1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  *
5  * This software is available to you under a choice of one of two
6  * licenses.  You may choose to be licensed under the terms of the GNU
7  * General Public License (GPL) Version 2, available from the file
8  * COPYING in the main directory of this source tree, or the
9  * OpenIB.org BSD license below:
10  *
11  *     Redistribution and use in source and binary forms, with or
12  *     without modification, are permitted provided that the following
13  *     conditions are met:
14  *
15  *      - Redistributions of source code must retain the above
16  *        copyright notice, this list of conditions and the following
17  *        disclaimer.
18  *
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  */
33 
34 #include <linux/module.h>
35 
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42 
43 #include <net/tls.h>
44 
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49 
50 enum {
51 	TLSV4,
52 	TLSV6,
53 	TLS_NUM_PROTS,
54 };
55 
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62 
update_sk_prot(struct sock * sk,struct tls_context * ctx)63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66 
67 	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69 
wait_on_pending_writer(struct sock * sk,long * timeo)70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72 	int rc = 0;
73 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
74 
75 	add_wait_queue(sk_sleep(sk), &wait);
76 	while (1) {
77 		if (!*timeo) {
78 			rc = -EAGAIN;
79 			break;
80 		}
81 
82 		if (signal_pending(current)) {
83 			rc = sock_intr_errno(*timeo);
84 			break;
85 		}
86 
87 		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88 			break;
89 	}
90 	remove_wait_queue(sk_sleep(sk), &wait);
91 	return rc;
92 }
93 
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)94 int tls_push_sg(struct sock *sk,
95 		struct tls_context *ctx,
96 		struct scatterlist *sg,
97 		u16 first_offset,
98 		int flags)
99 {
100 	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101 	int ret = 0;
102 	struct page *p;
103 	size_t size;
104 	int offset = first_offset;
105 
106 	size = sg->length - offset;
107 	offset += sg->offset;
108 
109 	ctx->in_tcp_sendpages = true;
110 	while (1) {
111 		if (sg_is_last(sg))
112 			sendpage_flags = flags;
113 
114 		/* is sending application-limited? */
115 		tcp_rate_check_app_limited(sk);
116 		p = sg_page(sg);
117 retry:
118 		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119 
120 		if (ret != size) {
121 			if (ret > 0) {
122 				offset += ret;
123 				size -= ret;
124 				goto retry;
125 			}
126 
127 			offset -= sg->offset;
128 			ctx->partially_sent_offset = offset;
129 			ctx->partially_sent_record = (void *)sg;
130 			ctx->in_tcp_sendpages = false;
131 			return ret;
132 		}
133 
134 		put_page(p);
135 		sk_mem_uncharge(sk, sg->length);
136 		sg = sg_next(sg);
137 		if (!sg)
138 			break;
139 
140 		offset = sg->offset;
141 		size = sg->length;
142 	}
143 
144 	clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145 	ctx->in_tcp_sendpages = false;
146 	ctx->sk_write_space(sk);
147 
148 	return 0;
149 }
150 
tls_handle_open_record(struct sock * sk,int flags)151 static int tls_handle_open_record(struct sock *sk, int flags)
152 {
153 	struct tls_context *ctx = tls_get_ctx(sk);
154 
155 	if (tls_is_pending_open_record(ctx))
156 		return ctx->push_pending_record(sk, flags);
157 
158 	return 0;
159 }
160 
tls_proccess_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162 		      unsigned char *record_type)
163 {
164 	struct cmsghdr *cmsg;
165 	int rc = -EINVAL;
166 
167 	for_each_cmsghdr(cmsg, msg) {
168 		if (!CMSG_OK(msg, cmsg))
169 			return -EINVAL;
170 		if (cmsg->cmsg_level != SOL_TLS)
171 			continue;
172 
173 		switch (cmsg->cmsg_type) {
174 		case TLS_SET_RECORD_TYPE:
175 			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176 				return -EINVAL;
177 
178 			if (msg->msg_flags & MSG_MORE)
179 				return -EINVAL;
180 
181 			rc = tls_handle_open_record(sk, msg->msg_flags);
182 			if (rc)
183 				return rc;
184 
185 			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
186 			rc = 0;
187 			break;
188 		default:
189 			return -EINVAL;
190 		}
191 	}
192 
193 	return rc;
194 }
195 
tls_push_pending_closed_record(struct sock * sk,struct tls_context * ctx,int flags,long * timeo)196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197 				   int flags, long *timeo)
198 {
199 	struct scatterlist *sg;
200 	u16 offset;
201 
202 	if (!tls_is_partially_sent_record(ctx))
203 		return ctx->push_pending_record(sk, flags);
204 
205 	sg = ctx->partially_sent_record;
206 	offset = ctx->partially_sent_offset;
207 
208 	ctx->partially_sent_record = NULL;
209 	return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211 
tls_write_space(struct sock * sk)212 static void tls_write_space(struct sock *sk)
213 {
214 	struct tls_context *ctx = tls_get_ctx(sk);
215 
216 	/* If in_tcp_sendpages call lower protocol write space handler
217 	 * to ensure we wake up any waiting operations there. For example
218 	 * if do_tcp_sendpages where to call sk_wait_event.
219 	 */
220 	if (ctx->in_tcp_sendpages) {
221 		ctx->sk_write_space(sk);
222 		return;
223 	}
224 
225 	if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
226 		gfp_t sk_allocation = sk->sk_allocation;
227 		int rc;
228 		long timeo = 0;
229 
230 		sk->sk_allocation = GFP_ATOMIC;
231 		rc = tls_push_pending_closed_record(sk, ctx,
232 						    MSG_DONTWAIT |
233 						    MSG_NOSIGNAL,
234 						    &timeo);
235 		sk->sk_allocation = sk_allocation;
236 
237 		if (rc < 0)
238 			return;
239 	}
240 
241 	ctx->sk_write_space(sk);
242 }
243 
tls_ctx_free(struct tls_context * ctx)244 static void tls_ctx_free(struct tls_context *ctx)
245 {
246 	if (!ctx)
247 		return;
248 
249 	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
250 	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
251 	kfree(ctx);
252 }
253 
tls_sk_proto_close(struct sock * sk,long timeout)254 static void tls_sk_proto_close(struct sock *sk, long timeout)
255 {
256 	struct tls_context *ctx = tls_get_ctx(sk);
257 	long timeo = sock_sndtimeo(sk, 0);
258 	void (*sk_proto_close)(struct sock *sk, long timeout);
259 	bool free_ctx = false;
260 
261 	lock_sock(sk);
262 	sk_proto_close = ctx->sk_proto_close;
263 
264 	if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
265 	    (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
266 		free_ctx = true;
267 		goto skip_tx_cleanup;
268 	}
269 
270 	if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
271 		tls_handle_open_record(sk, 0);
272 
273 	if (ctx->partially_sent_record) {
274 		struct scatterlist *sg = ctx->partially_sent_record;
275 
276 		while (1) {
277 			put_page(sg_page(sg));
278 			sk_mem_uncharge(sk, sg->length);
279 
280 			if (sg_is_last(sg))
281 				break;
282 			sg++;
283 		}
284 	}
285 
286 	/* We need these for tls_sw_fallback handling of other packets */
287 	if (ctx->tx_conf == TLS_SW) {
288 		kfree(ctx->tx.rec_seq);
289 		kfree(ctx->tx.iv);
290 		tls_sw_free_resources_tx(sk);
291 	}
292 
293 	if (ctx->rx_conf == TLS_SW) {
294 		kfree(ctx->rx.rec_seq);
295 		kfree(ctx->rx.iv);
296 		tls_sw_free_resources_rx(sk);
297 	}
298 
299 #ifdef CONFIG_TLS_DEVICE
300 	if (ctx->rx_conf == TLS_HW)
301 		tls_device_offload_cleanup_rx(sk);
302 
303 	if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
304 #else
305 	{
306 #endif
307 		tls_ctx_free(ctx);
308 		ctx = NULL;
309 	}
310 
311 skip_tx_cleanup:
312 	release_sock(sk);
313 	sk_proto_close(sk, timeout);
314 	/* free ctx for TLS_HW_RECORD, used by tcp_set_state
315 	 * for sk->sk_prot->unhash [tls_hw_unhash]
316 	 */
317 	if (free_ctx)
318 		tls_ctx_free(ctx);
319 }
320 
321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
322 				int __user *optlen)
323 {
324 	int rc = 0;
325 	struct tls_context *ctx = tls_get_ctx(sk);
326 	struct tls_crypto_info *crypto_info;
327 	int len;
328 
329 	if (get_user(len, optlen))
330 		return -EFAULT;
331 
332 	if (!optval || (len < sizeof(*crypto_info))) {
333 		rc = -EINVAL;
334 		goto out;
335 	}
336 
337 	if (!ctx) {
338 		rc = -EBUSY;
339 		goto out;
340 	}
341 
342 	/* get user crypto info */
343 	crypto_info = &ctx->crypto_send.info;
344 
345 	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
346 		rc = -EBUSY;
347 		goto out;
348 	}
349 
350 	if (len == sizeof(*crypto_info)) {
351 		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
352 			rc = -EFAULT;
353 		goto out;
354 	}
355 
356 	switch (crypto_info->cipher_type) {
357 	case TLS_CIPHER_AES_GCM_128: {
358 		struct tls12_crypto_info_aes_gcm_128 *
359 		  crypto_info_aes_gcm_128 =
360 		  container_of(crypto_info,
361 			       struct tls12_crypto_info_aes_gcm_128,
362 			       info);
363 
364 		if (len != sizeof(*crypto_info_aes_gcm_128)) {
365 			rc = -EINVAL;
366 			goto out;
367 		}
368 		lock_sock(sk);
369 		memcpy(crypto_info_aes_gcm_128->iv,
370 		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
371 		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
372 		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
373 		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
374 		release_sock(sk);
375 		if (copy_to_user(optval,
376 				 crypto_info_aes_gcm_128,
377 				 sizeof(*crypto_info_aes_gcm_128)))
378 			rc = -EFAULT;
379 		break;
380 	}
381 	default:
382 		rc = -EINVAL;
383 	}
384 
385 out:
386 	return rc;
387 }
388 
389 static int do_tls_getsockopt(struct sock *sk, int optname,
390 			     char __user *optval, int __user *optlen)
391 {
392 	int rc = 0;
393 
394 	switch (optname) {
395 	case TLS_TX:
396 		rc = do_tls_getsockopt_tx(sk, optval, optlen);
397 		break;
398 	default:
399 		rc = -ENOPROTOOPT;
400 		break;
401 	}
402 	return rc;
403 }
404 
405 static int tls_getsockopt(struct sock *sk, int level, int optname,
406 			  char __user *optval, int __user *optlen)
407 {
408 	struct tls_context *ctx = tls_get_ctx(sk);
409 
410 	if (level != SOL_TLS)
411 		return ctx->getsockopt(sk, level, optname, optval, optlen);
412 
413 	return do_tls_getsockopt(sk, optname, optval, optlen);
414 }
415 
416 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
417 				  unsigned int optlen, int tx)
418 {
419 	struct tls_crypto_info *crypto_info;
420 	struct tls_context *ctx = tls_get_ctx(sk);
421 	int rc = 0;
422 	int conf;
423 
424 	if (!optval || (optlen < sizeof(*crypto_info))) {
425 		rc = -EINVAL;
426 		goto out;
427 	}
428 
429 	if (tx)
430 		crypto_info = &ctx->crypto_send.info;
431 	else
432 		crypto_info = &ctx->crypto_recv.info;
433 
434 	/* Currently we don't support set crypto info more than one time */
435 	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
436 		rc = -EBUSY;
437 		goto out;
438 	}
439 
440 	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
441 	if (rc) {
442 		rc = -EFAULT;
443 		goto err_crypto_info;
444 	}
445 
446 	/* check version */
447 	if (crypto_info->version != TLS_1_2_VERSION) {
448 		rc = -ENOTSUPP;
449 		goto err_crypto_info;
450 	}
451 
452 	switch (crypto_info->cipher_type) {
453 	case TLS_CIPHER_AES_GCM_128: {
454 		if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
455 			rc = -EINVAL;
456 			goto err_crypto_info;
457 		}
458 		rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
459 				    optlen - sizeof(*crypto_info));
460 		if (rc) {
461 			rc = -EFAULT;
462 			goto err_crypto_info;
463 		}
464 		break;
465 	}
466 	default:
467 		rc = -EINVAL;
468 		goto err_crypto_info;
469 	}
470 
471 	if (tx) {
472 #ifdef CONFIG_TLS_DEVICE
473 		rc = tls_set_device_offload(sk, ctx);
474 		conf = TLS_HW;
475 		if (rc) {
476 #else
477 		{
478 #endif
479 			rc = tls_set_sw_offload(sk, ctx, 1);
480 			conf = TLS_SW;
481 		}
482 	} else {
483 #ifdef CONFIG_TLS_DEVICE
484 		rc = tls_set_device_offload_rx(sk, ctx);
485 		conf = TLS_HW;
486 		if (rc) {
487 #else
488 		{
489 #endif
490 			rc = tls_set_sw_offload(sk, ctx, 0);
491 			conf = TLS_SW;
492 		}
493 	}
494 
495 	if (rc)
496 		goto err_crypto_info;
497 
498 	if (tx)
499 		ctx->tx_conf = conf;
500 	else
501 		ctx->rx_conf = conf;
502 	update_sk_prot(sk, ctx);
503 	if (tx) {
504 		ctx->sk_write_space = sk->sk_write_space;
505 		sk->sk_write_space = tls_write_space;
506 	} else {
507 		sk->sk_socket->ops = &tls_sw_proto_ops;
508 	}
509 	goto out;
510 
511 err_crypto_info:
512 	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
513 out:
514 	return rc;
515 }
516 
517 static int do_tls_setsockopt(struct sock *sk, int optname,
518 			     char __user *optval, unsigned int optlen)
519 {
520 	int rc = 0;
521 
522 	switch (optname) {
523 	case TLS_TX:
524 	case TLS_RX:
525 		lock_sock(sk);
526 		rc = do_tls_setsockopt_conf(sk, optval, optlen,
527 					    optname == TLS_TX);
528 		release_sock(sk);
529 		break;
530 	default:
531 		rc = -ENOPROTOOPT;
532 		break;
533 	}
534 	return rc;
535 }
536 
537 static int tls_setsockopt(struct sock *sk, int level, int optname,
538 			  char __user *optval, unsigned int optlen)
539 {
540 	struct tls_context *ctx = tls_get_ctx(sk);
541 
542 	if (level != SOL_TLS)
543 		return ctx->setsockopt(sk, level, optname, optval, optlen);
544 
545 	return do_tls_setsockopt(sk, optname, optval, optlen);
546 }
547 
548 static struct tls_context *create_ctx(struct sock *sk)
549 {
550 	struct inet_connection_sock *icsk = inet_csk(sk);
551 	struct tls_context *ctx;
552 
553 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
554 	if (!ctx)
555 		return NULL;
556 
557 	icsk->icsk_ulp_data = ctx;
558 	return ctx;
559 }
560 
561 static int tls_hw_prot(struct sock *sk)
562 {
563 	struct tls_context *ctx;
564 	struct tls_device *dev;
565 	int rc = 0;
566 
567 	mutex_lock(&device_mutex);
568 	list_for_each_entry(dev, &device_list, dev_list) {
569 		if (dev->feature && dev->feature(dev)) {
570 			ctx = create_ctx(sk);
571 			if (!ctx)
572 				goto out;
573 
574 			ctx->hash = sk->sk_prot->hash;
575 			ctx->unhash = sk->sk_prot->unhash;
576 			ctx->sk_proto_close = sk->sk_prot->close;
577 			ctx->rx_conf = TLS_HW_RECORD;
578 			ctx->tx_conf = TLS_HW_RECORD;
579 			update_sk_prot(sk, ctx);
580 			rc = 1;
581 			break;
582 		}
583 	}
584 out:
585 	mutex_unlock(&device_mutex);
586 	return rc;
587 }
588 
589 static void tls_hw_unhash(struct sock *sk)
590 {
591 	struct tls_context *ctx = tls_get_ctx(sk);
592 	struct tls_device *dev;
593 
594 	mutex_lock(&device_mutex);
595 	list_for_each_entry(dev, &device_list, dev_list) {
596 		if (dev->unhash)
597 			dev->unhash(dev, sk);
598 	}
599 	mutex_unlock(&device_mutex);
600 	ctx->unhash(sk);
601 }
602 
603 static int tls_hw_hash(struct sock *sk)
604 {
605 	struct tls_context *ctx = tls_get_ctx(sk);
606 	struct tls_device *dev;
607 	int err;
608 
609 	err = ctx->hash(sk);
610 	mutex_lock(&device_mutex);
611 	list_for_each_entry(dev, &device_list, dev_list) {
612 		if (dev->hash)
613 			err |= dev->hash(dev, sk);
614 	}
615 	mutex_unlock(&device_mutex);
616 
617 	if (err)
618 		tls_hw_unhash(sk);
619 	return err;
620 }
621 
622 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
623 			 struct proto *base)
624 {
625 	prot[TLS_BASE][TLS_BASE] = *base;
626 	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
627 	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
628 	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
629 
630 	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
631 	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
632 	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
633 
634 	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
635 	prot[TLS_BASE][TLS_SW].recvmsg		= tls_sw_recvmsg;
636 	prot[TLS_BASE][TLS_SW].close		= tls_sk_proto_close;
637 
638 	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
639 	prot[TLS_SW][TLS_SW].recvmsg	= tls_sw_recvmsg;
640 	prot[TLS_SW][TLS_SW].close	= tls_sk_proto_close;
641 
642 #ifdef CONFIG_TLS_DEVICE
643 	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
644 	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
645 	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
646 
647 	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
648 	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
649 	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
650 
651 	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
652 
653 	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
654 
655 	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
656 #endif
657 
658 	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
659 	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
660 	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
661 	prot[TLS_HW_RECORD][TLS_HW_RECORD].close	= tls_sk_proto_close;
662 }
663 
664 static int tls_init(struct sock *sk)
665 {
666 	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
667 	struct tls_context *ctx;
668 	int rc = 0;
669 
670 	if (tls_hw_prot(sk))
671 		goto out;
672 
673 	/* The TLS ulp is currently supported only for TCP sockets
674 	 * in ESTABLISHED state.
675 	 * Supporting sockets in LISTEN state will require us
676 	 * to modify the accept implementation to clone rather then
677 	 * share the ulp context.
678 	 */
679 	if (sk->sk_state != TCP_ESTABLISHED)
680 		return -ENOTSUPP;
681 
682 	/* allocate tls context */
683 	ctx = create_ctx(sk);
684 	if (!ctx) {
685 		rc = -ENOMEM;
686 		goto out;
687 	}
688 	ctx->setsockopt = sk->sk_prot->setsockopt;
689 	ctx->getsockopt = sk->sk_prot->getsockopt;
690 	ctx->sk_proto_close = sk->sk_prot->close;
691 
692 	/* Build IPv6 TLS whenever the address of tcpv6	_prot changes */
693 	if (ip_ver == TLSV6 &&
694 	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
695 		mutex_lock(&tcpv6_prot_mutex);
696 		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
697 			build_protos(tls_prots[TLSV6], sk->sk_prot);
698 			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
699 		}
700 		mutex_unlock(&tcpv6_prot_mutex);
701 	}
702 
703 	ctx->tx_conf = TLS_BASE;
704 	ctx->rx_conf = TLS_BASE;
705 	update_sk_prot(sk, ctx);
706 out:
707 	return rc;
708 }
709 
710 void tls_register_device(struct tls_device *device)
711 {
712 	mutex_lock(&device_mutex);
713 	list_add_tail(&device->dev_list, &device_list);
714 	mutex_unlock(&device_mutex);
715 }
716 EXPORT_SYMBOL(tls_register_device);
717 
718 void tls_unregister_device(struct tls_device *device)
719 {
720 	mutex_lock(&device_mutex);
721 	list_del(&device->dev_list);
722 	mutex_unlock(&device_mutex);
723 }
724 EXPORT_SYMBOL(tls_unregister_device);
725 
726 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
727 	.name			= "tls",
728 	.uid			= TCP_ULP_TLS,
729 	.user_visible		= true,
730 	.owner			= THIS_MODULE,
731 	.init			= tls_init,
732 };
733 
734 static int __init tls_register(void)
735 {
736 	build_protos(tls_prots[TLSV4], &tcp_prot);
737 
738 	tls_sw_proto_ops = inet_stream_ops;
739 	tls_sw_proto_ops.poll = tls_sw_poll;
740 	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
741 
742 #ifdef CONFIG_TLS_DEVICE
743 	tls_device_init();
744 #endif
745 	tcp_register_ulp(&tcp_tls_ulp_ops);
746 
747 	return 0;
748 }
749 
750 static void __exit tls_unregister(void)
751 {
752 	tcp_unregister_ulp(&tcp_tls_ulp_ops);
753 #ifdef CONFIG_TLS_DEVICE
754 	tls_device_cleanup();
755 #endif
756 }
757 
758 module_init(tls_register);
759 module_exit(tls_unregister);
760