1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4
5 /*
6 * Copyright 1995 Linus Torvalds
7 */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18
19 struct pagevec;
20
21 /*
22 * Bits in mapping->flags.
23 */
24 enum mapping_flags {
25 AS_EIO = 0, /* IO error on async write */
26 AS_ENOSPC = 1, /* ENOSPC on async write */
27 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
28 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
29 AS_EXITING = 4, /* final truncate in progress */
30 /* writeback related tags are not used */
31 AS_NO_WRITEBACK_TAGS = 5,
32 AS_THP_SUPPORT = 6, /* THPs supported */
33 };
34
35 /**
36 * mapping_set_error - record a writeback error in the address_space
37 * @mapping: the mapping in which an error should be set
38 * @error: the error to set in the mapping
39 *
40 * When writeback fails in some way, we must record that error so that
41 * userspace can be informed when fsync and the like are called. We endeavor
42 * to report errors on any file that was open at the time of the error. Some
43 * internal callers also need to know when writeback errors have occurred.
44 *
45 * When a writeback error occurs, most filesystems will want to call
46 * mapping_set_error to record the error in the mapping so that it can be
47 * reported when the application calls fsync(2).
48 */
mapping_set_error(struct address_space * mapping,int error)49 static inline void mapping_set_error(struct address_space *mapping, int error)
50 {
51 if (likely(!error))
52 return;
53
54 /* Record in wb_err for checkers using errseq_t based tracking */
55 __filemap_set_wb_err(mapping, error);
56
57 /* Record it in superblock */
58 if (mapping->host)
59 errseq_set(&mapping->host->i_sb->s_wb_err, error);
60
61 /* Record it in flags for now, for legacy callers */
62 if (error == -ENOSPC)
63 set_bit(AS_ENOSPC, &mapping->flags);
64 else
65 set_bit(AS_EIO, &mapping->flags);
66 }
67
mapping_set_unevictable(struct address_space * mapping)68 static inline void mapping_set_unevictable(struct address_space *mapping)
69 {
70 set_bit(AS_UNEVICTABLE, &mapping->flags);
71 }
72
mapping_clear_unevictable(struct address_space * mapping)73 static inline void mapping_clear_unevictable(struct address_space *mapping)
74 {
75 clear_bit(AS_UNEVICTABLE, &mapping->flags);
76 }
77
mapping_unevictable(struct address_space * mapping)78 static inline bool mapping_unevictable(struct address_space *mapping)
79 {
80 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
81 }
82
mapping_set_exiting(struct address_space * mapping)83 static inline void mapping_set_exiting(struct address_space *mapping)
84 {
85 set_bit(AS_EXITING, &mapping->flags);
86 }
87
mapping_exiting(struct address_space * mapping)88 static inline int mapping_exiting(struct address_space *mapping)
89 {
90 return test_bit(AS_EXITING, &mapping->flags);
91 }
92
mapping_set_no_writeback_tags(struct address_space * mapping)93 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
94 {
95 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
96 }
97
mapping_use_writeback_tags(struct address_space * mapping)98 static inline int mapping_use_writeback_tags(struct address_space *mapping)
99 {
100 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
101 }
102
mapping_gfp_mask(struct address_space * mapping)103 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
104 {
105 return mapping->gfp_mask;
106 }
107
108 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)109 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
110 gfp_t gfp_mask)
111 {
112 return mapping_gfp_mask(mapping) & gfp_mask;
113 }
114
115 /*
116 * This is non-atomic. Only to be used before the mapping is activated.
117 * Probably needs a barrier...
118 */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)119 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
120 {
121 m->gfp_mask = mask;
122 }
123
mapping_thp_support(struct address_space * mapping)124 static inline bool mapping_thp_support(struct address_space *mapping)
125 {
126 return test_bit(AS_THP_SUPPORT, &mapping->flags);
127 }
128
filemap_nr_thps(struct address_space * mapping)129 static inline int filemap_nr_thps(struct address_space *mapping)
130 {
131 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
132 return atomic_read(&mapping->nr_thps);
133 #else
134 return 0;
135 #endif
136 }
137
filemap_nr_thps_inc(struct address_space * mapping)138 static inline void filemap_nr_thps_inc(struct address_space *mapping)
139 {
140 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
141 if (!mapping_thp_support(mapping))
142 atomic_inc(&mapping->nr_thps);
143 #else
144 WARN_ON_ONCE(1);
145 #endif
146 }
147
filemap_nr_thps_dec(struct address_space * mapping)148 static inline void filemap_nr_thps_dec(struct address_space *mapping)
149 {
150 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
151 if (!mapping_thp_support(mapping))
152 atomic_dec(&mapping->nr_thps);
153 #else
154 WARN_ON_ONCE(1);
155 #endif
156 }
157
158 void release_pages(struct page **pages, int nr);
159
160 /*
161 * speculatively take a reference to a page.
162 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
163 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
164 *
165 * This function must be called inside the same rcu_read_lock() section as has
166 * been used to lookup the page in the pagecache radix-tree (or page table):
167 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
168 *
169 * Unless an RCU grace period has passed, the count of all pages coming out
170 * of the allocator must be considered unstable. page_count may return higher
171 * than expected, and put_page must be able to do the right thing when the
172 * page has been finished with, no matter what it is subsequently allocated
173 * for (because put_page is what is used here to drop an invalid speculative
174 * reference).
175 *
176 * This is the interesting part of the lockless pagecache (and lockless
177 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
178 * has the following pattern:
179 * 1. find page in radix tree
180 * 2. conditionally increment refcount
181 * 3. check the page is still in pagecache (if no, goto 1)
182 *
183 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
184 * following (with the i_pages lock held):
185 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
186 * B. remove page from pagecache
187 * C. free the page
188 *
189 * There are 2 critical interleavings that matter:
190 * - 2 runs before A: in this case, A sees elevated refcount and bails out
191 * - A runs before 2: in this case, 2 sees zero refcount and retries;
192 * subsequently, B will complete and 1 will find no page, causing the
193 * lookup to return NULL.
194 *
195 * It is possible that between 1 and 2, the page is removed then the exact same
196 * page is inserted into the same position in pagecache. That's OK: the
197 * old find_get_page using a lock could equally have run before or after
198 * such a re-insertion, depending on order that locks are granted.
199 *
200 * Lookups racing against pagecache insertion isn't a big problem: either 1
201 * will find the page or it will not. Likewise, the old find_get_page could run
202 * either before the insertion or afterwards, depending on timing.
203 */
__page_cache_add_speculative(struct page * page,int count)204 static inline int __page_cache_add_speculative(struct page *page, int count)
205 {
206 #ifdef CONFIG_TINY_RCU
207 # ifdef CONFIG_PREEMPT_COUNT
208 VM_BUG_ON(!in_atomic() && !irqs_disabled());
209 # endif
210 /*
211 * Preempt must be disabled here - we rely on rcu_read_lock doing
212 * this for us.
213 *
214 * Pagecache won't be truncated from interrupt context, so if we have
215 * found a page in the radix tree here, we have pinned its refcount by
216 * disabling preempt, and hence no need for the "speculative get" that
217 * SMP requires.
218 */
219 VM_BUG_ON_PAGE(page_count(page) == 0, page);
220 page_ref_add(page, count);
221
222 #else
223 if (unlikely(!page_ref_add_unless(page, count, 0))) {
224 /*
225 * Either the page has been freed, or will be freed.
226 * In either case, retry here and the caller should
227 * do the right thing (see comments above).
228 */
229 return 0;
230 }
231 #endif
232 VM_BUG_ON_PAGE(PageTail(page), page);
233
234 return 1;
235 }
236
page_cache_get_speculative(struct page * page)237 static inline int page_cache_get_speculative(struct page *page)
238 {
239 return __page_cache_add_speculative(page, 1);
240 }
241
page_cache_add_speculative(struct page * page,int count)242 static inline int page_cache_add_speculative(struct page *page, int count)
243 {
244 return __page_cache_add_speculative(page, count);
245 }
246
247 /**
248 * attach_page_private - Attach private data to a page.
249 * @page: Page to attach data to.
250 * @data: Data to attach to page.
251 *
252 * Attaching private data to a page increments the page's reference count.
253 * The data must be detached before the page will be freed.
254 */
attach_page_private(struct page * page,void * data)255 static inline void attach_page_private(struct page *page, void *data)
256 {
257 get_page(page);
258 set_page_private(page, (unsigned long)data);
259 SetPagePrivate(page);
260 }
261
262 /**
263 * detach_page_private - Detach private data from a page.
264 * @page: Page to detach data from.
265 *
266 * Removes the data that was previously attached to the page and decrements
267 * the refcount on the page.
268 *
269 * Return: Data that was attached to the page.
270 */
detach_page_private(struct page * page)271 static inline void *detach_page_private(struct page *page)
272 {
273 void *data = (void *)page_private(page);
274
275 if (!PagePrivate(page))
276 return NULL;
277 ClearPagePrivate(page);
278 set_page_private(page, 0);
279 put_page(page);
280
281 return data;
282 }
283
284 #ifdef CONFIG_NUMA
285 extern struct page *__page_cache_alloc(gfp_t gfp);
286 #else
__page_cache_alloc(gfp_t gfp)287 static inline struct page *__page_cache_alloc(gfp_t gfp)
288 {
289 return alloc_pages(gfp, 0);
290 }
291 #endif
292
page_cache_alloc(struct address_space * x)293 static inline struct page *page_cache_alloc(struct address_space *x)
294 {
295 return __page_cache_alloc(mapping_gfp_mask(x));
296 }
297
readahead_gfp_mask(struct address_space * x)298 static inline gfp_t readahead_gfp_mask(struct address_space *x)
299 {
300 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
301 }
302
303 typedef int filler_t(void *, struct page *);
304
305 pgoff_t page_cache_next_miss(struct address_space *mapping,
306 pgoff_t index, unsigned long max_scan);
307 pgoff_t page_cache_prev_miss(struct address_space *mapping,
308 pgoff_t index, unsigned long max_scan);
309
310 #define FGP_ACCESSED 0x00000001
311 #define FGP_LOCK 0x00000002
312 #define FGP_CREAT 0x00000004
313 #define FGP_WRITE 0x00000008
314 #define FGP_NOFS 0x00000010
315 #define FGP_NOWAIT 0x00000020
316 #define FGP_FOR_MMAP 0x00000040
317 #define FGP_HEAD 0x00000080
318
319 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
320 int fgp_flags, gfp_t cache_gfp_mask);
321
322 /**
323 * find_get_page - find and get a page reference
324 * @mapping: the address_space to search
325 * @offset: the page index
326 *
327 * Looks up the page cache slot at @mapping & @offset. If there is a
328 * page cache page, it is returned with an increased refcount.
329 *
330 * Otherwise, %NULL is returned.
331 */
find_get_page(struct address_space * mapping,pgoff_t offset)332 static inline struct page *find_get_page(struct address_space *mapping,
333 pgoff_t offset)
334 {
335 return pagecache_get_page(mapping, offset, 0, 0);
336 }
337
find_get_page_flags(struct address_space * mapping,pgoff_t offset,int fgp_flags)338 static inline struct page *find_get_page_flags(struct address_space *mapping,
339 pgoff_t offset, int fgp_flags)
340 {
341 return pagecache_get_page(mapping, offset, fgp_flags, 0);
342 }
343
344 /**
345 * find_lock_page - locate, pin and lock a pagecache page
346 * @mapping: the address_space to search
347 * @index: the page index
348 *
349 * Looks up the page cache entry at @mapping & @index. If there is a
350 * page cache page, it is returned locked and with an increased
351 * refcount.
352 *
353 * Context: May sleep.
354 * Return: A struct page or %NULL if there is no page in the cache for this
355 * index.
356 */
find_lock_page(struct address_space * mapping,pgoff_t index)357 static inline struct page *find_lock_page(struct address_space *mapping,
358 pgoff_t index)
359 {
360 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
361 }
362
363 /**
364 * find_lock_head - Locate, pin and lock a pagecache page.
365 * @mapping: The address_space to search.
366 * @index: The page index.
367 *
368 * Looks up the page cache entry at @mapping & @index. If there is a
369 * page cache page, its head page is returned locked and with an increased
370 * refcount.
371 *
372 * Context: May sleep.
373 * Return: A struct page which is !PageTail, or %NULL if there is no page
374 * in the cache for this index.
375 */
find_lock_head(struct address_space * mapping,pgoff_t index)376 static inline struct page *find_lock_head(struct address_space *mapping,
377 pgoff_t index)
378 {
379 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
380 }
381
382 /**
383 * find_or_create_page - locate or add a pagecache page
384 * @mapping: the page's address_space
385 * @index: the page's index into the mapping
386 * @gfp_mask: page allocation mode
387 *
388 * Looks up the page cache slot at @mapping & @offset. If there is a
389 * page cache page, it is returned locked and with an increased
390 * refcount.
391 *
392 * If the page is not present, a new page is allocated using @gfp_mask
393 * and added to the page cache and the VM's LRU list. The page is
394 * returned locked and with an increased refcount.
395 *
396 * On memory exhaustion, %NULL is returned.
397 *
398 * find_or_create_page() may sleep, even if @gfp_flags specifies an
399 * atomic allocation!
400 */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)401 static inline struct page *find_or_create_page(struct address_space *mapping,
402 pgoff_t index, gfp_t gfp_mask)
403 {
404 return pagecache_get_page(mapping, index,
405 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
406 gfp_mask);
407 }
408
409 /**
410 * grab_cache_page_nowait - returns locked page at given index in given cache
411 * @mapping: target address_space
412 * @index: the page index
413 *
414 * Same as grab_cache_page(), but do not wait if the page is unavailable.
415 * This is intended for speculative data generators, where the data can
416 * be regenerated if the page couldn't be grabbed. This routine should
417 * be safe to call while holding the lock for another page.
418 *
419 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
420 * and deadlock against the caller's locked page.
421 */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)422 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
423 pgoff_t index)
424 {
425 return pagecache_get_page(mapping, index,
426 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
427 mapping_gfp_mask(mapping));
428 }
429
430 /* Does this page contain this index? */
thp_contains(struct page * head,pgoff_t index)431 static inline bool thp_contains(struct page *head, pgoff_t index)
432 {
433 /* HugeTLBfs indexes the page cache in units of hpage_size */
434 if (PageHuge(head))
435 return head->index == index;
436 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
437 }
438
439 /*
440 * Given the page we found in the page cache, return the page corresponding
441 * to this index in the file
442 */
find_subpage(struct page * head,pgoff_t index)443 static inline struct page *find_subpage(struct page *head, pgoff_t index)
444 {
445 /* HugeTLBfs wants the head page regardless */
446 if (PageHuge(head))
447 return head;
448
449 return head + (index & (thp_nr_pages(head) - 1));
450 }
451
452 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
453 unsigned int nr_entries, struct page **entries,
454 pgoff_t *indices);
455 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
456 pgoff_t end, unsigned int nr_pages,
457 struct page **pages);
find_get_pages(struct address_space * mapping,pgoff_t * start,unsigned int nr_pages,struct page ** pages)458 static inline unsigned find_get_pages(struct address_space *mapping,
459 pgoff_t *start, unsigned int nr_pages,
460 struct page **pages)
461 {
462 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
463 pages);
464 }
465 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
466 unsigned int nr_pages, struct page **pages);
467 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
468 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
469 struct page **pages);
find_get_pages_tag(struct address_space * mapping,pgoff_t * index,xa_mark_t tag,unsigned int nr_pages,struct page ** pages)470 static inline unsigned find_get_pages_tag(struct address_space *mapping,
471 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
472 struct page **pages)
473 {
474 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
475 nr_pages, pages);
476 }
477
478 struct page *grab_cache_page_write_begin(struct address_space *mapping,
479 pgoff_t index, unsigned flags);
480
481 /*
482 * Returns locked page at given index in given cache, creating it if needed.
483 */
grab_cache_page(struct address_space * mapping,pgoff_t index)484 static inline struct page *grab_cache_page(struct address_space *mapping,
485 pgoff_t index)
486 {
487 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
488 }
489
490 extern struct page * read_cache_page(struct address_space *mapping,
491 pgoff_t index, filler_t *filler, void *data);
492 extern struct page * read_cache_page_gfp(struct address_space *mapping,
493 pgoff_t index, gfp_t gfp_mask);
494 extern int read_cache_pages(struct address_space *mapping,
495 struct list_head *pages, filler_t *filler, void *data);
496
read_mapping_page(struct address_space * mapping,pgoff_t index,void * data)497 static inline struct page *read_mapping_page(struct address_space *mapping,
498 pgoff_t index, void *data)
499 {
500 return read_cache_page(mapping, index, NULL, data);
501 }
502
503 /*
504 * Get index of the page with in radix-tree
505 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
506 */
page_to_index(struct page * page)507 static inline pgoff_t page_to_index(struct page *page)
508 {
509 pgoff_t pgoff;
510
511 if (likely(!PageTransTail(page)))
512 return page->index;
513
514 /*
515 * We don't initialize ->index for tail pages: calculate based on
516 * head page
517 */
518 pgoff = compound_head(page)->index;
519 pgoff += page - compound_head(page);
520 return pgoff;
521 }
522
523 /*
524 * Get the offset in PAGE_SIZE.
525 * (TODO: hugepage should have ->index in PAGE_SIZE)
526 */
page_to_pgoff(struct page * page)527 static inline pgoff_t page_to_pgoff(struct page *page)
528 {
529 if (unlikely(PageHeadHuge(page)))
530 return page->index << compound_order(page);
531
532 return page_to_index(page);
533 }
534
535 /*
536 * Return byte-offset into filesystem object for page.
537 */
page_offset(struct page * page)538 static inline loff_t page_offset(struct page *page)
539 {
540 return ((loff_t)page->index) << PAGE_SHIFT;
541 }
542
page_file_offset(struct page * page)543 static inline loff_t page_file_offset(struct page *page)
544 {
545 return ((loff_t)page_index(page)) << PAGE_SHIFT;
546 }
547
548 extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
549 unsigned long address);
550
linear_page_index(struct vm_area_struct * vma,unsigned long address)551 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
552 unsigned long address)
553 {
554 pgoff_t pgoff;
555 if (unlikely(is_vm_hugetlb_page(vma)))
556 return linear_hugepage_index(vma, address);
557 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
558 pgoff += vma->vm_pgoff;
559 return pgoff;
560 }
561
562 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
563 struct wait_page_key {
564 struct page *page;
565 int bit_nr;
566 int page_match;
567 };
568
569 struct wait_page_queue {
570 struct page *page;
571 int bit_nr;
572 wait_queue_entry_t wait;
573 };
574
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)575 static inline bool wake_page_match(struct wait_page_queue *wait_page,
576 struct wait_page_key *key)
577 {
578 if (wait_page->page != key->page)
579 return false;
580 key->page_match = 1;
581
582 if (wait_page->bit_nr != key->bit_nr)
583 return false;
584
585 return true;
586 }
587
588 extern void __lock_page(struct page *page);
589 extern int __lock_page_killable(struct page *page);
590 extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
591 extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
592 unsigned int flags);
593 extern void unlock_page(struct page *page);
594
595 /*
596 * Return true if the page was successfully locked
597 */
trylock_page(struct page * page)598 static inline int trylock_page(struct page *page)
599 {
600 page = compound_head(page);
601 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
602 }
603
604 /*
605 * lock_page may only be called if we have the page's inode pinned.
606 */
lock_page(struct page * page)607 static inline void lock_page(struct page *page)
608 {
609 might_sleep();
610 if (!trylock_page(page))
611 __lock_page(page);
612 }
613
614 /*
615 * lock_page_killable is like lock_page but can be interrupted by fatal
616 * signals. It returns 0 if it locked the page and -EINTR if it was
617 * killed while waiting.
618 */
lock_page_killable(struct page * page)619 static inline int lock_page_killable(struct page *page)
620 {
621 might_sleep();
622 if (!trylock_page(page))
623 return __lock_page_killable(page);
624 return 0;
625 }
626
627 /*
628 * lock_page_async - Lock the page, unless this would block. If the page
629 * is already locked, then queue a callback when the page becomes unlocked.
630 * This callback can then retry the operation.
631 *
632 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
633 * was already locked and the callback defined in 'wait' was queued.
634 */
lock_page_async(struct page * page,struct wait_page_queue * wait)635 static inline int lock_page_async(struct page *page,
636 struct wait_page_queue *wait)
637 {
638 if (!trylock_page(page))
639 return __lock_page_async(page, wait);
640 return 0;
641 }
642
643 /*
644 * lock_page_or_retry - Lock the page, unless this would block and the
645 * caller indicated that it can handle a retry.
646 *
647 * Return value and mmap_lock implications depend on flags; see
648 * __lock_page_or_retry().
649 */
lock_page_or_retry(struct page * page,struct mm_struct * mm,unsigned int flags)650 static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
651 unsigned int flags)
652 {
653 might_sleep();
654 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
655 }
656
657 /*
658 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
659 * and should not be used directly.
660 */
661 extern void wait_on_page_bit(struct page *page, int bit_nr);
662 extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
663
664 /*
665 * Wait for a page to be unlocked.
666 *
667 * This must be called with the caller "holding" the page,
668 * ie with increased "page->count" so that the page won't
669 * go away during the wait..
670 */
wait_on_page_locked(struct page * page)671 static inline void wait_on_page_locked(struct page *page)
672 {
673 if (PageLocked(page))
674 wait_on_page_bit(compound_head(page), PG_locked);
675 }
676
wait_on_page_locked_killable(struct page * page)677 static inline int wait_on_page_locked_killable(struct page *page)
678 {
679 if (!PageLocked(page))
680 return 0;
681 return wait_on_page_bit_killable(compound_head(page), PG_locked);
682 }
683
684 extern void put_and_wait_on_page_locked(struct page *page);
685
686 void wait_on_page_writeback(struct page *page);
687 extern void end_page_writeback(struct page *page);
688 void wait_for_stable_page(struct page *page);
689
690 void page_endio(struct page *page, bool is_write, int err);
691
692 /*
693 * Add an arbitrary waiter to a page's wait queue
694 */
695 extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
696
697 /*
698 * Fault everything in given userspace address range in.
699 */
fault_in_pages_writeable(char __user * uaddr,int size)700 static inline int fault_in_pages_writeable(char __user *uaddr, int size)
701 {
702 char __user *end = uaddr + size - 1;
703
704 if (unlikely(size == 0))
705 return 0;
706
707 if (unlikely(uaddr > end))
708 return -EFAULT;
709 /*
710 * Writing zeroes into userspace here is OK, because we know that if
711 * the zero gets there, we'll be overwriting it.
712 */
713 do {
714 if (unlikely(__put_user(0, uaddr) != 0))
715 return -EFAULT;
716 uaddr += PAGE_SIZE;
717 } while (uaddr <= end);
718
719 /* Check whether the range spilled into the next page. */
720 if (((unsigned long)uaddr & PAGE_MASK) ==
721 ((unsigned long)end & PAGE_MASK))
722 return __put_user(0, end);
723
724 return 0;
725 }
726
fault_in_pages_readable(const char __user * uaddr,int size)727 static inline int fault_in_pages_readable(const char __user *uaddr, int size)
728 {
729 volatile char c;
730 const char __user *end = uaddr + size - 1;
731
732 if (unlikely(size == 0))
733 return 0;
734
735 if (unlikely(uaddr > end))
736 return -EFAULT;
737
738 do {
739 if (unlikely(__get_user(c, uaddr) != 0))
740 return -EFAULT;
741 uaddr += PAGE_SIZE;
742 } while (uaddr <= end);
743
744 /* Check whether the range spilled into the next page. */
745 if (((unsigned long)uaddr & PAGE_MASK) ==
746 ((unsigned long)end & PAGE_MASK)) {
747 return __get_user(c, end);
748 }
749
750 (void)c;
751 return 0;
752 }
753
754 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
755 pgoff_t index, gfp_t gfp_mask);
756 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
757 pgoff_t index, gfp_t gfp_mask);
758 extern void delete_from_page_cache(struct page *page);
759 extern void __delete_from_page_cache(struct page *page, void *shadow);
760 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask);
761 void delete_from_page_cache_batch(struct address_space *mapping,
762 struct pagevec *pvec);
763
764 /*
765 * Like add_to_page_cache_locked, but used to add newly allocated pages:
766 * the page is new, so we can just run __SetPageLocked() against it.
767 */
add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t offset,gfp_t gfp_mask)768 static inline int add_to_page_cache(struct page *page,
769 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
770 {
771 int error;
772
773 __SetPageLocked(page);
774 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
775 if (unlikely(error))
776 __ClearPageLocked(page);
777 return error;
778 }
779
780 /**
781 * struct readahead_control - Describes a readahead request.
782 *
783 * A readahead request is for consecutive pages. Filesystems which
784 * implement the ->readahead method should call readahead_page() or
785 * readahead_page_batch() in a loop and attempt to start I/O against
786 * each page in the request.
787 *
788 * Most of the fields in this struct are private and should be accessed
789 * by the functions below.
790 *
791 * @file: The file, used primarily by network filesystems for authentication.
792 * May be NULL if invoked internally by the filesystem.
793 * @mapping: Readahead this filesystem object.
794 */
795 struct readahead_control {
796 struct file *file;
797 struct address_space *mapping;
798 /* private: use the readahead_* accessors instead */
799 pgoff_t _index;
800 unsigned int _nr_pages;
801 unsigned int _batch_count;
802 };
803
804 #define DEFINE_READAHEAD(rac, f, m, i) \
805 struct readahead_control rac = { \
806 .file = f, \
807 .mapping = m, \
808 ._index = i, \
809 }
810
811 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
812
813 void page_cache_ra_unbounded(struct readahead_control *,
814 unsigned long nr_to_read, unsigned long lookahead_count);
815 void page_cache_sync_ra(struct readahead_control *, struct file_ra_state *,
816 unsigned long req_count);
817 void page_cache_async_ra(struct readahead_control *, struct file_ra_state *,
818 struct page *, unsigned long req_count);
819
820 /**
821 * page_cache_sync_readahead - generic file readahead
822 * @mapping: address_space which holds the pagecache and I/O vectors
823 * @ra: file_ra_state which holds the readahead state
824 * @file: Used by the filesystem for authentication.
825 * @index: Index of first page to be read.
826 * @req_count: Total number of pages being read by the caller.
827 *
828 * page_cache_sync_readahead() should be called when a cache miss happened:
829 * it will submit the read. The readahead logic may decide to piggyback more
830 * pages onto the read request if access patterns suggest it will improve
831 * performance.
832 */
833 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)834 void page_cache_sync_readahead(struct address_space *mapping,
835 struct file_ra_state *ra, struct file *file, pgoff_t index,
836 unsigned long req_count)
837 {
838 DEFINE_READAHEAD(ractl, file, mapping, index);
839 page_cache_sync_ra(&ractl, ra, req_count);
840 }
841
842 /**
843 * page_cache_async_readahead - file readahead for marked pages
844 * @mapping: address_space which holds the pagecache and I/O vectors
845 * @ra: file_ra_state which holds the readahead state
846 * @file: Used by the filesystem for authentication.
847 * @page: The page at @index which triggered the readahead call.
848 * @index: Index of first page to be read.
849 * @req_count: Total number of pages being read by the caller.
850 *
851 * page_cache_async_readahead() should be called when a page is used which
852 * is marked as PageReadahead; this is a marker to suggest that the application
853 * has used up enough of the readahead window that we should start pulling in
854 * more pages.
855 */
856 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct page * page,pgoff_t index,unsigned long req_count)857 void page_cache_async_readahead(struct address_space *mapping,
858 struct file_ra_state *ra, struct file *file,
859 struct page *page, pgoff_t index, unsigned long req_count)
860 {
861 DEFINE_READAHEAD(ractl, file, mapping, index);
862 page_cache_async_ra(&ractl, ra, page, req_count);
863 }
864
865 /**
866 * readahead_page - Get the next page to read.
867 * @rac: The current readahead request.
868 *
869 * Context: The page is locked and has an elevated refcount. The caller
870 * should decreases the refcount once the page has been submitted for I/O
871 * and unlock the page once all I/O to that page has completed.
872 * Return: A pointer to the next page, or %NULL if we are done.
873 */
readahead_page(struct readahead_control * rac)874 static inline struct page *readahead_page(struct readahead_control *rac)
875 {
876 struct page *page;
877
878 BUG_ON(rac->_batch_count > rac->_nr_pages);
879 rac->_nr_pages -= rac->_batch_count;
880 rac->_index += rac->_batch_count;
881
882 if (!rac->_nr_pages) {
883 rac->_batch_count = 0;
884 return NULL;
885 }
886
887 page = xa_load(&rac->mapping->i_pages, rac->_index);
888 VM_BUG_ON_PAGE(!PageLocked(page), page);
889 rac->_batch_count = thp_nr_pages(page);
890
891 return page;
892 }
893
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)894 static inline unsigned int __readahead_batch(struct readahead_control *rac,
895 struct page **array, unsigned int array_sz)
896 {
897 unsigned int i = 0;
898 XA_STATE(xas, &rac->mapping->i_pages, 0);
899 struct page *page;
900
901 BUG_ON(rac->_batch_count > rac->_nr_pages);
902 rac->_nr_pages -= rac->_batch_count;
903 rac->_index += rac->_batch_count;
904 rac->_batch_count = 0;
905
906 xas_set(&xas, rac->_index);
907 rcu_read_lock();
908 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
909 if (xas_retry(&xas, page))
910 continue;
911 VM_BUG_ON_PAGE(!PageLocked(page), page);
912 VM_BUG_ON_PAGE(PageTail(page), page);
913 array[i++] = page;
914 rac->_batch_count += thp_nr_pages(page);
915
916 /*
917 * The page cache isn't using multi-index entries yet,
918 * so the xas cursor needs to be manually moved to the
919 * next index. This can be removed once the page cache
920 * is converted.
921 */
922 if (PageHead(page))
923 xas_set(&xas, rac->_index + rac->_batch_count);
924
925 if (i == array_sz)
926 break;
927 }
928 rcu_read_unlock();
929
930 return i;
931 }
932
933 /**
934 * readahead_page_batch - Get a batch of pages to read.
935 * @rac: The current readahead request.
936 * @array: An array of pointers to struct page.
937 *
938 * Context: The pages are locked and have an elevated refcount. The caller
939 * should decreases the refcount once the page has been submitted for I/O
940 * and unlock the page once all I/O to that page has completed.
941 * Return: The number of pages placed in the array. 0 indicates the request
942 * is complete.
943 */
944 #define readahead_page_batch(rac, array) \
945 __readahead_batch(rac, array, ARRAY_SIZE(array))
946
947 /**
948 * readahead_pos - The byte offset into the file of this readahead request.
949 * @rac: The readahead request.
950 */
readahead_pos(struct readahead_control * rac)951 static inline loff_t readahead_pos(struct readahead_control *rac)
952 {
953 return (loff_t)rac->_index * PAGE_SIZE;
954 }
955
956 /**
957 * readahead_length - The number of bytes in this readahead request.
958 * @rac: The readahead request.
959 */
readahead_length(struct readahead_control * rac)960 static inline loff_t readahead_length(struct readahead_control *rac)
961 {
962 return (loff_t)rac->_nr_pages * PAGE_SIZE;
963 }
964
965 /**
966 * readahead_index - The index of the first page in this readahead request.
967 * @rac: The readahead request.
968 */
readahead_index(struct readahead_control * rac)969 static inline pgoff_t readahead_index(struct readahead_control *rac)
970 {
971 return rac->_index;
972 }
973
974 /**
975 * readahead_count - The number of pages in this readahead request.
976 * @rac: The readahead request.
977 */
readahead_count(struct readahead_control * rac)978 static inline unsigned int readahead_count(struct readahead_control *rac)
979 {
980 return rac->_nr_pages;
981 }
982
dir_pages(struct inode * inode)983 static inline unsigned long dir_pages(struct inode *inode)
984 {
985 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
986 PAGE_SHIFT;
987 }
988
989 /**
990 * page_mkwrite_check_truncate - check if page was truncated
991 * @page: the page to check
992 * @inode: the inode to check the page against
993 *
994 * Returns the number of bytes in the page up to EOF,
995 * or -EFAULT if the page was truncated.
996 */
page_mkwrite_check_truncate(struct page * page,struct inode * inode)997 static inline int page_mkwrite_check_truncate(struct page *page,
998 struct inode *inode)
999 {
1000 loff_t size = i_size_read(inode);
1001 pgoff_t index = size >> PAGE_SHIFT;
1002 int offset = offset_in_page(size);
1003
1004 if (page->mapping != inode->i_mapping)
1005 return -EFAULT;
1006
1007 /* page is wholly inside EOF */
1008 if (page->index < index)
1009 return PAGE_SIZE;
1010 /* page is wholly past EOF */
1011 if (page->index > index || !offset)
1012 return -EFAULT;
1013 /* page is partially inside EOF */
1014 return offset;
1015 }
1016
1017 /**
1018 * i_blocks_per_page - How many blocks fit in this page.
1019 * @inode: The inode which contains the blocks.
1020 * @page: The page (head page if the page is a THP).
1021 *
1022 * If the block size is larger than the size of this page, return zero.
1023 *
1024 * Context: The caller should hold a refcount on the page to prevent it
1025 * from being split.
1026 * Return: The number of filesystem blocks covered by this page.
1027 */
1028 static inline
i_blocks_per_page(struct inode * inode,struct page * page)1029 unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1030 {
1031 return thp_size(page) >> inode->i_blkbits;
1032 }
1033 #endif /* _LINUX_PAGEMAP_H */
1034