > 11 && freq < 16)
1911 x = WD33C93_FS_12_15;
1912 else if (freq > 15 && freq < 21)
1913 x = WD33C93_FS_16_20;
1914 else {
1915 /* Hmm, wouldn't it be safer to assume highest freq here? */
1916 x = WD33C93_FS_8_10;
1917 freq = 8;
1918 }
1919 *mhz = freq;
1920 return x;
1921 }
1922
1923 /*
1924 * to be used with the resync: fast: ... options
1925 */
set_resync(struct WD33C93_hostdata * hd,int mask)1926 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
1927 {
1928 int i;
1929 for (i = 0; i < 8; i++)
1930 if (mask & (1 << i))
1931 hd->sync_stat[i] = SS_UNSET;
1932 }
1933
1934 void
wd33c93_init(struct Scsi_Host * instance,const wd33c93_regs regs,dma_setup_t setup,dma_stop_t stop,int clock_freq)1935 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
1936 dma_setup_t setup, dma_stop_t stop, int clock_freq)
1937 {
1938 struct WD33C93_hostdata *hostdata;
1939 int i;
1940 int flags;
1941 int val;
1942 char buf[32];
1943
1944 if (!done_setup && setup_strings)
1945 wd33c93_setup(setup_strings);
1946
1947 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1948
1949 hostdata->regs = regs;
1950 hostdata->clock_freq = set_clk_freq(clock_freq, &i);
1951 calc_sx_table(i, hostdata->sx_table);
1952 hostdata->dma_setup = setup;
1953 hostdata->dma_stop = stop;
1954 hostdata->dma_bounce_buffer = NULL;
1955 hostdata->dma_bounce_len = 0;
1956 for (i = 0; i < 8; i++) {
1957 hostdata->busy[i] = 0;
1958 hostdata->sync_xfer[i] =
1959 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1960 0, hostdata->sx_table);
1961 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1962 #ifdef PROC_STATISTICS
1963 hostdata->cmd_cnt[i] = 0;
1964 hostdata->disc_allowed_cnt[i] = 0;
1965 hostdata->disc_done_cnt[i] = 0;
1966 #endif
1967 }
1968 hostdata->input_Q = NULL;
1969 hostdata->selecting = NULL;
1970 hostdata->connected = NULL;
1971 hostdata->disconnected_Q = NULL;
1972 hostdata->state = S_UNCONNECTED;
1973 hostdata->dma = D_DMA_OFF;
1974 hostdata->level2 = L2_BASIC;
1975 hostdata->disconnect = DIS_ADAPTIVE;
1976 hostdata->args = DEBUG_DEFAULTS;
1977 hostdata->incoming_ptr = 0;
1978 hostdata->outgoing_len = 0;
1979 hostdata->default_sx_per = DEFAULT_SX_PER;
1980 hostdata->no_dma = 0; /* default is DMA enabled */
1981
1982 #ifdef PROC_INTERFACE
1983 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
1984 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
1985 #ifdef PROC_STATISTICS
1986 hostdata->dma_cnt = 0;
1987 hostdata->pio_cnt = 0;
1988 hostdata->int_cnt = 0;
1989 #endif
1990 #endif
1991
1992 if (check_setup_args("clock", &flags, &val, buf)) {
1993 hostdata->clock_freq = set_clk_freq(val, &val);
1994 calc_sx_table(val, hostdata->sx_table);
1995 }
1996
1997 if (check_setup_args("nosync", &flags, &val, buf))
1998 hostdata->no_sync = val;
1999
2000 if (check_setup_args("nodma", &flags, &val, buf))
2001 hostdata->no_dma = (val == -1) ? 1 : val;
2002
2003 if (check_setup_args("period", &flags, &val, buf))
2004 hostdata->default_sx_per =
2005 hostdata->sx_table[round_period((unsigned int) val,
2006 hostdata->sx_table)].period_ns;
2007
2008 if (check_setup_args("disconnect", &flags, &val, buf)) {
2009 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2010 hostdata->disconnect = val;
2011 else
2012 hostdata->disconnect = DIS_ADAPTIVE;
2013 }
2014
2015 if (check_setup_args("level2", &flags, &val, buf))
2016 hostdata->level2 = val;
2017
2018 if (check_setup_args("debug", &flags, &val, buf))
2019 hostdata->args = val & DB_MASK;
2020
2021 if (check_setup_args("burst", &flags, &val, buf))
2022 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;
2023
2024 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
2025 && check_setup_args("fast", &flags, &val, buf))
2026 hostdata->fast = !!val;
2027
2028 if ((i = check_setup_args("next", &flags, &val, buf))) {
2029 while (i)
2030 setup_used[--i] = 1;
2031 }
2032 #ifdef PROC_INTERFACE
2033 if (check_setup_args("proc", &flags, &val, buf))
2034 hostdata->proc = val;
2035 #endif
2036
2037 spin_lock_irq(&hostdata->lock);
2038 reset_wd33c93(instance);
2039 spin_unlock_irq(&hostdata->lock);
2040
2041 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
2042 instance->host_no,
2043 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
2044 C_WD33C93A) ?
2045 "WD33c93A" : (hostdata->chip ==
2046 C_WD33C93B) ? "WD33c93B" : "unknown",
2047 hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
2048 #ifdef DEBUGGING_ON
2049 printk(" debug_flags=0x%02x\n", hostdata->args);
2050 #else
2051 printk(" debugging=OFF\n");
2052 #endif
2053 printk(" setup_args=");
2054 for (i = 0; i < MAX_SETUP_ARGS; i++)
2055 printk("%s,", setup_args[i]);
2056 printk("\n");
2057 printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE);
2058 }
2059
wd33c93_write_info(struct Scsi_Host * instance,char * buf,int len)2060 int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len)
2061 {
2062 #ifdef PROC_INTERFACE
2063 char *bp;
2064 struct WD33C93_hostdata *hd;
2065 int x;
2066
2067 hd = (struct WD33C93_hostdata *) instance->hostdata;
2068
2069 /* We accept the following
2070 * keywords (same format as command-line, but arguments are not optional):
2071 * debug
2072 * disconnect
2073 * period
2074 * resync
2075 * proc
2076 * nodma
2077 * level2
2078 * burst
2079 * fast
2080 * nosync
2081 */
2082
2083 buf[len] = '\0';
2084 for (bp = buf; *bp; ) {
2085 while (',' == *bp || ' ' == *bp)
2086 ++bp;
2087 if (!strncmp(bp, "debug:", 6)) {
2088 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
2089 } else if (!strncmp(bp, "disconnect:", 11)) {
2090 x = simple_strtoul(bp+11, &bp, 0);
2091 if (x < DIS_NEVER || x > DIS_ALWAYS)
2092 x = DIS_ADAPTIVE;
2093 hd->disconnect = x;
2094 } else if (!strncmp(bp, "period:", 7)) {
2095 x = simple_strtoul(bp+7, &bp, 0);
2096 hd->default_sx_per =
2097 hd->sx_table[round_period((unsigned int) x,
2098 hd->sx_table)].period_ns;
2099 } else if (!strncmp(bp, "resync:", 7)) {
2100 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
2101 } else if (!strncmp(bp, "proc:", 5)) {
2102 hd->proc = simple_strtoul(bp+5, &bp, 0);
2103 } else if (!strncmp(bp, "nodma:", 6)) {
2104 hd->no_dma = simple_strtoul(bp+6, &bp, 0);
2105 } else if (!strncmp(bp, "level2:", 7)) {
2106 hd->level2 = simple_strtoul(bp+7, &bp, 0);
2107 } else if (!strncmp(bp, "burst:", 6)) {
2108 hd->dma_mode =
2109 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
2110 } else if (!strncmp(bp, "fast:", 5)) {
2111 x = !!simple_strtol(bp+5, &bp, 0);
2112 if (x != hd->fast)
2113 set_resync(hd, 0xff);
2114 hd->fast = x;
2115 } else if (!strncmp(bp, "nosync:", 7)) {
2116 x = simple_strtoul(bp+7, &bp, 0);
2117 set_resync(hd, x ^ hd->no_sync);
2118 hd->no_sync = x;
2119 } else {
2120 break; /* unknown keyword,syntax-error,... */
2121 }
2122 }
2123 return len;
2124 #else
2125 return 0;
2126 #endif
2127 }
2128
2129 int
wd33c93_show_info(struct seq_file * m,struct Scsi_Host * instance)2130 wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance)
2131 {
2132 #ifdef PROC_INTERFACE
2133 struct WD33C93_hostdata *hd;
2134 struct scsi_cmnd *cmd;
2135 int x;
2136
2137 hd = (struct WD33C93_hostdata *) instance->hostdata;
2138
2139 spin_lock_irq(&hd->lock);
2140 if (hd->proc & PR_VERSION)
2141 seq_printf(m, "\nVersion %s - %s.",
2142 WD33C93_VERSION, WD33C93_DATE);
2143
2144 if (hd->proc & PR_INFO) {
2145 seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
2146 " dma_mode=%02x fast=%d",
2147 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
2148 seq_puts(m, "\nsync_xfer[] = ");
2149 for (x = 0; x < 7; x++)
2150 seq_printf(m, "\t%02x", hd->sync_xfer[x]);
2151 seq_puts(m, "\nsync_stat[] = ");
2152 for (x = 0; x < 7; x++)
2153 seq_printf(m, "\t%02x", hd->sync_stat[x]);
2154 }
2155 #ifdef PROC_STATISTICS
2156 if (hd->proc & PR_STATISTICS) {
2157 seq_puts(m, "\ncommands issued: ");
2158 for (x = 0; x < 7; x++)
2159 seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
2160 seq_puts(m, "\ndisconnects allowed:");
2161 for (x = 0; x < 7; x++)
2162 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
2163 seq_puts(m, "\ndisconnects done: ");
2164 for (x = 0; x < 7; x++)
2165 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
2166 seq_printf(m,
2167 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
2168 hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
2169 }
2170 #endif
2171 if (hd->proc & PR_CONNECTED) {
2172 seq_puts(m, "\nconnected: ");
2173 if (hd->connected) {
2174 cmd = (struct scsi_cmnd *) hd->connected;
2175 seq_printf(m, " %d:%llu(%02x)",
2176 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2177 }
2178 }
2179 if (hd->proc & PR_INPUTQ) {
2180 seq_puts(m, "\ninput_Q: ");
2181 cmd = (struct scsi_cmnd *) hd->input_Q;
2182 while (cmd) {
2183 seq_printf(m, " %d:%llu(%02x)",
2184 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2185 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2186 }
2187 }
2188 if (hd->proc & PR_DISCQ) {
2189 seq_puts(m, "\ndisconnected_Q:");
2190 cmd = (struct scsi_cmnd *) hd->disconnected_Q;
2191 while (cmd) {
2192 seq_printf(m, " %d:%llu(%02x)",
2193 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2194 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2195 }
2196 }
2197 seq_putc(m, '\n');
2198 spin_unlock_irq(&hd->lock);
2199 #endif /* PROC_INTERFACE */
2200 return 0;
2201 }
2202
2203 EXPORT_SYMBOL(wd33c93_host_reset);
2204 EXPORT_SYMBOL(wd33c93_init);
2205 EXPORT_SYMBOL(wd33c93_abort);
2206 EXPORT_SYMBOL(wd33c93_queuecommand);
2207 EXPORT_SYMBOL(wd33c93_intr);
2208 EXPORT_SYMBOL(wd33c93_show_info);
2209 EXPORT_SYMBOL(wd33c93_write_info);
2210