1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124 WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126 list_move(&inode->i_io_list, head);
127
128 /* dirty_time doesn't count as dirty_io until expiration */
129 if (head != &wb->b_dirty_time)
130 return wb_io_lists_populated(wb);
131
132 wb_io_lists_depopulated(wb);
133 return false;
134 }
135
wb_wakeup(struct bdi_writeback * wb)136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 spin_lock_irq(&wb->work_lock);
139 if (test_bit(WB_registered, &wb->state))
140 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 spin_unlock_irq(&wb->work_lock);
142 }
143
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)144 static void finish_writeback_work(struct bdi_writeback *wb,
145 struct wb_writeback_work *work)
146 {
147 struct wb_completion *done = work->done;
148
149 if (work->auto_free)
150 kfree(work);
151 if (done) {
152 wait_queue_head_t *waitq = done->waitq;
153
154 /* @done can't be accessed after the following dec */
155 if (atomic_dec_and_test(&done->cnt))
156 wake_up_all(waitq);
157 }
158 }
159
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)160 static void wb_queue_work(struct bdi_writeback *wb,
161 struct wb_writeback_work *work)
162 {
163 trace_writeback_queue(wb, work);
164
165 if (work->done)
166 atomic_inc(&work->done->cnt);
167
168 spin_lock_irq(&wb->work_lock);
169
170 if (test_bit(WB_registered, &wb->state)) {
171 list_add_tail(&work->list, &wb->work_list);
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 } else
174 finish_writeback_work(wb, work);
175
176 spin_unlock_irq(&wb->work_lock);
177 }
178
179 /**
180 * wb_wait_for_completion - wait for completion of bdi_writeback_works
181 * @done: target wb_completion
182 *
183 * Wait for one or more work items issued to @bdi with their ->done field
184 * set to @done, which should have been initialized with
185 * DEFINE_WB_COMPLETION(). This function returns after all such work items
186 * are completed. Work items which are waited upon aren't freed
187 * automatically on completion.
188 */
wb_wait_for_completion(struct wb_completion * done)189 void wb_wait_for_completion(struct wb_completion *done)
190 {
191 atomic_dec(&done->cnt); /* put down the initial count */
192 wait_event(*done->waitq, !atomic_read(&done->cnt));
193 }
194
195 #ifdef CONFIG_CGROUP_WRITEBACK
196
197 /*
198 * Parameters for foreign inode detection, see wbc_detach_inode() to see
199 * how they're used.
200 *
201 * These paramters are inherently heuristical as the detection target
202 * itself is fuzzy. All we want to do is detaching an inode from the
203 * current owner if it's being written to by some other cgroups too much.
204 *
205 * The current cgroup writeback is built on the assumption that multiple
206 * cgroups writing to the same inode concurrently is very rare and a mode
207 * of operation which isn't well supported. As such, the goal is not
208 * taking too long when a different cgroup takes over an inode while
209 * avoiding too aggressive flip-flops from occasional foreign writes.
210 *
211 * We record, very roughly, 2s worth of IO time history and if more than
212 * half of that is foreign, trigger the switch. The recording is quantized
213 * to 16 slots. To avoid tiny writes from swinging the decision too much,
214 * writes smaller than 1/8 of avg size are ignored.
215 */
216 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
220
221 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223 /* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
225 /* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227 /* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
229
230 /*
231 * Maximum inodes per isw. A specific value has been chosen to make
232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233 */
234 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235 / sizeof(struct inode *))
236
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
239
__inode_attach_wb(struct inode * inode,struct folio * folio)240 void __inode_attach_wb(struct inode *inode, struct folio *folio)
241 {
242 struct backing_dev_info *bdi = inode_to_bdi(inode);
243 struct bdi_writeback *wb = NULL;
244
245 if (inode_cgwb_enabled(inode)) {
246 struct cgroup_subsys_state *memcg_css;
247
248 if (folio) {
249 memcg_css = mem_cgroup_css_from_folio(folio);
250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251 } else {
252 /* must pin memcg_css, see wb_get_create() */
253 memcg_css = task_get_css(current, memory_cgrp_id);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 css_put(memcg_css);
256 }
257 }
258
259 if (!wb)
260 wb = &bdi->wb;
261
262 /*
263 * There may be multiple instances of this function racing to
264 * update the same inode. Use cmpxchg() to tell the winner.
265 */
266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267 wb_put(wb);
268 }
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270
271 /**
272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273 * @inode: inode of interest with i_lock held
274 * @wb: target bdi_writeback
275 *
276 * Remove the inode from wb's io lists and if necessarily put onto b_attached
277 * list. Only inodes attached to cgwb's are kept on this list.
278 */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)279 static void inode_cgwb_move_to_attached(struct inode *inode,
280 struct bdi_writeback *wb)
281 {
282 assert_spin_locked(&wb->list_lock);
283 assert_spin_locked(&inode->i_lock);
284 WARN_ON_ONCE(inode->i_state & I_FREEING);
285
286 inode->i_state &= ~I_SYNC_QUEUED;
287 if (wb != &wb->bdi->wb)
288 list_move(&inode->i_io_list, &wb->b_attached);
289 else
290 list_del_init(&inode->i_io_list);
291 wb_io_lists_depopulated(wb);
292 }
293
294 /**
295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296 * @inode: inode of interest with i_lock held
297 *
298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
299 * held on entry and is released on return. The returned wb is guaranteed
300 * to stay @inode's associated wb until its list_lock is released.
301 */
302 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304 __releases(&inode->i_lock)
305 __acquires(&wb->list_lock)
306 {
307 while (true) {
308 struct bdi_writeback *wb = inode_to_wb(inode);
309
310 /*
311 * inode_to_wb() association is protected by both
312 * @inode->i_lock and @wb->list_lock but list_lock nests
313 * outside i_lock. Drop i_lock and verify that the
314 * association hasn't changed after acquiring list_lock.
315 */
316 wb_get(wb);
317 spin_unlock(&inode->i_lock);
318 spin_lock(&wb->list_lock);
319
320 /* i_wb may have changed inbetween, can't use inode_to_wb() */
321 if (likely(wb == inode->i_wb)) {
322 wb_put(wb); /* @inode already has ref */
323 return wb;
324 }
325
326 spin_unlock(&wb->list_lock);
327 wb_put(wb);
328 cpu_relax();
329 spin_lock(&inode->i_lock);
330 }
331 }
332
333 /**
334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335 * @inode: inode of interest
336 *
337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338 * on entry.
339 */
inode_to_wb_and_lock_list(struct inode * inode)340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 __acquires(&wb->list_lock)
342 {
343 spin_lock(&inode->i_lock);
344 return locked_inode_to_wb_and_lock_list(inode);
345 }
346
347 struct inode_switch_wbs_context {
348 struct rcu_work work;
349
350 /*
351 * Multiple inodes can be switched at once. The switching procedure
352 * consists of two parts, separated by a RCU grace period. To make
353 * sure that the second part is executed for each inode gone through
354 * the first part, all inode pointers are placed into a NULL-terminated
355 * array embedded into struct inode_switch_wbs_context. Otherwise
356 * an inode could be left in a non-consistent state.
357 */
358 struct bdi_writeback *new_wb;
359 struct inode *inodes[];
360 };
361
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363 {
364 down_write(&bdi->wb_switch_rwsem);
365 }
366
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368 {
369 up_write(&bdi->wb_switch_rwsem);
370 }
371
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)372 static bool inode_do_switch_wbs(struct inode *inode,
373 struct bdi_writeback *old_wb,
374 struct bdi_writeback *new_wb)
375 {
376 struct address_space *mapping = inode->i_mapping;
377 XA_STATE(xas, &mapping->i_pages, 0);
378 struct folio *folio;
379 bool switched = false;
380
381 spin_lock(&inode->i_lock);
382 xa_lock_irq(&mapping->i_pages);
383
384 /*
385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386 * path owns the inode and we shouldn't modify ->i_io_list.
387 */
388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389 goto skip_switch;
390
391 trace_inode_switch_wbs(inode, old_wb, new_wb);
392
393 /*
394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396 * folios actually under writeback.
397 */
398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399 if (folio_test_dirty(folio)) {
400 long nr = folio_nr_pages(folio);
401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403 }
404 }
405
406 xas_set(&xas, 0);
407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 long nr = folio_nr_pages(folio);
409 WARN_ON_ONCE(!folio_test_writeback(folio));
410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412 }
413
414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415 atomic_dec(&old_wb->writeback_inodes);
416 atomic_inc(&new_wb->writeback_inodes);
417 }
418
419 wb_get(new_wb);
420
421 /*
422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
423 * the specific list @inode was on is ignored and the @inode is put on
424 * ->b_dirty which is always correct including from ->b_dirty_time.
425 * The transfer preserves @inode->dirtied_when ordering. If the @inode
426 * was clean, it means it was on the b_attached list, so move it onto
427 * the b_attached list of @new_wb.
428 */
429 if (!list_empty(&inode->i_io_list)) {
430 inode->i_wb = new_wb;
431
432 if (inode->i_state & I_DIRTY_ALL) {
433 struct inode *pos;
434
435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436 if (time_after_eq(inode->dirtied_when,
437 pos->dirtied_when))
438 break;
439 inode_io_list_move_locked(inode, new_wb,
440 pos->i_io_list.prev);
441 } else {
442 inode_cgwb_move_to_attached(inode, new_wb);
443 }
444 } else {
445 inode->i_wb = new_wb;
446 }
447
448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449 inode->i_wb_frn_winner = 0;
450 inode->i_wb_frn_avg_time = 0;
451 inode->i_wb_frn_history = 0;
452 switched = true;
453 skip_switch:
454 /*
455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456 * ensures that the new wb is visible if they see !I_WB_SWITCH.
457 */
458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459
460 xa_unlock_irq(&mapping->i_pages);
461 spin_unlock(&inode->i_lock);
462
463 return switched;
464 }
465
inode_switch_wbs_work_fn(struct work_struct * work)466 static void inode_switch_wbs_work_fn(struct work_struct *work)
467 {
468 struct inode_switch_wbs_context *isw =
469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472 struct bdi_writeback *new_wb = isw->new_wb;
473 unsigned long nr_switched = 0;
474 struct inode **inodep;
475
476 /*
477 * If @inode switches cgwb membership while sync_inodes_sb() is
478 * being issued, sync_inodes_sb() might miss it. Synchronize.
479 */
480 down_read(&bdi->wb_switch_rwsem);
481
482 /*
483 * By the time control reaches here, RCU grace period has passed
484 * since I_WB_SWITCH assertion and all wb stat update transactions
485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486 * synchronizing against the i_pages lock.
487 *
488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489 * gives us exclusion against all wb related operations on @inode
490 * including IO list manipulations and stat updates.
491 */
492 if (old_wb < new_wb) {
493 spin_lock(&old_wb->list_lock);
494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495 } else {
496 spin_lock(&new_wb->list_lock);
497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498 }
499
500 for (inodep = isw->inodes; *inodep; inodep++) {
501 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503 nr_switched++;
504 }
505
506 spin_unlock(&new_wb->list_lock);
507 spin_unlock(&old_wb->list_lock);
508
509 up_read(&bdi->wb_switch_rwsem);
510
511 if (nr_switched) {
512 wb_wakeup(new_wb);
513 wb_put_many(old_wb, nr_switched);
514 }
515
516 for (inodep = isw->inodes; *inodep; inodep++)
517 iput(*inodep);
518 wb_put(new_wb);
519 kfree(isw);
520 atomic_dec(&isw_nr_in_flight);
521 }
522
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)523 static bool inode_prepare_wbs_switch(struct inode *inode,
524 struct bdi_writeback *new_wb)
525 {
526 /*
527 * Paired with smp_mb() in cgroup_writeback_umount().
528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531 */
532 smp_mb();
533
534 if (IS_DAX(inode))
535 return false;
536
537 /* while holding I_WB_SWITCH, no one else can update the association */
538 spin_lock(&inode->i_lock);
539 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541 inode_to_wb(inode) == new_wb) {
542 spin_unlock(&inode->i_lock);
543 return false;
544 }
545 inode->i_state |= I_WB_SWITCH;
546 __iget(inode);
547 spin_unlock(&inode->i_lock);
548
549 return true;
550 }
551
552 /**
553 * inode_switch_wbs - change the wb association of an inode
554 * @inode: target inode
555 * @new_wb_id: ID of the new wb
556 *
557 * Switch @inode's wb association to the wb identified by @new_wb_id. The
558 * switching is performed asynchronously and may fail silently.
559 */
inode_switch_wbs(struct inode * inode,int new_wb_id)560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561 {
562 struct backing_dev_info *bdi = inode_to_bdi(inode);
563 struct cgroup_subsys_state *memcg_css;
564 struct inode_switch_wbs_context *isw;
565
566 /* noop if seems to be already in progress */
567 if (inode->i_state & I_WB_SWITCH)
568 return;
569
570 /* avoid queueing a new switch if too many are already in flight */
571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572 return;
573
574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575 if (!isw)
576 return;
577
578 atomic_inc(&isw_nr_in_flight);
579
580 /* find and pin the new wb */
581 rcu_read_lock();
582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583 if (memcg_css && !css_tryget(memcg_css))
584 memcg_css = NULL;
585 rcu_read_unlock();
586 if (!memcg_css)
587 goto out_free;
588
589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590 css_put(memcg_css);
591 if (!isw->new_wb)
592 goto out_free;
593
594 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595 goto out_free;
596
597 isw->inodes[0] = inode;
598
599 /*
600 * In addition to synchronizing among switchers, I_WB_SWITCH tells
601 * the RCU protected stat update paths to grab the i_page
602 * lock so that stat transfer can synchronize against them.
603 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604 */
605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606 queue_rcu_work(isw_wq, &isw->work);
607 return;
608
609 out_free:
610 atomic_dec(&isw_nr_in_flight);
611 if (isw->new_wb)
612 wb_put(isw->new_wb);
613 kfree(isw);
614 }
615
616 /**
617 * cleanup_offline_cgwb - detach associated inodes
618 * @wb: target wb
619 *
620 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
621 * to eventually release the dying @wb. Returns %true if not all inodes were
622 * switched and the function has to be restarted.
623 */
cleanup_offline_cgwb(struct bdi_writeback * wb)624 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
625 {
626 struct cgroup_subsys_state *memcg_css;
627 struct inode_switch_wbs_context *isw;
628 struct inode *inode;
629 int nr;
630 bool restart = false;
631
632 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
633 GFP_KERNEL);
634 if (!isw)
635 return restart;
636
637 atomic_inc(&isw_nr_in_flight);
638
639 for (memcg_css = wb->memcg_css->parent; memcg_css;
640 memcg_css = memcg_css->parent) {
641 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
642 if (isw->new_wb)
643 break;
644 }
645 if (unlikely(!isw->new_wb))
646 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
647
648 nr = 0;
649 spin_lock(&wb->list_lock);
650 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
651 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
652 continue;
653
654 isw->inodes[nr++] = inode;
655
656 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
657 restart = true;
658 break;
659 }
660 }
661 spin_unlock(&wb->list_lock);
662
663 /* no attached inodes? bail out */
664 if (nr == 0) {
665 atomic_dec(&isw_nr_in_flight);
666 wb_put(isw->new_wb);
667 kfree(isw);
668 return restart;
669 }
670
671 /*
672 * In addition to synchronizing among switchers, I_WB_SWITCH tells
673 * the RCU protected stat update paths to grab the i_page
674 * lock so that stat transfer can synchronize against them.
675 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
676 */
677 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
678 queue_rcu_work(isw_wq, &isw->work);
679
680 return restart;
681 }
682
683 /**
684 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
685 * @wbc: writeback_control of interest
686 * @inode: target inode
687 *
688 * @inode is locked and about to be written back under the control of @wbc.
689 * Record @inode's writeback context into @wbc and unlock the i_lock. On
690 * writeback completion, wbc_detach_inode() should be called. This is used
691 * to track the cgroup writeback context.
692 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
694 struct inode *inode)
695 {
696 if (!inode_cgwb_enabled(inode)) {
697 spin_unlock(&inode->i_lock);
698 return;
699 }
700
701 wbc->wb = inode_to_wb(inode);
702 wbc->inode = inode;
703
704 wbc->wb_id = wbc->wb->memcg_css->id;
705 wbc->wb_lcand_id = inode->i_wb_frn_winner;
706 wbc->wb_tcand_id = 0;
707 wbc->wb_bytes = 0;
708 wbc->wb_lcand_bytes = 0;
709 wbc->wb_tcand_bytes = 0;
710
711 wb_get(wbc->wb);
712 spin_unlock(&inode->i_lock);
713
714 /*
715 * A dying wb indicates that either the blkcg associated with the
716 * memcg changed or the associated memcg is dying. In the first
717 * case, a replacement wb should already be available and we should
718 * refresh the wb immediately. In the second case, trying to
719 * refresh will keep failing.
720 */
721 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
722 inode_switch_wbs(inode, wbc->wb_id);
723 }
724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
725
726 /**
727 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
728 * @wbc: writeback_control of the just finished writeback
729 *
730 * To be called after a writeback attempt of an inode finishes and undoes
731 * wbc_attach_and_unlock_inode(). Can be called under any context.
732 *
733 * As concurrent write sharing of an inode is expected to be very rare and
734 * memcg only tracks page ownership on first-use basis severely confining
735 * the usefulness of such sharing, cgroup writeback tracks ownership
736 * per-inode. While the support for concurrent write sharing of an inode
737 * is deemed unnecessary, an inode being written to by different cgroups at
738 * different points in time is a lot more common, and, more importantly,
739 * charging only by first-use can too readily lead to grossly incorrect
740 * behaviors (single foreign page can lead to gigabytes of writeback to be
741 * incorrectly attributed).
742 *
743 * To resolve this issue, cgroup writeback detects the majority dirtier of
744 * an inode and transfers the ownership to it. To avoid unnecessary
745 * oscillation, the detection mechanism keeps track of history and gives
746 * out the switch verdict only if the foreign usage pattern is stable over
747 * a certain amount of time and/or writeback attempts.
748 *
749 * On each writeback attempt, @wbc tries to detect the majority writer
750 * using Boyer-Moore majority vote algorithm. In addition to the byte
751 * count from the majority voting, it also counts the bytes written for the
752 * current wb and the last round's winner wb (max of last round's current
753 * wb, the winner from two rounds ago, and the last round's majority
754 * candidate). Keeping track of the historical winner helps the algorithm
755 * to semi-reliably detect the most active writer even when it's not the
756 * absolute majority.
757 *
758 * Once the winner of the round is determined, whether the winner is
759 * foreign or not and how much IO time the round consumed is recorded in
760 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
761 * over a certain threshold, the switch verdict is given.
762 */
wbc_detach_inode(struct writeback_control * wbc)763 void wbc_detach_inode(struct writeback_control *wbc)
764 {
765 struct bdi_writeback *wb = wbc->wb;
766 struct inode *inode = wbc->inode;
767 unsigned long avg_time, max_bytes, max_time;
768 u16 history;
769 int max_id;
770
771 if (!wb)
772 return;
773
774 history = inode->i_wb_frn_history;
775 avg_time = inode->i_wb_frn_avg_time;
776
777 /* pick the winner of this round */
778 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
779 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
780 max_id = wbc->wb_id;
781 max_bytes = wbc->wb_bytes;
782 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
783 max_id = wbc->wb_lcand_id;
784 max_bytes = wbc->wb_lcand_bytes;
785 } else {
786 max_id = wbc->wb_tcand_id;
787 max_bytes = wbc->wb_tcand_bytes;
788 }
789
790 /*
791 * Calculate the amount of IO time the winner consumed and fold it
792 * into the running average kept per inode. If the consumed IO
793 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
794 * deciding whether to switch or not. This is to prevent one-off
795 * small dirtiers from skewing the verdict.
796 */
797 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
798 wb->avg_write_bandwidth);
799 if (avg_time)
800 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
801 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
802 else
803 avg_time = max_time; /* immediate catch up on first run */
804
805 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
806 int slots;
807
808 /*
809 * The switch verdict is reached if foreign wb's consume
810 * more than a certain proportion of IO time in a
811 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
812 * history mask where each bit represents one sixteenth of
813 * the period. Determine the number of slots to shift into
814 * history from @max_time.
815 */
816 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
817 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
818 history <<= slots;
819 if (wbc->wb_id != max_id)
820 history |= (1U << slots) - 1;
821
822 if (history)
823 trace_inode_foreign_history(inode, wbc, history);
824
825 /*
826 * Switch if the current wb isn't the consistent winner.
827 * If there are multiple closely competing dirtiers, the
828 * inode may switch across them repeatedly over time, which
829 * is okay. The main goal is avoiding keeping an inode on
830 * the wrong wb for an extended period of time.
831 */
832 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
833 inode_switch_wbs(inode, max_id);
834 }
835
836 /*
837 * Multiple instances of this function may race to update the
838 * following fields but we don't mind occassional inaccuracies.
839 */
840 inode->i_wb_frn_winner = max_id;
841 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
842 inode->i_wb_frn_history = history;
843
844 wb_put(wbc->wb);
845 wbc->wb = NULL;
846 }
847 EXPORT_SYMBOL_GPL(wbc_detach_inode);
848
849 /**
850 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
851 * @wbc: writeback_control of the writeback in progress
852 * @page: page being written out
853 * @bytes: number of bytes being written out
854 *
855 * @bytes from @page are about to written out during the writeback
856 * controlled by @wbc. Keep the book for foreign inode detection. See
857 * wbc_detach_inode().
858 */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
860 size_t bytes)
861 {
862 struct folio *folio;
863 struct cgroup_subsys_state *css;
864 int id;
865
866 /*
867 * pageout() path doesn't attach @wbc to the inode being written
868 * out. This is intentional as we don't want the function to block
869 * behind a slow cgroup. Ultimately, we want pageout() to kick off
870 * regular writeback instead of writing things out itself.
871 */
872 if (!wbc->wb || wbc->no_cgroup_owner)
873 return;
874
875 folio = page_folio(page);
876 css = mem_cgroup_css_from_folio(folio);
877 /* dead cgroups shouldn't contribute to inode ownership arbitration */
878 if (!(css->flags & CSS_ONLINE))
879 return;
880
881 id = css->id;
882
883 if (id == wbc->wb_id) {
884 wbc->wb_bytes += bytes;
885 return;
886 }
887
888 if (id == wbc->wb_lcand_id)
889 wbc->wb_lcand_bytes += bytes;
890
891 /* Boyer-Moore majority vote algorithm */
892 if (!wbc->wb_tcand_bytes)
893 wbc->wb_tcand_id = id;
894 if (id == wbc->wb_tcand_id)
895 wbc->wb_tcand_bytes += bytes;
896 else
897 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
898 }
899 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
900
901 /**
902 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
903 * @wb: target bdi_writeback to split @nr_pages to
904 * @nr_pages: number of pages to write for the whole bdi
905 *
906 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
907 * relation to the total write bandwidth of all wb's w/ dirty inodes on
908 * @wb->bdi.
909 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)910 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
911 {
912 unsigned long this_bw = wb->avg_write_bandwidth;
913 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
914
915 if (nr_pages == LONG_MAX)
916 return LONG_MAX;
917
918 /*
919 * This may be called on clean wb's and proportional distribution
920 * may not make sense, just use the original @nr_pages in those
921 * cases. In general, we wanna err on the side of writing more.
922 */
923 if (!tot_bw || this_bw >= tot_bw)
924 return nr_pages;
925 else
926 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
927 }
928
929 /**
930 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
931 * @bdi: target backing_dev_info
932 * @base_work: wb_writeback_work to issue
933 * @skip_if_busy: skip wb's which already have writeback in progress
934 *
935 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
936 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
937 * distributed to the busy wbs according to each wb's proportion in the
938 * total active write bandwidth of @bdi.
939 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)940 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
941 struct wb_writeback_work *base_work,
942 bool skip_if_busy)
943 {
944 struct bdi_writeback *last_wb = NULL;
945 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
946 struct bdi_writeback, bdi_node);
947
948 might_sleep();
949 restart:
950 rcu_read_lock();
951 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
952 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
953 struct wb_writeback_work fallback_work;
954 struct wb_writeback_work *work;
955 long nr_pages;
956
957 if (last_wb) {
958 wb_put(last_wb);
959 last_wb = NULL;
960 }
961
962 /* SYNC_ALL writes out I_DIRTY_TIME too */
963 if (!wb_has_dirty_io(wb) &&
964 (base_work->sync_mode == WB_SYNC_NONE ||
965 list_empty(&wb->b_dirty_time)))
966 continue;
967 if (skip_if_busy && writeback_in_progress(wb))
968 continue;
969
970 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
971
972 work = kmalloc(sizeof(*work), GFP_ATOMIC);
973 if (work) {
974 *work = *base_work;
975 work->nr_pages = nr_pages;
976 work->auto_free = 1;
977 wb_queue_work(wb, work);
978 continue;
979 }
980
981 /*
982 * If wb_tryget fails, the wb has been shutdown, skip it.
983 *
984 * Pin @wb so that it stays on @bdi->wb_list. This allows
985 * continuing iteration from @wb after dropping and
986 * regrabbing rcu read lock.
987 */
988 if (!wb_tryget(wb))
989 continue;
990
991 /* alloc failed, execute synchronously using on-stack fallback */
992 work = &fallback_work;
993 *work = *base_work;
994 work->nr_pages = nr_pages;
995 work->auto_free = 0;
996 work->done = &fallback_work_done;
997
998 wb_queue_work(wb, work);
999 last_wb = wb;
1000
1001 rcu_read_unlock();
1002 wb_wait_for_completion(&fallback_work_done);
1003 goto restart;
1004 }
1005 rcu_read_unlock();
1006
1007 if (last_wb)
1008 wb_put(last_wb);
1009 }
1010
1011 /**
1012 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1013 * @bdi_id: target bdi id
1014 * @memcg_id: target memcg css id
1015 * @reason: reason why some writeback work initiated
1016 * @done: target wb_completion
1017 *
1018 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1019 * with the specified parameters.
1020 */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1021 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1022 enum wb_reason reason, struct wb_completion *done)
1023 {
1024 struct backing_dev_info *bdi;
1025 struct cgroup_subsys_state *memcg_css;
1026 struct bdi_writeback *wb;
1027 struct wb_writeback_work *work;
1028 unsigned long dirty;
1029 int ret;
1030
1031 /* lookup bdi and memcg */
1032 bdi = bdi_get_by_id(bdi_id);
1033 if (!bdi)
1034 return -ENOENT;
1035
1036 rcu_read_lock();
1037 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1038 if (memcg_css && !css_tryget(memcg_css))
1039 memcg_css = NULL;
1040 rcu_read_unlock();
1041 if (!memcg_css) {
1042 ret = -ENOENT;
1043 goto out_bdi_put;
1044 }
1045
1046 /*
1047 * And find the associated wb. If the wb isn't there already
1048 * there's nothing to flush, don't create one.
1049 */
1050 wb = wb_get_lookup(bdi, memcg_css);
1051 if (!wb) {
1052 ret = -ENOENT;
1053 goto out_css_put;
1054 }
1055
1056 /*
1057 * The caller is attempting to write out most of
1058 * the currently dirty pages. Let's take the current dirty page
1059 * count and inflate it by 25% which should be large enough to
1060 * flush out most dirty pages while avoiding getting livelocked by
1061 * concurrent dirtiers.
1062 *
1063 * BTW the memcg stats are flushed periodically and this is best-effort
1064 * estimation, so some potential error is ok.
1065 */
1066 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1067 dirty = dirty * 10 / 8;
1068
1069 /* issue the writeback work */
1070 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1071 if (work) {
1072 work->nr_pages = dirty;
1073 work->sync_mode = WB_SYNC_NONE;
1074 work->range_cyclic = 1;
1075 work->reason = reason;
1076 work->done = done;
1077 work->auto_free = 1;
1078 wb_queue_work(wb, work);
1079 ret = 0;
1080 } else {
1081 ret = -ENOMEM;
1082 }
1083
1084 wb_put(wb);
1085 out_css_put:
1086 css_put(memcg_css);
1087 out_bdi_put:
1088 bdi_put(bdi);
1089 return ret;
1090 }
1091
1092 /**
1093 * cgroup_writeback_umount - flush inode wb switches for umount
1094 *
1095 * This function is called when a super_block is about to be destroyed and
1096 * flushes in-flight inode wb switches. An inode wb switch goes through
1097 * RCU and then workqueue, so the two need to be flushed in order to ensure
1098 * that all previously scheduled switches are finished. As wb switches are
1099 * rare occurrences and synchronize_rcu() can take a while, perform
1100 * flushing iff wb switches are in flight.
1101 */
cgroup_writeback_umount(void)1102 void cgroup_writeback_umount(void)
1103 {
1104 /*
1105 * SB_ACTIVE should be reliably cleared before checking
1106 * isw_nr_in_flight, see generic_shutdown_super().
1107 */
1108 smp_mb();
1109
1110 if (atomic_read(&isw_nr_in_flight)) {
1111 /*
1112 * Use rcu_barrier() to wait for all pending callbacks to
1113 * ensure that all in-flight wb switches are in the workqueue.
1114 */
1115 rcu_barrier();
1116 flush_workqueue(isw_wq);
1117 }
1118 }
1119
cgroup_writeback_init(void)1120 static int __init cgroup_writeback_init(void)
1121 {
1122 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1123 if (!isw_wq)
1124 return -ENOMEM;
1125 return 0;
1126 }
1127 fs_initcall(cgroup_writeback_init);
1128
1129 #else /* CONFIG_CGROUP_WRITEBACK */
1130
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1131 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1132 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1133
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1134 static void inode_cgwb_move_to_attached(struct inode *inode,
1135 struct bdi_writeback *wb)
1136 {
1137 assert_spin_locked(&wb->list_lock);
1138 assert_spin_locked(&inode->i_lock);
1139 WARN_ON_ONCE(inode->i_state & I_FREEING);
1140
1141 inode->i_state &= ~I_SYNC_QUEUED;
1142 list_del_init(&inode->i_io_list);
1143 wb_io_lists_depopulated(wb);
1144 }
1145
1146 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1147 locked_inode_to_wb_and_lock_list(struct inode *inode)
1148 __releases(&inode->i_lock)
1149 __acquires(&wb->list_lock)
1150 {
1151 struct bdi_writeback *wb = inode_to_wb(inode);
1152
1153 spin_unlock(&inode->i_lock);
1154 spin_lock(&wb->list_lock);
1155 return wb;
1156 }
1157
inode_to_wb_and_lock_list(struct inode * inode)1158 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1159 __acquires(&wb->list_lock)
1160 {
1161 struct bdi_writeback *wb = inode_to_wb(inode);
1162
1163 spin_lock(&wb->list_lock);
1164 return wb;
1165 }
1166
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1167 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1168 {
1169 return nr_pages;
1170 }
1171
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1172 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1173 struct wb_writeback_work *base_work,
1174 bool skip_if_busy)
1175 {
1176 might_sleep();
1177
1178 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1179 base_work->auto_free = 0;
1180 wb_queue_work(&bdi->wb, base_work);
1181 }
1182 }
1183
1184 #endif /* CONFIG_CGROUP_WRITEBACK */
1185
1186 /*
1187 * Add in the number of potentially dirty inodes, because each inode
1188 * write can dirty pagecache in the underlying blockdev.
1189 */
get_nr_dirty_pages(void)1190 static unsigned long get_nr_dirty_pages(void)
1191 {
1192 return global_node_page_state(NR_FILE_DIRTY) +
1193 get_nr_dirty_inodes();
1194 }
1195
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1196 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1197 {
1198 if (!wb_has_dirty_io(wb))
1199 return;
1200
1201 /*
1202 * All callers of this function want to start writeback of all
1203 * dirty pages. Places like vmscan can call this at a very
1204 * high frequency, causing pointless allocations of tons of
1205 * work items and keeping the flusher threads busy retrieving
1206 * that work. Ensure that we only allow one of them pending and
1207 * inflight at the time.
1208 */
1209 if (test_bit(WB_start_all, &wb->state) ||
1210 test_and_set_bit(WB_start_all, &wb->state))
1211 return;
1212
1213 wb->start_all_reason = reason;
1214 wb_wakeup(wb);
1215 }
1216
1217 /**
1218 * wb_start_background_writeback - start background writeback
1219 * @wb: bdi_writback to write from
1220 *
1221 * Description:
1222 * This makes sure WB_SYNC_NONE background writeback happens. When
1223 * this function returns, it is only guaranteed that for given wb
1224 * some IO is happening if we are over background dirty threshold.
1225 * Caller need not hold sb s_umount semaphore.
1226 */
wb_start_background_writeback(struct bdi_writeback * wb)1227 void wb_start_background_writeback(struct bdi_writeback *wb)
1228 {
1229 /*
1230 * We just wake up the flusher thread. It will perform background
1231 * writeback as soon as there is no other work to do.
1232 */
1233 trace_writeback_wake_background(wb);
1234 wb_wakeup(wb);
1235 }
1236
1237 /*
1238 * Remove the inode from the writeback list it is on.
1239 */
inode_io_list_del(struct inode * inode)1240 void inode_io_list_del(struct inode *inode)
1241 {
1242 struct bdi_writeback *wb;
1243
1244 wb = inode_to_wb_and_lock_list(inode);
1245 spin_lock(&inode->i_lock);
1246
1247 inode->i_state &= ~I_SYNC_QUEUED;
1248 list_del_init(&inode->i_io_list);
1249 wb_io_lists_depopulated(wb);
1250
1251 spin_unlock(&inode->i_lock);
1252 spin_unlock(&wb->list_lock);
1253 }
1254 EXPORT_SYMBOL(inode_io_list_del);
1255
1256 /*
1257 * mark an inode as under writeback on the sb
1258 */
sb_mark_inode_writeback(struct inode * inode)1259 void sb_mark_inode_writeback(struct inode *inode)
1260 {
1261 struct super_block *sb = inode->i_sb;
1262 unsigned long flags;
1263
1264 if (list_empty(&inode->i_wb_list)) {
1265 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1266 if (list_empty(&inode->i_wb_list)) {
1267 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1268 trace_sb_mark_inode_writeback(inode);
1269 }
1270 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1271 }
1272 }
1273
1274 /*
1275 * clear an inode as under writeback on the sb
1276 */
sb_clear_inode_writeback(struct inode * inode)1277 void sb_clear_inode_writeback(struct inode *inode)
1278 {
1279 struct super_block *sb = inode->i_sb;
1280 unsigned long flags;
1281
1282 if (!list_empty(&inode->i_wb_list)) {
1283 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1284 if (!list_empty(&inode->i_wb_list)) {
1285 list_del_init(&inode->i_wb_list);
1286 trace_sb_clear_inode_writeback(inode);
1287 }
1288 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1289 }
1290 }
1291
1292 /*
1293 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1294 * furthest end of its superblock's dirty-inode list.
1295 *
1296 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1297 * already the most-recently-dirtied inode on the b_dirty list. If that is
1298 * the case then the inode must have been redirtied while it was being written
1299 * out and we don't reset its dirtied_when.
1300 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1301 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1302 {
1303 assert_spin_locked(&inode->i_lock);
1304
1305 inode->i_state &= ~I_SYNC_QUEUED;
1306 /*
1307 * When the inode is being freed just don't bother with dirty list
1308 * tracking. Flush worker will ignore this inode anyway and it will
1309 * trigger assertions in inode_io_list_move_locked().
1310 */
1311 if (inode->i_state & I_FREEING) {
1312 list_del_init(&inode->i_io_list);
1313 wb_io_lists_depopulated(wb);
1314 return;
1315 }
1316 if (!list_empty(&wb->b_dirty)) {
1317 struct inode *tail;
1318
1319 tail = wb_inode(wb->b_dirty.next);
1320 if (time_before(inode->dirtied_when, tail->dirtied_when))
1321 inode->dirtied_when = jiffies;
1322 }
1323 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1324 }
1325
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1326 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1327 {
1328 spin_lock(&inode->i_lock);
1329 redirty_tail_locked(inode, wb);
1330 spin_unlock(&inode->i_lock);
1331 }
1332
1333 /*
1334 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1335 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1336 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1337 {
1338 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1339 }
1340
inode_sync_complete(struct inode * inode)1341 static void inode_sync_complete(struct inode *inode)
1342 {
1343 inode->i_state &= ~I_SYNC;
1344 /* If inode is clean an unused, put it into LRU now... */
1345 inode_add_lru(inode);
1346 /* Waiters must see I_SYNC cleared before being woken up */
1347 smp_mb();
1348 wake_up_bit(&inode->i_state, __I_SYNC);
1349 }
1350
inode_dirtied_after(struct inode * inode,unsigned long t)1351 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1352 {
1353 bool ret = time_after(inode->dirtied_when, t);
1354 #ifndef CONFIG_64BIT
1355 /*
1356 * For inodes being constantly redirtied, dirtied_when can get stuck.
1357 * It _appears_ to be in the future, but is actually in distant past.
1358 * This test is necessary to prevent such wrapped-around relative times
1359 * from permanently stopping the whole bdi writeback.
1360 */
1361 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1362 #endif
1363 return ret;
1364 }
1365
1366 /*
1367 * Move expired (dirtied before dirtied_before) dirty inodes from
1368 * @delaying_queue to @dispatch_queue.
1369 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1370 static int move_expired_inodes(struct list_head *delaying_queue,
1371 struct list_head *dispatch_queue,
1372 unsigned long dirtied_before)
1373 {
1374 LIST_HEAD(tmp);
1375 struct list_head *pos, *node;
1376 struct super_block *sb = NULL;
1377 struct inode *inode;
1378 int do_sb_sort = 0;
1379 int moved = 0;
1380
1381 while (!list_empty(delaying_queue)) {
1382 inode = wb_inode(delaying_queue->prev);
1383 if (inode_dirtied_after(inode, dirtied_before))
1384 break;
1385 spin_lock(&inode->i_lock);
1386 list_move(&inode->i_io_list, &tmp);
1387 moved++;
1388 inode->i_state |= I_SYNC_QUEUED;
1389 spin_unlock(&inode->i_lock);
1390 if (sb_is_blkdev_sb(inode->i_sb))
1391 continue;
1392 if (sb && sb != inode->i_sb)
1393 do_sb_sort = 1;
1394 sb = inode->i_sb;
1395 }
1396
1397 /* just one sb in list, splice to dispatch_queue and we're done */
1398 if (!do_sb_sort) {
1399 list_splice(&tmp, dispatch_queue);
1400 goto out;
1401 }
1402
1403 /*
1404 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1405 * we don't take inode->i_lock here because it is just a pointless overhead.
1406 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1407 * fully under our control.
1408 */
1409 while (!list_empty(&tmp)) {
1410 sb = wb_inode(tmp.prev)->i_sb;
1411 list_for_each_prev_safe(pos, node, &tmp) {
1412 inode = wb_inode(pos);
1413 if (inode->i_sb == sb)
1414 list_move(&inode->i_io_list, dispatch_queue);
1415 }
1416 }
1417 out:
1418 return moved;
1419 }
1420
1421 /*
1422 * Queue all expired dirty inodes for io, eldest first.
1423 * Before
1424 * newly dirtied b_dirty b_io b_more_io
1425 * =============> gf edc BA
1426 * After
1427 * newly dirtied b_dirty b_io b_more_io
1428 * =============> g fBAedc
1429 * |
1430 * +--> dequeue for IO
1431 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1432 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1433 unsigned long dirtied_before)
1434 {
1435 int moved;
1436 unsigned long time_expire_jif = dirtied_before;
1437
1438 assert_spin_locked(&wb->list_lock);
1439 list_splice_init(&wb->b_more_io, &wb->b_io);
1440 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1441 if (!work->for_sync)
1442 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1443 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1444 time_expire_jif);
1445 if (moved)
1446 wb_io_lists_populated(wb);
1447 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1448 }
1449
write_inode(struct inode * inode,struct writeback_control * wbc)1450 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1451 {
1452 int ret;
1453
1454 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1455 trace_writeback_write_inode_start(inode, wbc);
1456 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1457 trace_writeback_write_inode(inode, wbc);
1458 return ret;
1459 }
1460 return 0;
1461 }
1462
1463 /*
1464 * Wait for writeback on an inode to complete. Called with i_lock held.
1465 * Caller must make sure inode cannot go away when we drop i_lock.
1466 */
__inode_wait_for_writeback(struct inode * inode)1467 static void __inode_wait_for_writeback(struct inode *inode)
1468 __releases(inode->i_lock)
1469 __acquires(inode->i_lock)
1470 {
1471 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1472 wait_queue_head_t *wqh;
1473
1474 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1475 while (inode->i_state & I_SYNC) {
1476 spin_unlock(&inode->i_lock);
1477 __wait_on_bit(wqh, &wq, bit_wait,
1478 TASK_UNINTERRUPTIBLE);
1479 spin_lock(&inode->i_lock);
1480 }
1481 }
1482
1483 /*
1484 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1485 */
inode_wait_for_writeback(struct inode * inode)1486 void inode_wait_for_writeback(struct inode *inode)
1487 {
1488 spin_lock(&inode->i_lock);
1489 __inode_wait_for_writeback(inode);
1490 spin_unlock(&inode->i_lock);
1491 }
1492
1493 /*
1494 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1495 * held and drops it. It is aimed for callers not holding any inode reference
1496 * so once i_lock is dropped, inode can go away.
1497 */
inode_sleep_on_writeback(struct inode * inode)1498 static void inode_sleep_on_writeback(struct inode *inode)
1499 __releases(inode->i_lock)
1500 {
1501 DEFINE_WAIT(wait);
1502 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1503 int sleep;
1504
1505 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1506 sleep = inode->i_state & I_SYNC;
1507 spin_unlock(&inode->i_lock);
1508 if (sleep)
1509 schedule();
1510 finish_wait(wqh, &wait);
1511 }
1512
1513 /*
1514 * Find proper writeback list for the inode depending on its current state and
1515 * possibly also change of its state while we were doing writeback. Here we
1516 * handle things such as livelock prevention or fairness of writeback among
1517 * inodes. This function can be called only by flusher thread - noone else
1518 * processes all inodes in writeback lists and requeueing inodes behind flusher
1519 * thread's back can have unexpected consequences.
1520 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1521 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1522 struct writeback_control *wbc)
1523 {
1524 if (inode->i_state & I_FREEING)
1525 return;
1526
1527 /*
1528 * Sync livelock prevention. Each inode is tagged and synced in one
1529 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1530 * the dirty time to prevent enqueue and sync it again.
1531 */
1532 if ((inode->i_state & I_DIRTY) &&
1533 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1534 inode->dirtied_when = jiffies;
1535
1536 if (wbc->pages_skipped) {
1537 /*
1538 * Writeback is not making progress due to locked buffers.
1539 * Skip this inode for now. Although having skipped pages
1540 * is odd for clean inodes, it can happen for some
1541 * filesystems so handle that gracefully.
1542 */
1543 if (inode->i_state & I_DIRTY_ALL)
1544 redirty_tail_locked(inode, wb);
1545 else
1546 inode_cgwb_move_to_attached(inode, wb);
1547 return;
1548 }
1549
1550 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1551 /*
1552 * We didn't write back all the pages. nfs_writepages()
1553 * sometimes bales out without doing anything.
1554 */
1555 if (wbc->nr_to_write <= 0) {
1556 /* Slice used up. Queue for next turn. */
1557 requeue_io(inode, wb);
1558 } else {
1559 /*
1560 * Writeback blocked by something other than
1561 * congestion. Delay the inode for some time to
1562 * avoid spinning on the CPU (100% iowait)
1563 * retrying writeback of the dirty page/inode
1564 * that cannot be performed immediately.
1565 */
1566 redirty_tail_locked(inode, wb);
1567 }
1568 } else if (inode->i_state & I_DIRTY) {
1569 /*
1570 * Filesystems can dirty the inode during writeback operations,
1571 * such as delayed allocation during submission or metadata
1572 * updates after data IO completion.
1573 */
1574 redirty_tail_locked(inode, wb);
1575 } else if (inode->i_state & I_DIRTY_TIME) {
1576 inode->dirtied_when = jiffies;
1577 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1578 inode->i_state &= ~I_SYNC_QUEUED;
1579 } else {
1580 /* The inode is clean. Remove from writeback lists. */
1581 inode_cgwb_move_to_attached(inode, wb);
1582 }
1583 }
1584
1585 /*
1586 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1587 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1588 *
1589 * This doesn't remove the inode from the writeback list it is on, except
1590 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1591 * expiration. The caller is otherwise responsible for writeback list handling.
1592 *
1593 * The caller is also responsible for setting the I_SYNC flag beforehand and
1594 * calling inode_sync_complete() to clear it afterwards.
1595 */
1596 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1597 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1598 {
1599 struct address_space *mapping = inode->i_mapping;
1600 long nr_to_write = wbc->nr_to_write;
1601 unsigned dirty;
1602 int ret;
1603
1604 WARN_ON(!(inode->i_state & I_SYNC));
1605
1606 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1607
1608 ret = do_writepages(mapping, wbc);
1609
1610 /*
1611 * Make sure to wait on the data before writing out the metadata.
1612 * This is important for filesystems that modify metadata on data
1613 * I/O completion. We don't do it for sync(2) writeback because it has a
1614 * separate, external IO completion path and ->sync_fs for guaranteeing
1615 * inode metadata is written back correctly.
1616 */
1617 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1618 int err = filemap_fdatawait(mapping);
1619 if (ret == 0)
1620 ret = err;
1621 }
1622
1623 /*
1624 * If the inode has dirty timestamps and we need to write them, call
1625 * mark_inode_dirty_sync() to notify the filesystem about it and to
1626 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1627 */
1628 if ((inode->i_state & I_DIRTY_TIME) &&
1629 (wbc->sync_mode == WB_SYNC_ALL ||
1630 time_after(jiffies, inode->dirtied_time_when +
1631 dirtytime_expire_interval * HZ))) {
1632 trace_writeback_lazytime(inode);
1633 mark_inode_dirty_sync(inode);
1634 }
1635
1636 /*
1637 * Get and clear the dirty flags from i_state. This needs to be done
1638 * after calling writepages because some filesystems may redirty the
1639 * inode during writepages due to delalloc. It also needs to be done
1640 * after handling timestamp expiration, as that may dirty the inode too.
1641 */
1642 spin_lock(&inode->i_lock);
1643 dirty = inode->i_state & I_DIRTY;
1644 inode->i_state &= ~dirty;
1645
1646 /*
1647 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1648 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1649 * either they see the I_DIRTY bits cleared or we see the dirtied
1650 * inode.
1651 *
1652 * I_DIRTY_PAGES is always cleared together above even if @mapping
1653 * still has dirty pages. The flag is reinstated after smp_mb() if
1654 * necessary. This guarantees that either __mark_inode_dirty()
1655 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1656 */
1657 smp_mb();
1658
1659 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1660 inode->i_state |= I_DIRTY_PAGES;
1661 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1662 if (!(inode->i_state & I_DIRTY_PAGES)) {
1663 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1664 wbc->unpinned_fscache_wb = true;
1665 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1666 }
1667 }
1668
1669 spin_unlock(&inode->i_lock);
1670
1671 /* Don't write the inode if only I_DIRTY_PAGES was set */
1672 if (dirty & ~I_DIRTY_PAGES) {
1673 int err = write_inode(inode, wbc);
1674 if (ret == 0)
1675 ret = err;
1676 }
1677 wbc->unpinned_fscache_wb = false;
1678 trace_writeback_single_inode(inode, wbc, nr_to_write);
1679 return ret;
1680 }
1681
1682 /*
1683 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1684 * the regular batched writeback done by the flusher threads in
1685 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1686 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1687 *
1688 * To prevent the inode from going away, either the caller must have a reference
1689 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1690 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1691 static int writeback_single_inode(struct inode *inode,
1692 struct writeback_control *wbc)
1693 {
1694 struct bdi_writeback *wb;
1695 int ret = 0;
1696
1697 spin_lock(&inode->i_lock);
1698 if (!atomic_read(&inode->i_count))
1699 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1700 else
1701 WARN_ON(inode->i_state & I_WILL_FREE);
1702
1703 if (inode->i_state & I_SYNC) {
1704 /*
1705 * Writeback is already running on the inode. For WB_SYNC_NONE,
1706 * that's enough and we can just return. For WB_SYNC_ALL, we
1707 * must wait for the existing writeback to complete, then do
1708 * writeback again if there's anything left.
1709 */
1710 if (wbc->sync_mode != WB_SYNC_ALL)
1711 goto out;
1712 __inode_wait_for_writeback(inode);
1713 }
1714 WARN_ON(inode->i_state & I_SYNC);
1715 /*
1716 * If the inode is already fully clean, then there's nothing to do.
1717 *
1718 * For data-integrity syncs we also need to check whether any pages are
1719 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1720 * there are any such pages, we'll need to wait for them.
1721 */
1722 if (!(inode->i_state & I_DIRTY_ALL) &&
1723 (wbc->sync_mode != WB_SYNC_ALL ||
1724 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1725 goto out;
1726 inode->i_state |= I_SYNC;
1727 wbc_attach_and_unlock_inode(wbc, inode);
1728
1729 ret = __writeback_single_inode(inode, wbc);
1730
1731 wbc_detach_inode(wbc);
1732
1733 wb = inode_to_wb_and_lock_list(inode);
1734 spin_lock(&inode->i_lock);
1735 /*
1736 * If the inode is freeing, its i_io_list shoudn't be updated
1737 * as it can be finally deleted at this moment.
1738 */
1739 if (!(inode->i_state & I_FREEING)) {
1740 /*
1741 * If the inode is now fully clean, then it can be safely
1742 * removed from its writeback list (if any). Otherwise the
1743 * flusher threads are responsible for the writeback lists.
1744 */
1745 if (!(inode->i_state & I_DIRTY_ALL))
1746 inode_cgwb_move_to_attached(inode, wb);
1747 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1748 if ((inode->i_state & I_DIRTY))
1749 redirty_tail_locked(inode, wb);
1750 else if (inode->i_state & I_DIRTY_TIME) {
1751 inode->dirtied_when = jiffies;
1752 inode_io_list_move_locked(inode,
1753 wb,
1754 &wb->b_dirty_time);
1755 }
1756 }
1757 }
1758
1759 spin_unlock(&wb->list_lock);
1760 inode_sync_complete(inode);
1761 out:
1762 spin_unlock(&inode->i_lock);
1763 return ret;
1764 }
1765
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1766 static long writeback_chunk_size(struct bdi_writeback *wb,
1767 struct wb_writeback_work *work)
1768 {
1769 long pages;
1770
1771 /*
1772 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1773 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1774 * here avoids calling into writeback_inodes_wb() more than once.
1775 *
1776 * The intended call sequence for WB_SYNC_ALL writeback is:
1777 *
1778 * wb_writeback()
1779 * writeback_sb_inodes() <== called only once
1780 * write_cache_pages() <== called once for each inode
1781 * (quickly) tag currently dirty pages
1782 * (maybe slowly) sync all tagged pages
1783 */
1784 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1785 pages = LONG_MAX;
1786 else {
1787 pages = min(wb->avg_write_bandwidth / 2,
1788 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1789 pages = min(pages, work->nr_pages);
1790 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1791 MIN_WRITEBACK_PAGES);
1792 }
1793
1794 return pages;
1795 }
1796
1797 /*
1798 * Write a portion of b_io inodes which belong to @sb.
1799 *
1800 * Return the number of pages and/or inodes written.
1801 *
1802 * NOTE! This is called with wb->list_lock held, and will
1803 * unlock and relock that for each inode it ends up doing
1804 * IO for.
1805 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1806 static long writeback_sb_inodes(struct super_block *sb,
1807 struct bdi_writeback *wb,
1808 struct wb_writeback_work *work)
1809 {
1810 struct writeback_control wbc = {
1811 .sync_mode = work->sync_mode,
1812 .tagged_writepages = work->tagged_writepages,
1813 .for_kupdate = work->for_kupdate,
1814 .for_background = work->for_background,
1815 .for_sync = work->for_sync,
1816 .range_cyclic = work->range_cyclic,
1817 .range_start = 0,
1818 .range_end = LLONG_MAX,
1819 };
1820 unsigned long start_time = jiffies;
1821 long write_chunk;
1822 long total_wrote = 0; /* count both pages and inodes */
1823
1824 while (!list_empty(&wb->b_io)) {
1825 struct inode *inode = wb_inode(wb->b_io.prev);
1826 struct bdi_writeback *tmp_wb;
1827 long wrote;
1828
1829 if (inode->i_sb != sb) {
1830 if (work->sb) {
1831 /*
1832 * We only want to write back data for this
1833 * superblock, move all inodes not belonging
1834 * to it back onto the dirty list.
1835 */
1836 redirty_tail(inode, wb);
1837 continue;
1838 }
1839
1840 /*
1841 * The inode belongs to a different superblock.
1842 * Bounce back to the caller to unpin this and
1843 * pin the next superblock.
1844 */
1845 break;
1846 }
1847
1848 /*
1849 * Don't bother with new inodes or inodes being freed, first
1850 * kind does not need periodic writeout yet, and for the latter
1851 * kind writeout is handled by the freer.
1852 */
1853 spin_lock(&inode->i_lock);
1854 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1855 redirty_tail_locked(inode, wb);
1856 spin_unlock(&inode->i_lock);
1857 continue;
1858 }
1859 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1860 /*
1861 * If this inode is locked for writeback and we are not
1862 * doing writeback-for-data-integrity, move it to
1863 * b_more_io so that writeback can proceed with the
1864 * other inodes on s_io.
1865 *
1866 * We'll have another go at writing back this inode
1867 * when we completed a full scan of b_io.
1868 */
1869 requeue_io(inode, wb);
1870 spin_unlock(&inode->i_lock);
1871 trace_writeback_sb_inodes_requeue(inode);
1872 continue;
1873 }
1874 spin_unlock(&wb->list_lock);
1875
1876 /*
1877 * We already requeued the inode if it had I_SYNC set and we
1878 * are doing WB_SYNC_NONE writeback. So this catches only the
1879 * WB_SYNC_ALL case.
1880 */
1881 if (inode->i_state & I_SYNC) {
1882 /* Wait for I_SYNC. This function drops i_lock... */
1883 inode_sleep_on_writeback(inode);
1884 /* Inode may be gone, start again */
1885 spin_lock(&wb->list_lock);
1886 continue;
1887 }
1888 inode->i_state |= I_SYNC;
1889 wbc_attach_and_unlock_inode(&wbc, inode);
1890
1891 write_chunk = writeback_chunk_size(wb, work);
1892 wbc.nr_to_write = write_chunk;
1893 wbc.pages_skipped = 0;
1894
1895 /*
1896 * We use I_SYNC to pin the inode in memory. While it is set
1897 * evict_inode() will wait so the inode cannot be freed.
1898 */
1899 __writeback_single_inode(inode, &wbc);
1900
1901 wbc_detach_inode(&wbc);
1902 work->nr_pages -= write_chunk - wbc.nr_to_write;
1903 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1904 wrote = wrote < 0 ? 0 : wrote;
1905 total_wrote += wrote;
1906
1907 if (need_resched()) {
1908 /*
1909 * We're trying to balance between building up a nice
1910 * long list of IOs to improve our merge rate, and
1911 * getting those IOs out quickly for anyone throttling
1912 * in balance_dirty_pages(). cond_resched() doesn't
1913 * unplug, so get our IOs out the door before we
1914 * give up the CPU.
1915 */
1916 blk_flush_plug(current->plug, false);
1917 cond_resched();
1918 }
1919
1920 /*
1921 * Requeue @inode if still dirty. Be careful as @inode may
1922 * have been switched to another wb in the meantime.
1923 */
1924 tmp_wb = inode_to_wb_and_lock_list(inode);
1925 spin_lock(&inode->i_lock);
1926 if (!(inode->i_state & I_DIRTY_ALL))
1927 total_wrote++;
1928 requeue_inode(inode, tmp_wb, &wbc);
1929 inode_sync_complete(inode);
1930 spin_unlock(&inode->i_lock);
1931
1932 if (unlikely(tmp_wb != wb)) {
1933 spin_unlock(&tmp_wb->list_lock);
1934 spin_lock(&wb->list_lock);
1935 }
1936
1937 /*
1938 * bail out to wb_writeback() often enough to check
1939 * background threshold and other termination conditions.
1940 */
1941 if (total_wrote) {
1942 if (time_is_before_jiffies(start_time + HZ / 10UL))
1943 break;
1944 if (work->nr_pages <= 0)
1945 break;
1946 }
1947 }
1948 return total_wrote;
1949 }
1950
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1951 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1952 struct wb_writeback_work *work)
1953 {
1954 unsigned long start_time = jiffies;
1955 long wrote = 0;
1956
1957 while (!list_empty(&wb->b_io)) {
1958 struct inode *inode = wb_inode(wb->b_io.prev);
1959 struct super_block *sb = inode->i_sb;
1960
1961 if (!super_trylock_shared(sb)) {
1962 /*
1963 * super_trylock_shared() may fail consistently due to
1964 * s_umount being grabbed by someone else. Don't use
1965 * requeue_io() to avoid busy retrying the inode/sb.
1966 */
1967 redirty_tail(inode, wb);
1968 continue;
1969 }
1970 wrote += writeback_sb_inodes(sb, wb, work);
1971 up_read(&sb->s_umount);
1972
1973 /* refer to the same tests at the end of writeback_sb_inodes */
1974 if (wrote) {
1975 if (time_is_before_jiffies(start_time + HZ / 10UL))
1976 break;
1977 if (work->nr_pages <= 0)
1978 break;
1979 }
1980 }
1981 /* Leave any unwritten inodes on b_io */
1982 return wrote;
1983 }
1984
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1985 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1986 enum wb_reason reason)
1987 {
1988 struct wb_writeback_work work = {
1989 .nr_pages = nr_pages,
1990 .sync_mode = WB_SYNC_NONE,
1991 .range_cyclic = 1,
1992 .reason = reason,
1993 };
1994 struct blk_plug plug;
1995
1996 blk_start_plug(&plug);
1997 spin_lock(&wb->list_lock);
1998 if (list_empty(&wb->b_io))
1999 queue_io(wb, &work, jiffies);
2000 __writeback_inodes_wb(wb, &work);
2001 spin_unlock(&wb->list_lock);
2002 blk_finish_plug(&plug);
2003
2004 return nr_pages - work.nr_pages;
2005 }
2006
2007 /*
2008 * Explicit flushing or periodic writeback of "old" data.
2009 *
2010 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2011 * dirtying-time in the inode's address_space. So this periodic writeback code
2012 * just walks the superblock inode list, writing back any inodes which are
2013 * older than a specific point in time.
2014 *
2015 * Try to run once per dirty_writeback_interval. But if a writeback event
2016 * takes longer than a dirty_writeback_interval interval, then leave a
2017 * one-second gap.
2018 *
2019 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2020 * all dirty pages if they are all attached to "old" mappings.
2021 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2022 static long wb_writeback(struct bdi_writeback *wb,
2023 struct wb_writeback_work *work)
2024 {
2025 long nr_pages = work->nr_pages;
2026 unsigned long dirtied_before = jiffies;
2027 struct inode *inode;
2028 long progress;
2029 struct blk_plug plug;
2030
2031 blk_start_plug(&plug);
2032 for (;;) {
2033 /*
2034 * Stop writeback when nr_pages has been consumed
2035 */
2036 if (work->nr_pages <= 0)
2037 break;
2038
2039 /*
2040 * Background writeout and kupdate-style writeback may
2041 * run forever. Stop them if there is other work to do
2042 * so that e.g. sync can proceed. They'll be restarted
2043 * after the other works are all done.
2044 */
2045 if ((work->for_background || work->for_kupdate) &&
2046 !list_empty(&wb->work_list))
2047 break;
2048
2049 /*
2050 * For background writeout, stop when we are below the
2051 * background dirty threshold
2052 */
2053 if (work->for_background && !wb_over_bg_thresh(wb))
2054 break;
2055
2056
2057 spin_lock(&wb->list_lock);
2058
2059 /*
2060 * Kupdate and background works are special and we want to
2061 * include all inodes that need writing. Livelock avoidance is
2062 * handled by these works yielding to any other work so we are
2063 * safe.
2064 */
2065 if (work->for_kupdate) {
2066 dirtied_before = jiffies -
2067 msecs_to_jiffies(dirty_expire_interval * 10);
2068 } else if (work->for_background)
2069 dirtied_before = jiffies;
2070
2071 trace_writeback_start(wb, work);
2072 if (list_empty(&wb->b_io))
2073 queue_io(wb, work, dirtied_before);
2074 if (work->sb)
2075 progress = writeback_sb_inodes(work->sb, wb, work);
2076 else
2077 progress = __writeback_inodes_wb(wb, work);
2078 trace_writeback_written(wb, work);
2079
2080 /*
2081 * Did we write something? Try for more
2082 *
2083 * Dirty inodes are moved to b_io for writeback in batches.
2084 * The completion of the current batch does not necessarily
2085 * mean the overall work is done. So we keep looping as long
2086 * as made some progress on cleaning pages or inodes.
2087 */
2088 if (progress) {
2089 spin_unlock(&wb->list_lock);
2090 continue;
2091 }
2092
2093 /*
2094 * No more inodes for IO, bail
2095 */
2096 if (list_empty(&wb->b_more_io)) {
2097 spin_unlock(&wb->list_lock);
2098 break;
2099 }
2100
2101 /*
2102 * Nothing written. Wait for some inode to
2103 * become available for writeback. Otherwise
2104 * we'll just busyloop.
2105 */
2106 trace_writeback_wait(wb, work);
2107 inode = wb_inode(wb->b_more_io.prev);
2108 spin_lock(&inode->i_lock);
2109 spin_unlock(&wb->list_lock);
2110 /* This function drops i_lock... */
2111 inode_sleep_on_writeback(inode);
2112 }
2113 blk_finish_plug(&plug);
2114
2115 return nr_pages - work->nr_pages;
2116 }
2117
2118 /*
2119 * Return the next wb_writeback_work struct that hasn't been processed yet.
2120 */
get_next_work_item(struct bdi_writeback * wb)2121 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2122 {
2123 struct wb_writeback_work *work = NULL;
2124
2125 spin_lock_irq(&wb->work_lock);
2126 if (!list_empty(&wb->work_list)) {
2127 work = list_entry(wb->work_list.next,
2128 struct wb_writeback_work, list);
2129 list_del_init(&work->list);
2130 }
2131 spin_unlock_irq(&wb->work_lock);
2132 return work;
2133 }
2134
wb_check_background_flush(struct bdi_writeback * wb)2135 static long wb_check_background_flush(struct bdi_writeback *wb)
2136 {
2137 if (wb_over_bg_thresh(wb)) {
2138
2139 struct wb_writeback_work work = {
2140 .nr_pages = LONG_MAX,
2141 .sync_mode = WB_SYNC_NONE,
2142 .for_background = 1,
2143 .range_cyclic = 1,
2144 .reason = WB_REASON_BACKGROUND,
2145 };
2146
2147 return wb_writeback(wb, &work);
2148 }
2149
2150 return 0;
2151 }
2152
wb_check_old_data_flush(struct bdi_writeback * wb)2153 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2154 {
2155 unsigned long expired;
2156 long nr_pages;
2157
2158 /*
2159 * When set to zero, disable periodic writeback
2160 */
2161 if (!dirty_writeback_interval)
2162 return 0;
2163
2164 expired = wb->last_old_flush +
2165 msecs_to_jiffies(dirty_writeback_interval * 10);
2166 if (time_before(jiffies, expired))
2167 return 0;
2168
2169 wb->last_old_flush = jiffies;
2170 nr_pages = get_nr_dirty_pages();
2171
2172 if (nr_pages) {
2173 struct wb_writeback_work work = {
2174 .nr_pages = nr_pages,
2175 .sync_mode = WB_SYNC_NONE,
2176 .for_kupdate = 1,
2177 .range_cyclic = 1,
2178 .reason = WB_REASON_PERIODIC,
2179 };
2180
2181 return wb_writeback(wb, &work);
2182 }
2183
2184 return 0;
2185 }
2186
wb_check_start_all(struct bdi_writeback * wb)2187 static long wb_check_start_all(struct bdi_writeback *wb)
2188 {
2189 long nr_pages;
2190
2191 if (!test_bit(WB_start_all, &wb->state))
2192 return 0;
2193
2194 nr_pages = get_nr_dirty_pages();
2195 if (nr_pages) {
2196 struct wb_writeback_work work = {
2197 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2198 .sync_mode = WB_SYNC_NONE,
2199 .range_cyclic = 1,
2200 .reason = wb->start_all_reason,
2201 };
2202
2203 nr_pages = wb_writeback(wb, &work);
2204 }
2205
2206 clear_bit(WB_start_all, &wb->state);
2207 return nr_pages;
2208 }
2209
2210
2211 /*
2212 * Retrieve work items and do the writeback they describe
2213 */
wb_do_writeback(struct bdi_writeback * wb)2214 static long wb_do_writeback(struct bdi_writeback *wb)
2215 {
2216 struct wb_writeback_work *work;
2217 long wrote = 0;
2218
2219 set_bit(WB_writeback_running, &wb->state);
2220 while ((work = get_next_work_item(wb)) != NULL) {
2221 trace_writeback_exec(wb, work);
2222 wrote += wb_writeback(wb, work);
2223 finish_writeback_work(wb, work);
2224 }
2225
2226 /*
2227 * Check for a flush-everything request
2228 */
2229 wrote += wb_check_start_all(wb);
2230
2231 /*
2232 * Check for periodic writeback, kupdated() style
2233 */
2234 wrote += wb_check_old_data_flush(wb);
2235 wrote += wb_check_background_flush(wb);
2236 clear_bit(WB_writeback_running, &wb->state);
2237
2238 return wrote;
2239 }
2240
2241 /*
2242 * Handle writeback of dirty data for the device backed by this bdi. Also
2243 * reschedules periodically and does kupdated style flushing.
2244 */
wb_workfn(struct work_struct * work)2245 void wb_workfn(struct work_struct *work)
2246 {
2247 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2248 struct bdi_writeback, dwork);
2249 long pages_written;
2250
2251 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2252
2253 if (likely(!current_is_workqueue_rescuer() ||
2254 !test_bit(WB_registered, &wb->state))) {
2255 /*
2256 * The normal path. Keep writing back @wb until its
2257 * work_list is empty. Note that this path is also taken
2258 * if @wb is shutting down even when we're running off the
2259 * rescuer as work_list needs to be drained.
2260 */
2261 do {
2262 pages_written = wb_do_writeback(wb);
2263 trace_writeback_pages_written(pages_written);
2264 } while (!list_empty(&wb->work_list));
2265 } else {
2266 /*
2267 * bdi_wq can't get enough workers and we're running off
2268 * the emergency worker. Don't hog it. Hopefully, 1024 is
2269 * enough for efficient IO.
2270 */
2271 pages_written = writeback_inodes_wb(wb, 1024,
2272 WB_REASON_FORKER_THREAD);
2273 trace_writeback_pages_written(pages_written);
2274 }
2275
2276 if (!list_empty(&wb->work_list))
2277 wb_wakeup(wb);
2278 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2279 wb_wakeup_delayed(wb);
2280 }
2281
2282 /*
2283 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2284 * write back the whole world.
2285 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2286 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2287 enum wb_reason reason)
2288 {
2289 struct bdi_writeback *wb;
2290
2291 if (!bdi_has_dirty_io(bdi))
2292 return;
2293
2294 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2295 wb_start_writeback(wb, reason);
2296 }
2297
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2298 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2299 enum wb_reason reason)
2300 {
2301 rcu_read_lock();
2302 __wakeup_flusher_threads_bdi(bdi, reason);
2303 rcu_read_unlock();
2304 }
2305
2306 /*
2307 * Wakeup the flusher threads to start writeback of all currently dirty pages
2308 */
wakeup_flusher_threads(enum wb_reason reason)2309 void wakeup_flusher_threads(enum wb_reason reason)
2310 {
2311 struct backing_dev_info *bdi;
2312
2313 /*
2314 * If we are expecting writeback progress we must submit plugged IO.
2315 */
2316 blk_flush_plug(current->plug, true);
2317
2318 rcu_read_lock();
2319 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2320 __wakeup_flusher_threads_bdi(bdi, reason);
2321 rcu_read_unlock();
2322 }
2323
2324 /*
2325 * Wake up bdi's periodically to make sure dirtytime inodes gets
2326 * written back periodically. We deliberately do *not* check the
2327 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2328 * kernel to be constantly waking up once there are any dirtytime
2329 * inodes on the system. So instead we define a separate delayed work
2330 * function which gets called much more rarely. (By default, only
2331 * once every 12 hours.)
2332 *
2333 * If there is any other write activity going on in the file system,
2334 * this function won't be necessary. But if the only thing that has
2335 * happened on the file system is a dirtytime inode caused by an atime
2336 * update, we need this infrastructure below to make sure that inode
2337 * eventually gets pushed out to disk.
2338 */
2339 static void wakeup_dirtytime_writeback(struct work_struct *w);
2340 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2341
wakeup_dirtytime_writeback(struct work_struct * w)2342 static void wakeup_dirtytime_writeback(struct work_struct *w)
2343 {
2344 struct backing_dev_info *bdi;
2345
2346 rcu_read_lock();
2347 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2348 struct bdi_writeback *wb;
2349
2350 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2351 if (!list_empty(&wb->b_dirty_time))
2352 wb_wakeup(wb);
2353 }
2354 rcu_read_unlock();
2355 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2356 }
2357
start_dirtytime_writeback(void)2358 static int __init start_dirtytime_writeback(void)
2359 {
2360 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2361 return 0;
2362 }
2363 __initcall(start_dirtytime_writeback);
2364
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2365 int dirtytime_interval_handler(struct ctl_table *table, int write,
2366 void *buffer, size_t *lenp, loff_t *ppos)
2367 {
2368 int ret;
2369
2370 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2371 if (ret == 0 && write)
2372 mod_delayed_work(system_wq, &dirtytime_work, 0);
2373 return ret;
2374 }
2375
2376 /**
2377 * __mark_inode_dirty - internal function to mark an inode dirty
2378 *
2379 * @inode: inode to mark
2380 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2381 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2382 * with I_DIRTY_PAGES.
2383 *
2384 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2385 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2386 *
2387 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2388 * instead of calling this directly.
2389 *
2390 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2391 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2392 * even if they are later hashed, as they will have been marked dirty already.
2393 *
2394 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2395 *
2396 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2397 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2398 * the kernel-internal blockdev inode represents the dirtying time of the
2399 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2400 * page->mapping->host, so the page-dirtying time is recorded in the internal
2401 * blockdev inode.
2402 */
__mark_inode_dirty(struct inode * inode,int flags)2403 void __mark_inode_dirty(struct inode *inode, int flags)
2404 {
2405 struct super_block *sb = inode->i_sb;
2406 int dirtytime = 0;
2407 struct bdi_writeback *wb = NULL;
2408
2409 trace_writeback_mark_inode_dirty(inode, flags);
2410
2411 if (flags & I_DIRTY_INODE) {
2412 /*
2413 * Inode timestamp update will piggback on this dirtying.
2414 * We tell ->dirty_inode callback that timestamps need to
2415 * be updated by setting I_DIRTY_TIME in flags.
2416 */
2417 if (inode->i_state & I_DIRTY_TIME) {
2418 spin_lock(&inode->i_lock);
2419 if (inode->i_state & I_DIRTY_TIME) {
2420 inode->i_state &= ~I_DIRTY_TIME;
2421 flags |= I_DIRTY_TIME;
2422 }
2423 spin_unlock(&inode->i_lock);
2424 }
2425
2426 /*
2427 * Notify the filesystem about the inode being dirtied, so that
2428 * (if needed) it can update on-disk fields and journal the
2429 * inode. This is only needed when the inode itself is being
2430 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2431 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2432 */
2433 trace_writeback_dirty_inode_start(inode, flags);
2434 if (sb->s_op->dirty_inode)
2435 sb->s_op->dirty_inode(inode,
2436 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2437 trace_writeback_dirty_inode(inode, flags);
2438
2439 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2440 flags &= ~I_DIRTY_TIME;
2441 } else {
2442 /*
2443 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2444 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2445 * in one call to __mark_inode_dirty().)
2446 */
2447 dirtytime = flags & I_DIRTY_TIME;
2448 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2449 }
2450
2451 /*
2452 * Paired with smp_mb() in __writeback_single_inode() for the
2453 * following lockless i_state test. See there for details.
2454 */
2455 smp_mb();
2456
2457 if ((inode->i_state & flags) == flags)
2458 return;
2459
2460 spin_lock(&inode->i_lock);
2461 if ((inode->i_state & flags) != flags) {
2462 const int was_dirty = inode->i_state & I_DIRTY;
2463
2464 inode_attach_wb(inode, NULL);
2465
2466 inode->i_state |= flags;
2467
2468 /*
2469 * Grab inode's wb early because it requires dropping i_lock and we
2470 * need to make sure following checks happen atomically with dirty
2471 * list handling so that we don't move inodes under flush worker's
2472 * hands.
2473 */
2474 if (!was_dirty) {
2475 wb = locked_inode_to_wb_and_lock_list(inode);
2476 spin_lock(&inode->i_lock);
2477 }
2478
2479 /*
2480 * If the inode is queued for writeback by flush worker, just
2481 * update its dirty state. Once the flush worker is done with
2482 * the inode it will place it on the appropriate superblock
2483 * list, based upon its state.
2484 */
2485 if (inode->i_state & I_SYNC_QUEUED)
2486 goto out_unlock;
2487
2488 /*
2489 * Only add valid (hashed) inodes to the superblock's
2490 * dirty list. Add blockdev inodes as well.
2491 */
2492 if (!S_ISBLK(inode->i_mode)) {
2493 if (inode_unhashed(inode))
2494 goto out_unlock;
2495 }
2496 if (inode->i_state & I_FREEING)
2497 goto out_unlock;
2498
2499 /*
2500 * If the inode was already on b_dirty/b_io/b_more_io, don't
2501 * reposition it (that would break b_dirty time-ordering).
2502 */
2503 if (!was_dirty) {
2504 struct list_head *dirty_list;
2505 bool wakeup_bdi = false;
2506
2507 inode->dirtied_when = jiffies;
2508 if (dirtytime)
2509 inode->dirtied_time_when = jiffies;
2510
2511 if (inode->i_state & I_DIRTY)
2512 dirty_list = &wb->b_dirty;
2513 else
2514 dirty_list = &wb->b_dirty_time;
2515
2516 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2517 dirty_list);
2518
2519 spin_unlock(&wb->list_lock);
2520 spin_unlock(&inode->i_lock);
2521 trace_writeback_dirty_inode_enqueue(inode);
2522
2523 /*
2524 * If this is the first dirty inode for this bdi,
2525 * we have to wake-up the corresponding bdi thread
2526 * to make sure background write-back happens
2527 * later.
2528 */
2529 if (wakeup_bdi &&
2530 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2531 wb_wakeup_delayed(wb);
2532 return;
2533 }
2534 }
2535 out_unlock:
2536 if (wb)
2537 spin_unlock(&wb->list_lock);
2538 spin_unlock(&inode->i_lock);
2539 }
2540 EXPORT_SYMBOL(__mark_inode_dirty);
2541
2542 /*
2543 * The @s_sync_lock is used to serialise concurrent sync operations
2544 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2545 * Concurrent callers will block on the s_sync_lock rather than doing contending
2546 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2547 * has been issued up to the time this function is enter is guaranteed to be
2548 * completed by the time we have gained the lock and waited for all IO that is
2549 * in progress regardless of the order callers are granted the lock.
2550 */
wait_sb_inodes(struct super_block * sb)2551 static void wait_sb_inodes(struct super_block *sb)
2552 {
2553 LIST_HEAD(sync_list);
2554
2555 /*
2556 * We need to be protected against the filesystem going from
2557 * r/o to r/w or vice versa.
2558 */
2559 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2560
2561 mutex_lock(&sb->s_sync_lock);
2562
2563 /*
2564 * Splice the writeback list onto a temporary list to avoid waiting on
2565 * inodes that have started writeback after this point.
2566 *
2567 * Use rcu_read_lock() to keep the inodes around until we have a
2568 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2569 * the local list because inodes can be dropped from either by writeback
2570 * completion.
2571 */
2572 rcu_read_lock();
2573 spin_lock_irq(&sb->s_inode_wblist_lock);
2574 list_splice_init(&sb->s_inodes_wb, &sync_list);
2575
2576 /*
2577 * Data integrity sync. Must wait for all pages under writeback, because
2578 * there may have been pages dirtied before our sync call, but which had
2579 * writeout started before we write it out. In which case, the inode
2580 * may not be on the dirty list, but we still have to wait for that
2581 * writeout.
2582 */
2583 while (!list_empty(&sync_list)) {
2584 struct inode *inode = list_first_entry(&sync_list, struct inode,
2585 i_wb_list);
2586 struct address_space *mapping = inode->i_mapping;
2587
2588 /*
2589 * Move each inode back to the wb list before we drop the lock
2590 * to preserve consistency between i_wb_list and the mapping
2591 * writeback tag. Writeback completion is responsible to remove
2592 * the inode from either list once the writeback tag is cleared.
2593 */
2594 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2595
2596 /*
2597 * The mapping can appear untagged while still on-list since we
2598 * do not have the mapping lock. Skip it here, wb completion
2599 * will remove it.
2600 */
2601 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2602 continue;
2603
2604 spin_unlock_irq(&sb->s_inode_wblist_lock);
2605
2606 spin_lock(&inode->i_lock);
2607 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2608 spin_unlock(&inode->i_lock);
2609
2610 spin_lock_irq(&sb->s_inode_wblist_lock);
2611 continue;
2612 }
2613 __iget(inode);
2614 spin_unlock(&inode->i_lock);
2615 rcu_read_unlock();
2616
2617 /*
2618 * We keep the error status of individual mapping so that
2619 * applications can catch the writeback error using fsync(2).
2620 * See filemap_fdatawait_keep_errors() for details.
2621 */
2622 filemap_fdatawait_keep_errors(mapping);
2623
2624 cond_resched();
2625
2626 iput(inode);
2627
2628 rcu_read_lock();
2629 spin_lock_irq(&sb->s_inode_wblist_lock);
2630 }
2631 spin_unlock_irq(&sb->s_inode_wblist_lock);
2632 rcu_read_unlock();
2633 mutex_unlock(&sb->s_sync_lock);
2634 }
2635
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2636 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2637 enum wb_reason reason, bool skip_if_busy)
2638 {
2639 struct backing_dev_info *bdi = sb->s_bdi;
2640 DEFINE_WB_COMPLETION(done, bdi);
2641 struct wb_writeback_work work = {
2642 .sb = sb,
2643 .sync_mode = WB_SYNC_NONE,
2644 .tagged_writepages = 1,
2645 .done = &done,
2646 .nr_pages = nr,
2647 .reason = reason,
2648 };
2649
2650 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2651 return;
2652 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2653
2654 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2655 wb_wait_for_completion(&done);
2656 }
2657
2658 /**
2659 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2660 * @sb: the superblock
2661 * @nr: the number of pages to write
2662 * @reason: reason why some writeback work initiated
2663 *
2664 * Start writeback on some inodes on this super_block. No guarantees are made
2665 * on how many (if any) will be written, and this function does not wait
2666 * for IO completion of submitted IO.
2667 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2668 void writeback_inodes_sb_nr(struct super_block *sb,
2669 unsigned long nr,
2670 enum wb_reason reason)
2671 {
2672 __writeback_inodes_sb_nr(sb, nr, reason, false);
2673 }
2674 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2675
2676 /**
2677 * writeback_inodes_sb - writeback dirty inodes from given super_block
2678 * @sb: the superblock
2679 * @reason: reason why some writeback work was initiated
2680 *
2681 * Start writeback on some inodes on this super_block. No guarantees are made
2682 * on how many (if any) will be written, and this function does not wait
2683 * for IO completion of submitted IO.
2684 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2685 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2686 {
2687 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2688 }
2689 EXPORT_SYMBOL(writeback_inodes_sb);
2690
2691 /**
2692 * try_to_writeback_inodes_sb - try to start writeback if none underway
2693 * @sb: the superblock
2694 * @reason: reason why some writeback work was initiated
2695 *
2696 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2697 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2698 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2699 {
2700 if (!down_read_trylock(&sb->s_umount))
2701 return;
2702
2703 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2704 up_read(&sb->s_umount);
2705 }
2706 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2707
2708 /**
2709 * sync_inodes_sb - sync sb inode pages
2710 * @sb: the superblock
2711 *
2712 * This function writes and waits on any dirty inode belonging to this
2713 * super_block.
2714 */
sync_inodes_sb(struct super_block * sb)2715 void sync_inodes_sb(struct super_block *sb)
2716 {
2717 struct backing_dev_info *bdi = sb->s_bdi;
2718 DEFINE_WB_COMPLETION(done, bdi);
2719 struct wb_writeback_work work = {
2720 .sb = sb,
2721 .sync_mode = WB_SYNC_ALL,
2722 .nr_pages = LONG_MAX,
2723 .range_cyclic = 0,
2724 .done = &done,
2725 .reason = WB_REASON_SYNC,
2726 .for_sync = 1,
2727 };
2728
2729 /*
2730 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2731 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2732 * bdi_has_dirty() need to be written out too.
2733 */
2734 if (bdi == &noop_backing_dev_info)
2735 return;
2736 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2737
2738 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2739 bdi_down_write_wb_switch_rwsem(bdi);
2740 bdi_split_work_to_wbs(bdi, &work, false);
2741 wb_wait_for_completion(&done);
2742 bdi_up_write_wb_switch_rwsem(bdi);
2743
2744 wait_sb_inodes(sb);
2745 }
2746 EXPORT_SYMBOL(sync_inodes_sb);
2747
2748 /**
2749 * write_inode_now - write an inode to disk
2750 * @inode: inode to write to disk
2751 * @sync: whether the write should be synchronous or not
2752 *
2753 * This function commits an inode to disk immediately if it is dirty. This is
2754 * primarily needed by knfsd.
2755 *
2756 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2757 */
write_inode_now(struct inode * inode,int sync)2758 int write_inode_now(struct inode *inode, int sync)
2759 {
2760 struct writeback_control wbc = {
2761 .nr_to_write = LONG_MAX,
2762 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2763 .range_start = 0,
2764 .range_end = LLONG_MAX,
2765 };
2766
2767 if (!mapping_can_writeback(inode->i_mapping))
2768 wbc.nr_to_write = 0;
2769
2770 might_sleep();
2771 return writeback_single_inode(inode, &wbc);
2772 }
2773 EXPORT_SYMBOL(write_inode_now);
2774
2775 /**
2776 * sync_inode_metadata - write an inode to disk
2777 * @inode: the inode to sync
2778 * @wait: wait for I/O to complete.
2779 *
2780 * Write an inode to disk and adjust its dirty state after completion.
2781 *
2782 * Note: only writes the actual inode, no associated data or other metadata.
2783 */
sync_inode_metadata(struct inode * inode,int wait)2784 int sync_inode_metadata(struct inode *inode, int wait)
2785 {
2786 struct writeback_control wbc = {
2787 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2788 .nr_to_write = 0, /* metadata-only */
2789 };
2790
2791 return writeback_single_inode(inode, &wbc);
2792 }
2793 EXPORT_SYMBOL(sync_inode_metadata);
2794