1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 	WARN_ON_ONCE(inode->i_state & I_FREEING);
125 
126 	list_move(&inode->i_io_list, head);
127 
128 	/* dirty_time doesn't count as dirty_io until expiration */
129 	if (head != &wb->b_dirty_time)
130 		return wb_io_lists_populated(wb);
131 
132 	wb_io_lists_depopulated(wb);
133 	return false;
134 }
135 
wb_wakeup(struct bdi_writeback * wb)136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138 	spin_lock_irq(&wb->work_lock);
139 	if (test_bit(WB_registered, &wb->state))
140 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
141 	spin_unlock_irq(&wb->work_lock);
142 }
143 
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)144 static void finish_writeback_work(struct bdi_writeback *wb,
145 				  struct wb_writeback_work *work)
146 {
147 	struct wb_completion *done = work->done;
148 
149 	if (work->auto_free)
150 		kfree(work);
151 	if (done) {
152 		wait_queue_head_t *waitq = done->waitq;
153 
154 		/* @done can't be accessed after the following dec */
155 		if (atomic_dec_and_test(&done->cnt))
156 			wake_up_all(waitq);
157 	}
158 }
159 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)160 static void wb_queue_work(struct bdi_writeback *wb,
161 			  struct wb_writeback_work *work)
162 {
163 	trace_writeback_queue(wb, work);
164 
165 	if (work->done)
166 		atomic_inc(&work->done->cnt);
167 
168 	spin_lock_irq(&wb->work_lock);
169 
170 	if (test_bit(WB_registered, &wb->state)) {
171 		list_add_tail(&work->list, &wb->work_list);
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	} else
174 		finish_writeback_work(wb, work);
175 
176 	spin_unlock_irq(&wb->work_lock);
177 }
178 
179 /**
180  * wb_wait_for_completion - wait for completion of bdi_writeback_works
181  * @done: target wb_completion
182  *
183  * Wait for one or more work items issued to @bdi with their ->done field
184  * set to @done, which should have been initialized with
185  * DEFINE_WB_COMPLETION().  This function returns after all such work items
186  * are completed.  Work items which are waited upon aren't freed
187  * automatically on completion.
188  */
wb_wait_for_completion(struct wb_completion * done)189 void wb_wait_for_completion(struct wb_completion *done)
190 {
191 	atomic_dec(&done->cnt);		/* put down the initial count */
192 	wait_event(*done->waitq, !atomic_read(&done->cnt));
193 }
194 
195 #ifdef CONFIG_CGROUP_WRITEBACK
196 
197 /*
198  * Parameters for foreign inode detection, see wbc_detach_inode() to see
199  * how they're used.
200  *
201  * These paramters are inherently heuristical as the detection target
202  * itself is fuzzy.  All we want to do is detaching an inode from the
203  * current owner if it's being written to by some other cgroups too much.
204  *
205  * The current cgroup writeback is built on the assumption that multiple
206  * cgroups writing to the same inode concurrently is very rare and a mode
207  * of operation which isn't well supported.  As such, the goal is not
208  * taking too long when a different cgroup takes over an inode while
209  * avoiding too aggressive flip-flops from occasional foreign writes.
210  *
211  * We record, very roughly, 2s worth of IO time history and if more than
212  * half of that is foreign, trigger the switch.  The recording is quantized
213  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
214  * writes smaller than 1/8 of avg size are ignored.
215  */
216 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
220 
221 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223 					/* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
225 					/* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
227 					/* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
229 
230 /*
231  * Maximum inodes per isw.  A specific value has been chosen to make
232  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233  */
234 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235                                 / sizeof(struct inode *))
236 
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
239 
__inode_attach_wb(struct inode * inode,struct folio * folio)240 void __inode_attach_wb(struct inode *inode, struct folio *folio)
241 {
242 	struct backing_dev_info *bdi = inode_to_bdi(inode);
243 	struct bdi_writeback *wb = NULL;
244 
245 	if (inode_cgwb_enabled(inode)) {
246 		struct cgroup_subsys_state *memcg_css;
247 
248 		if (folio) {
249 			memcg_css = mem_cgroup_css_from_folio(folio);
250 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251 		} else {
252 			/* must pin memcg_css, see wb_get_create() */
253 			memcg_css = task_get_css(current, memory_cgrp_id);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 			css_put(memcg_css);
256 		}
257 	}
258 
259 	if (!wb)
260 		wb = &bdi->wb;
261 
262 	/*
263 	 * There may be multiple instances of this function racing to
264 	 * update the same inode.  Use cmpxchg() to tell the winner.
265 	 */
266 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267 		wb_put(wb);
268 }
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270 
271 /**
272  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273  * @inode: inode of interest with i_lock held
274  * @wb: target bdi_writeback
275  *
276  * Remove the inode from wb's io lists and if necessarily put onto b_attached
277  * list.  Only inodes attached to cgwb's are kept on this list.
278  */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)279 static void inode_cgwb_move_to_attached(struct inode *inode,
280 					struct bdi_writeback *wb)
281 {
282 	assert_spin_locked(&wb->list_lock);
283 	assert_spin_locked(&inode->i_lock);
284 	WARN_ON_ONCE(inode->i_state & I_FREEING);
285 
286 	inode->i_state &= ~I_SYNC_QUEUED;
287 	if (wb != &wb->bdi->wb)
288 		list_move(&inode->i_io_list, &wb->b_attached);
289 	else
290 		list_del_init(&inode->i_io_list);
291 	wb_io_lists_depopulated(wb);
292 }
293 
294 /**
295  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296  * @inode: inode of interest with i_lock held
297  *
298  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
299  * held on entry and is released on return.  The returned wb is guaranteed
300  * to stay @inode's associated wb until its list_lock is released.
301  */
302 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304 	__releases(&inode->i_lock)
305 	__acquires(&wb->list_lock)
306 {
307 	while (true) {
308 		struct bdi_writeback *wb = inode_to_wb(inode);
309 
310 		/*
311 		 * inode_to_wb() association is protected by both
312 		 * @inode->i_lock and @wb->list_lock but list_lock nests
313 		 * outside i_lock.  Drop i_lock and verify that the
314 		 * association hasn't changed after acquiring list_lock.
315 		 */
316 		wb_get(wb);
317 		spin_unlock(&inode->i_lock);
318 		spin_lock(&wb->list_lock);
319 
320 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
321 		if (likely(wb == inode->i_wb)) {
322 			wb_put(wb);	/* @inode already has ref */
323 			return wb;
324 		}
325 
326 		spin_unlock(&wb->list_lock);
327 		wb_put(wb);
328 		cpu_relax();
329 		spin_lock(&inode->i_lock);
330 	}
331 }
332 
333 /**
334  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335  * @inode: inode of interest
336  *
337  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338  * on entry.
339  */
inode_to_wb_and_lock_list(struct inode * inode)340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341 	__acquires(&wb->list_lock)
342 {
343 	spin_lock(&inode->i_lock);
344 	return locked_inode_to_wb_and_lock_list(inode);
345 }
346 
347 struct inode_switch_wbs_context {
348 	struct rcu_work		work;
349 
350 	/*
351 	 * Multiple inodes can be switched at once.  The switching procedure
352 	 * consists of two parts, separated by a RCU grace period.  To make
353 	 * sure that the second part is executed for each inode gone through
354 	 * the first part, all inode pointers are placed into a NULL-terminated
355 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
356 	 * an inode could be left in a non-consistent state.
357 	 */
358 	struct bdi_writeback	*new_wb;
359 	struct inode		*inodes[];
360 };
361 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363 {
364 	down_write(&bdi->wb_switch_rwsem);
365 }
366 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368 {
369 	up_write(&bdi->wb_switch_rwsem);
370 }
371 
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)372 static bool inode_do_switch_wbs(struct inode *inode,
373 				struct bdi_writeback *old_wb,
374 				struct bdi_writeback *new_wb)
375 {
376 	struct address_space *mapping = inode->i_mapping;
377 	XA_STATE(xas, &mapping->i_pages, 0);
378 	struct folio *folio;
379 	bool switched = false;
380 
381 	spin_lock(&inode->i_lock);
382 	xa_lock_irq(&mapping->i_pages);
383 
384 	/*
385 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386 	 * path owns the inode and we shouldn't modify ->i_io_list.
387 	 */
388 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389 		goto skip_switch;
390 
391 	trace_inode_switch_wbs(inode, old_wb, new_wb);
392 
393 	/*
394 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
395 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396 	 * folios actually under writeback.
397 	 */
398 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399 		if (folio_test_dirty(folio)) {
400 			long nr = folio_nr_pages(folio);
401 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403 		}
404 	}
405 
406 	xas_set(&xas, 0);
407 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 		long nr = folio_nr_pages(folio);
409 		WARN_ON_ONCE(!folio_test_writeback(folio));
410 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412 	}
413 
414 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415 		atomic_dec(&old_wb->writeback_inodes);
416 		atomic_inc(&new_wb->writeback_inodes);
417 	}
418 
419 	wb_get(new_wb);
420 
421 	/*
422 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
423 	 * the specific list @inode was on is ignored and the @inode is put on
424 	 * ->b_dirty which is always correct including from ->b_dirty_time.
425 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
426 	 * was clean, it means it was on the b_attached list, so move it onto
427 	 * the b_attached list of @new_wb.
428 	 */
429 	if (!list_empty(&inode->i_io_list)) {
430 		inode->i_wb = new_wb;
431 
432 		if (inode->i_state & I_DIRTY_ALL) {
433 			struct inode *pos;
434 
435 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436 				if (time_after_eq(inode->dirtied_when,
437 						  pos->dirtied_when))
438 					break;
439 			inode_io_list_move_locked(inode, new_wb,
440 						  pos->i_io_list.prev);
441 		} else {
442 			inode_cgwb_move_to_attached(inode, new_wb);
443 		}
444 	} else {
445 		inode->i_wb = new_wb;
446 	}
447 
448 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449 	inode->i_wb_frn_winner = 0;
450 	inode->i_wb_frn_avg_time = 0;
451 	inode->i_wb_frn_history = 0;
452 	switched = true;
453 skip_switch:
454 	/*
455 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
457 	 */
458 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459 
460 	xa_unlock_irq(&mapping->i_pages);
461 	spin_unlock(&inode->i_lock);
462 
463 	return switched;
464 }
465 
inode_switch_wbs_work_fn(struct work_struct * work)466 static void inode_switch_wbs_work_fn(struct work_struct *work)
467 {
468 	struct inode_switch_wbs_context *isw =
469 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472 	struct bdi_writeback *new_wb = isw->new_wb;
473 	unsigned long nr_switched = 0;
474 	struct inode **inodep;
475 
476 	/*
477 	 * If @inode switches cgwb membership while sync_inodes_sb() is
478 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
479 	 */
480 	down_read(&bdi->wb_switch_rwsem);
481 
482 	/*
483 	 * By the time control reaches here, RCU grace period has passed
484 	 * since I_WB_SWITCH assertion and all wb stat update transactions
485 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486 	 * synchronizing against the i_pages lock.
487 	 *
488 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489 	 * gives us exclusion against all wb related operations on @inode
490 	 * including IO list manipulations and stat updates.
491 	 */
492 	if (old_wb < new_wb) {
493 		spin_lock(&old_wb->list_lock);
494 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495 	} else {
496 		spin_lock(&new_wb->list_lock);
497 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498 	}
499 
500 	for (inodep = isw->inodes; *inodep; inodep++) {
501 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503 			nr_switched++;
504 	}
505 
506 	spin_unlock(&new_wb->list_lock);
507 	spin_unlock(&old_wb->list_lock);
508 
509 	up_read(&bdi->wb_switch_rwsem);
510 
511 	if (nr_switched) {
512 		wb_wakeup(new_wb);
513 		wb_put_many(old_wb, nr_switched);
514 	}
515 
516 	for (inodep = isw->inodes; *inodep; inodep++)
517 		iput(*inodep);
518 	wb_put(new_wb);
519 	kfree(isw);
520 	atomic_dec(&isw_nr_in_flight);
521 }
522 
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)523 static bool inode_prepare_wbs_switch(struct inode *inode,
524 				     struct bdi_writeback *new_wb)
525 {
526 	/*
527 	 * Paired with smp_mb() in cgroup_writeback_umount().
528 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531 	 */
532 	smp_mb();
533 
534 	if (IS_DAX(inode))
535 		return false;
536 
537 	/* while holding I_WB_SWITCH, no one else can update the association */
538 	spin_lock(&inode->i_lock);
539 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541 	    inode_to_wb(inode) == new_wb) {
542 		spin_unlock(&inode->i_lock);
543 		return false;
544 	}
545 	inode->i_state |= I_WB_SWITCH;
546 	__iget(inode);
547 	spin_unlock(&inode->i_lock);
548 
549 	return true;
550 }
551 
552 /**
553  * inode_switch_wbs - change the wb association of an inode
554  * @inode: target inode
555  * @new_wb_id: ID of the new wb
556  *
557  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
558  * switching is performed asynchronously and may fail silently.
559  */
inode_switch_wbs(struct inode * inode,int new_wb_id)560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561 {
562 	struct backing_dev_info *bdi = inode_to_bdi(inode);
563 	struct cgroup_subsys_state *memcg_css;
564 	struct inode_switch_wbs_context *isw;
565 
566 	/* noop if seems to be already in progress */
567 	if (inode->i_state & I_WB_SWITCH)
568 		return;
569 
570 	/* avoid queueing a new switch if too many are already in flight */
571 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572 		return;
573 
574 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575 	if (!isw)
576 		return;
577 
578 	atomic_inc(&isw_nr_in_flight);
579 
580 	/* find and pin the new wb */
581 	rcu_read_lock();
582 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583 	if (memcg_css && !css_tryget(memcg_css))
584 		memcg_css = NULL;
585 	rcu_read_unlock();
586 	if (!memcg_css)
587 		goto out_free;
588 
589 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590 	css_put(memcg_css);
591 	if (!isw->new_wb)
592 		goto out_free;
593 
594 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595 		goto out_free;
596 
597 	isw->inodes[0] = inode;
598 
599 	/*
600 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
601 	 * the RCU protected stat update paths to grab the i_page
602 	 * lock so that stat transfer can synchronize against them.
603 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604 	 */
605 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606 	queue_rcu_work(isw_wq, &isw->work);
607 	return;
608 
609 out_free:
610 	atomic_dec(&isw_nr_in_flight);
611 	if (isw->new_wb)
612 		wb_put(isw->new_wb);
613 	kfree(isw);
614 }
615 
616 /**
617  * cleanup_offline_cgwb - detach associated inodes
618  * @wb: target wb
619  *
620  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
621  * to eventually release the dying @wb.  Returns %true if not all inodes were
622  * switched and the function has to be restarted.
623  */
cleanup_offline_cgwb(struct bdi_writeback * wb)624 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
625 {
626 	struct cgroup_subsys_state *memcg_css;
627 	struct inode_switch_wbs_context *isw;
628 	struct inode *inode;
629 	int nr;
630 	bool restart = false;
631 
632 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
633 		      GFP_KERNEL);
634 	if (!isw)
635 		return restart;
636 
637 	atomic_inc(&isw_nr_in_flight);
638 
639 	for (memcg_css = wb->memcg_css->parent; memcg_css;
640 	     memcg_css = memcg_css->parent) {
641 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
642 		if (isw->new_wb)
643 			break;
644 	}
645 	if (unlikely(!isw->new_wb))
646 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
647 
648 	nr = 0;
649 	spin_lock(&wb->list_lock);
650 	list_for_each_entry(inode, &wb->b_attached, i_io_list) {
651 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
652 			continue;
653 
654 		isw->inodes[nr++] = inode;
655 
656 		if (nr >= WB_MAX_INODES_PER_ISW - 1) {
657 			restart = true;
658 			break;
659 		}
660 	}
661 	spin_unlock(&wb->list_lock);
662 
663 	/* no attached inodes? bail out */
664 	if (nr == 0) {
665 		atomic_dec(&isw_nr_in_flight);
666 		wb_put(isw->new_wb);
667 		kfree(isw);
668 		return restart;
669 	}
670 
671 	/*
672 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
673 	 * the RCU protected stat update paths to grab the i_page
674 	 * lock so that stat transfer can synchronize against them.
675 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
676 	 */
677 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
678 	queue_rcu_work(isw_wq, &isw->work);
679 
680 	return restart;
681 }
682 
683 /**
684  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
685  * @wbc: writeback_control of interest
686  * @inode: target inode
687  *
688  * @inode is locked and about to be written back under the control of @wbc.
689  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
690  * writeback completion, wbc_detach_inode() should be called.  This is used
691  * to track the cgroup writeback context.
692  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
694 				 struct inode *inode)
695 {
696 	if (!inode_cgwb_enabled(inode)) {
697 		spin_unlock(&inode->i_lock);
698 		return;
699 	}
700 
701 	wbc->wb = inode_to_wb(inode);
702 	wbc->inode = inode;
703 
704 	wbc->wb_id = wbc->wb->memcg_css->id;
705 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
706 	wbc->wb_tcand_id = 0;
707 	wbc->wb_bytes = 0;
708 	wbc->wb_lcand_bytes = 0;
709 	wbc->wb_tcand_bytes = 0;
710 
711 	wb_get(wbc->wb);
712 	spin_unlock(&inode->i_lock);
713 
714 	/*
715 	 * A dying wb indicates that either the blkcg associated with the
716 	 * memcg changed or the associated memcg is dying.  In the first
717 	 * case, a replacement wb should already be available and we should
718 	 * refresh the wb immediately.  In the second case, trying to
719 	 * refresh will keep failing.
720 	 */
721 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
722 		inode_switch_wbs(inode, wbc->wb_id);
723 }
724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
725 
726 /**
727  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
728  * @wbc: writeback_control of the just finished writeback
729  *
730  * To be called after a writeback attempt of an inode finishes and undoes
731  * wbc_attach_and_unlock_inode().  Can be called under any context.
732  *
733  * As concurrent write sharing of an inode is expected to be very rare and
734  * memcg only tracks page ownership on first-use basis severely confining
735  * the usefulness of such sharing, cgroup writeback tracks ownership
736  * per-inode.  While the support for concurrent write sharing of an inode
737  * is deemed unnecessary, an inode being written to by different cgroups at
738  * different points in time is a lot more common, and, more importantly,
739  * charging only by first-use can too readily lead to grossly incorrect
740  * behaviors (single foreign page can lead to gigabytes of writeback to be
741  * incorrectly attributed).
742  *
743  * To resolve this issue, cgroup writeback detects the majority dirtier of
744  * an inode and transfers the ownership to it.  To avoid unnecessary
745  * oscillation, the detection mechanism keeps track of history and gives
746  * out the switch verdict only if the foreign usage pattern is stable over
747  * a certain amount of time and/or writeback attempts.
748  *
749  * On each writeback attempt, @wbc tries to detect the majority writer
750  * using Boyer-Moore majority vote algorithm.  In addition to the byte
751  * count from the majority voting, it also counts the bytes written for the
752  * current wb and the last round's winner wb (max of last round's current
753  * wb, the winner from two rounds ago, and the last round's majority
754  * candidate).  Keeping track of the historical winner helps the algorithm
755  * to semi-reliably detect the most active writer even when it's not the
756  * absolute majority.
757  *
758  * Once the winner of the round is determined, whether the winner is
759  * foreign or not and how much IO time the round consumed is recorded in
760  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
761  * over a certain threshold, the switch verdict is given.
762  */
wbc_detach_inode(struct writeback_control * wbc)763 void wbc_detach_inode(struct writeback_control *wbc)
764 {
765 	struct bdi_writeback *wb = wbc->wb;
766 	struct inode *inode = wbc->inode;
767 	unsigned long avg_time, max_bytes, max_time;
768 	u16 history;
769 	int max_id;
770 
771 	if (!wb)
772 		return;
773 
774 	history = inode->i_wb_frn_history;
775 	avg_time = inode->i_wb_frn_avg_time;
776 
777 	/* pick the winner of this round */
778 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
779 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
780 		max_id = wbc->wb_id;
781 		max_bytes = wbc->wb_bytes;
782 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
783 		max_id = wbc->wb_lcand_id;
784 		max_bytes = wbc->wb_lcand_bytes;
785 	} else {
786 		max_id = wbc->wb_tcand_id;
787 		max_bytes = wbc->wb_tcand_bytes;
788 	}
789 
790 	/*
791 	 * Calculate the amount of IO time the winner consumed and fold it
792 	 * into the running average kept per inode.  If the consumed IO
793 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
794 	 * deciding whether to switch or not.  This is to prevent one-off
795 	 * small dirtiers from skewing the verdict.
796 	 */
797 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
798 				wb->avg_write_bandwidth);
799 	if (avg_time)
800 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
801 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
802 	else
803 		avg_time = max_time;	/* immediate catch up on first run */
804 
805 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
806 		int slots;
807 
808 		/*
809 		 * The switch verdict is reached if foreign wb's consume
810 		 * more than a certain proportion of IO time in a
811 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
812 		 * history mask where each bit represents one sixteenth of
813 		 * the period.  Determine the number of slots to shift into
814 		 * history from @max_time.
815 		 */
816 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
817 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
818 		history <<= slots;
819 		if (wbc->wb_id != max_id)
820 			history |= (1U << slots) - 1;
821 
822 		if (history)
823 			trace_inode_foreign_history(inode, wbc, history);
824 
825 		/*
826 		 * Switch if the current wb isn't the consistent winner.
827 		 * If there are multiple closely competing dirtiers, the
828 		 * inode may switch across them repeatedly over time, which
829 		 * is okay.  The main goal is avoiding keeping an inode on
830 		 * the wrong wb for an extended period of time.
831 		 */
832 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
833 			inode_switch_wbs(inode, max_id);
834 	}
835 
836 	/*
837 	 * Multiple instances of this function may race to update the
838 	 * following fields but we don't mind occassional inaccuracies.
839 	 */
840 	inode->i_wb_frn_winner = max_id;
841 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
842 	inode->i_wb_frn_history = history;
843 
844 	wb_put(wbc->wb);
845 	wbc->wb = NULL;
846 }
847 EXPORT_SYMBOL_GPL(wbc_detach_inode);
848 
849 /**
850  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
851  * @wbc: writeback_control of the writeback in progress
852  * @page: page being written out
853  * @bytes: number of bytes being written out
854  *
855  * @bytes from @page are about to written out during the writeback
856  * controlled by @wbc.  Keep the book for foreign inode detection.  See
857  * wbc_detach_inode().
858  */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
860 			      size_t bytes)
861 {
862 	struct folio *folio;
863 	struct cgroup_subsys_state *css;
864 	int id;
865 
866 	/*
867 	 * pageout() path doesn't attach @wbc to the inode being written
868 	 * out.  This is intentional as we don't want the function to block
869 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
870 	 * regular writeback instead of writing things out itself.
871 	 */
872 	if (!wbc->wb || wbc->no_cgroup_owner)
873 		return;
874 
875 	folio = page_folio(page);
876 	css = mem_cgroup_css_from_folio(folio);
877 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
878 	if (!(css->flags & CSS_ONLINE))
879 		return;
880 
881 	id = css->id;
882 
883 	if (id == wbc->wb_id) {
884 		wbc->wb_bytes += bytes;
885 		return;
886 	}
887 
888 	if (id == wbc->wb_lcand_id)
889 		wbc->wb_lcand_bytes += bytes;
890 
891 	/* Boyer-Moore majority vote algorithm */
892 	if (!wbc->wb_tcand_bytes)
893 		wbc->wb_tcand_id = id;
894 	if (id == wbc->wb_tcand_id)
895 		wbc->wb_tcand_bytes += bytes;
896 	else
897 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
898 }
899 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
900 
901 /**
902  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
903  * @wb: target bdi_writeback to split @nr_pages to
904  * @nr_pages: number of pages to write for the whole bdi
905  *
906  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
907  * relation to the total write bandwidth of all wb's w/ dirty inodes on
908  * @wb->bdi.
909  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)910 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
911 {
912 	unsigned long this_bw = wb->avg_write_bandwidth;
913 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
914 
915 	if (nr_pages == LONG_MAX)
916 		return LONG_MAX;
917 
918 	/*
919 	 * This may be called on clean wb's and proportional distribution
920 	 * may not make sense, just use the original @nr_pages in those
921 	 * cases.  In general, we wanna err on the side of writing more.
922 	 */
923 	if (!tot_bw || this_bw >= tot_bw)
924 		return nr_pages;
925 	else
926 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
927 }
928 
929 /**
930  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
931  * @bdi: target backing_dev_info
932  * @base_work: wb_writeback_work to issue
933  * @skip_if_busy: skip wb's which already have writeback in progress
934  *
935  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
936  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
937  * distributed to the busy wbs according to each wb's proportion in the
938  * total active write bandwidth of @bdi.
939  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)940 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
941 				  struct wb_writeback_work *base_work,
942 				  bool skip_if_busy)
943 {
944 	struct bdi_writeback *last_wb = NULL;
945 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
946 					      struct bdi_writeback, bdi_node);
947 
948 	might_sleep();
949 restart:
950 	rcu_read_lock();
951 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
952 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
953 		struct wb_writeback_work fallback_work;
954 		struct wb_writeback_work *work;
955 		long nr_pages;
956 
957 		if (last_wb) {
958 			wb_put(last_wb);
959 			last_wb = NULL;
960 		}
961 
962 		/* SYNC_ALL writes out I_DIRTY_TIME too */
963 		if (!wb_has_dirty_io(wb) &&
964 		    (base_work->sync_mode == WB_SYNC_NONE ||
965 		     list_empty(&wb->b_dirty_time)))
966 			continue;
967 		if (skip_if_busy && writeback_in_progress(wb))
968 			continue;
969 
970 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
971 
972 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
973 		if (work) {
974 			*work = *base_work;
975 			work->nr_pages = nr_pages;
976 			work->auto_free = 1;
977 			wb_queue_work(wb, work);
978 			continue;
979 		}
980 
981 		/*
982 		 * If wb_tryget fails, the wb has been shutdown, skip it.
983 		 *
984 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
985 		 * continuing iteration from @wb after dropping and
986 		 * regrabbing rcu read lock.
987 		 */
988 		if (!wb_tryget(wb))
989 			continue;
990 
991 		/* alloc failed, execute synchronously using on-stack fallback */
992 		work = &fallback_work;
993 		*work = *base_work;
994 		work->nr_pages = nr_pages;
995 		work->auto_free = 0;
996 		work->done = &fallback_work_done;
997 
998 		wb_queue_work(wb, work);
999 		last_wb = wb;
1000 
1001 		rcu_read_unlock();
1002 		wb_wait_for_completion(&fallback_work_done);
1003 		goto restart;
1004 	}
1005 	rcu_read_unlock();
1006 
1007 	if (last_wb)
1008 		wb_put(last_wb);
1009 }
1010 
1011 /**
1012  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1013  * @bdi_id: target bdi id
1014  * @memcg_id: target memcg css id
1015  * @reason: reason why some writeback work initiated
1016  * @done: target wb_completion
1017  *
1018  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1019  * with the specified parameters.
1020  */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1021 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1022 			   enum wb_reason reason, struct wb_completion *done)
1023 {
1024 	struct backing_dev_info *bdi;
1025 	struct cgroup_subsys_state *memcg_css;
1026 	struct bdi_writeback *wb;
1027 	struct wb_writeback_work *work;
1028 	unsigned long dirty;
1029 	int ret;
1030 
1031 	/* lookup bdi and memcg */
1032 	bdi = bdi_get_by_id(bdi_id);
1033 	if (!bdi)
1034 		return -ENOENT;
1035 
1036 	rcu_read_lock();
1037 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1038 	if (memcg_css && !css_tryget(memcg_css))
1039 		memcg_css = NULL;
1040 	rcu_read_unlock();
1041 	if (!memcg_css) {
1042 		ret = -ENOENT;
1043 		goto out_bdi_put;
1044 	}
1045 
1046 	/*
1047 	 * And find the associated wb.  If the wb isn't there already
1048 	 * there's nothing to flush, don't create one.
1049 	 */
1050 	wb = wb_get_lookup(bdi, memcg_css);
1051 	if (!wb) {
1052 		ret = -ENOENT;
1053 		goto out_css_put;
1054 	}
1055 
1056 	/*
1057 	 * The caller is attempting to write out most of
1058 	 * the currently dirty pages.  Let's take the current dirty page
1059 	 * count and inflate it by 25% which should be large enough to
1060 	 * flush out most dirty pages while avoiding getting livelocked by
1061 	 * concurrent dirtiers.
1062 	 *
1063 	 * BTW the memcg stats are flushed periodically and this is best-effort
1064 	 * estimation, so some potential error is ok.
1065 	 */
1066 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1067 	dirty = dirty * 10 / 8;
1068 
1069 	/* issue the writeback work */
1070 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1071 	if (work) {
1072 		work->nr_pages = dirty;
1073 		work->sync_mode = WB_SYNC_NONE;
1074 		work->range_cyclic = 1;
1075 		work->reason = reason;
1076 		work->done = done;
1077 		work->auto_free = 1;
1078 		wb_queue_work(wb, work);
1079 		ret = 0;
1080 	} else {
1081 		ret = -ENOMEM;
1082 	}
1083 
1084 	wb_put(wb);
1085 out_css_put:
1086 	css_put(memcg_css);
1087 out_bdi_put:
1088 	bdi_put(bdi);
1089 	return ret;
1090 }
1091 
1092 /**
1093  * cgroup_writeback_umount - flush inode wb switches for umount
1094  *
1095  * This function is called when a super_block is about to be destroyed and
1096  * flushes in-flight inode wb switches.  An inode wb switch goes through
1097  * RCU and then workqueue, so the two need to be flushed in order to ensure
1098  * that all previously scheduled switches are finished.  As wb switches are
1099  * rare occurrences and synchronize_rcu() can take a while, perform
1100  * flushing iff wb switches are in flight.
1101  */
cgroup_writeback_umount(void)1102 void cgroup_writeback_umount(void)
1103 {
1104 	/*
1105 	 * SB_ACTIVE should be reliably cleared before checking
1106 	 * isw_nr_in_flight, see generic_shutdown_super().
1107 	 */
1108 	smp_mb();
1109 
1110 	if (atomic_read(&isw_nr_in_flight)) {
1111 		/*
1112 		 * Use rcu_barrier() to wait for all pending callbacks to
1113 		 * ensure that all in-flight wb switches are in the workqueue.
1114 		 */
1115 		rcu_barrier();
1116 		flush_workqueue(isw_wq);
1117 	}
1118 }
1119 
cgroup_writeback_init(void)1120 static int __init cgroup_writeback_init(void)
1121 {
1122 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1123 	if (!isw_wq)
1124 		return -ENOMEM;
1125 	return 0;
1126 }
1127 fs_initcall(cgroup_writeback_init);
1128 
1129 #else	/* CONFIG_CGROUP_WRITEBACK */
1130 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1131 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1132 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1133 
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1134 static void inode_cgwb_move_to_attached(struct inode *inode,
1135 					struct bdi_writeback *wb)
1136 {
1137 	assert_spin_locked(&wb->list_lock);
1138 	assert_spin_locked(&inode->i_lock);
1139 	WARN_ON_ONCE(inode->i_state & I_FREEING);
1140 
1141 	inode->i_state &= ~I_SYNC_QUEUED;
1142 	list_del_init(&inode->i_io_list);
1143 	wb_io_lists_depopulated(wb);
1144 }
1145 
1146 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1147 locked_inode_to_wb_and_lock_list(struct inode *inode)
1148 	__releases(&inode->i_lock)
1149 	__acquires(&wb->list_lock)
1150 {
1151 	struct bdi_writeback *wb = inode_to_wb(inode);
1152 
1153 	spin_unlock(&inode->i_lock);
1154 	spin_lock(&wb->list_lock);
1155 	return wb;
1156 }
1157 
inode_to_wb_and_lock_list(struct inode * inode)1158 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1159 	__acquires(&wb->list_lock)
1160 {
1161 	struct bdi_writeback *wb = inode_to_wb(inode);
1162 
1163 	spin_lock(&wb->list_lock);
1164 	return wb;
1165 }
1166 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1167 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1168 {
1169 	return nr_pages;
1170 }
1171 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1172 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1173 				  struct wb_writeback_work *base_work,
1174 				  bool skip_if_busy)
1175 {
1176 	might_sleep();
1177 
1178 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1179 		base_work->auto_free = 0;
1180 		wb_queue_work(&bdi->wb, base_work);
1181 	}
1182 }
1183 
1184 #endif	/* CONFIG_CGROUP_WRITEBACK */
1185 
1186 /*
1187  * Add in the number of potentially dirty inodes, because each inode
1188  * write can dirty pagecache in the underlying blockdev.
1189  */
get_nr_dirty_pages(void)1190 static unsigned long get_nr_dirty_pages(void)
1191 {
1192 	return global_node_page_state(NR_FILE_DIRTY) +
1193 		get_nr_dirty_inodes();
1194 }
1195 
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1196 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1197 {
1198 	if (!wb_has_dirty_io(wb))
1199 		return;
1200 
1201 	/*
1202 	 * All callers of this function want to start writeback of all
1203 	 * dirty pages. Places like vmscan can call this at a very
1204 	 * high frequency, causing pointless allocations of tons of
1205 	 * work items and keeping the flusher threads busy retrieving
1206 	 * that work. Ensure that we only allow one of them pending and
1207 	 * inflight at the time.
1208 	 */
1209 	if (test_bit(WB_start_all, &wb->state) ||
1210 	    test_and_set_bit(WB_start_all, &wb->state))
1211 		return;
1212 
1213 	wb->start_all_reason = reason;
1214 	wb_wakeup(wb);
1215 }
1216 
1217 /**
1218  * wb_start_background_writeback - start background writeback
1219  * @wb: bdi_writback to write from
1220  *
1221  * Description:
1222  *   This makes sure WB_SYNC_NONE background writeback happens. When
1223  *   this function returns, it is only guaranteed that for given wb
1224  *   some IO is happening if we are over background dirty threshold.
1225  *   Caller need not hold sb s_umount semaphore.
1226  */
wb_start_background_writeback(struct bdi_writeback * wb)1227 void wb_start_background_writeback(struct bdi_writeback *wb)
1228 {
1229 	/*
1230 	 * We just wake up the flusher thread. It will perform background
1231 	 * writeback as soon as there is no other work to do.
1232 	 */
1233 	trace_writeback_wake_background(wb);
1234 	wb_wakeup(wb);
1235 }
1236 
1237 /*
1238  * Remove the inode from the writeback list it is on.
1239  */
inode_io_list_del(struct inode * inode)1240 void inode_io_list_del(struct inode *inode)
1241 {
1242 	struct bdi_writeback *wb;
1243 
1244 	wb = inode_to_wb_and_lock_list(inode);
1245 	spin_lock(&inode->i_lock);
1246 
1247 	inode->i_state &= ~I_SYNC_QUEUED;
1248 	list_del_init(&inode->i_io_list);
1249 	wb_io_lists_depopulated(wb);
1250 
1251 	spin_unlock(&inode->i_lock);
1252 	spin_unlock(&wb->list_lock);
1253 }
1254 EXPORT_SYMBOL(inode_io_list_del);
1255 
1256 /*
1257  * mark an inode as under writeback on the sb
1258  */
sb_mark_inode_writeback(struct inode * inode)1259 void sb_mark_inode_writeback(struct inode *inode)
1260 {
1261 	struct super_block *sb = inode->i_sb;
1262 	unsigned long flags;
1263 
1264 	if (list_empty(&inode->i_wb_list)) {
1265 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1266 		if (list_empty(&inode->i_wb_list)) {
1267 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1268 			trace_sb_mark_inode_writeback(inode);
1269 		}
1270 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1271 	}
1272 }
1273 
1274 /*
1275  * clear an inode as under writeback on the sb
1276  */
sb_clear_inode_writeback(struct inode * inode)1277 void sb_clear_inode_writeback(struct inode *inode)
1278 {
1279 	struct super_block *sb = inode->i_sb;
1280 	unsigned long flags;
1281 
1282 	if (!list_empty(&inode->i_wb_list)) {
1283 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1284 		if (!list_empty(&inode->i_wb_list)) {
1285 			list_del_init(&inode->i_wb_list);
1286 			trace_sb_clear_inode_writeback(inode);
1287 		}
1288 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1289 	}
1290 }
1291 
1292 /*
1293  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1294  * furthest end of its superblock's dirty-inode list.
1295  *
1296  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1297  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1298  * the case then the inode must have been redirtied while it was being written
1299  * out and we don't reset its dirtied_when.
1300  */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1301 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1302 {
1303 	assert_spin_locked(&inode->i_lock);
1304 
1305 	inode->i_state &= ~I_SYNC_QUEUED;
1306 	/*
1307 	 * When the inode is being freed just don't bother with dirty list
1308 	 * tracking. Flush worker will ignore this inode anyway and it will
1309 	 * trigger assertions in inode_io_list_move_locked().
1310 	 */
1311 	if (inode->i_state & I_FREEING) {
1312 		list_del_init(&inode->i_io_list);
1313 		wb_io_lists_depopulated(wb);
1314 		return;
1315 	}
1316 	if (!list_empty(&wb->b_dirty)) {
1317 		struct inode *tail;
1318 
1319 		tail = wb_inode(wb->b_dirty.next);
1320 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1321 			inode->dirtied_when = jiffies;
1322 	}
1323 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1324 }
1325 
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1326 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1327 {
1328 	spin_lock(&inode->i_lock);
1329 	redirty_tail_locked(inode, wb);
1330 	spin_unlock(&inode->i_lock);
1331 }
1332 
1333 /*
1334  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1335  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1336 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1337 {
1338 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1339 }
1340 
inode_sync_complete(struct inode * inode)1341 static void inode_sync_complete(struct inode *inode)
1342 {
1343 	inode->i_state &= ~I_SYNC;
1344 	/* If inode is clean an unused, put it into LRU now... */
1345 	inode_add_lru(inode);
1346 	/* Waiters must see I_SYNC cleared before being woken up */
1347 	smp_mb();
1348 	wake_up_bit(&inode->i_state, __I_SYNC);
1349 }
1350 
inode_dirtied_after(struct inode * inode,unsigned long t)1351 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1352 {
1353 	bool ret = time_after(inode->dirtied_when, t);
1354 #ifndef CONFIG_64BIT
1355 	/*
1356 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1357 	 * It _appears_ to be in the future, but is actually in distant past.
1358 	 * This test is necessary to prevent such wrapped-around relative times
1359 	 * from permanently stopping the whole bdi writeback.
1360 	 */
1361 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1362 #endif
1363 	return ret;
1364 }
1365 
1366 /*
1367  * Move expired (dirtied before dirtied_before) dirty inodes from
1368  * @delaying_queue to @dispatch_queue.
1369  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1370 static int move_expired_inodes(struct list_head *delaying_queue,
1371 			       struct list_head *dispatch_queue,
1372 			       unsigned long dirtied_before)
1373 {
1374 	LIST_HEAD(tmp);
1375 	struct list_head *pos, *node;
1376 	struct super_block *sb = NULL;
1377 	struct inode *inode;
1378 	int do_sb_sort = 0;
1379 	int moved = 0;
1380 
1381 	while (!list_empty(delaying_queue)) {
1382 		inode = wb_inode(delaying_queue->prev);
1383 		if (inode_dirtied_after(inode, dirtied_before))
1384 			break;
1385 		spin_lock(&inode->i_lock);
1386 		list_move(&inode->i_io_list, &tmp);
1387 		moved++;
1388 		inode->i_state |= I_SYNC_QUEUED;
1389 		spin_unlock(&inode->i_lock);
1390 		if (sb_is_blkdev_sb(inode->i_sb))
1391 			continue;
1392 		if (sb && sb != inode->i_sb)
1393 			do_sb_sort = 1;
1394 		sb = inode->i_sb;
1395 	}
1396 
1397 	/* just one sb in list, splice to dispatch_queue and we're done */
1398 	if (!do_sb_sort) {
1399 		list_splice(&tmp, dispatch_queue);
1400 		goto out;
1401 	}
1402 
1403 	/*
1404 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1405 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1406 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1407 	 * fully under our control.
1408 	 */
1409 	while (!list_empty(&tmp)) {
1410 		sb = wb_inode(tmp.prev)->i_sb;
1411 		list_for_each_prev_safe(pos, node, &tmp) {
1412 			inode = wb_inode(pos);
1413 			if (inode->i_sb == sb)
1414 				list_move(&inode->i_io_list, dispatch_queue);
1415 		}
1416 	}
1417 out:
1418 	return moved;
1419 }
1420 
1421 /*
1422  * Queue all expired dirty inodes for io, eldest first.
1423  * Before
1424  *         newly dirtied     b_dirty    b_io    b_more_io
1425  *         =============>    gf         edc     BA
1426  * After
1427  *         newly dirtied     b_dirty    b_io    b_more_io
1428  *         =============>    g          fBAedc
1429  *                                           |
1430  *                                           +--> dequeue for IO
1431  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1432 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1433 		     unsigned long dirtied_before)
1434 {
1435 	int moved;
1436 	unsigned long time_expire_jif = dirtied_before;
1437 
1438 	assert_spin_locked(&wb->list_lock);
1439 	list_splice_init(&wb->b_more_io, &wb->b_io);
1440 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1441 	if (!work->for_sync)
1442 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1443 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1444 				     time_expire_jif);
1445 	if (moved)
1446 		wb_io_lists_populated(wb);
1447 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1448 }
1449 
write_inode(struct inode * inode,struct writeback_control * wbc)1450 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1451 {
1452 	int ret;
1453 
1454 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1455 		trace_writeback_write_inode_start(inode, wbc);
1456 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1457 		trace_writeback_write_inode(inode, wbc);
1458 		return ret;
1459 	}
1460 	return 0;
1461 }
1462 
1463 /*
1464  * Wait for writeback on an inode to complete. Called with i_lock held.
1465  * Caller must make sure inode cannot go away when we drop i_lock.
1466  */
__inode_wait_for_writeback(struct inode * inode)1467 static void __inode_wait_for_writeback(struct inode *inode)
1468 	__releases(inode->i_lock)
1469 	__acquires(inode->i_lock)
1470 {
1471 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1472 	wait_queue_head_t *wqh;
1473 
1474 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1475 	while (inode->i_state & I_SYNC) {
1476 		spin_unlock(&inode->i_lock);
1477 		__wait_on_bit(wqh, &wq, bit_wait,
1478 			      TASK_UNINTERRUPTIBLE);
1479 		spin_lock(&inode->i_lock);
1480 	}
1481 }
1482 
1483 /*
1484  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1485  */
inode_wait_for_writeback(struct inode * inode)1486 void inode_wait_for_writeback(struct inode *inode)
1487 {
1488 	spin_lock(&inode->i_lock);
1489 	__inode_wait_for_writeback(inode);
1490 	spin_unlock(&inode->i_lock);
1491 }
1492 
1493 /*
1494  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1495  * held and drops it. It is aimed for callers not holding any inode reference
1496  * so once i_lock is dropped, inode can go away.
1497  */
inode_sleep_on_writeback(struct inode * inode)1498 static void inode_sleep_on_writeback(struct inode *inode)
1499 	__releases(inode->i_lock)
1500 {
1501 	DEFINE_WAIT(wait);
1502 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1503 	int sleep;
1504 
1505 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1506 	sleep = inode->i_state & I_SYNC;
1507 	spin_unlock(&inode->i_lock);
1508 	if (sleep)
1509 		schedule();
1510 	finish_wait(wqh, &wait);
1511 }
1512 
1513 /*
1514  * Find proper writeback list for the inode depending on its current state and
1515  * possibly also change of its state while we were doing writeback.  Here we
1516  * handle things such as livelock prevention or fairness of writeback among
1517  * inodes. This function can be called only by flusher thread - noone else
1518  * processes all inodes in writeback lists and requeueing inodes behind flusher
1519  * thread's back can have unexpected consequences.
1520  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1521 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1522 			  struct writeback_control *wbc)
1523 {
1524 	if (inode->i_state & I_FREEING)
1525 		return;
1526 
1527 	/*
1528 	 * Sync livelock prevention. Each inode is tagged and synced in one
1529 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1530 	 * the dirty time to prevent enqueue and sync it again.
1531 	 */
1532 	if ((inode->i_state & I_DIRTY) &&
1533 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1534 		inode->dirtied_when = jiffies;
1535 
1536 	if (wbc->pages_skipped) {
1537 		/*
1538 		 * Writeback is not making progress due to locked buffers.
1539 		 * Skip this inode for now. Although having skipped pages
1540 		 * is odd for clean inodes, it can happen for some
1541 		 * filesystems so handle that gracefully.
1542 		 */
1543 		if (inode->i_state & I_DIRTY_ALL)
1544 			redirty_tail_locked(inode, wb);
1545 		else
1546 			inode_cgwb_move_to_attached(inode, wb);
1547 		return;
1548 	}
1549 
1550 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1551 		/*
1552 		 * We didn't write back all the pages.  nfs_writepages()
1553 		 * sometimes bales out without doing anything.
1554 		 */
1555 		if (wbc->nr_to_write <= 0) {
1556 			/* Slice used up. Queue for next turn. */
1557 			requeue_io(inode, wb);
1558 		} else {
1559 			/*
1560 			 * Writeback blocked by something other than
1561 			 * congestion. Delay the inode for some time to
1562 			 * avoid spinning on the CPU (100% iowait)
1563 			 * retrying writeback of the dirty page/inode
1564 			 * that cannot be performed immediately.
1565 			 */
1566 			redirty_tail_locked(inode, wb);
1567 		}
1568 	} else if (inode->i_state & I_DIRTY) {
1569 		/*
1570 		 * Filesystems can dirty the inode during writeback operations,
1571 		 * such as delayed allocation during submission or metadata
1572 		 * updates after data IO completion.
1573 		 */
1574 		redirty_tail_locked(inode, wb);
1575 	} else if (inode->i_state & I_DIRTY_TIME) {
1576 		inode->dirtied_when = jiffies;
1577 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1578 		inode->i_state &= ~I_SYNC_QUEUED;
1579 	} else {
1580 		/* The inode is clean. Remove from writeback lists. */
1581 		inode_cgwb_move_to_attached(inode, wb);
1582 	}
1583 }
1584 
1585 /*
1586  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1587  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1588  *
1589  * This doesn't remove the inode from the writeback list it is on, except
1590  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1591  * expiration.  The caller is otherwise responsible for writeback list handling.
1592  *
1593  * The caller is also responsible for setting the I_SYNC flag beforehand and
1594  * calling inode_sync_complete() to clear it afterwards.
1595  */
1596 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1597 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1598 {
1599 	struct address_space *mapping = inode->i_mapping;
1600 	long nr_to_write = wbc->nr_to_write;
1601 	unsigned dirty;
1602 	int ret;
1603 
1604 	WARN_ON(!(inode->i_state & I_SYNC));
1605 
1606 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1607 
1608 	ret = do_writepages(mapping, wbc);
1609 
1610 	/*
1611 	 * Make sure to wait on the data before writing out the metadata.
1612 	 * This is important for filesystems that modify metadata on data
1613 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1614 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1615 	 * inode metadata is written back correctly.
1616 	 */
1617 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1618 		int err = filemap_fdatawait(mapping);
1619 		if (ret == 0)
1620 			ret = err;
1621 	}
1622 
1623 	/*
1624 	 * If the inode has dirty timestamps and we need to write them, call
1625 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1626 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1627 	 */
1628 	if ((inode->i_state & I_DIRTY_TIME) &&
1629 	    (wbc->sync_mode == WB_SYNC_ALL ||
1630 	     time_after(jiffies, inode->dirtied_time_when +
1631 			dirtytime_expire_interval * HZ))) {
1632 		trace_writeback_lazytime(inode);
1633 		mark_inode_dirty_sync(inode);
1634 	}
1635 
1636 	/*
1637 	 * Get and clear the dirty flags from i_state.  This needs to be done
1638 	 * after calling writepages because some filesystems may redirty the
1639 	 * inode during writepages due to delalloc.  It also needs to be done
1640 	 * after handling timestamp expiration, as that may dirty the inode too.
1641 	 */
1642 	spin_lock(&inode->i_lock);
1643 	dirty = inode->i_state & I_DIRTY;
1644 	inode->i_state &= ~dirty;
1645 
1646 	/*
1647 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1648 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1649 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1650 	 * inode.
1651 	 *
1652 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1653 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1654 	 * necessary.  This guarantees that either __mark_inode_dirty()
1655 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1656 	 */
1657 	smp_mb();
1658 
1659 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1660 		inode->i_state |= I_DIRTY_PAGES;
1661 	else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1662 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1663 			inode->i_state &= ~I_PINNING_FSCACHE_WB;
1664 			wbc->unpinned_fscache_wb = true;
1665 			dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1666 		}
1667 	}
1668 
1669 	spin_unlock(&inode->i_lock);
1670 
1671 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1672 	if (dirty & ~I_DIRTY_PAGES) {
1673 		int err = write_inode(inode, wbc);
1674 		if (ret == 0)
1675 			ret = err;
1676 	}
1677 	wbc->unpinned_fscache_wb = false;
1678 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1679 	return ret;
1680 }
1681 
1682 /*
1683  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1684  * the regular batched writeback done by the flusher threads in
1685  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1686  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1687  *
1688  * To prevent the inode from going away, either the caller must have a reference
1689  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1690  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1691 static int writeback_single_inode(struct inode *inode,
1692 				  struct writeback_control *wbc)
1693 {
1694 	struct bdi_writeback *wb;
1695 	int ret = 0;
1696 
1697 	spin_lock(&inode->i_lock);
1698 	if (!atomic_read(&inode->i_count))
1699 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1700 	else
1701 		WARN_ON(inode->i_state & I_WILL_FREE);
1702 
1703 	if (inode->i_state & I_SYNC) {
1704 		/*
1705 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1706 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1707 		 * must wait for the existing writeback to complete, then do
1708 		 * writeback again if there's anything left.
1709 		 */
1710 		if (wbc->sync_mode != WB_SYNC_ALL)
1711 			goto out;
1712 		__inode_wait_for_writeback(inode);
1713 	}
1714 	WARN_ON(inode->i_state & I_SYNC);
1715 	/*
1716 	 * If the inode is already fully clean, then there's nothing to do.
1717 	 *
1718 	 * For data-integrity syncs we also need to check whether any pages are
1719 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1720 	 * there are any such pages, we'll need to wait for them.
1721 	 */
1722 	if (!(inode->i_state & I_DIRTY_ALL) &&
1723 	    (wbc->sync_mode != WB_SYNC_ALL ||
1724 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1725 		goto out;
1726 	inode->i_state |= I_SYNC;
1727 	wbc_attach_and_unlock_inode(wbc, inode);
1728 
1729 	ret = __writeback_single_inode(inode, wbc);
1730 
1731 	wbc_detach_inode(wbc);
1732 
1733 	wb = inode_to_wb_and_lock_list(inode);
1734 	spin_lock(&inode->i_lock);
1735 	/*
1736 	 * If the inode is freeing, its i_io_list shoudn't be updated
1737 	 * as it can be finally deleted at this moment.
1738 	 */
1739 	if (!(inode->i_state & I_FREEING)) {
1740 		/*
1741 		 * If the inode is now fully clean, then it can be safely
1742 		 * removed from its writeback list (if any). Otherwise the
1743 		 * flusher threads are responsible for the writeback lists.
1744 		 */
1745 		if (!(inode->i_state & I_DIRTY_ALL))
1746 			inode_cgwb_move_to_attached(inode, wb);
1747 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1748 			if ((inode->i_state & I_DIRTY))
1749 				redirty_tail_locked(inode, wb);
1750 			else if (inode->i_state & I_DIRTY_TIME) {
1751 				inode->dirtied_when = jiffies;
1752 				inode_io_list_move_locked(inode,
1753 							  wb,
1754 							  &wb->b_dirty_time);
1755 			}
1756 		}
1757 	}
1758 
1759 	spin_unlock(&wb->list_lock);
1760 	inode_sync_complete(inode);
1761 out:
1762 	spin_unlock(&inode->i_lock);
1763 	return ret;
1764 }
1765 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1766 static long writeback_chunk_size(struct bdi_writeback *wb,
1767 				 struct wb_writeback_work *work)
1768 {
1769 	long pages;
1770 
1771 	/*
1772 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1773 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1774 	 * here avoids calling into writeback_inodes_wb() more than once.
1775 	 *
1776 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1777 	 *
1778 	 *      wb_writeback()
1779 	 *          writeback_sb_inodes()       <== called only once
1780 	 *              write_cache_pages()     <== called once for each inode
1781 	 *                   (quickly) tag currently dirty pages
1782 	 *                   (maybe slowly) sync all tagged pages
1783 	 */
1784 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1785 		pages = LONG_MAX;
1786 	else {
1787 		pages = min(wb->avg_write_bandwidth / 2,
1788 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1789 		pages = min(pages, work->nr_pages);
1790 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1791 				   MIN_WRITEBACK_PAGES);
1792 	}
1793 
1794 	return pages;
1795 }
1796 
1797 /*
1798  * Write a portion of b_io inodes which belong to @sb.
1799  *
1800  * Return the number of pages and/or inodes written.
1801  *
1802  * NOTE! This is called with wb->list_lock held, and will
1803  * unlock and relock that for each inode it ends up doing
1804  * IO for.
1805  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1806 static long writeback_sb_inodes(struct super_block *sb,
1807 				struct bdi_writeback *wb,
1808 				struct wb_writeback_work *work)
1809 {
1810 	struct writeback_control wbc = {
1811 		.sync_mode		= work->sync_mode,
1812 		.tagged_writepages	= work->tagged_writepages,
1813 		.for_kupdate		= work->for_kupdate,
1814 		.for_background		= work->for_background,
1815 		.for_sync		= work->for_sync,
1816 		.range_cyclic		= work->range_cyclic,
1817 		.range_start		= 0,
1818 		.range_end		= LLONG_MAX,
1819 	};
1820 	unsigned long start_time = jiffies;
1821 	long write_chunk;
1822 	long total_wrote = 0;  /* count both pages and inodes */
1823 
1824 	while (!list_empty(&wb->b_io)) {
1825 		struct inode *inode = wb_inode(wb->b_io.prev);
1826 		struct bdi_writeback *tmp_wb;
1827 		long wrote;
1828 
1829 		if (inode->i_sb != sb) {
1830 			if (work->sb) {
1831 				/*
1832 				 * We only want to write back data for this
1833 				 * superblock, move all inodes not belonging
1834 				 * to it back onto the dirty list.
1835 				 */
1836 				redirty_tail(inode, wb);
1837 				continue;
1838 			}
1839 
1840 			/*
1841 			 * The inode belongs to a different superblock.
1842 			 * Bounce back to the caller to unpin this and
1843 			 * pin the next superblock.
1844 			 */
1845 			break;
1846 		}
1847 
1848 		/*
1849 		 * Don't bother with new inodes or inodes being freed, first
1850 		 * kind does not need periodic writeout yet, and for the latter
1851 		 * kind writeout is handled by the freer.
1852 		 */
1853 		spin_lock(&inode->i_lock);
1854 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1855 			redirty_tail_locked(inode, wb);
1856 			spin_unlock(&inode->i_lock);
1857 			continue;
1858 		}
1859 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1860 			/*
1861 			 * If this inode is locked for writeback and we are not
1862 			 * doing writeback-for-data-integrity, move it to
1863 			 * b_more_io so that writeback can proceed with the
1864 			 * other inodes on s_io.
1865 			 *
1866 			 * We'll have another go at writing back this inode
1867 			 * when we completed a full scan of b_io.
1868 			 */
1869 			requeue_io(inode, wb);
1870 			spin_unlock(&inode->i_lock);
1871 			trace_writeback_sb_inodes_requeue(inode);
1872 			continue;
1873 		}
1874 		spin_unlock(&wb->list_lock);
1875 
1876 		/*
1877 		 * We already requeued the inode if it had I_SYNC set and we
1878 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1879 		 * WB_SYNC_ALL case.
1880 		 */
1881 		if (inode->i_state & I_SYNC) {
1882 			/* Wait for I_SYNC. This function drops i_lock... */
1883 			inode_sleep_on_writeback(inode);
1884 			/* Inode may be gone, start again */
1885 			spin_lock(&wb->list_lock);
1886 			continue;
1887 		}
1888 		inode->i_state |= I_SYNC;
1889 		wbc_attach_and_unlock_inode(&wbc, inode);
1890 
1891 		write_chunk = writeback_chunk_size(wb, work);
1892 		wbc.nr_to_write = write_chunk;
1893 		wbc.pages_skipped = 0;
1894 
1895 		/*
1896 		 * We use I_SYNC to pin the inode in memory. While it is set
1897 		 * evict_inode() will wait so the inode cannot be freed.
1898 		 */
1899 		__writeback_single_inode(inode, &wbc);
1900 
1901 		wbc_detach_inode(&wbc);
1902 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1903 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1904 		wrote = wrote < 0 ? 0 : wrote;
1905 		total_wrote += wrote;
1906 
1907 		if (need_resched()) {
1908 			/*
1909 			 * We're trying to balance between building up a nice
1910 			 * long list of IOs to improve our merge rate, and
1911 			 * getting those IOs out quickly for anyone throttling
1912 			 * in balance_dirty_pages().  cond_resched() doesn't
1913 			 * unplug, so get our IOs out the door before we
1914 			 * give up the CPU.
1915 			 */
1916 			blk_flush_plug(current->plug, false);
1917 			cond_resched();
1918 		}
1919 
1920 		/*
1921 		 * Requeue @inode if still dirty.  Be careful as @inode may
1922 		 * have been switched to another wb in the meantime.
1923 		 */
1924 		tmp_wb = inode_to_wb_and_lock_list(inode);
1925 		spin_lock(&inode->i_lock);
1926 		if (!(inode->i_state & I_DIRTY_ALL))
1927 			total_wrote++;
1928 		requeue_inode(inode, tmp_wb, &wbc);
1929 		inode_sync_complete(inode);
1930 		spin_unlock(&inode->i_lock);
1931 
1932 		if (unlikely(tmp_wb != wb)) {
1933 			spin_unlock(&tmp_wb->list_lock);
1934 			spin_lock(&wb->list_lock);
1935 		}
1936 
1937 		/*
1938 		 * bail out to wb_writeback() often enough to check
1939 		 * background threshold and other termination conditions.
1940 		 */
1941 		if (total_wrote) {
1942 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1943 				break;
1944 			if (work->nr_pages <= 0)
1945 				break;
1946 		}
1947 	}
1948 	return total_wrote;
1949 }
1950 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1951 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1952 				  struct wb_writeback_work *work)
1953 {
1954 	unsigned long start_time = jiffies;
1955 	long wrote = 0;
1956 
1957 	while (!list_empty(&wb->b_io)) {
1958 		struct inode *inode = wb_inode(wb->b_io.prev);
1959 		struct super_block *sb = inode->i_sb;
1960 
1961 		if (!super_trylock_shared(sb)) {
1962 			/*
1963 			 * super_trylock_shared() may fail consistently due to
1964 			 * s_umount being grabbed by someone else. Don't use
1965 			 * requeue_io() to avoid busy retrying the inode/sb.
1966 			 */
1967 			redirty_tail(inode, wb);
1968 			continue;
1969 		}
1970 		wrote += writeback_sb_inodes(sb, wb, work);
1971 		up_read(&sb->s_umount);
1972 
1973 		/* refer to the same tests at the end of writeback_sb_inodes */
1974 		if (wrote) {
1975 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1976 				break;
1977 			if (work->nr_pages <= 0)
1978 				break;
1979 		}
1980 	}
1981 	/* Leave any unwritten inodes on b_io */
1982 	return wrote;
1983 }
1984 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1985 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1986 				enum wb_reason reason)
1987 {
1988 	struct wb_writeback_work work = {
1989 		.nr_pages	= nr_pages,
1990 		.sync_mode	= WB_SYNC_NONE,
1991 		.range_cyclic	= 1,
1992 		.reason		= reason,
1993 	};
1994 	struct blk_plug plug;
1995 
1996 	blk_start_plug(&plug);
1997 	spin_lock(&wb->list_lock);
1998 	if (list_empty(&wb->b_io))
1999 		queue_io(wb, &work, jiffies);
2000 	__writeback_inodes_wb(wb, &work);
2001 	spin_unlock(&wb->list_lock);
2002 	blk_finish_plug(&plug);
2003 
2004 	return nr_pages - work.nr_pages;
2005 }
2006 
2007 /*
2008  * Explicit flushing or periodic writeback of "old" data.
2009  *
2010  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2011  * dirtying-time in the inode's address_space.  So this periodic writeback code
2012  * just walks the superblock inode list, writing back any inodes which are
2013  * older than a specific point in time.
2014  *
2015  * Try to run once per dirty_writeback_interval.  But if a writeback event
2016  * takes longer than a dirty_writeback_interval interval, then leave a
2017  * one-second gap.
2018  *
2019  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2020  * all dirty pages if they are all attached to "old" mappings.
2021  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2022 static long wb_writeback(struct bdi_writeback *wb,
2023 			 struct wb_writeback_work *work)
2024 {
2025 	long nr_pages = work->nr_pages;
2026 	unsigned long dirtied_before = jiffies;
2027 	struct inode *inode;
2028 	long progress;
2029 	struct blk_plug plug;
2030 
2031 	blk_start_plug(&plug);
2032 	for (;;) {
2033 		/*
2034 		 * Stop writeback when nr_pages has been consumed
2035 		 */
2036 		if (work->nr_pages <= 0)
2037 			break;
2038 
2039 		/*
2040 		 * Background writeout and kupdate-style writeback may
2041 		 * run forever. Stop them if there is other work to do
2042 		 * so that e.g. sync can proceed. They'll be restarted
2043 		 * after the other works are all done.
2044 		 */
2045 		if ((work->for_background || work->for_kupdate) &&
2046 		    !list_empty(&wb->work_list))
2047 			break;
2048 
2049 		/*
2050 		 * For background writeout, stop when we are below the
2051 		 * background dirty threshold
2052 		 */
2053 		if (work->for_background && !wb_over_bg_thresh(wb))
2054 			break;
2055 
2056 
2057 		spin_lock(&wb->list_lock);
2058 
2059 		/*
2060 		 * Kupdate and background works are special and we want to
2061 		 * include all inodes that need writing. Livelock avoidance is
2062 		 * handled by these works yielding to any other work so we are
2063 		 * safe.
2064 		 */
2065 		if (work->for_kupdate) {
2066 			dirtied_before = jiffies -
2067 				msecs_to_jiffies(dirty_expire_interval * 10);
2068 		} else if (work->for_background)
2069 			dirtied_before = jiffies;
2070 
2071 		trace_writeback_start(wb, work);
2072 		if (list_empty(&wb->b_io))
2073 			queue_io(wb, work, dirtied_before);
2074 		if (work->sb)
2075 			progress = writeback_sb_inodes(work->sb, wb, work);
2076 		else
2077 			progress = __writeback_inodes_wb(wb, work);
2078 		trace_writeback_written(wb, work);
2079 
2080 		/*
2081 		 * Did we write something? Try for more
2082 		 *
2083 		 * Dirty inodes are moved to b_io for writeback in batches.
2084 		 * The completion of the current batch does not necessarily
2085 		 * mean the overall work is done. So we keep looping as long
2086 		 * as made some progress on cleaning pages or inodes.
2087 		 */
2088 		if (progress) {
2089 			spin_unlock(&wb->list_lock);
2090 			continue;
2091 		}
2092 
2093 		/*
2094 		 * No more inodes for IO, bail
2095 		 */
2096 		if (list_empty(&wb->b_more_io)) {
2097 			spin_unlock(&wb->list_lock);
2098 			break;
2099 		}
2100 
2101 		/*
2102 		 * Nothing written. Wait for some inode to
2103 		 * become available for writeback. Otherwise
2104 		 * we'll just busyloop.
2105 		 */
2106 		trace_writeback_wait(wb, work);
2107 		inode = wb_inode(wb->b_more_io.prev);
2108 		spin_lock(&inode->i_lock);
2109 		spin_unlock(&wb->list_lock);
2110 		/* This function drops i_lock... */
2111 		inode_sleep_on_writeback(inode);
2112 	}
2113 	blk_finish_plug(&plug);
2114 
2115 	return nr_pages - work->nr_pages;
2116 }
2117 
2118 /*
2119  * Return the next wb_writeback_work struct that hasn't been processed yet.
2120  */
get_next_work_item(struct bdi_writeback * wb)2121 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2122 {
2123 	struct wb_writeback_work *work = NULL;
2124 
2125 	spin_lock_irq(&wb->work_lock);
2126 	if (!list_empty(&wb->work_list)) {
2127 		work = list_entry(wb->work_list.next,
2128 				  struct wb_writeback_work, list);
2129 		list_del_init(&work->list);
2130 	}
2131 	spin_unlock_irq(&wb->work_lock);
2132 	return work;
2133 }
2134 
wb_check_background_flush(struct bdi_writeback * wb)2135 static long wb_check_background_flush(struct bdi_writeback *wb)
2136 {
2137 	if (wb_over_bg_thresh(wb)) {
2138 
2139 		struct wb_writeback_work work = {
2140 			.nr_pages	= LONG_MAX,
2141 			.sync_mode	= WB_SYNC_NONE,
2142 			.for_background	= 1,
2143 			.range_cyclic	= 1,
2144 			.reason		= WB_REASON_BACKGROUND,
2145 		};
2146 
2147 		return wb_writeback(wb, &work);
2148 	}
2149 
2150 	return 0;
2151 }
2152 
wb_check_old_data_flush(struct bdi_writeback * wb)2153 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2154 {
2155 	unsigned long expired;
2156 	long nr_pages;
2157 
2158 	/*
2159 	 * When set to zero, disable periodic writeback
2160 	 */
2161 	if (!dirty_writeback_interval)
2162 		return 0;
2163 
2164 	expired = wb->last_old_flush +
2165 			msecs_to_jiffies(dirty_writeback_interval * 10);
2166 	if (time_before(jiffies, expired))
2167 		return 0;
2168 
2169 	wb->last_old_flush = jiffies;
2170 	nr_pages = get_nr_dirty_pages();
2171 
2172 	if (nr_pages) {
2173 		struct wb_writeback_work work = {
2174 			.nr_pages	= nr_pages,
2175 			.sync_mode	= WB_SYNC_NONE,
2176 			.for_kupdate	= 1,
2177 			.range_cyclic	= 1,
2178 			.reason		= WB_REASON_PERIODIC,
2179 		};
2180 
2181 		return wb_writeback(wb, &work);
2182 	}
2183 
2184 	return 0;
2185 }
2186 
wb_check_start_all(struct bdi_writeback * wb)2187 static long wb_check_start_all(struct bdi_writeback *wb)
2188 {
2189 	long nr_pages;
2190 
2191 	if (!test_bit(WB_start_all, &wb->state))
2192 		return 0;
2193 
2194 	nr_pages = get_nr_dirty_pages();
2195 	if (nr_pages) {
2196 		struct wb_writeback_work work = {
2197 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2198 			.sync_mode	= WB_SYNC_NONE,
2199 			.range_cyclic	= 1,
2200 			.reason		= wb->start_all_reason,
2201 		};
2202 
2203 		nr_pages = wb_writeback(wb, &work);
2204 	}
2205 
2206 	clear_bit(WB_start_all, &wb->state);
2207 	return nr_pages;
2208 }
2209 
2210 
2211 /*
2212  * Retrieve work items and do the writeback they describe
2213  */
wb_do_writeback(struct bdi_writeback * wb)2214 static long wb_do_writeback(struct bdi_writeback *wb)
2215 {
2216 	struct wb_writeback_work *work;
2217 	long wrote = 0;
2218 
2219 	set_bit(WB_writeback_running, &wb->state);
2220 	while ((work = get_next_work_item(wb)) != NULL) {
2221 		trace_writeback_exec(wb, work);
2222 		wrote += wb_writeback(wb, work);
2223 		finish_writeback_work(wb, work);
2224 	}
2225 
2226 	/*
2227 	 * Check for a flush-everything request
2228 	 */
2229 	wrote += wb_check_start_all(wb);
2230 
2231 	/*
2232 	 * Check for periodic writeback, kupdated() style
2233 	 */
2234 	wrote += wb_check_old_data_flush(wb);
2235 	wrote += wb_check_background_flush(wb);
2236 	clear_bit(WB_writeback_running, &wb->state);
2237 
2238 	return wrote;
2239 }
2240 
2241 /*
2242  * Handle writeback of dirty data for the device backed by this bdi. Also
2243  * reschedules periodically and does kupdated style flushing.
2244  */
wb_workfn(struct work_struct * work)2245 void wb_workfn(struct work_struct *work)
2246 {
2247 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2248 						struct bdi_writeback, dwork);
2249 	long pages_written;
2250 
2251 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2252 
2253 	if (likely(!current_is_workqueue_rescuer() ||
2254 		   !test_bit(WB_registered, &wb->state))) {
2255 		/*
2256 		 * The normal path.  Keep writing back @wb until its
2257 		 * work_list is empty.  Note that this path is also taken
2258 		 * if @wb is shutting down even when we're running off the
2259 		 * rescuer as work_list needs to be drained.
2260 		 */
2261 		do {
2262 			pages_written = wb_do_writeback(wb);
2263 			trace_writeback_pages_written(pages_written);
2264 		} while (!list_empty(&wb->work_list));
2265 	} else {
2266 		/*
2267 		 * bdi_wq can't get enough workers and we're running off
2268 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2269 		 * enough for efficient IO.
2270 		 */
2271 		pages_written = writeback_inodes_wb(wb, 1024,
2272 						    WB_REASON_FORKER_THREAD);
2273 		trace_writeback_pages_written(pages_written);
2274 	}
2275 
2276 	if (!list_empty(&wb->work_list))
2277 		wb_wakeup(wb);
2278 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2279 		wb_wakeup_delayed(wb);
2280 }
2281 
2282 /*
2283  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2284  * write back the whole world.
2285  */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2286 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2287 					 enum wb_reason reason)
2288 {
2289 	struct bdi_writeback *wb;
2290 
2291 	if (!bdi_has_dirty_io(bdi))
2292 		return;
2293 
2294 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2295 		wb_start_writeback(wb, reason);
2296 }
2297 
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2298 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2299 				enum wb_reason reason)
2300 {
2301 	rcu_read_lock();
2302 	__wakeup_flusher_threads_bdi(bdi, reason);
2303 	rcu_read_unlock();
2304 }
2305 
2306 /*
2307  * Wakeup the flusher threads to start writeback of all currently dirty pages
2308  */
wakeup_flusher_threads(enum wb_reason reason)2309 void wakeup_flusher_threads(enum wb_reason reason)
2310 {
2311 	struct backing_dev_info *bdi;
2312 
2313 	/*
2314 	 * If we are expecting writeback progress we must submit plugged IO.
2315 	 */
2316 	blk_flush_plug(current->plug, true);
2317 
2318 	rcu_read_lock();
2319 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2320 		__wakeup_flusher_threads_bdi(bdi, reason);
2321 	rcu_read_unlock();
2322 }
2323 
2324 /*
2325  * Wake up bdi's periodically to make sure dirtytime inodes gets
2326  * written back periodically.  We deliberately do *not* check the
2327  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2328  * kernel to be constantly waking up once there are any dirtytime
2329  * inodes on the system.  So instead we define a separate delayed work
2330  * function which gets called much more rarely.  (By default, only
2331  * once every 12 hours.)
2332  *
2333  * If there is any other write activity going on in the file system,
2334  * this function won't be necessary.  But if the only thing that has
2335  * happened on the file system is a dirtytime inode caused by an atime
2336  * update, we need this infrastructure below to make sure that inode
2337  * eventually gets pushed out to disk.
2338  */
2339 static void wakeup_dirtytime_writeback(struct work_struct *w);
2340 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2341 
wakeup_dirtytime_writeback(struct work_struct * w)2342 static void wakeup_dirtytime_writeback(struct work_struct *w)
2343 {
2344 	struct backing_dev_info *bdi;
2345 
2346 	rcu_read_lock();
2347 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2348 		struct bdi_writeback *wb;
2349 
2350 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2351 			if (!list_empty(&wb->b_dirty_time))
2352 				wb_wakeup(wb);
2353 	}
2354 	rcu_read_unlock();
2355 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2356 }
2357 
start_dirtytime_writeback(void)2358 static int __init start_dirtytime_writeback(void)
2359 {
2360 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2361 	return 0;
2362 }
2363 __initcall(start_dirtytime_writeback);
2364 
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2365 int dirtytime_interval_handler(struct ctl_table *table, int write,
2366 			       void *buffer, size_t *lenp, loff_t *ppos)
2367 {
2368 	int ret;
2369 
2370 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2371 	if (ret == 0 && write)
2372 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2373 	return ret;
2374 }
2375 
2376 /**
2377  * __mark_inode_dirty -	internal function to mark an inode dirty
2378  *
2379  * @inode: inode to mark
2380  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2381  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2382  *	   with I_DIRTY_PAGES.
2383  *
2384  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2385  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2386  *
2387  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2388  * instead of calling this directly.
2389  *
2390  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2391  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2392  * even if they are later hashed, as they will have been marked dirty already.
2393  *
2394  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2395  *
2396  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2397  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2398  * the kernel-internal blockdev inode represents the dirtying time of the
2399  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2400  * page->mapping->host, so the page-dirtying time is recorded in the internal
2401  * blockdev inode.
2402  */
__mark_inode_dirty(struct inode * inode,int flags)2403 void __mark_inode_dirty(struct inode *inode, int flags)
2404 {
2405 	struct super_block *sb = inode->i_sb;
2406 	int dirtytime = 0;
2407 	struct bdi_writeback *wb = NULL;
2408 
2409 	trace_writeback_mark_inode_dirty(inode, flags);
2410 
2411 	if (flags & I_DIRTY_INODE) {
2412 		/*
2413 		 * Inode timestamp update will piggback on this dirtying.
2414 		 * We tell ->dirty_inode callback that timestamps need to
2415 		 * be updated by setting I_DIRTY_TIME in flags.
2416 		 */
2417 		if (inode->i_state & I_DIRTY_TIME) {
2418 			spin_lock(&inode->i_lock);
2419 			if (inode->i_state & I_DIRTY_TIME) {
2420 				inode->i_state &= ~I_DIRTY_TIME;
2421 				flags |= I_DIRTY_TIME;
2422 			}
2423 			spin_unlock(&inode->i_lock);
2424 		}
2425 
2426 		/*
2427 		 * Notify the filesystem about the inode being dirtied, so that
2428 		 * (if needed) it can update on-disk fields and journal the
2429 		 * inode.  This is only needed when the inode itself is being
2430 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2431 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2432 		 */
2433 		trace_writeback_dirty_inode_start(inode, flags);
2434 		if (sb->s_op->dirty_inode)
2435 			sb->s_op->dirty_inode(inode,
2436 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2437 		trace_writeback_dirty_inode(inode, flags);
2438 
2439 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2440 		flags &= ~I_DIRTY_TIME;
2441 	} else {
2442 		/*
2443 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2444 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2445 		 * in one call to __mark_inode_dirty().)
2446 		 */
2447 		dirtytime = flags & I_DIRTY_TIME;
2448 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2449 	}
2450 
2451 	/*
2452 	 * Paired with smp_mb() in __writeback_single_inode() for the
2453 	 * following lockless i_state test.  See there for details.
2454 	 */
2455 	smp_mb();
2456 
2457 	if ((inode->i_state & flags) == flags)
2458 		return;
2459 
2460 	spin_lock(&inode->i_lock);
2461 	if ((inode->i_state & flags) != flags) {
2462 		const int was_dirty = inode->i_state & I_DIRTY;
2463 
2464 		inode_attach_wb(inode, NULL);
2465 
2466 		inode->i_state |= flags;
2467 
2468 		/*
2469 		 * Grab inode's wb early because it requires dropping i_lock and we
2470 		 * need to make sure following checks happen atomically with dirty
2471 		 * list handling so that we don't move inodes under flush worker's
2472 		 * hands.
2473 		 */
2474 		if (!was_dirty) {
2475 			wb = locked_inode_to_wb_and_lock_list(inode);
2476 			spin_lock(&inode->i_lock);
2477 		}
2478 
2479 		/*
2480 		 * If the inode is queued for writeback by flush worker, just
2481 		 * update its dirty state. Once the flush worker is done with
2482 		 * the inode it will place it on the appropriate superblock
2483 		 * list, based upon its state.
2484 		 */
2485 		if (inode->i_state & I_SYNC_QUEUED)
2486 			goto out_unlock;
2487 
2488 		/*
2489 		 * Only add valid (hashed) inodes to the superblock's
2490 		 * dirty list.  Add blockdev inodes as well.
2491 		 */
2492 		if (!S_ISBLK(inode->i_mode)) {
2493 			if (inode_unhashed(inode))
2494 				goto out_unlock;
2495 		}
2496 		if (inode->i_state & I_FREEING)
2497 			goto out_unlock;
2498 
2499 		/*
2500 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2501 		 * reposition it (that would break b_dirty time-ordering).
2502 		 */
2503 		if (!was_dirty) {
2504 			struct list_head *dirty_list;
2505 			bool wakeup_bdi = false;
2506 
2507 			inode->dirtied_when = jiffies;
2508 			if (dirtytime)
2509 				inode->dirtied_time_when = jiffies;
2510 
2511 			if (inode->i_state & I_DIRTY)
2512 				dirty_list = &wb->b_dirty;
2513 			else
2514 				dirty_list = &wb->b_dirty_time;
2515 
2516 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2517 							       dirty_list);
2518 
2519 			spin_unlock(&wb->list_lock);
2520 			spin_unlock(&inode->i_lock);
2521 			trace_writeback_dirty_inode_enqueue(inode);
2522 
2523 			/*
2524 			 * If this is the first dirty inode for this bdi,
2525 			 * we have to wake-up the corresponding bdi thread
2526 			 * to make sure background write-back happens
2527 			 * later.
2528 			 */
2529 			if (wakeup_bdi &&
2530 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2531 				wb_wakeup_delayed(wb);
2532 			return;
2533 		}
2534 	}
2535 out_unlock:
2536 	if (wb)
2537 		spin_unlock(&wb->list_lock);
2538 	spin_unlock(&inode->i_lock);
2539 }
2540 EXPORT_SYMBOL(__mark_inode_dirty);
2541 
2542 /*
2543  * The @s_sync_lock is used to serialise concurrent sync operations
2544  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2545  * Concurrent callers will block on the s_sync_lock rather than doing contending
2546  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2547  * has been issued up to the time this function is enter is guaranteed to be
2548  * completed by the time we have gained the lock and waited for all IO that is
2549  * in progress regardless of the order callers are granted the lock.
2550  */
wait_sb_inodes(struct super_block * sb)2551 static void wait_sb_inodes(struct super_block *sb)
2552 {
2553 	LIST_HEAD(sync_list);
2554 
2555 	/*
2556 	 * We need to be protected against the filesystem going from
2557 	 * r/o to r/w or vice versa.
2558 	 */
2559 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2560 
2561 	mutex_lock(&sb->s_sync_lock);
2562 
2563 	/*
2564 	 * Splice the writeback list onto a temporary list to avoid waiting on
2565 	 * inodes that have started writeback after this point.
2566 	 *
2567 	 * Use rcu_read_lock() to keep the inodes around until we have a
2568 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2569 	 * the local list because inodes can be dropped from either by writeback
2570 	 * completion.
2571 	 */
2572 	rcu_read_lock();
2573 	spin_lock_irq(&sb->s_inode_wblist_lock);
2574 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2575 
2576 	/*
2577 	 * Data integrity sync. Must wait for all pages under writeback, because
2578 	 * there may have been pages dirtied before our sync call, but which had
2579 	 * writeout started before we write it out.  In which case, the inode
2580 	 * may not be on the dirty list, but we still have to wait for that
2581 	 * writeout.
2582 	 */
2583 	while (!list_empty(&sync_list)) {
2584 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2585 						       i_wb_list);
2586 		struct address_space *mapping = inode->i_mapping;
2587 
2588 		/*
2589 		 * Move each inode back to the wb list before we drop the lock
2590 		 * to preserve consistency between i_wb_list and the mapping
2591 		 * writeback tag. Writeback completion is responsible to remove
2592 		 * the inode from either list once the writeback tag is cleared.
2593 		 */
2594 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2595 
2596 		/*
2597 		 * The mapping can appear untagged while still on-list since we
2598 		 * do not have the mapping lock. Skip it here, wb completion
2599 		 * will remove it.
2600 		 */
2601 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2602 			continue;
2603 
2604 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2605 
2606 		spin_lock(&inode->i_lock);
2607 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2608 			spin_unlock(&inode->i_lock);
2609 
2610 			spin_lock_irq(&sb->s_inode_wblist_lock);
2611 			continue;
2612 		}
2613 		__iget(inode);
2614 		spin_unlock(&inode->i_lock);
2615 		rcu_read_unlock();
2616 
2617 		/*
2618 		 * We keep the error status of individual mapping so that
2619 		 * applications can catch the writeback error using fsync(2).
2620 		 * See filemap_fdatawait_keep_errors() for details.
2621 		 */
2622 		filemap_fdatawait_keep_errors(mapping);
2623 
2624 		cond_resched();
2625 
2626 		iput(inode);
2627 
2628 		rcu_read_lock();
2629 		spin_lock_irq(&sb->s_inode_wblist_lock);
2630 	}
2631 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2632 	rcu_read_unlock();
2633 	mutex_unlock(&sb->s_sync_lock);
2634 }
2635 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2636 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2637 				     enum wb_reason reason, bool skip_if_busy)
2638 {
2639 	struct backing_dev_info *bdi = sb->s_bdi;
2640 	DEFINE_WB_COMPLETION(done, bdi);
2641 	struct wb_writeback_work work = {
2642 		.sb			= sb,
2643 		.sync_mode		= WB_SYNC_NONE,
2644 		.tagged_writepages	= 1,
2645 		.done			= &done,
2646 		.nr_pages		= nr,
2647 		.reason			= reason,
2648 	};
2649 
2650 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2651 		return;
2652 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2653 
2654 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2655 	wb_wait_for_completion(&done);
2656 }
2657 
2658 /**
2659  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2660  * @sb: the superblock
2661  * @nr: the number of pages to write
2662  * @reason: reason why some writeback work initiated
2663  *
2664  * Start writeback on some inodes on this super_block. No guarantees are made
2665  * on how many (if any) will be written, and this function does not wait
2666  * for IO completion of submitted IO.
2667  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2668 void writeback_inodes_sb_nr(struct super_block *sb,
2669 			    unsigned long nr,
2670 			    enum wb_reason reason)
2671 {
2672 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2673 }
2674 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2675 
2676 /**
2677  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2678  * @sb: the superblock
2679  * @reason: reason why some writeback work was initiated
2680  *
2681  * Start writeback on some inodes on this super_block. No guarantees are made
2682  * on how many (if any) will be written, and this function does not wait
2683  * for IO completion of submitted IO.
2684  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2685 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2686 {
2687 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2688 }
2689 EXPORT_SYMBOL(writeback_inodes_sb);
2690 
2691 /**
2692  * try_to_writeback_inodes_sb - try to start writeback if none underway
2693  * @sb: the superblock
2694  * @reason: reason why some writeback work was initiated
2695  *
2696  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2697  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2698 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2699 {
2700 	if (!down_read_trylock(&sb->s_umount))
2701 		return;
2702 
2703 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2704 	up_read(&sb->s_umount);
2705 }
2706 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2707 
2708 /**
2709  * sync_inodes_sb	-	sync sb inode pages
2710  * @sb: the superblock
2711  *
2712  * This function writes and waits on any dirty inode belonging to this
2713  * super_block.
2714  */
sync_inodes_sb(struct super_block * sb)2715 void sync_inodes_sb(struct super_block *sb)
2716 {
2717 	struct backing_dev_info *bdi = sb->s_bdi;
2718 	DEFINE_WB_COMPLETION(done, bdi);
2719 	struct wb_writeback_work work = {
2720 		.sb		= sb,
2721 		.sync_mode	= WB_SYNC_ALL,
2722 		.nr_pages	= LONG_MAX,
2723 		.range_cyclic	= 0,
2724 		.done		= &done,
2725 		.reason		= WB_REASON_SYNC,
2726 		.for_sync	= 1,
2727 	};
2728 
2729 	/*
2730 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2731 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2732 	 * bdi_has_dirty() need to be written out too.
2733 	 */
2734 	if (bdi == &noop_backing_dev_info)
2735 		return;
2736 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2737 
2738 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2739 	bdi_down_write_wb_switch_rwsem(bdi);
2740 	bdi_split_work_to_wbs(bdi, &work, false);
2741 	wb_wait_for_completion(&done);
2742 	bdi_up_write_wb_switch_rwsem(bdi);
2743 
2744 	wait_sb_inodes(sb);
2745 }
2746 EXPORT_SYMBOL(sync_inodes_sb);
2747 
2748 /**
2749  * write_inode_now	-	write an inode to disk
2750  * @inode: inode to write to disk
2751  * @sync: whether the write should be synchronous or not
2752  *
2753  * This function commits an inode to disk immediately if it is dirty. This is
2754  * primarily needed by knfsd.
2755  *
2756  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2757  */
write_inode_now(struct inode * inode,int sync)2758 int write_inode_now(struct inode *inode, int sync)
2759 {
2760 	struct writeback_control wbc = {
2761 		.nr_to_write = LONG_MAX,
2762 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2763 		.range_start = 0,
2764 		.range_end = LLONG_MAX,
2765 	};
2766 
2767 	if (!mapping_can_writeback(inode->i_mapping))
2768 		wbc.nr_to_write = 0;
2769 
2770 	might_sleep();
2771 	return writeback_single_inode(inode, &wbc);
2772 }
2773 EXPORT_SYMBOL(write_inode_now);
2774 
2775 /**
2776  * sync_inode_metadata - write an inode to disk
2777  * @inode: the inode to sync
2778  * @wait: wait for I/O to complete.
2779  *
2780  * Write an inode to disk and adjust its dirty state after completion.
2781  *
2782  * Note: only writes the actual inode, no associated data or other metadata.
2783  */
sync_inode_metadata(struct inode * inode,int wait)2784 int sync_inode_metadata(struct inode *inode, int wait)
2785 {
2786 	struct writeback_control wbc = {
2787 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2788 		.nr_to_write = 0, /* metadata-only */
2789 	};
2790 
2791 	return writeback_single_inode(inode, &wbc);
2792 }
2793 EXPORT_SYMBOL(sync_inode_metadata);
2794