1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/module.h>
35
36 #include <net/tcp.h>
37 #include <net/inet_common.h>
38 #include <linux/highmem.h>
39 #include <linux/netdevice.h>
40 #include <linux/sched/signal.h>
41 #include <linux/inetdevice.h>
42
43 #include <net/tls.h>
44
45 MODULE_AUTHOR("Mellanox Technologies");
46 MODULE_DESCRIPTION("Transport Layer Security Support");
47 MODULE_LICENSE("Dual BSD/GPL");
48 MODULE_ALIAS_TCP_ULP("tls");
49
50 enum {
51 TLSV4,
52 TLSV6,
53 TLS_NUM_PROTS,
54 };
55
56 static struct proto *saved_tcpv6_prot;
57 static DEFINE_MUTEX(tcpv6_prot_mutex);
58 static LIST_HEAD(device_list);
59 static DEFINE_MUTEX(device_mutex);
60 static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
61 static struct proto_ops tls_sw_proto_ops;
62
update_sk_prot(struct sock * sk,struct tls_context * ctx)63 static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
64 {
65 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
66
67 sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
68 }
69
wait_on_pending_writer(struct sock * sk,long * timeo)70 int wait_on_pending_writer(struct sock *sk, long *timeo)
71 {
72 int rc = 0;
73 DEFINE_WAIT_FUNC(wait, woken_wake_function);
74
75 add_wait_queue(sk_sleep(sk), &wait);
76 while (1) {
77 if (!*timeo) {
78 rc = -EAGAIN;
79 break;
80 }
81
82 if (signal_pending(current)) {
83 rc = sock_intr_errno(*timeo);
84 break;
85 }
86
87 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
88 break;
89 }
90 remove_wait_queue(sk_sleep(sk), &wait);
91 return rc;
92 }
93
tls_push_sg(struct sock * sk,struct tls_context * ctx,struct scatterlist * sg,u16 first_offset,int flags)94 int tls_push_sg(struct sock *sk,
95 struct tls_context *ctx,
96 struct scatterlist *sg,
97 u16 first_offset,
98 int flags)
99 {
100 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
101 int ret = 0;
102 struct page *p;
103 size_t size;
104 int offset = first_offset;
105
106 size = sg->length - offset;
107 offset += sg->offset;
108
109 ctx->in_tcp_sendpages = true;
110 while (1) {
111 if (sg_is_last(sg))
112 sendpage_flags = flags;
113
114 /* is sending application-limited? */
115 tcp_rate_check_app_limited(sk);
116 p = sg_page(sg);
117 retry:
118 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
119
120 if (ret != size) {
121 if (ret > 0) {
122 offset += ret;
123 size -= ret;
124 goto retry;
125 }
126
127 offset -= sg->offset;
128 ctx->partially_sent_offset = offset;
129 ctx->partially_sent_record = (void *)sg;
130 ctx->in_tcp_sendpages = false;
131 return ret;
132 }
133
134 put_page(p);
135 sk_mem_uncharge(sk, sg->length);
136 sg = sg_next(sg);
137 if (!sg)
138 break;
139
140 offset = sg->offset;
141 size = sg->length;
142 }
143
144 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
145 ctx->in_tcp_sendpages = false;
146 ctx->sk_write_space(sk);
147
148 return 0;
149 }
150
tls_handle_open_record(struct sock * sk,int flags)151 static int tls_handle_open_record(struct sock *sk, int flags)
152 {
153 struct tls_context *ctx = tls_get_ctx(sk);
154
155 if (tls_is_pending_open_record(ctx))
156 return ctx->push_pending_record(sk, flags);
157
158 return 0;
159 }
160
tls_proccess_cmsg(struct sock * sk,struct msghdr * msg,unsigned char * record_type)161 int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
162 unsigned char *record_type)
163 {
164 struct cmsghdr *cmsg;
165 int rc = -EINVAL;
166
167 for_each_cmsghdr(cmsg, msg) {
168 if (!CMSG_OK(msg, cmsg))
169 return -EINVAL;
170 if (cmsg->cmsg_level != SOL_TLS)
171 continue;
172
173 switch (cmsg->cmsg_type) {
174 case TLS_SET_RECORD_TYPE:
175 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
176 return -EINVAL;
177
178 if (msg->msg_flags & MSG_MORE)
179 return -EINVAL;
180
181 rc = tls_handle_open_record(sk, msg->msg_flags);
182 if (rc)
183 return rc;
184
185 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
186 rc = 0;
187 break;
188 default:
189 return -EINVAL;
190 }
191 }
192
193 return rc;
194 }
195
tls_push_pending_closed_record(struct sock * sk,struct tls_context * ctx,int flags,long * timeo)196 int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
197 int flags, long *timeo)
198 {
199 struct scatterlist *sg;
200 u16 offset;
201
202 if (!tls_is_partially_sent_record(ctx))
203 return ctx->push_pending_record(sk, flags);
204
205 sg = ctx->partially_sent_record;
206 offset = ctx->partially_sent_offset;
207
208 ctx->partially_sent_record = NULL;
209 return tls_push_sg(sk, ctx, sg, offset, flags);
210 }
211
tls_write_space(struct sock * sk)212 static void tls_write_space(struct sock *sk)
213 {
214 struct tls_context *ctx = tls_get_ctx(sk);
215
216 /* If in_tcp_sendpages call lower protocol write space handler
217 * to ensure we wake up any waiting operations there. For example
218 * if do_tcp_sendpages where to call sk_wait_event.
219 */
220 if (ctx->in_tcp_sendpages) {
221 ctx->sk_write_space(sk);
222 return;
223 }
224
225 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
226 gfp_t sk_allocation = sk->sk_allocation;
227 int rc;
228 long timeo = 0;
229
230 sk->sk_allocation = GFP_ATOMIC;
231 rc = tls_push_pending_closed_record(sk, ctx,
232 MSG_DONTWAIT |
233 MSG_NOSIGNAL,
234 &timeo);
235 sk->sk_allocation = sk_allocation;
236
237 if (rc < 0)
238 return;
239 }
240
241 ctx->sk_write_space(sk);
242 }
243
tls_ctx_free(struct tls_context * ctx)244 static void tls_ctx_free(struct tls_context *ctx)
245 {
246 if (!ctx)
247 return;
248
249 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
250 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
251 kfree(ctx);
252 }
253
tls_sk_proto_close(struct sock * sk,long timeout)254 static void tls_sk_proto_close(struct sock *sk, long timeout)
255 {
256 struct tls_context *ctx = tls_get_ctx(sk);
257 long timeo = sock_sndtimeo(sk, 0);
258 void (*sk_proto_close)(struct sock *sk, long timeout);
259 bool free_ctx = false;
260
261 lock_sock(sk);
262 sk_proto_close = ctx->sk_proto_close;
263
264 if ((ctx->tx_conf == TLS_HW_RECORD && ctx->rx_conf == TLS_HW_RECORD) ||
265 (ctx->tx_conf == TLS_BASE && ctx->rx_conf == TLS_BASE)) {
266 free_ctx = true;
267 goto skip_tx_cleanup;
268 }
269
270 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
271 tls_handle_open_record(sk, 0);
272
273 if (ctx->partially_sent_record) {
274 struct scatterlist *sg = ctx->partially_sent_record;
275
276 while (1) {
277 put_page(sg_page(sg));
278 sk_mem_uncharge(sk, sg->length);
279
280 if (sg_is_last(sg))
281 break;
282 sg++;
283 }
284 }
285
286 /* We need these for tls_sw_fallback handling of other packets */
287 if (ctx->tx_conf == TLS_SW) {
288 kfree(ctx->tx.rec_seq);
289 kfree(ctx->tx.iv);
290 tls_sw_free_resources_tx(sk);
291 }
292
293 if (ctx->rx_conf == TLS_SW) {
294 kfree(ctx->rx.rec_seq);
295 kfree(ctx->rx.iv);
296 tls_sw_free_resources_rx(sk);
297 }
298
299 #ifdef CONFIG_TLS_DEVICE
300 if (ctx->rx_conf == TLS_HW)
301 tls_device_offload_cleanup_rx(sk);
302
303 if (ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW) {
304 #else
305 {
306 #endif
307 tls_ctx_free(ctx);
308 ctx = NULL;
309 }
310
311 skip_tx_cleanup:
312 release_sock(sk);
313 sk_proto_close(sk, timeout);
314 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
315 * for sk->sk_prot->unhash [tls_hw_unhash]
316 */
317 if (free_ctx)
318 tls_ctx_free(ctx);
319 }
320
321 static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
322 int __user *optlen)
323 {
324 int rc = 0;
325 struct tls_context *ctx = tls_get_ctx(sk);
326 struct tls_crypto_info *crypto_info;
327 int len;
328
329 if (get_user(len, optlen))
330 return -EFAULT;
331
332 if (!optval || (len < sizeof(*crypto_info))) {
333 rc = -EINVAL;
334 goto out;
335 }
336
337 if (!ctx) {
338 rc = -EBUSY;
339 goto out;
340 }
341
342 /* get user crypto info */
343 crypto_info = &ctx->crypto_send.info;
344
345 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
346 rc = -EBUSY;
347 goto out;
348 }
349
350 if (len == sizeof(*crypto_info)) {
351 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
352 rc = -EFAULT;
353 goto out;
354 }
355
356 switch (crypto_info->cipher_type) {
357 case TLS_CIPHER_AES_GCM_128: {
358 struct tls12_crypto_info_aes_gcm_128 *
359 crypto_info_aes_gcm_128 =
360 container_of(crypto_info,
361 struct tls12_crypto_info_aes_gcm_128,
362 info);
363
364 if (len != sizeof(*crypto_info_aes_gcm_128)) {
365 rc = -EINVAL;
366 goto out;
367 }
368 lock_sock(sk);
369 memcpy(crypto_info_aes_gcm_128->iv,
370 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
371 TLS_CIPHER_AES_GCM_128_IV_SIZE);
372 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
373 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
374 release_sock(sk);
375 if (copy_to_user(optval,
376 crypto_info_aes_gcm_128,
377 sizeof(*crypto_info_aes_gcm_128)))
378 rc = -EFAULT;
379 break;
380 }
381 default:
382 rc = -EINVAL;
383 }
384
385 out:
386 return rc;
387 }
388
389 static int do_tls_getsockopt(struct sock *sk, int optname,
390 char __user *optval, int __user *optlen)
391 {
392 int rc = 0;
393
394 switch (optname) {
395 case TLS_TX:
396 rc = do_tls_getsockopt_tx(sk, optval, optlen);
397 break;
398 default:
399 rc = -ENOPROTOOPT;
400 break;
401 }
402 return rc;
403 }
404
405 static int tls_getsockopt(struct sock *sk, int level, int optname,
406 char __user *optval, int __user *optlen)
407 {
408 struct tls_context *ctx = tls_get_ctx(sk);
409
410 if (level != SOL_TLS)
411 return ctx->getsockopt(sk, level, optname, optval, optlen);
412
413 return do_tls_getsockopt(sk, optname, optval, optlen);
414 }
415
416 static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
417 unsigned int optlen, int tx)
418 {
419 struct tls_crypto_info *crypto_info;
420 struct tls_context *ctx = tls_get_ctx(sk);
421 int rc = 0;
422 int conf;
423
424 if (!optval || (optlen < sizeof(*crypto_info))) {
425 rc = -EINVAL;
426 goto out;
427 }
428
429 if (tx)
430 crypto_info = &ctx->crypto_send.info;
431 else
432 crypto_info = &ctx->crypto_recv.info;
433
434 /* Currently we don't support set crypto info more than one time */
435 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
436 rc = -EBUSY;
437 goto out;
438 }
439
440 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
441 if (rc) {
442 rc = -EFAULT;
443 goto err_crypto_info;
444 }
445
446 /* check version */
447 if (crypto_info->version != TLS_1_2_VERSION) {
448 rc = -ENOTSUPP;
449 goto err_crypto_info;
450 }
451
452 switch (crypto_info->cipher_type) {
453 case TLS_CIPHER_AES_GCM_128: {
454 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
455 rc = -EINVAL;
456 goto err_crypto_info;
457 }
458 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
459 optlen - sizeof(*crypto_info));
460 if (rc) {
461 rc = -EFAULT;
462 goto err_crypto_info;
463 }
464 break;
465 }
466 default:
467 rc = -EINVAL;
468 goto err_crypto_info;
469 }
470
471 if (tx) {
472 #ifdef CONFIG_TLS_DEVICE
473 rc = tls_set_device_offload(sk, ctx);
474 conf = TLS_HW;
475 if (rc) {
476 #else
477 {
478 #endif
479 rc = tls_set_sw_offload(sk, ctx, 1);
480 conf = TLS_SW;
481 }
482 } else {
483 #ifdef CONFIG_TLS_DEVICE
484 rc = tls_set_device_offload_rx(sk, ctx);
485 conf = TLS_HW;
486 if (rc) {
487 #else
488 {
489 #endif
490 rc = tls_set_sw_offload(sk, ctx, 0);
491 conf = TLS_SW;
492 }
493 }
494
495 if (rc)
496 goto err_crypto_info;
497
498 if (tx)
499 ctx->tx_conf = conf;
500 else
501 ctx->rx_conf = conf;
502 update_sk_prot(sk, ctx);
503 if (tx) {
504 ctx->sk_write_space = sk->sk_write_space;
505 sk->sk_write_space = tls_write_space;
506 } else {
507 sk->sk_socket->ops = &tls_sw_proto_ops;
508 }
509 goto out;
510
511 err_crypto_info:
512 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
513 out:
514 return rc;
515 }
516
517 static int do_tls_setsockopt(struct sock *sk, int optname,
518 char __user *optval, unsigned int optlen)
519 {
520 int rc = 0;
521
522 switch (optname) {
523 case TLS_TX:
524 case TLS_RX:
525 lock_sock(sk);
526 rc = do_tls_setsockopt_conf(sk, optval, optlen,
527 optname == TLS_TX);
528 release_sock(sk);
529 break;
530 default:
531 rc = -ENOPROTOOPT;
532 break;
533 }
534 return rc;
535 }
536
537 static int tls_setsockopt(struct sock *sk, int level, int optname,
538 char __user *optval, unsigned int optlen)
539 {
540 struct tls_context *ctx = tls_get_ctx(sk);
541
542 if (level != SOL_TLS)
543 return ctx->setsockopt(sk, level, optname, optval, optlen);
544
545 return do_tls_setsockopt(sk, optname, optval, optlen);
546 }
547
548 static struct tls_context *create_ctx(struct sock *sk)
549 {
550 struct inet_connection_sock *icsk = inet_csk(sk);
551 struct tls_context *ctx;
552
553 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
554 if (!ctx)
555 return NULL;
556
557 icsk->icsk_ulp_data = ctx;
558 return ctx;
559 }
560
561 static int tls_hw_prot(struct sock *sk)
562 {
563 struct tls_context *ctx;
564 struct tls_device *dev;
565 int rc = 0;
566
567 mutex_lock(&device_mutex);
568 list_for_each_entry(dev, &device_list, dev_list) {
569 if (dev->feature && dev->feature(dev)) {
570 ctx = create_ctx(sk);
571 if (!ctx)
572 goto out;
573
574 ctx->hash = sk->sk_prot->hash;
575 ctx->unhash = sk->sk_prot->unhash;
576 ctx->sk_proto_close = sk->sk_prot->close;
577 ctx->rx_conf = TLS_HW_RECORD;
578 ctx->tx_conf = TLS_HW_RECORD;
579 update_sk_prot(sk, ctx);
580 rc = 1;
581 break;
582 }
583 }
584 out:
585 mutex_unlock(&device_mutex);
586 return rc;
587 }
588
589 static void tls_hw_unhash(struct sock *sk)
590 {
591 struct tls_context *ctx = tls_get_ctx(sk);
592 struct tls_device *dev;
593
594 mutex_lock(&device_mutex);
595 list_for_each_entry(dev, &device_list, dev_list) {
596 if (dev->unhash)
597 dev->unhash(dev, sk);
598 }
599 mutex_unlock(&device_mutex);
600 ctx->unhash(sk);
601 }
602
603 static int tls_hw_hash(struct sock *sk)
604 {
605 struct tls_context *ctx = tls_get_ctx(sk);
606 struct tls_device *dev;
607 int err;
608
609 err = ctx->hash(sk);
610 mutex_lock(&device_mutex);
611 list_for_each_entry(dev, &device_list, dev_list) {
612 if (dev->hash)
613 err |= dev->hash(dev, sk);
614 }
615 mutex_unlock(&device_mutex);
616
617 if (err)
618 tls_hw_unhash(sk);
619 return err;
620 }
621
622 static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
623 struct proto *base)
624 {
625 prot[TLS_BASE][TLS_BASE] = *base;
626 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
627 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
628 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
629
630 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
631 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
632 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
633
634 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
635 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
636 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
637
638 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
639 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
640 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
641
642 #ifdef CONFIG_TLS_DEVICE
643 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
644 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
645 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
646
647 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
648 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
649 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
650
651 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
652
653 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
654
655 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
656 #endif
657
658 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
659 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_hw_hash;
660 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_hw_unhash;
661 prot[TLS_HW_RECORD][TLS_HW_RECORD].close = tls_sk_proto_close;
662 }
663
664 static int tls_init(struct sock *sk)
665 {
666 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
667 struct tls_context *ctx;
668 int rc = 0;
669
670 if (tls_hw_prot(sk))
671 goto out;
672
673 /* The TLS ulp is currently supported only for TCP sockets
674 * in ESTABLISHED state.
675 * Supporting sockets in LISTEN state will require us
676 * to modify the accept implementation to clone rather then
677 * share the ulp context.
678 */
679 if (sk->sk_state != TCP_ESTABLISHED)
680 return -ENOTSUPP;
681
682 /* allocate tls context */
683 ctx = create_ctx(sk);
684 if (!ctx) {
685 rc = -ENOMEM;
686 goto out;
687 }
688 ctx->setsockopt = sk->sk_prot->setsockopt;
689 ctx->getsockopt = sk->sk_prot->getsockopt;
690 ctx->sk_proto_close = sk->sk_prot->close;
691
692 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
693 if (ip_ver == TLSV6 &&
694 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
695 mutex_lock(&tcpv6_prot_mutex);
696 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
697 build_protos(tls_prots[TLSV6], sk->sk_prot);
698 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
699 }
700 mutex_unlock(&tcpv6_prot_mutex);
701 }
702
703 ctx->tx_conf = TLS_BASE;
704 ctx->rx_conf = TLS_BASE;
705 update_sk_prot(sk, ctx);
706 out:
707 return rc;
708 }
709
710 void tls_register_device(struct tls_device *device)
711 {
712 mutex_lock(&device_mutex);
713 list_add_tail(&device->dev_list, &device_list);
714 mutex_unlock(&device_mutex);
715 }
716 EXPORT_SYMBOL(tls_register_device);
717
718 void tls_unregister_device(struct tls_device *device)
719 {
720 mutex_lock(&device_mutex);
721 list_del(&device->dev_list);
722 mutex_unlock(&device_mutex);
723 }
724 EXPORT_SYMBOL(tls_unregister_device);
725
726 static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
727 .name = "tls",
728 .uid = TCP_ULP_TLS,
729 .user_visible = true,
730 .owner = THIS_MODULE,
731 .init = tls_init,
732 };
733
734 static int __init tls_register(void)
735 {
736 build_protos(tls_prots[TLSV4], &tcp_prot);
737
738 tls_sw_proto_ops = inet_stream_ops;
739 tls_sw_proto_ops.poll = tls_sw_poll;
740 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
741
742 #ifdef CONFIG_TLS_DEVICE
743 tls_device_init();
744 #endif
745 tcp_register_ulp(&tcp_tls_ulp_ops);
746
747 return 0;
748 }
749
750 static void __exit tls_unregister(void)
751 {
752 tcp_unregister_ulp(&tcp_tls_ulp_ops);
753 #ifdef CONFIG_TLS_DEVICE
754 tls_device_cleanup();
755 #endif
756 }
757
758 module_init(tls_register);
759 module_exit(tls_unregister);
760