1 // SPDX-License-Identifier: GPL-2.0-only
2
3 /* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
4 /* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
5
6 #include <linux/bitfield.h>
7 #include <linux/bits.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/dma-buf.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/interrupt.h>
13 #include <linux/kref.h>
14 #include <linux/list.h>
15 #include <linux/math64.h>
16 #include <linux/mm.h>
17 #include <linux/moduleparam.h>
18 #include <linux/scatterlist.h>
19 #include <linux/spinlock.h>
20 #include <linux/srcu.h>
21 #include <linux/types.h>
22 #include <linux/uaccess.h>
23 #include <linux/wait.h>
24 #include <drm/drm_file.h>
25 #include <drm/drm_gem.h>
26 #include <drm/drm_prime.h>
27 #include <drm/drm_print.h>
28 #include <uapi/drm/qaic_accel.h>
29
30 #include "qaic.h"
31
32 #define SEM_VAL_MASK GENMASK_ULL(11, 0)
33 #define SEM_INDEX_MASK GENMASK_ULL(4, 0)
34 #define BULK_XFER BIT(3)
35 #define GEN_COMPLETION BIT(4)
36 #define INBOUND_XFER 1
37 #define OUTBOUND_XFER 2
38 #define REQHP_OFF 0x0 /* we read this */
39 #define REQTP_OFF 0x4 /* we write this */
40 #define RSPHP_OFF 0x8 /* we write this */
41 #define RSPTP_OFF 0xc /* we read this */
42
43 #define ENCODE_SEM(val, index, sync, cmd, flags) \
44 ({ \
45 FIELD_PREP(GENMASK(11, 0), (val)) | \
46 FIELD_PREP(GENMASK(20, 16), (index)) | \
47 FIELD_PREP(BIT(22), (sync)) | \
48 FIELD_PREP(GENMASK(26, 24), (cmd)) | \
49 FIELD_PREP(GENMASK(30, 29), (flags)) | \
50 FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \
51 })
52 #define NUM_EVENTS 128
53 #define NUM_DELAYS 10
54
55 static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
56 module_param(wait_exec_default_timeout_ms, uint, 0600);
57 MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
58
59 static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
60 module_param(datapath_poll_interval_us, uint, 0600);
61 MODULE_PARM_DESC(datapath_poll_interval_us,
62 "Amount of time to sleep between activity when datapath polling is enabled");
63
64 struct dbc_req {
65 /*
66 * A request ID is assigned to each memory handle going in DMA queue.
67 * As a single memory handle can enqueue multiple elements in DMA queue
68 * all of them will have the same request ID.
69 */
70 __le16 req_id;
71 /* Future use */
72 __u8 seq_id;
73 /*
74 * Special encoded variable
75 * 7 0 - Do not force to generate MSI after DMA is completed
76 * 1 - Force to generate MSI after DMA is completed
77 * 6:5 Reserved
78 * 4 1 - Generate completion element in the response queue
79 * 0 - No Completion Code
80 * 3 0 - DMA request is a Link list transfer
81 * 1 - DMA request is a Bulk transfer
82 * 2 Reserved
83 * 1:0 00 - No DMA transfer involved
84 * 01 - DMA transfer is part of inbound transfer
85 * 10 - DMA transfer has outbound transfer
86 * 11 - NA
87 */
88 __u8 cmd;
89 __le32 resv;
90 /* Source address for the transfer */
91 __le64 src_addr;
92 /* Destination address for the transfer */
93 __le64 dest_addr;
94 /* Length of transfer request */
95 __le32 len;
96 __le32 resv2;
97 /* Doorbell address */
98 __le64 db_addr;
99 /*
100 * Special encoded variable
101 * 7 1 - Doorbell(db) write
102 * 0 - No doorbell write
103 * 6:2 Reserved
104 * 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary
105 * 01 - 16 bit access, db address must be aligned to 16bit-boundary
106 * 10 - 8 bit access, db address must be aligned to 8bit-boundary
107 * 11 - Reserved
108 */
109 __u8 db_len;
110 __u8 resv3;
111 __le16 resv4;
112 /* 32 bit data written to doorbell address */
113 __le32 db_data;
114 /*
115 * Special encoded variable
116 * All the fields of sem_cmdX are passed from user and all are ORed
117 * together to form sem_cmd.
118 * 0:11 Semaphore value
119 * 15:12 Reserved
120 * 20:16 Semaphore index
121 * 21 Reserved
122 * 22 Semaphore Sync
123 * 23 Reserved
124 * 26:24 Semaphore command
125 * 28:27 Reserved
126 * 29 Semaphore DMA out bound sync fence
127 * 30 Semaphore DMA in bound sync fence
128 * 31 Enable semaphore command
129 */
130 __le32 sem_cmd0;
131 __le32 sem_cmd1;
132 __le32 sem_cmd2;
133 __le32 sem_cmd3;
134 } __packed;
135
136 struct dbc_rsp {
137 /* Request ID of the memory handle whose DMA transaction is completed */
138 __le16 req_id;
139 /* Status of the DMA transaction. 0 : Success otherwise failure */
140 __le16 status;
141 } __packed;
142
get_dbc_req_elem_size(void)143 inline int get_dbc_req_elem_size(void)
144 {
145 return sizeof(struct dbc_req);
146 }
147
get_dbc_rsp_elem_size(void)148 inline int get_dbc_rsp_elem_size(void)
149 {
150 return sizeof(struct dbc_rsp);
151 }
152
free_slice(struct kref * kref)153 static void free_slice(struct kref *kref)
154 {
155 struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
156
157 list_del(&slice->slice);
158 drm_gem_object_put(&slice->bo->base);
159 sg_free_table(slice->sgt);
160 kfree(slice->sgt);
161 kfree(slice->reqs);
162 kfree(slice);
163 }
164
clone_range_of_sgt_for_slice(struct qaic_device * qdev,struct sg_table ** sgt_out,struct sg_table * sgt_in,u64 size,u64 offset)165 static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
166 struct sg_table *sgt_in, u64 size, u64 offset)
167 {
168 int total_len, len, nents, offf = 0, offl = 0;
169 struct scatterlist *sg, *sgn, *sgf, *sgl;
170 struct sg_table *sgt;
171 int ret, j;
172
173 /* find out number of relevant nents needed for this mem */
174 total_len = 0;
175 sgf = NULL;
176 sgl = NULL;
177 nents = 0;
178
179 size = size ? size : PAGE_SIZE;
180 for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) {
181 len = sg_dma_len(sg);
182
183 if (!len)
184 continue;
185 if (offset >= total_len && offset < total_len + len) {
186 sgf = sg;
187 offf = offset - total_len;
188 }
189 if (sgf)
190 nents++;
191 if (offset + size >= total_len &&
192 offset + size <= total_len + len) {
193 sgl = sg;
194 offl = offset + size - total_len;
195 break;
196 }
197 total_len += len;
198 }
199
200 if (!sgf || !sgl) {
201 ret = -EINVAL;
202 goto out;
203 }
204
205 sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
206 if (!sgt) {
207 ret = -ENOMEM;
208 goto out;
209 }
210
211 ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
212 if (ret)
213 goto free_sgt;
214
215 /* copy relevant sg node and fix page and length */
216 sgn = sgf;
217 for_each_sgtable_sg(sgt, sg, j) {
218 memcpy(sg, sgn, sizeof(*sg));
219 if (sgn == sgf) {
220 sg_dma_address(sg) += offf;
221 sg_dma_len(sg) -= offf;
222 sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
223 } else {
224 offf = 0;
225 }
226 if (sgn == sgl) {
227 sg_dma_len(sg) = offl - offf;
228 sg_set_page(sg, sg_page(sgn), offl - offf, offf);
229 sg_mark_end(sg);
230 break;
231 }
232 sgn = sg_next(sgn);
233 }
234
235 *sgt_out = sgt;
236 return ret;
237
238 free_sgt:
239 kfree(sgt);
240 out:
241 *sgt_out = NULL;
242 return ret;
243 }
244
encode_reqs(struct qaic_device * qdev,struct bo_slice * slice,struct qaic_attach_slice_entry * req)245 static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
246 struct qaic_attach_slice_entry *req)
247 {
248 __le64 db_addr = cpu_to_le64(req->db_addr);
249 __le32 db_data = cpu_to_le32(req->db_data);
250 struct scatterlist *sg;
251 __u8 cmd = BULK_XFER;
252 int presync_sem;
253 u64 dev_addr;
254 __u8 db_len;
255 int i;
256
257 if (!slice->no_xfer)
258 cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
259
260 if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
261 return -EINVAL;
262
263 presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
264 if (presync_sem > 1)
265 return -EINVAL;
266
267 presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
268 req->sem2.presync << 2 | req->sem3.presync << 3;
269
270 switch (req->db_len) {
271 case 32:
272 db_len = BIT(7);
273 break;
274 case 16:
275 db_len = BIT(7) | 1;
276 break;
277 case 8:
278 db_len = BIT(7) | 2;
279 break;
280 case 0:
281 db_len = 0; /* doorbell is not active for this command */
282 break;
283 default:
284 return -EINVAL; /* should never hit this */
285 }
286
287 /*
288 * When we end up splitting up a single request (ie a buf slice) into
289 * multiple DMA requests, we have to manage the sync data carefully.
290 * There can only be one presync sem. That needs to be on every xfer
291 * so that the DMA engine doesn't transfer data before the receiver is
292 * ready. We only do the doorbell and postsync sems after the xfer.
293 * To guarantee previous xfers for the request are complete, we use a
294 * fence.
295 */
296 dev_addr = req->dev_addr;
297 for_each_sgtable_sg(slice->sgt, sg, i) {
298 slice->reqs[i].cmd = cmd;
299 slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
300 sg_dma_address(sg) : dev_addr);
301 slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
302 dev_addr : sg_dma_address(sg));
303 /*
304 * sg_dma_len(sg) returns size of a DMA segment, maximum DMA
305 * segment size is set to UINT_MAX by qaic and hence return
306 * values of sg_dma_len(sg) can never exceed u32 range. So,
307 * by down sizing we are not corrupting the value.
308 */
309 slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
310 switch (presync_sem) {
311 case BIT(0):
312 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
313 req->sem0.index,
314 req->sem0.presync,
315 req->sem0.cmd,
316 req->sem0.flags));
317 break;
318 case BIT(1):
319 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
320 req->sem1.index,
321 req->sem1.presync,
322 req->sem1.cmd,
323 req->sem1.flags));
324 break;
325 case BIT(2):
326 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
327 req->sem2.index,
328 req->sem2.presync,
329 req->sem2.cmd,
330 req->sem2.flags));
331 break;
332 case BIT(3):
333 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
334 req->sem3.index,
335 req->sem3.presync,
336 req->sem3.cmd,
337 req->sem3.flags));
338 break;
339 }
340 dev_addr += sg_dma_len(sg);
341 }
342 /* add post transfer stuff to last segment */
343 i--;
344 slice->reqs[i].cmd |= GEN_COMPLETION;
345 slice->reqs[i].db_addr = db_addr;
346 slice->reqs[i].db_len = db_len;
347 slice->reqs[i].db_data = db_data;
348 /*
349 * Add a fence if we have more than one request going to the hardware
350 * representing the entirety of the user request, and the user request
351 * has no presync condition.
352 * Fences are expensive, so we try to avoid them. We rely on the
353 * hardware behavior to avoid needing one when there is a presync
354 * condition. When a presync exists, all requests for that same
355 * presync will be queued into a fifo. Thus, since we queue the
356 * post xfer activity only on the last request we queue, the hardware
357 * will ensure that the last queued request is processed last, thus
358 * making sure the post xfer activity happens at the right time without
359 * a fence.
360 */
361 if (i && !presync_sem)
362 req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
363 QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
364 slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
365 req->sem0.presync, req->sem0.cmd,
366 req->sem0.flags));
367 slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
368 req->sem1.presync, req->sem1.cmd,
369 req->sem1.flags));
370 slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
371 req->sem2.presync, req->sem2.cmd,
372 req->sem2.flags));
373 slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
374 req->sem3.presync, req->sem3.cmd,
375 req->sem3.flags));
376
377 return 0;
378 }
379
qaic_map_one_slice(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_entry * slice_ent)380 static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
381 struct qaic_attach_slice_entry *slice_ent)
382 {
383 struct sg_table *sgt = NULL;
384 struct bo_slice *slice;
385 int ret;
386
387 ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
388 if (ret)
389 goto out;
390
391 slice = kmalloc(sizeof(*slice), GFP_KERNEL);
392 if (!slice) {
393 ret = -ENOMEM;
394 goto free_sgt;
395 }
396
397 slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
398 if (!slice->reqs) {
399 ret = -ENOMEM;
400 goto free_slice;
401 }
402
403 slice->no_xfer = !slice_ent->size;
404 slice->sgt = sgt;
405 slice->nents = sgt->nents;
406 slice->dir = bo->dir;
407 slice->bo = bo;
408 slice->size = slice_ent->size;
409 slice->offset = slice_ent->offset;
410
411 ret = encode_reqs(qdev, slice, slice_ent);
412 if (ret)
413 goto free_req;
414
415 bo->total_slice_nents += sgt->nents;
416 kref_init(&slice->ref_count);
417 drm_gem_object_get(&bo->base);
418 list_add_tail(&slice->slice, &bo->slices);
419
420 return 0;
421
422 free_req:
423 kfree(slice->reqs);
424 free_slice:
425 kfree(slice);
426 free_sgt:
427 sg_free_table(sgt);
428 kfree(sgt);
429 out:
430 return ret;
431 }
432
create_sgt(struct qaic_device * qdev,struct sg_table ** sgt_out,u64 size)433 static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
434 {
435 struct scatterlist *sg;
436 struct sg_table *sgt;
437 struct page **pages;
438 int *pages_order;
439 int buf_extra;
440 int max_order;
441 int nr_pages;
442 int ret = 0;
443 int i, j, k;
444 int order;
445
446 if (size) {
447 nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
448 /*
449 * calculate how much extra we are going to allocate, to remove
450 * later
451 */
452 buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
453 max_order = min(MAX_ORDER - 1, get_order(size));
454 } else {
455 /* allocate a single page for book keeping */
456 nr_pages = 1;
457 buf_extra = 0;
458 max_order = 0;
459 }
460
461 pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
462 if (!pages) {
463 ret = -ENOMEM;
464 goto out;
465 }
466 pages_order = (void *)pages + sizeof(*pages) * nr_pages;
467
468 /*
469 * Allocate requested memory using alloc_pages. It is possible to allocate
470 * the requested memory in multiple chunks by calling alloc_pages
471 * multiple times. Use SG table to handle multiple allocated pages.
472 */
473 i = 0;
474 while (nr_pages > 0) {
475 order = min(get_order(nr_pages * PAGE_SIZE), max_order);
476 while (1) {
477 pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
478 __GFP_NOWARN | __GFP_ZERO |
479 (order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
480 order);
481 if (pages[i])
482 break;
483 if (!order--) {
484 ret = -ENOMEM;
485 goto free_partial_alloc;
486 }
487 }
488
489 max_order = order;
490 pages_order[i] = order;
491
492 nr_pages -= 1 << order;
493 if (nr_pages <= 0)
494 /* account for over allocation */
495 buf_extra += abs(nr_pages) * PAGE_SIZE;
496 i++;
497 }
498
499 sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
500 if (!sgt) {
501 ret = -ENOMEM;
502 goto free_partial_alloc;
503 }
504
505 if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
506 ret = -ENOMEM;
507 goto free_sgt;
508 }
509
510 /* Populate the SG table with the allocated memory pages */
511 sg = sgt->sgl;
512 for (k = 0; k < i; k++, sg = sg_next(sg)) {
513 /* Last entry requires special handling */
514 if (k < i - 1) {
515 sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
516 } else {
517 sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
518 sg_mark_end(sg);
519 }
520 }
521
522 kvfree(pages);
523 *sgt_out = sgt;
524 return ret;
525
526 free_sgt:
527 kfree(sgt);
528 free_partial_alloc:
529 for (j = 0; j < i; j++)
530 __free_pages(pages[j], pages_order[j]);
531 kvfree(pages);
532 out:
533 *sgt_out = NULL;
534 return ret;
535 }
536
invalid_sem(struct qaic_sem * sem)537 static bool invalid_sem(struct qaic_sem *sem)
538 {
539 if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
540 !(sem->presync == 0 || sem->presync == 1) || sem->pad ||
541 sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
542 sem->cmd > QAIC_SEM_WAIT_GT_0)
543 return true;
544 return false;
545 }
546
qaic_validate_req(struct qaic_device * qdev,struct qaic_attach_slice_entry * slice_ent,u32 count,u64 total_size)547 static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
548 u32 count, u64 total_size)
549 {
550 int i;
551
552 for (i = 0; i < count; i++) {
553 if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
554 slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
555 invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
556 invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
557 return -EINVAL;
558
559 if (slice_ent[i].offset + slice_ent[i].size > total_size)
560 return -EINVAL;
561 }
562
563 return 0;
564 }
565
qaic_free_sgt(struct sg_table * sgt)566 static void qaic_free_sgt(struct sg_table *sgt)
567 {
568 struct scatterlist *sg;
569
570 for (sg = sgt->sgl; sg; sg = sg_next(sg))
571 if (sg_page(sg))
572 __free_pages(sg_page(sg), get_order(sg->length));
573 sg_free_table(sgt);
574 kfree(sgt);
575 }
576
qaic_gem_print_info(struct drm_printer * p,unsigned int indent,const struct drm_gem_object * obj)577 static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
578 const struct drm_gem_object *obj)
579 {
580 struct qaic_bo *bo = to_qaic_bo(obj);
581
582 drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size);
583 }
584
585 static const struct vm_operations_struct drm_vm_ops = {
586 .open = drm_gem_vm_open,
587 .close = drm_gem_vm_close,
588 };
589
qaic_gem_object_mmap(struct drm_gem_object * obj,struct vm_area_struct * vma)590 static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
591 {
592 struct qaic_bo *bo = to_qaic_bo(obj);
593 unsigned long offset = 0;
594 struct scatterlist *sg;
595 int ret = 0;
596
597 if (obj->import_attach)
598 return -EINVAL;
599
600 for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
601 if (sg_page(sg)) {
602 ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
603 sg->length, vma->vm_page_prot);
604 if (ret)
605 goto out;
606 offset += sg->length;
607 }
608 }
609
610 out:
611 return ret;
612 }
613
qaic_free_object(struct drm_gem_object * obj)614 static void qaic_free_object(struct drm_gem_object *obj)
615 {
616 struct qaic_bo *bo = to_qaic_bo(obj);
617
618 if (obj->import_attach) {
619 /* DMABUF/PRIME Path */
620 drm_prime_gem_destroy(obj, NULL);
621 } else {
622 /* Private buffer allocation path */
623 qaic_free_sgt(bo->sgt);
624 }
625
626 drm_gem_object_release(obj);
627 kfree(bo);
628 }
629
630 static const struct drm_gem_object_funcs qaic_gem_funcs = {
631 .free = qaic_free_object,
632 .print_info = qaic_gem_print_info,
633 .mmap = qaic_gem_object_mmap,
634 .vm_ops = &drm_vm_ops,
635 };
636
qaic_alloc_init_bo(void)637 static struct qaic_bo *qaic_alloc_init_bo(void)
638 {
639 struct qaic_bo *bo;
640
641 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
642 if (!bo)
643 return ERR_PTR(-ENOMEM);
644
645 INIT_LIST_HEAD(&bo->slices);
646 init_completion(&bo->xfer_done);
647 complete_all(&bo->xfer_done);
648
649 return bo;
650 }
651
qaic_create_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)652 int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
653 {
654 struct qaic_create_bo *args = data;
655 int usr_rcu_id, qdev_rcu_id;
656 struct drm_gem_object *obj;
657 struct qaic_device *qdev;
658 struct qaic_user *usr;
659 struct qaic_bo *bo;
660 size_t size;
661 int ret;
662
663 if (args->pad)
664 return -EINVAL;
665
666 size = PAGE_ALIGN(args->size);
667 if (size == 0)
668 return -EINVAL;
669
670 usr = file_priv->driver_priv;
671 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
672 if (!usr->qddev) {
673 ret = -ENODEV;
674 goto unlock_usr_srcu;
675 }
676
677 qdev = usr->qddev->qdev;
678 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
679 if (qdev->in_reset) {
680 ret = -ENODEV;
681 goto unlock_dev_srcu;
682 }
683
684 bo = qaic_alloc_init_bo();
685 if (IS_ERR(bo)) {
686 ret = PTR_ERR(bo);
687 goto unlock_dev_srcu;
688 }
689 obj = &bo->base;
690
691 drm_gem_private_object_init(dev, obj, size);
692
693 obj->funcs = &qaic_gem_funcs;
694 ret = create_sgt(qdev, &bo->sgt, size);
695 if (ret)
696 goto free_bo;
697
698 bo->size = args->size;
699
700 ret = drm_gem_handle_create(file_priv, obj, &args->handle);
701 if (ret)
702 goto free_sgt;
703
704 bo->handle = args->handle;
705 drm_gem_object_put(obj);
706 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
707 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
708
709 return 0;
710
711 free_sgt:
712 qaic_free_sgt(bo->sgt);
713 free_bo:
714 kfree(bo);
715 unlock_dev_srcu:
716 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
717 unlock_usr_srcu:
718 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
719 return ret;
720 }
721
qaic_mmap_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)722 int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
723 {
724 struct qaic_mmap_bo *args = data;
725 int usr_rcu_id, qdev_rcu_id;
726 struct drm_gem_object *obj;
727 struct qaic_device *qdev;
728 struct qaic_user *usr;
729 int ret;
730
731 usr = file_priv->driver_priv;
732 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
733 if (!usr->qddev) {
734 ret = -ENODEV;
735 goto unlock_usr_srcu;
736 }
737
738 qdev = usr->qddev->qdev;
739 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
740 if (qdev->in_reset) {
741 ret = -ENODEV;
742 goto unlock_dev_srcu;
743 }
744
745 obj = drm_gem_object_lookup(file_priv, args->handle);
746 if (!obj) {
747 ret = -ENOENT;
748 goto unlock_dev_srcu;
749 }
750
751 ret = drm_gem_create_mmap_offset(obj);
752 if (ret == 0)
753 args->offset = drm_vma_node_offset_addr(&obj->vma_node);
754
755 drm_gem_object_put(obj);
756
757 unlock_dev_srcu:
758 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
759 unlock_usr_srcu:
760 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
761 return ret;
762 }
763
qaic_gem_prime_import(struct drm_device * dev,struct dma_buf * dma_buf)764 struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
765 {
766 struct dma_buf_attachment *attach;
767 struct drm_gem_object *obj;
768 struct qaic_bo *bo;
769 size_t size;
770 int ret;
771
772 bo = qaic_alloc_init_bo();
773 if (IS_ERR(bo)) {
774 ret = PTR_ERR(bo);
775 goto out;
776 }
777
778 obj = &bo->base;
779 get_dma_buf(dma_buf);
780
781 attach = dma_buf_attach(dma_buf, dev->dev);
782 if (IS_ERR(attach)) {
783 ret = PTR_ERR(attach);
784 goto attach_fail;
785 }
786
787 size = PAGE_ALIGN(attach->dmabuf->size);
788 if (size == 0) {
789 ret = -EINVAL;
790 goto size_align_fail;
791 }
792
793 drm_gem_private_object_init(dev, obj, size);
794 /*
795 * skipping dma_buf_map_attachment() as we do not know the direction
796 * just yet. Once the direction is known in the subsequent IOCTL to
797 * attach slicing, we can do it then.
798 */
799
800 obj->funcs = &qaic_gem_funcs;
801 obj->import_attach = attach;
802 obj->resv = dma_buf->resv;
803
804 return obj;
805
806 size_align_fail:
807 dma_buf_detach(dma_buf, attach);
808 attach_fail:
809 dma_buf_put(dma_buf);
810 kfree(bo);
811 out:
812 return ERR_PTR(ret);
813 }
814
qaic_prepare_import_bo(struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)815 static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
816 {
817 struct drm_gem_object *obj = &bo->base;
818 struct sg_table *sgt;
819 int ret;
820
821 if (obj->import_attach->dmabuf->size < hdr->size)
822 return -EINVAL;
823
824 sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
825 if (IS_ERR(sgt)) {
826 ret = PTR_ERR(sgt);
827 return ret;
828 }
829
830 bo->sgt = sgt;
831 bo->size = hdr->size;
832
833 return 0;
834 }
835
qaic_prepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)836 static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
837 struct qaic_attach_slice_hdr *hdr)
838 {
839 int ret;
840
841 if (bo->size != hdr->size)
842 return -EINVAL;
843
844 ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
845 if (ret)
846 return -EFAULT;
847
848 return 0;
849 }
850
qaic_prepare_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr)851 static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
852 struct qaic_attach_slice_hdr *hdr)
853 {
854 int ret;
855
856 if (bo->base.import_attach)
857 ret = qaic_prepare_import_bo(bo, hdr);
858 else
859 ret = qaic_prepare_export_bo(qdev, bo, hdr);
860
861 if (ret == 0)
862 bo->dir = hdr->dir;
863
864 return ret;
865 }
866
qaic_unprepare_import_bo(struct qaic_bo * bo)867 static void qaic_unprepare_import_bo(struct qaic_bo *bo)
868 {
869 dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
870 bo->sgt = NULL;
871 bo->size = 0;
872 }
873
qaic_unprepare_export_bo(struct qaic_device * qdev,struct qaic_bo * bo)874 static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
875 {
876 dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
877 }
878
qaic_unprepare_bo(struct qaic_device * qdev,struct qaic_bo * bo)879 static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
880 {
881 if (bo->base.import_attach)
882 qaic_unprepare_import_bo(bo);
883 else
884 qaic_unprepare_export_bo(qdev, bo);
885
886 bo->dir = 0;
887 }
888
qaic_free_slices_bo(struct qaic_bo * bo)889 static void qaic_free_slices_bo(struct qaic_bo *bo)
890 {
891 struct bo_slice *slice, *temp;
892
893 list_for_each_entry_safe(slice, temp, &bo->slices, slice)
894 kref_put(&slice->ref_count, free_slice);
895 }
896
qaic_attach_slicing_bo(struct qaic_device * qdev,struct qaic_bo * bo,struct qaic_attach_slice_hdr * hdr,struct qaic_attach_slice_entry * slice_ent)897 static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
898 struct qaic_attach_slice_hdr *hdr,
899 struct qaic_attach_slice_entry *slice_ent)
900 {
901 int ret, i;
902
903 for (i = 0; i < hdr->count; i++) {
904 ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
905 if (ret) {
906 qaic_free_slices_bo(bo);
907 return ret;
908 }
909 }
910
911 if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) {
912 qaic_free_slices_bo(bo);
913 return -ENOSPC;
914 }
915
916 bo->sliced = true;
917 bo->nr_slice = hdr->count;
918 list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists);
919
920 return 0;
921 }
922
qaic_attach_slice_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)923 int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
924 {
925 struct qaic_attach_slice_entry *slice_ent;
926 struct qaic_attach_slice *args = data;
927 int rcu_id, usr_rcu_id, qdev_rcu_id;
928 struct dma_bridge_chan *dbc;
929 struct drm_gem_object *obj;
930 struct qaic_device *qdev;
931 unsigned long arg_size;
932 struct qaic_user *usr;
933 u8 __user *user_data;
934 struct qaic_bo *bo;
935 int ret;
936
937 if (args->hdr.count == 0)
938 return -EINVAL;
939
940 arg_size = args->hdr.count * sizeof(*slice_ent);
941 if (arg_size / args->hdr.count != sizeof(*slice_ent))
942 return -EINVAL;
943
944 if (args->hdr.size == 0)
945 return -EINVAL;
946
947 if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
948 return -EINVAL;
949
950 if (args->data == 0)
951 return -EINVAL;
952
953 usr = file_priv->driver_priv;
954 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
955 if (!usr->qddev) {
956 ret = -ENODEV;
957 goto unlock_usr_srcu;
958 }
959
960 qdev = usr->qddev->qdev;
961 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
962 if (qdev->in_reset) {
963 ret = -ENODEV;
964 goto unlock_dev_srcu;
965 }
966
967 if (args->hdr.dbc_id >= qdev->num_dbc) {
968 ret = -EINVAL;
969 goto unlock_dev_srcu;
970 }
971
972 user_data = u64_to_user_ptr(args->data);
973
974 slice_ent = kzalloc(arg_size, GFP_KERNEL);
975 if (!slice_ent) {
976 ret = -EINVAL;
977 goto unlock_dev_srcu;
978 }
979
980 ret = copy_from_user(slice_ent, user_data, arg_size);
981 if (ret) {
982 ret = -EFAULT;
983 goto free_slice_ent;
984 }
985
986 ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size);
987 if (ret)
988 goto free_slice_ent;
989
990 obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
991 if (!obj) {
992 ret = -ENOENT;
993 goto free_slice_ent;
994 }
995
996 bo = to_qaic_bo(obj);
997
998 if (bo->sliced) {
999 ret = -EINVAL;
1000 goto put_bo;
1001 }
1002
1003 dbc = &qdev->dbc[args->hdr.dbc_id];
1004 rcu_id = srcu_read_lock(&dbc->ch_lock);
1005 if (dbc->usr != usr) {
1006 ret = -EINVAL;
1007 goto unlock_ch_srcu;
1008 }
1009
1010 ret = qaic_prepare_bo(qdev, bo, &args->hdr);
1011 if (ret)
1012 goto unlock_ch_srcu;
1013
1014 ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
1015 if (ret)
1016 goto unprepare_bo;
1017
1018 if (args->hdr.dir == DMA_TO_DEVICE)
1019 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
1020
1021 bo->dbc = dbc;
1022 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1023 drm_gem_object_put(obj);
1024 kfree(slice_ent);
1025 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1026 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1027
1028 return 0;
1029
1030 unprepare_bo:
1031 qaic_unprepare_bo(qdev, bo);
1032 unlock_ch_srcu:
1033 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1034 put_bo:
1035 drm_gem_object_put(obj);
1036 free_slice_ent:
1037 kfree(slice_ent);
1038 unlock_dev_srcu:
1039 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1040 unlock_usr_srcu:
1041 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1042 return ret;
1043 }
1044
copy_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u32 dbc_id,u32 head,u32 * ptail)1045 static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
1046 u32 head, u32 *ptail)
1047 {
1048 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1049 struct dbc_req *reqs = slice->reqs;
1050 u32 tail = *ptail;
1051 u32 avail;
1052
1053 avail = head - tail;
1054 if (head <= tail)
1055 avail += dbc->nelem;
1056
1057 --avail;
1058
1059 if (avail < slice->nents)
1060 return -EAGAIN;
1061
1062 if (tail + slice->nents > dbc->nelem) {
1063 avail = dbc->nelem - tail;
1064 avail = min_t(u32, avail, slice->nents);
1065 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1066 sizeof(*reqs) * avail);
1067 reqs += avail;
1068 avail = slice->nents - avail;
1069 if (avail)
1070 memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
1071 } else {
1072 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1073 sizeof(*reqs) * slice->nents);
1074 }
1075
1076 *ptail = (tail + slice->nents) % dbc->nelem;
1077
1078 return 0;
1079 }
1080
1081 /*
1082 * Based on the value of resize we may only need to transmit first_n
1083 * entries and the last entry, with last_bytes to send from the last entry.
1084 * Note that first_n could be 0.
1085 */
copy_partial_exec_reqs(struct qaic_device * qdev,struct bo_slice * slice,u64 resize,u32 dbc_id,u32 head,u32 * ptail)1086 static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
1087 u64 resize, u32 dbc_id, u32 head, u32 *ptail)
1088 {
1089 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1090 struct dbc_req *reqs = slice->reqs;
1091 struct dbc_req *last_req;
1092 u32 tail = *ptail;
1093 u64 total_bytes;
1094 u64 last_bytes;
1095 u32 first_n;
1096 u32 avail;
1097 int ret;
1098 int i;
1099
1100 avail = head - tail;
1101 if (head <= tail)
1102 avail += dbc->nelem;
1103
1104 --avail;
1105
1106 total_bytes = 0;
1107 for (i = 0; i < slice->nents; i++) {
1108 total_bytes += le32_to_cpu(reqs[i].len);
1109 if (total_bytes >= resize)
1110 break;
1111 }
1112
1113 if (total_bytes < resize) {
1114 /* User space should have used the full buffer path. */
1115 ret = -EINVAL;
1116 return ret;
1117 }
1118
1119 first_n = i;
1120 last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize;
1121
1122 if (avail < (first_n + 1))
1123 return -EAGAIN;
1124
1125 if (first_n) {
1126 if (tail + first_n > dbc->nelem) {
1127 avail = dbc->nelem - tail;
1128 avail = min_t(u32, avail, first_n);
1129 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1130 sizeof(*reqs) * avail);
1131 last_req = reqs + avail;
1132 avail = first_n - avail;
1133 if (avail)
1134 memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
1135 } else {
1136 memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
1137 sizeof(*reqs) * first_n);
1138 }
1139 }
1140
1141 /* Copy over the last entry. Here we need to adjust len to the left over
1142 * size, and set src and dst to the entry it is copied to.
1143 */
1144 last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size();
1145 memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
1146
1147 /*
1148 * last_bytes holds size of a DMA segment, maximum DMA segment size is
1149 * set to UINT_MAX by qaic and hence last_bytes can never exceed u32
1150 * range. So, by down sizing we are not corrupting the value.
1151 */
1152 last_req->len = cpu_to_le32((u32)last_bytes);
1153 last_req->src_addr = reqs[first_n].src_addr;
1154 last_req->dest_addr = reqs[first_n].dest_addr;
1155
1156 *ptail = (tail + first_n + 1) % dbc->nelem;
1157
1158 return 0;
1159 }
1160
send_bo_list_to_device(struct qaic_device * qdev,struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,struct dma_bridge_chan * dbc,u32 head,u32 * tail)1161 static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
1162 struct qaic_execute_entry *exec, unsigned int count,
1163 bool is_partial, struct dma_bridge_chan *dbc, u32 head,
1164 u32 *tail)
1165 {
1166 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1167 struct drm_gem_object *obj;
1168 struct bo_slice *slice;
1169 unsigned long flags;
1170 struct qaic_bo *bo;
1171 bool queued;
1172 int i, j;
1173 int ret;
1174
1175 for (i = 0; i < count; i++) {
1176 /*
1177 * ref count will be decremented when the transfer of this
1178 * buffer is complete. It is inside dbc_irq_threaded_fn().
1179 */
1180 obj = drm_gem_object_lookup(file_priv,
1181 is_partial ? pexec[i].handle : exec[i].handle);
1182 if (!obj) {
1183 ret = -ENOENT;
1184 goto failed_to_send_bo;
1185 }
1186
1187 bo = to_qaic_bo(obj);
1188
1189 if (!bo->sliced) {
1190 ret = -EINVAL;
1191 goto failed_to_send_bo;
1192 }
1193
1194 if (is_partial && pexec[i].resize > bo->size) {
1195 ret = -EINVAL;
1196 goto failed_to_send_bo;
1197 }
1198
1199 spin_lock_irqsave(&dbc->xfer_lock, flags);
1200 queued = bo->queued;
1201 bo->queued = true;
1202 if (queued) {
1203 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1204 ret = -EINVAL;
1205 goto failed_to_send_bo;
1206 }
1207
1208 bo->req_id = dbc->next_req_id++;
1209
1210 list_for_each_entry(slice, &bo->slices, slice) {
1211 /*
1212 * If this slice does not fall under the given
1213 * resize then skip this slice and continue the loop
1214 */
1215 if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset)
1216 continue;
1217
1218 for (j = 0; j < slice->nents; j++)
1219 slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
1220
1221 /*
1222 * If it is a partial execute ioctl call then check if
1223 * resize has cut this slice short then do a partial copy
1224 * else do complete copy
1225 */
1226 if (is_partial && pexec[i].resize &&
1227 pexec[i].resize < slice->offset + slice->size)
1228 ret = copy_partial_exec_reqs(qdev, slice,
1229 pexec[i].resize - slice->offset,
1230 dbc->id, head, tail);
1231 else
1232 ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
1233 if (ret) {
1234 bo->queued = false;
1235 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1236 goto failed_to_send_bo;
1237 }
1238 }
1239 reinit_completion(&bo->xfer_done);
1240 list_add_tail(&bo->xfer_list, &dbc->xfer_list);
1241 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1242 dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
1243 }
1244
1245 return 0;
1246
1247 failed_to_send_bo:
1248 if (likely(obj))
1249 drm_gem_object_put(obj);
1250 for (j = 0; j < i; j++) {
1251 spin_lock_irqsave(&dbc->xfer_lock, flags);
1252 bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
1253 obj = &bo->base;
1254 bo->queued = false;
1255 list_del(&bo->xfer_list);
1256 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1257 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1258 drm_gem_object_put(obj);
1259 }
1260 return ret;
1261 }
1262
update_profiling_data(struct drm_file * file_priv,struct qaic_execute_entry * exec,unsigned int count,bool is_partial,u64 received_ts,u64 submit_ts,u32 queue_level)1263 static void update_profiling_data(struct drm_file *file_priv,
1264 struct qaic_execute_entry *exec, unsigned int count,
1265 bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
1266 {
1267 struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
1268 struct drm_gem_object *obj;
1269 struct qaic_bo *bo;
1270 int i;
1271
1272 for (i = 0; i < count; i++) {
1273 /*
1274 * Since we already committed the BO to hardware, the only way
1275 * this should fail is a pending signal. We can't cancel the
1276 * submit to hardware, so we have to just skip the profiling
1277 * data. In case the signal is not fatal to the process, we
1278 * return success so that the user doesn't try to resubmit.
1279 */
1280 obj = drm_gem_object_lookup(file_priv,
1281 is_partial ? pexec[i].handle : exec[i].handle);
1282 if (!obj)
1283 break;
1284 bo = to_qaic_bo(obj);
1285 bo->perf_stats.req_received_ts = received_ts;
1286 bo->perf_stats.req_submit_ts = submit_ts;
1287 bo->perf_stats.queue_level_before = queue_level;
1288 queue_level += bo->total_slice_nents;
1289 drm_gem_object_put(obj);
1290 }
1291 }
1292
__qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv,bool is_partial)1293 static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
1294 bool is_partial)
1295 {
1296 struct qaic_execute *args = data;
1297 struct qaic_execute_entry *exec;
1298 struct dma_bridge_chan *dbc;
1299 int usr_rcu_id, qdev_rcu_id;
1300 struct qaic_device *qdev;
1301 struct qaic_user *usr;
1302 u8 __user *user_data;
1303 unsigned long n;
1304 u64 received_ts;
1305 u32 queue_level;
1306 u64 submit_ts;
1307 int rcu_id;
1308 u32 head;
1309 u32 tail;
1310 u64 size;
1311 int ret;
1312
1313 received_ts = ktime_get_ns();
1314
1315 size = is_partial ? sizeof(struct qaic_partial_execute_entry) : sizeof(*exec);
1316 n = (unsigned long)size * args->hdr.count;
1317 if (args->hdr.count == 0 || n / args->hdr.count != size)
1318 return -EINVAL;
1319
1320 user_data = u64_to_user_ptr(args->data);
1321
1322 exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
1323 if (!exec)
1324 return -ENOMEM;
1325
1326 if (copy_from_user(exec, user_data, n)) {
1327 ret = -EFAULT;
1328 goto free_exec;
1329 }
1330
1331 usr = file_priv->driver_priv;
1332 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1333 if (!usr->qddev) {
1334 ret = -ENODEV;
1335 goto unlock_usr_srcu;
1336 }
1337
1338 qdev = usr->qddev->qdev;
1339 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1340 if (qdev->in_reset) {
1341 ret = -ENODEV;
1342 goto unlock_dev_srcu;
1343 }
1344
1345 if (args->hdr.dbc_id >= qdev->num_dbc) {
1346 ret = -EINVAL;
1347 goto unlock_dev_srcu;
1348 }
1349
1350 dbc = &qdev->dbc[args->hdr.dbc_id];
1351
1352 rcu_id = srcu_read_lock(&dbc->ch_lock);
1353 if (!dbc->usr || dbc->usr->handle != usr->handle) {
1354 ret = -EPERM;
1355 goto release_ch_rcu;
1356 }
1357
1358 head = readl(dbc->dbc_base + REQHP_OFF);
1359 tail = readl(dbc->dbc_base + REQTP_OFF);
1360
1361 if (head == U32_MAX || tail == U32_MAX) {
1362 /* PCI link error */
1363 ret = -ENODEV;
1364 goto release_ch_rcu;
1365 }
1366
1367 queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
1368
1369 ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
1370 head, &tail);
1371 if (ret)
1372 goto release_ch_rcu;
1373
1374 /* Finalize commit to hardware */
1375 submit_ts = ktime_get_ns();
1376 writel(tail, dbc->dbc_base + REQTP_OFF);
1377
1378 update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
1379 submit_ts, queue_level);
1380
1381 if (datapath_polling)
1382 schedule_work(&dbc->poll_work);
1383
1384 release_ch_rcu:
1385 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1386 unlock_dev_srcu:
1387 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1388 unlock_usr_srcu:
1389 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1390 free_exec:
1391 kfree(exec);
1392 return ret;
1393 }
1394
qaic_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1395 int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1396 {
1397 return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
1398 }
1399
qaic_partial_execute_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1400 int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1401 {
1402 return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
1403 }
1404
1405 /*
1406 * Our interrupt handling is a bit more complicated than a simple ideal, but
1407 * sadly necessary.
1408 *
1409 * Each dbc has a completion queue. Entries in the queue correspond to DMA
1410 * requests which the device has processed. The hardware already has a built
1411 * in irq mitigation. When the device puts an entry into the queue, it will
1412 * only trigger an interrupt if the queue was empty. Therefore, when adding
1413 * the Nth event to a non-empty queue, the hardware doesn't trigger an
1414 * interrupt. This means the host doesn't get additional interrupts signaling
1415 * the same thing - the queue has something to process.
1416 * This behavior can be overridden in the DMA request.
1417 * This means that when the host receives an interrupt, it is required to
1418 * drain the queue.
1419 *
1420 * This behavior is what NAPI attempts to accomplish, although we can't use
1421 * NAPI as we don't have a netdev. We use threaded irqs instead.
1422 *
1423 * However, there is a situation where the host drains the queue fast enough
1424 * that every event causes an interrupt. Typically this is not a problem as
1425 * the rate of events would be low. However, that is not the case with
1426 * lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
1427 * lprnet, the host receives roughly 80k interrupts per second from the device
1428 * (per /proc/interrupts). While NAPI documentation indicates the host should
1429 * just chug along, sadly that behavior causes instability in some hosts.
1430 *
1431 * Therefore, we implement an interrupt disable scheme similar to NAPI. The
1432 * key difference is that we will delay after draining the queue for a small
1433 * time to allow additional events to come in via polling. Using the above
1434 * lprnet workload, this reduces the number of interrupts processed from
1435 * ~80k/sec to about 64 in 5 minutes and appears to solve the system
1436 * instability.
1437 */
dbc_irq_handler(int irq,void * data)1438 irqreturn_t dbc_irq_handler(int irq, void *data)
1439 {
1440 struct dma_bridge_chan *dbc = data;
1441 int rcu_id;
1442 u32 head;
1443 u32 tail;
1444
1445 rcu_id = srcu_read_lock(&dbc->ch_lock);
1446
1447 if (!dbc->usr) {
1448 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1449 return IRQ_HANDLED;
1450 }
1451
1452 head = readl(dbc->dbc_base + RSPHP_OFF);
1453 if (head == U32_MAX) { /* PCI link error */
1454 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1455 return IRQ_NONE;
1456 }
1457
1458 tail = readl(dbc->dbc_base + RSPTP_OFF);
1459 if (tail == U32_MAX) { /* PCI link error */
1460 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1461 return IRQ_NONE;
1462 }
1463
1464 if (head == tail) { /* queue empty */
1465 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1466 return IRQ_NONE;
1467 }
1468
1469 disable_irq_nosync(irq);
1470 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1471 return IRQ_WAKE_THREAD;
1472 }
1473
irq_polling_work(struct work_struct * work)1474 void irq_polling_work(struct work_struct *work)
1475 {
1476 struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work);
1477 unsigned long flags;
1478 int rcu_id;
1479 u32 head;
1480 u32 tail;
1481
1482 rcu_id = srcu_read_lock(&dbc->ch_lock);
1483
1484 while (1) {
1485 if (dbc->qdev->in_reset) {
1486 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1487 return;
1488 }
1489 if (!dbc->usr) {
1490 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1491 return;
1492 }
1493 spin_lock_irqsave(&dbc->xfer_lock, flags);
1494 if (list_empty(&dbc->xfer_list)) {
1495 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1496 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1497 return;
1498 }
1499 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1500
1501 head = readl(dbc->dbc_base + RSPHP_OFF);
1502 if (head == U32_MAX) { /* PCI link error */
1503 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1504 return;
1505 }
1506
1507 tail = readl(dbc->dbc_base + RSPTP_OFF);
1508 if (tail == U32_MAX) { /* PCI link error */
1509 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1510 return;
1511 }
1512
1513 if (head != tail) {
1514 irq_wake_thread(dbc->irq, dbc);
1515 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1516 return;
1517 }
1518
1519 cond_resched();
1520 usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
1521 }
1522 }
1523
dbc_irq_threaded_fn(int irq,void * data)1524 irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
1525 {
1526 struct dma_bridge_chan *dbc = data;
1527 int event_count = NUM_EVENTS;
1528 int delay_count = NUM_DELAYS;
1529 struct qaic_device *qdev;
1530 struct qaic_bo *bo, *i;
1531 struct dbc_rsp *rsp;
1532 unsigned long flags;
1533 int rcu_id;
1534 u16 status;
1535 u16 req_id;
1536 u32 head;
1537 u32 tail;
1538
1539 rcu_id = srcu_read_lock(&dbc->ch_lock);
1540
1541 head = readl(dbc->dbc_base + RSPHP_OFF);
1542 if (head == U32_MAX) /* PCI link error */
1543 goto error_out;
1544
1545 qdev = dbc->qdev;
1546 read_fifo:
1547
1548 if (!event_count) {
1549 event_count = NUM_EVENTS;
1550 cond_resched();
1551 }
1552
1553 /*
1554 * if this channel isn't assigned or gets unassigned during processing
1555 * we have nothing further to do
1556 */
1557 if (!dbc->usr)
1558 goto error_out;
1559
1560 tail = readl(dbc->dbc_base + RSPTP_OFF);
1561 if (tail == U32_MAX) /* PCI link error */
1562 goto error_out;
1563
1564 if (head == tail) { /* queue empty */
1565 if (delay_count) {
1566 --delay_count;
1567 usleep_range(100, 200);
1568 goto read_fifo; /* check for a new event */
1569 }
1570 goto normal_out;
1571 }
1572
1573 delay_count = NUM_DELAYS;
1574 while (head != tail) {
1575 if (!event_count)
1576 break;
1577 --event_count;
1578 rsp = dbc->rsp_q_base + head * sizeof(*rsp);
1579 req_id = le16_to_cpu(rsp->req_id);
1580 status = le16_to_cpu(rsp->status);
1581 if (status)
1582 pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
1583 spin_lock_irqsave(&dbc->xfer_lock, flags);
1584 /*
1585 * A BO can receive multiple interrupts, since a BO can be
1586 * divided into multiple slices and a buffer receives as many
1587 * interrupts as slices. So until it receives interrupts for
1588 * all the slices we cannot mark that buffer complete.
1589 */
1590 list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
1591 if (bo->req_id == req_id)
1592 bo->nr_slice_xfer_done++;
1593 else
1594 continue;
1595
1596 if (bo->nr_slice_xfer_done < bo->nr_slice)
1597 break;
1598
1599 /*
1600 * At this point we have received all the interrupts for
1601 * BO, which means BO execution is complete.
1602 */
1603 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1604 bo->nr_slice_xfer_done = 0;
1605 bo->queued = false;
1606 list_del(&bo->xfer_list);
1607 bo->perf_stats.req_processed_ts = ktime_get_ns();
1608 complete_all(&bo->xfer_done);
1609 drm_gem_object_put(&bo->base);
1610 break;
1611 }
1612 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1613 head = (head + 1) % dbc->nelem;
1614 }
1615
1616 /*
1617 * Update the head pointer of response queue and let the device know
1618 * that we have consumed elements from the queue.
1619 */
1620 writel(head, dbc->dbc_base + RSPHP_OFF);
1621
1622 /* elements might have been put in the queue while we were processing */
1623 goto read_fifo;
1624
1625 normal_out:
1626 if (likely(!datapath_polling))
1627 enable_irq(irq);
1628 else
1629 schedule_work(&dbc->poll_work);
1630 /* checking the fifo and enabling irqs is a race, missed event check */
1631 tail = readl(dbc->dbc_base + RSPTP_OFF);
1632 if (tail != U32_MAX && head != tail) {
1633 if (likely(!datapath_polling))
1634 disable_irq_nosync(irq);
1635 goto read_fifo;
1636 }
1637 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1638 return IRQ_HANDLED;
1639
1640 error_out:
1641 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1642 if (likely(!datapath_polling))
1643 enable_irq(irq);
1644 else
1645 schedule_work(&dbc->poll_work);
1646
1647 return IRQ_HANDLED;
1648 }
1649
qaic_wait_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1650 int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1651 {
1652 struct qaic_wait *args = data;
1653 int usr_rcu_id, qdev_rcu_id;
1654 struct dma_bridge_chan *dbc;
1655 struct drm_gem_object *obj;
1656 struct qaic_device *qdev;
1657 unsigned long timeout;
1658 struct qaic_user *usr;
1659 struct qaic_bo *bo;
1660 int rcu_id;
1661 int ret;
1662
1663 if (args->pad != 0)
1664 return -EINVAL;
1665
1666 usr = file_priv->driver_priv;
1667 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1668 if (!usr->qddev) {
1669 ret = -ENODEV;
1670 goto unlock_usr_srcu;
1671 }
1672
1673 qdev = usr->qddev->qdev;
1674 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1675 if (qdev->in_reset) {
1676 ret = -ENODEV;
1677 goto unlock_dev_srcu;
1678 }
1679
1680 if (args->dbc_id >= qdev->num_dbc) {
1681 ret = -EINVAL;
1682 goto unlock_dev_srcu;
1683 }
1684
1685 dbc = &qdev->dbc[args->dbc_id];
1686
1687 rcu_id = srcu_read_lock(&dbc->ch_lock);
1688 if (dbc->usr != usr) {
1689 ret = -EPERM;
1690 goto unlock_ch_srcu;
1691 }
1692
1693 obj = drm_gem_object_lookup(file_priv, args->handle);
1694 if (!obj) {
1695 ret = -ENOENT;
1696 goto unlock_ch_srcu;
1697 }
1698
1699 bo = to_qaic_bo(obj);
1700 timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
1701 timeout = msecs_to_jiffies(timeout);
1702 ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
1703 if (!ret) {
1704 ret = -ETIMEDOUT;
1705 goto put_obj;
1706 }
1707 if (ret > 0)
1708 ret = 0;
1709
1710 if (!dbc->usr)
1711 ret = -EPERM;
1712
1713 put_obj:
1714 drm_gem_object_put(obj);
1715 unlock_ch_srcu:
1716 srcu_read_unlock(&dbc->ch_lock, rcu_id);
1717 unlock_dev_srcu:
1718 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1719 unlock_usr_srcu:
1720 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1721 return ret;
1722 }
1723
qaic_perf_stats_bo_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1724 int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
1725 {
1726 struct qaic_perf_stats_entry *ent = NULL;
1727 struct qaic_perf_stats *args = data;
1728 int usr_rcu_id, qdev_rcu_id;
1729 struct drm_gem_object *obj;
1730 struct qaic_device *qdev;
1731 struct qaic_user *usr;
1732 struct qaic_bo *bo;
1733 int ret, i;
1734
1735 usr = file_priv->driver_priv;
1736 usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
1737 if (!usr->qddev) {
1738 ret = -ENODEV;
1739 goto unlock_usr_srcu;
1740 }
1741
1742 qdev = usr->qddev->qdev;
1743 qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
1744 if (qdev->in_reset) {
1745 ret = -ENODEV;
1746 goto unlock_dev_srcu;
1747 }
1748
1749 if (args->hdr.dbc_id >= qdev->num_dbc) {
1750 ret = -EINVAL;
1751 goto unlock_dev_srcu;
1752 }
1753
1754 ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
1755 if (!ent) {
1756 ret = -EINVAL;
1757 goto unlock_dev_srcu;
1758 }
1759
1760 ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
1761 if (ret) {
1762 ret = -EFAULT;
1763 goto free_ent;
1764 }
1765
1766 for (i = 0; i < args->hdr.count; i++) {
1767 obj = drm_gem_object_lookup(file_priv, ent[i].handle);
1768 if (!obj) {
1769 ret = -ENOENT;
1770 goto free_ent;
1771 }
1772 bo = to_qaic_bo(obj);
1773 /*
1774 * perf stats ioctl is called before wait ioctl is complete then
1775 * the latency information is invalid.
1776 */
1777 if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
1778 ent[i].device_latency_us = 0;
1779 } else {
1780 ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
1781 bo->perf_stats.req_submit_ts), 1000);
1782 }
1783 ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
1784 bo->perf_stats.req_received_ts), 1000);
1785 ent[i].queue_level_before = bo->perf_stats.queue_level_before;
1786 ent[i].num_queue_element = bo->total_slice_nents;
1787 drm_gem_object_put(obj);
1788 }
1789
1790 if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
1791 ret = -EFAULT;
1792
1793 free_ent:
1794 kfree(ent);
1795 unlock_dev_srcu:
1796 srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
1797 unlock_usr_srcu:
1798 srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
1799 return ret;
1800 }
1801
empty_xfer_list(struct qaic_device * qdev,struct dma_bridge_chan * dbc)1802 static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
1803 {
1804 unsigned long flags;
1805 struct qaic_bo *bo;
1806
1807 spin_lock_irqsave(&dbc->xfer_lock, flags);
1808 while (!list_empty(&dbc->xfer_list)) {
1809 bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
1810 bo->queued = false;
1811 list_del(&bo->xfer_list);
1812 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1813 dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
1814 complete_all(&bo->xfer_done);
1815 drm_gem_object_put(&bo->base);
1816 spin_lock_irqsave(&dbc->xfer_lock, flags);
1817 }
1818 spin_unlock_irqrestore(&dbc->xfer_lock, flags);
1819 }
1820
disable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1821 int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1822 {
1823 if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
1824 return -EPERM;
1825
1826 qdev->dbc[dbc_id].usr = NULL;
1827 synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
1828 return 0;
1829 }
1830
1831 /**
1832 * enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
1833 * user. Add user context back to DBC to enable it. This function trusts the
1834 * DBC ID passed and expects the DBC to be disabled.
1835 * @qdev: Qranium device handle
1836 * @dbc_id: ID of the DBC
1837 * @usr: User context
1838 */
enable_dbc(struct qaic_device * qdev,u32 dbc_id,struct qaic_user * usr)1839 void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
1840 {
1841 qdev->dbc[dbc_id].usr = usr;
1842 }
1843
wakeup_dbc(struct qaic_device * qdev,u32 dbc_id)1844 void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
1845 {
1846 struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
1847
1848 dbc->usr = NULL;
1849 empty_xfer_list(qdev, dbc);
1850 synchronize_srcu(&dbc->ch_lock);
1851 /*
1852 * Threads holding channel lock, may add more elements in the xfer_list.
1853 * Flush out these elements from xfer_list.
1854 */
1855 empty_xfer_list(qdev, dbc);
1856 }
1857
release_dbc(struct qaic_device * qdev,u32 dbc_id)1858 void release_dbc(struct qaic_device *qdev, u32 dbc_id)
1859 {
1860 struct bo_slice *slice, *slice_temp;
1861 struct qaic_bo *bo, *bo_temp;
1862 struct dma_bridge_chan *dbc;
1863
1864 dbc = &qdev->dbc[dbc_id];
1865 if (!dbc->in_use)
1866 return;
1867
1868 wakeup_dbc(qdev, dbc_id);
1869
1870 dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
1871 dbc->total_size = 0;
1872 dbc->req_q_base = NULL;
1873 dbc->dma_addr = 0;
1874 dbc->nelem = 0;
1875 dbc->usr = NULL;
1876
1877 list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
1878 list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice)
1879 kref_put(&slice->ref_count, free_slice);
1880 bo->sliced = false;
1881 INIT_LIST_HEAD(&bo->slices);
1882 bo->total_slice_nents = 0;
1883 bo->dir = 0;
1884 bo->dbc = NULL;
1885 bo->nr_slice = 0;
1886 bo->nr_slice_xfer_done = 0;
1887 bo->queued = false;
1888 bo->req_id = 0;
1889 init_completion(&bo->xfer_done);
1890 complete_all(&bo->xfer_done);
1891 list_del(&bo->bo_list);
1892 bo->perf_stats.req_received_ts = 0;
1893 bo->perf_stats.req_submit_ts = 0;
1894 bo->perf_stats.req_processed_ts = 0;
1895 bo->perf_stats.queue_level_before = 0;
1896 }
1897
1898 dbc->in_use = false;
1899 wake_up(&dbc->dbc_release);
1900 }
1901