1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/etherdevice.h>
15 #include <linux/prefetch.h>
16
17 #include "vxge-traffic.h"
18 #include "vxge-config.h"
19 #include "vxge-main.h"
20
21 /*
22 * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
23 * @vp: Virtual Path handle.
24 *
25 * Enable vpath interrupts. The function is to be executed the last in
26 * vpath initialization sequence.
27 *
28 * See also: vxge_hw_vpath_intr_disable()
29 */
vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle * vp)30 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
31 {
32 u64 val64;
33
34 struct __vxge_hw_virtualpath *vpath;
35 struct vxge_hw_vpath_reg __iomem *vp_reg;
36 enum vxge_hw_status status = VXGE_HW_OK;
37 if (vp == NULL) {
38 status = VXGE_HW_ERR_INVALID_HANDLE;
39 goto exit;
40 }
41
42 vpath = vp->vpath;
43
44 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
45 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
46 goto exit;
47 }
48
49 vp_reg = vpath->vp_reg;
50
51 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
52
53 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
54 &vp_reg->general_errors_reg);
55
56 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
57 &vp_reg->pci_config_errors_reg);
58
59 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
60 &vp_reg->mrpcim_to_vpath_alarm_reg);
61
62 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
63 &vp_reg->srpcim_to_vpath_alarm_reg);
64
65 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
66 &vp_reg->vpath_ppif_int_status);
67
68 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
69 &vp_reg->srpcim_msg_to_vpath_reg);
70
71 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
72 &vp_reg->vpath_pcipif_int_status);
73
74 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
75 &vp_reg->prc_alarm_reg);
76
77 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
78 &vp_reg->wrdma_alarm_status);
79
80 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
81 &vp_reg->asic_ntwk_vp_err_reg);
82
83 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
84 &vp_reg->xgmac_vp_int_status);
85
86 val64 = readq(&vp_reg->vpath_general_int_status);
87
88 /* Mask unwanted interrupts */
89
90 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
91 &vp_reg->vpath_pcipif_int_mask);
92
93 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
94 &vp_reg->srpcim_msg_to_vpath_mask);
95
96 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
97 &vp_reg->srpcim_to_vpath_alarm_mask);
98
99 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
100 &vp_reg->mrpcim_to_vpath_alarm_mask);
101
102 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
103 &vp_reg->pci_config_errors_mask);
104
105 /* Unmask the individual interrupts */
106
107 writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
108 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
109 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
110 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
111 &vp_reg->general_errors_mask);
112
113 __vxge_hw_pio_mem_write32_upper(
114 (u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
115 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
116 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
117 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
118 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
119 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
120 &vp_reg->kdfcctl_errors_mask);
121
122 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
123
124 __vxge_hw_pio_mem_write32_upper(
125 (u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
126 &vp_reg->prc_alarm_mask);
127
128 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
129 __vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
130
131 if (vpath->hldev->first_vp_id != vpath->vp_id)
132 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
133 &vp_reg->asic_ntwk_vp_err_mask);
134 else
135 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
136 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
137 VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
138 &vp_reg->asic_ntwk_vp_err_mask);
139
140 __vxge_hw_pio_mem_write32_upper(0,
141 &vp_reg->vpath_general_int_mask);
142 exit:
143 return status;
144
145 }
146
147 /*
148 * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
149 * @vp: Virtual Path handle.
150 *
151 * Disable vpath interrupts. The function is to be executed the last in
152 * vpath initialization sequence.
153 *
154 * See also: vxge_hw_vpath_intr_enable()
155 */
vxge_hw_vpath_intr_disable(struct __vxge_hw_vpath_handle * vp)156 enum vxge_hw_status vxge_hw_vpath_intr_disable(
157 struct __vxge_hw_vpath_handle *vp)
158 {
159 u64 val64;
160
161 struct __vxge_hw_virtualpath *vpath;
162 enum vxge_hw_status status = VXGE_HW_OK;
163 struct vxge_hw_vpath_reg __iomem *vp_reg;
164 if (vp == NULL) {
165 status = VXGE_HW_ERR_INVALID_HANDLE;
166 goto exit;
167 }
168
169 vpath = vp->vpath;
170
171 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
172 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
173 goto exit;
174 }
175 vp_reg = vpath->vp_reg;
176
177 __vxge_hw_pio_mem_write32_upper(
178 (u32)VXGE_HW_INTR_MASK_ALL,
179 &vp_reg->vpath_general_int_mask);
180
181 val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
182
183 writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
184
185 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
186 &vp_reg->general_errors_mask);
187
188 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
189 &vp_reg->pci_config_errors_mask);
190
191 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
192 &vp_reg->mrpcim_to_vpath_alarm_mask);
193
194 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
195 &vp_reg->srpcim_to_vpath_alarm_mask);
196
197 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
198 &vp_reg->vpath_ppif_int_mask);
199
200 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
201 &vp_reg->srpcim_msg_to_vpath_mask);
202
203 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
204 &vp_reg->vpath_pcipif_int_mask);
205
206 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
207 &vp_reg->wrdma_alarm_mask);
208
209 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
210 &vp_reg->prc_alarm_mask);
211
212 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
213 &vp_reg->xgmac_vp_int_mask);
214
215 __vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
216 &vp_reg->asic_ntwk_vp_err_mask);
217
218 exit:
219 return status;
220 }
221
vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo * fifo)222 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
223 {
224 struct vxge_hw_vpath_reg __iomem *vp_reg;
225 struct vxge_hw_vp_config *config;
226 u64 val64;
227
228 if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
229 return;
230
231 vp_reg = fifo->vp_reg;
232 config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
233
234 if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
235 config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
236 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
237 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
238 fifo->tim_tti_cfg1_saved = val64;
239 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
240 }
241 }
242
vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring * ring)243 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
244 {
245 u64 val64 = ring->tim_rti_cfg1_saved;
246
247 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
248 ring->tim_rti_cfg1_saved = val64;
249 writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
250 }
251
vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo * fifo)252 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
253 {
254 u64 val64 = fifo->tim_tti_cfg3_saved;
255 u64 timer = (fifo->rtimer * 1000) / 272;
256
257 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
258 if (timer)
259 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
260 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
261
262 writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
263 /* tti_cfg3_saved is not updated again because it is
264 * initialized at one place only - init time.
265 */
266 }
267
vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring * ring)268 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
269 {
270 u64 val64 = ring->tim_rti_cfg3_saved;
271 u64 timer = (ring->rtimer * 1000) / 272;
272
273 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
274 if (timer)
275 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
276 VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
277
278 writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
279 /* rti_cfg3_saved is not updated again because it is
280 * initialized at one place only - init time.
281 */
282 }
283
284 /**
285 * vxge_hw_channel_msix_mask - Mask MSIX Vector.
286 * @channeh: Channel for rx or tx handle
287 * @msix_id: MSIX ID
288 *
289 * The function masks the msix interrupt for the given msix_id
290 *
291 * Returns: 0
292 */
vxge_hw_channel_msix_mask(struct __vxge_hw_channel * channel,int msix_id)293 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
294 {
295
296 __vxge_hw_pio_mem_write32_upper(
297 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
298 &channel->common_reg->set_msix_mask_vect[msix_id%4]);
299 }
300
301 /**
302 * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
303 * @channeh: Channel for rx or tx handle
304 * @msix_id: MSI ID
305 *
306 * The function unmasks the msix interrupt for the given msix_id
307 *
308 * Returns: 0
309 */
310 void
vxge_hw_channel_msix_unmask(struct __vxge_hw_channel * channel,int msix_id)311 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
312 {
313
314 __vxge_hw_pio_mem_write32_upper(
315 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
316 &channel->common_reg->clear_msix_mask_vect[msix_id%4]);
317 }
318
319 /**
320 * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
321 * @channel: Channel for rx or tx handle
322 * @msix_id: MSI ID
323 *
324 * The function unmasks the msix interrupt for the given msix_id
325 * if configured in MSIX oneshot mode
326 *
327 * Returns: 0
328 */
vxge_hw_channel_msix_clear(struct __vxge_hw_channel * channel,int msix_id)329 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
330 {
331 __vxge_hw_pio_mem_write32_upper(
332 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
333 &channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
334 }
335
336 /**
337 * vxge_hw_device_set_intr_type - Updates the configuration
338 * with new interrupt type.
339 * @hldev: HW device handle.
340 * @intr_mode: New interrupt type
341 */
vxge_hw_device_set_intr_type(struct __vxge_hw_device * hldev,u32 intr_mode)342 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
343 {
344
345 if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
346 (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
347 (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
348 (intr_mode != VXGE_HW_INTR_MODE_DEF))
349 intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
350
351 hldev->config.intr_mode = intr_mode;
352 return intr_mode;
353 }
354
355 /**
356 * vxge_hw_device_intr_enable - Enable interrupts.
357 * @hldev: HW device handle.
358 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
359 * the type(s) of interrupts to enable.
360 *
361 * Enable Titan interrupts. The function is to be executed the last in
362 * Titan initialization sequence.
363 *
364 * See also: vxge_hw_device_intr_disable()
365 */
vxge_hw_device_intr_enable(struct __vxge_hw_device * hldev)366 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
367 {
368 u32 i;
369 u64 val64;
370 u32 val32;
371
372 vxge_hw_device_mask_all(hldev);
373
374 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
375
376 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
377 continue;
378
379 vxge_hw_vpath_intr_enable(
380 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
381 }
382
383 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
384 val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
385 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
386
387 if (val64 != 0) {
388 writeq(val64, &hldev->common_reg->tim_int_status0);
389
390 writeq(~val64, &hldev->common_reg->tim_int_mask0);
391 }
392
393 val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
394 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
395
396 if (val32 != 0) {
397 __vxge_hw_pio_mem_write32_upper(val32,
398 &hldev->common_reg->tim_int_status1);
399
400 __vxge_hw_pio_mem_write32_upper(~val32,
401 &hldev->common_reg->tim_int_mask1);
402 }
403 }
404
405 val64 = readq(&hldev->common_reg->titan_general_int_status);
406
407 vxge_hw_device_unmask_all(hldev);
408 }
409
410 /**
411 * vxge_hw_device_intr_disable - Disable Titan interrupts.
412 * @hldev: HW device handle.
413 * @op: One of the enum vxge_hw_device_intr enumerated values specifying
414 * the type(s) of interrupts to disable.
415 *
416 * Disable Titan interrupts.
417 *
418 * See also: vxge_hw_device_intr_enable()
419 */
vxge_hw_device_intr_disable(struct __vxge_hw_device * hldev)420 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
421 {
422 u32 i;
423
424 vxge_hw_device_mask_all(hldev);
425
426 /* mask all the tim interrupts */
427 writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
428 __vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
429 &hldev->common_reg->tim_int_mask1);
430
431 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
432
433 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
434 continue;
435
436 vxge_hw_vpath_intr_disable(
437 VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
438 }
439 }
440
441 /**
442 * vxge_hw_device_mask_all - Mask all device interrupts.
443 * @hldev: HW device handle.
444 *
445 * Mask all device interrupts.
446 *
447 * See also: vxge_hw_device_unmask_all()
448 */
vxge_hw_device_mask_all(struct __vxge_hw_device * hldev)449 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
450 {
451 u64 val64;
452
453 val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
454 VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
455
456 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
457 &hldev->common_reg->titan_mask_all_int);
458 }
459
460 /**
461 * vxge_hw_device_unmask_all - Unmask all device interrupts.
462 * @hldev: HW device handle.
463 *
464 * Unmask all device interrupts.
465 *
466 * See also: vxge_hw_device_mask_all()
467 */
vxge_hw_device_unmask_all(struct __vxge_hw_device * hldev)468 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
469 {
470 u64 val64 = 0;
471
472 if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
473 val64 = VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
474
475 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
476 &hldev->common_reg->titan_mask_all_int);
477 }
478
479 /**
480 * vxge_hw_device_flush_io - Flush io writes.
481 * @hldev: HW device handle.
482 *
483 * The function performs a read operation to flush io writes.
484 *
485 * Returns: void
486 */
vxge_hw_device_flush_io(struct __vxge_hw_device * hldev)487 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
488 {
489 u32 val32;
490
491 val32 = readl(&hldev->common_reg->titan_general_int_status);
492 }
493
494 /**
495 * __vxge_hw_device_handle_error - Handle error
496 * @hldev: HW device
497 * @vp_id: Vpath Id
498 * @type: Error type. Please see enum vxge_hw_event{}
499 *
500 * Handle error.
501 */
502 static enum vxge_hw_status
__vxge_hw_device_handle_error(struct __vxge_hw_device * hldev,u32 vp_id,enum vxge_hw_event type)503 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
504 enum vxge_hw_event type)
505 {
506 switch (type) {
507 case VXGE_HW_EVENT_UNKNOWN:
508 break;
509 case VXGE_HW_EVENT_RESET_START:
510 case VXGE_HW_EVENT_RESET_COMPLETE:
511 case VXGE_HW_EVENT_LINK_DOWN:
512 case VXGE_HW_EVENT_LINK_UP:
513 goto out;
514 case VXGE_HW_EVENT_ALARM_CLEARED:
515 goto out;
516 case VXGE_HW_EVENT_ECCERR:
517 case VXGE_HW_EVENT_MRPCIM_ECCERR:
518 goto out;
519 case VXGE_HW_EVENT_FIFO_ERR:
520 case VXGE_HW_EVENT_VPATH_ERR:
521 case VXGE_HW_EVENT_CRITICAL_ERR:
522 case VXGE_HW_EVENT_SERR:
523 break;
524 case VXGE_HW_EVENT_SRPCIM_SERR:
525 case VXGE_HW_EVENT_MRPCIM_SERR:
526 goto out;
527 case VXGE_HW_EVENT_SLOT_FREEZE:
528 break;
529 default:
530 vxge_assert(0);
531 goto out;
532 }
533
534 /* notify driver */
535 if (hldev->uld_callbacks->crit_err)
536 hldev->uld_callbacks->crit_err(hldev,
537 type, vp_id);
538 out:
539
540 return VXGE_HW_OK;
541 }
542
543 /*
544 * __vxge_hw_device_handle_link_down_ind
545 * @hldev: HW device handle.
546 *
547 * Link down indication handler. The function is invoked by HW when
548 * Titan indicates that the link is down.
549 */
550 static enum vxge_hw_status
__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device * hldev)551 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
552 {
553 /*
554 * If the previous link state is not down, return.
555 */
556 if (hldev->link_state == VXGE_HW_LINK_DOWN)
557 goto exit;
558
559 hldev->link_state = VXGE_HW_LINK_DOWN;
560
561 /* notify driver */
562 if (hldev->uld_callbacks->link_down)
563 hldev->uld_callbacks->link_down(hldev);
564 exit:
565 return VXGE_HW_OK;
566 }
567
568 /*
569 * __vxge_hw_device_handle_link_up_ind
570 * @hldev: HW device handle.
571 *
572 * Link up indication handler. The function is invoked by HW when
573 * Titan indicates that the link is up for programmable amount of time.
574 */
575 static enum vxge_hw_status
__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device * hldev)576 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
577 {
578 /*
579 * If the previous link state is not down, return.
580 */
581 if (hldev->link_state == VXGE_HW_LINK_UP)
582 goto exit;
583
584 hldev->link_state = VXGE_HW_LINK_UP;
585
586 /* notify driver */
587 if (hldev->uld_callbacks->link_up)
588 hldev->uld_callbacks->link_up(hldev);
589 exit:
590 return VXGE_HW_OK;
591 }
592
593 /*
594 * __vxge_hw_vpath_alarm_process - Process Alarms.
595 * @vpath: Virtual Path.
596 * @skip_alarms: Do not clear the alarms
597 *
598 * Process vpath alarms.
599 *
600 */
601 static enum vxge_hw_status
__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath * vpath,u32 skip_alarms)602 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
603 u32 skip_alarms)
604 {
605 u64 val64;
606 u64 alarm_status;
607 u64 pic_status;
608 struct __vxge_hw_device *hldev = NULL;
609 enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
610 u64 mask64;
611 struct vxge_hw_vpath_stats_sw_info *sw_stats;
612 struct vxge_hw_vpath_reg __iomem *vp_reg;
613
614 if (vpath == NULL) {
615 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
616 alarm_event);
617 goto out2;
618 }
619
620 hldev = vpath->hldev;
621 vp_reg = vpath->vp_reg;
622 alarm_status = readq(&vp_reg->vpath_general_int_status);
623
624 if (alarm_status == VXGE_HW_ALL_FOXES) {
625 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
626 alarm_event);
627 goto out;
628 }
629
630 sw_stats = vpath->sw_stats;
631
632 if (alarm_status & ~(
633 VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
634 VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
635 VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
636 VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
637 sw_stats->error_stats.unknown_alarms++;
638
639 alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
640 alarm_event);
641 goto out;
642 }
643
644 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
645
646 val64 = readq(&vp_reg->xgmac_vp_int_status);
647
648 if (val64 &
649 VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
650
651 val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
652
653 if (((val64 &
654 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
655 (!(val64 &
656 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
657 ((val64 &
658 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
659 (!(val64 &
660 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
661 ))) {
662 sw_stats->error_stats.network_sustained_fault++;
663
664 writeq(
665 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
666 &vp_reg->asic_ntwk_vp_err_mask);
667
668 __vxge_hw_device_handle_link_down_ind(hldev);
669 alarm_event = VXGE_HW_SET_LEVEL(
670 VXGE_HW_EVENT_LINK_DOWN, alarm_event);
671 }
672
673 if (((val64 &
674 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
675 (!(val64 &
676 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
677 ((val64 &
678 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
679 (!(val64 &
680 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
681 ))) {
682
683 sw_stats->error_stats.network_sustained_ok++;
684
685 writeq(
686 VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
687 &vp_reg->asic_ntwk_vp_err_mask);
688
689 __vxge_hw_device_handle_link_up_ind(hldev);
690 alarm_event = VXGE_HW_SET_LEVEL(
691 VXGE_HW_EVENT_LINK_UP, alarm_event);
692 }
693
694 writeq(VXGE_HW_INTR_MASK_ALL,
695 &vp_reg->asic_ntwk_vp_err_reg);
696
697 alarm_event = VXGE_HW_SET_LEVEL(
698 VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
699
700 if (skip_alarms)
701 return VXGE_HW_OK;
702 }
703 }
704
705 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
706
707 pic_status = readq(&vp_reg->vpath_ppif_int_status);
708
709 if (pic_status &
710 VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
711
712 val64 = readq(&vp_reg->general_errors_reg);
713 mask64 = readq(&vp_reg->general_errors_mask);
714
715 if ((val64 &
716 VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
717 ~mask64) {
718 sw_stats->error_stats.ini_serr_det++;
719
720 alarm_event = VXGE_HW_SET_LEVEL(
721 VXGE_HW_EVENT_SERR, alarm_event);
722 }
723
724 if ((val64 &
725 VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
726 ~mask64) {
727 sw_stats->error_stats.dblgen_fifo0_overflow++;
728
729 alarm_event = VXGE_HW_SET_LEVEL(
730 VXGE_HW_EVENT_FIFO_ERR, alarm_event);
731 }
732
733 if ((val64 &
734 VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
735 ~mask64)
736 sw_stats->error_stats.statsb_pif_chain_error++;
737
738 if ((val64 &
739 VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
740 ~mask64)
741 sw_stats->error_stats.statsb_drop_timeout++;
742
743 if ((val64 &
744 VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
745 ~mask64)
746 sw_stats->error_stats.target_illegal_access++;
747
748 if (!skip_alarms) {
749 writeq(VXGE_HW_INTR_MASK_ALL,
750 &vp_reg->general_errors_reg);
751 alarm_event = VXGE_HW_SET_LEVEL(
752 VXGE_HW_EVENT_ALARM_CLEARED,
753 alarm_event);
754 }
755 }
756
757 if (pic_status &
758 VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
759
760 val64 = readq(&vp_reg->kdfcctl_errors_reg);
761 mask64 = readq(&vp_reg->kdfcctl_errors_mask);
762
763 if ((val64 &
764 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
765 ~mask64) {
766 sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
767
768 alarm_event = VXGE_HW_SET_LEVEL(
769 VXGE_HW_EVENT_FIFO_ERR,
770 alarm_event);
771 }
772
773 if ((val64 &
774 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
775 ~mask64) {
776 sw_stats->error_stats.kdfcctl_fifo0_poison++;
777
778 alarm_event = VXGE_HW_SET_LEVEL(
779 VXGE_HW_EVENT_FIFO_ERR,
780 alarm_event);
781 }
782
783 if ((val64 &
784 VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
785 ~mask64) {
786 sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
787
788 alarm_event = VXGE_HW_SET_LEVEL(
789 VXGE_HW_EVENT_FIFO_ERR,
790 alarm_event);
791 }
792
793 if (!skip_alarms) {
794 writeq(VXGE_HW_INTR_MASK_ALL,
795 &vp_reg->kdfcctl_errors_reg);
796 alarm_event = VXGE_HW_SET_LEVEL(
797 VXGE_HW_EVENT_ALARM_CLEARED,
798 alarm_event);
799 }
800 }
801
802 }
803
804 if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
805
806 val64 = readq(&vp_reg->wrdma_alarm_status);
807
808 if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
809
810 val64 = readq(&vp_reg->prc_alarm_reg);
811 mask64 = readq(&vp_reg->prc_alarm_mask);
812
813 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
814 ~mask64)
815 sw_stats->error_stats.prc_ring_bumps++;
816
817 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
818 ~mask64) {
819 sw_stats->error_stats.prc_rxdcm_sc_err++;
820
821 alarm_event = VXGE_HW_SET_LEVEL(
822 VXGE_HW_EVENT_VPATH_ERR,
823 alarm_event);
824 }
825
826 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
827 & ~mask64) {
828 sw_stats->error_stats.prc_rxdcm_sc_abort++;
829
830 alarm_event = VXGE_HW_SET_LEVEL(
831 VXGE_HW_EVENT_VPATH_ERR,
832 alarm_event);
833 }
834
835 if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
836 & ~mask64) {
837 sw_stats->error_stats.prc_quanta_size_err++;
838
839 alarm_event = VXGE_HW_SET_LEVEL(
840 VXGE_HW_EVENT_VPATH_ERR,
841 alarm_event);
842 }
843
844 if (!skip_alarms) {
845 writeq(VXGE_HW_INTR_MASK_ALL,
846 &vp_reg->prc_alarm_reg);
847 alarm_event = VXGE_HW_SET_LEVEL(
848 VXGE_HW_EVENT_ALARM_CLEARED,
849 alarm_event);
850 }
851 }
852 }
853 out:
854 hldev->stats.sw_dev_err_stats.vpath_alarms++;
855 out2:
856 if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
857 (alarm_event == VXGE_HW_EVENT_UNKNOWN))
858 return VXGE_HW_OK;
859
860 __vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
861
862 if (alarm_event == VXGE_HW_EVENT_SERR)
863 return VXGE_HW_ERR_CRITICAL;
864
865 return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
866 VXGE_HW_ERR_SLOT_FREEZE :
867 (alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
868 VXGE_HW_ERR_VPATH;
869 }
870
871 /**
872 * vxge_hw_device_begin_irq - Begin IRQ processing.
873 * @hldev: HW device handle.
874 * @skip_alarms: Do not clear the alarms
875 * @reason: "Reason" for the interrupt, the value of Titan's
876 * general_int_status register.
877 *
878 * The function performs two actions, It first checks whether (shared IRQ) the
879 * interrupt was raised by the device. Next, it masks the device interrupts.
880 *
881 * Note:
882 * vxge_hw_device_begin_irq() does not flush MMIO writes through the
883 * bridge. Therefore, two back-to-back interrupts are potentially possible.
884 *
885 * Returns: 0, if the interrupt is not "ours" (note that in this case the
886 * device remain enabled).
887 * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
888 * status.
889 */
vxge_hw_device_begin_irq(struct __vxge_hw_device * hldev,u32 skip_alarms,u64 * reason)890 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
891 u32 skip_alarms, u64 *reason)
892 {
893 u32 i;
894 u64 val64;
895 u64 adapter_status;
896 u64 vpath_mask;
897 enum vxge_hw_status ret = VXGE_HW_OK;
898
899 val64 = readq(&hldev->common_reg->titan_general_int_status);
900
901 if (unlikely(!val64)) {
902 /* not Titan interrupt */
903 *reason = 0;
904 ret = VXGE_HW_ERR_WRONG_IRQ;
905 goto exit;
906 }
907
908 if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
909
910 adapter_status = readq(&hldev->common_reg->adapter_status);
911
912 if (adapter_status == VXGE_HW_ALL_FOXES) {
913
914 __vxge_hw_device_handle_error(hldev,
915 NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
916 *reason = 0;
917 ret = VXGE_HW_ERR_SLOT_FREEZE;
918 goto exit;
919 }
920 }
921
922 hldev->stats.sw_dev_info_stats.total_intr_cnt++;
923
924 *reason = val64;
925
926 vpath_mask = hldev->vpaths_deployed >>
927 (64 - VXGE_HW_MAX_VIRTUAL_PATHS);
928
929 if (val64 &
930 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
931 hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
932
933 return VXGE_HW_OK;
934 }
935
936 hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
937
938 if (unlikely(val64 &
939 VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
940
941 enum vxge_hw_status error_level = VXGE_HW_OK;
942
943 hldev->stats.sw_dev_err_stats.vpath_alarms++;
944
945 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
946
947 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
948 continue;
949
950 ret = __vxge_hw_vpath_alarm_process(
951 &hldev->virtual_paths[i], skip_alarms);
952
953 error_level = VXGE_HW_SET_LEVEL(ret, error_level);
954
955 if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
956 (ret == VXGE_HW_ERR_SLOT_FREEZE)))
957 break;
958 }
959
960 ret = error_level;
961 }
962 exit:
963 return ret;
964 }
965
966 /**
967 * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
968 * condition that has caused the Tx and RX interrupt.
969 * @hldev: HW device.
970 *
971 * Acknowledge (that is, clear) the condition that has caused
972 * the Tx and Rx interrupt.
973 * See also: vxge_hw_device_begin_irq(),
974 * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
975 */
vxge_hw_device_clear_tx_rx(struct __vxge_hw_device * hldev)976 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
977 {
978
979 if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
980 (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
981 writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
982 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
983 &hldev->common_reg->tim_int_status0);
984 }
985
986 if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
987 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
988 __vxge_hw_pio_mem_write32_upper(
989 (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
990 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
991 &hldev->common_reg->tim_int_status1);
992 }
993 }
994
995 /*
996 * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
997 * @channel: Channel
998 * @dtrh: Buffer to return the DTR pointer
999 *
1000 * Allocates a dtr from the reserve array. If the reserve array is empty,
1001 * it swaps the reserve and free arrays.
1002 *
1003 */
1004 static enum vxge_hw_status
vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel * channel,void ** dtrh)1005 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1006 {
1007 if (channel->reserve_ptr - channel->reserve_top > 0) {
1008 _alloc_after_swap:
1009 *dtrh = channel->reserve_arr[--channel->reserve_ptr];
1010
1011 return VXGE_HW_OK;
1012 }
1013
1014 /* switch between empty and full arrays */
1015
1016 /* the idea behind such a design is that by having free and reserved
1017 * arrays separated we basically separated irq and non-irq parts.
1018 * i.e. no additional lock need to be done when we free a resource */
1019
1020 if (channel->length - channel->free_ptr > 0) {
1021 swap(channel->reserve_arr, channel->free_arr);
1022 channel->reserve_ptr = channel->length;
1023 channel->reserve_top = channel->free_ptr;
1024 channel->free_ptr = channel->length;
1025
1026 channel->stats->reserve_free_swaps_cnt++;
1027
1028 goto _alloc_after_swap;
1029 }
1030
1031 channel->stats->full_cnt++;
1032
1033 *dtrh = NULL;
1034 return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1035 }
1036
1037 /*
1038 * vxge_hw_channel_dtr_post - Post a dtr to the channel
1039 * @channelh: Channel
1040 * @dtrh: DTR pointer
1041 *
1042 * Posts a dtr to work array.
1043 *
1044 */
1045 static void
vxge_hw_channel_dtr_post(struct __vxge_hw_channel * channel,void * dtrh)1046 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1047 {
1048 vxge_assert(channel->work_arr[channel->post_index] == NULL);
1049
1050 channel->work_arr[channel->post_index++] = dtrh;
1051
1052 /* wrap-around */
1053 if (channel->post_index == channel->length)
1054 channel->post_index = 0;
1055 }
1056
1057 /*
1058 * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1059 * @channel: Channel
1060 * @dtr: Buffer to return the next completed DTR pointer
1061 *
1062 * Returns the next completed dtr with out removing it from work array
1063 *
1064 */
1065 void
vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel * channel,void ** dtrh)1066 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1067 {
1068 vxge_assert(channel->compl_index < channel->length);
1069
1070 *dtrh = channel->work_arr[channel->compl_index];
1071 prefetch(*dtrh);
1072 }
1073
1074 /*
1075 * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1076 * @channel: Channel handle
1077 *
1078 * Removes the next completed dtr from work array
1079 *
1080 */
vxge_hw_channel_dtr_complete(struct __vxge_hw_channel * channel)1081 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1082 {
1083 channel->work_arr[channel->compl_index] = NULL;
1084
1085 /* wrap-around */
1086 if (++channel->compl_index == channel->length)
1087 channel->compl_index = 0;
1088
1089 channel->stats->total_compl_cnt++;
1090 }
1091
1092 /*
1093 * vxge_hw_channel_dtr_free - Frees a dtr
1094 * @channel: Channel handle
1095 * @dtr: DTR pointer
1096 *
1097 * Returns the dtr to free array
1098 *
1099 */
vxge_hw_channel_dtr_free(struct __vxge_hw_channel * channel,void * dtrh)1100 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1101 {
1102 channel->free_arr[--channel->free_ptr] = dtrh;
1103 }
1104
1105 /*
1106 * vxge_hw_channel_dtr_count
1107 * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1108 *
1109 * Retrieve number of DTRs available. This function can not be called
1110 * from data path. ring_initial_replenishi() is the only user.
1111 */
vxge_hw_channel_dtr_count(struct __vxge_hw_channel * channel)1112 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1113 {
1114 return (channel->reserve_ptr - channel->reserve_top) +
1115 (channel->length - channel->free_ptr);
1116 }
1117
1118 /**
1119 * vxge_hw_ring_rxd_reserve - Reserve ring descriptor.
1120 * @ring: Handle to the ring object used for receive
1121 * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1122 * with a valid handle.
1123 *
1124 * Reserve Rx descriptor for the subsequent filling-in driver
1125 * and posting on the corresponding channel (@channelh)
1126 * via vxge_hw_ring_rxd_post().
1127 *
1128 * Returns: VXGE_HW_OK - success.
1129 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1130 *
1131 */
vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring * ring,void ** rxdh)1132 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1133 void **rxdh)
1134 {
1135 enum vxge_hw_status status;
1136 struct __vxge_hw_channel *channel;
1137
1138 channel = &ring->channel;
1139
1140 status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1141
1142 if (status == VXGE_HW_OK) {
1143 struct vxge_hw_ring_rxd_1 *rxdp =
1144 (struct vxge_hw_ring_rxd_1 *)*rxdh;
1145
1146 rxdp->control_0 = rxdp->control_1 = 0;
1147 }
1148
1149 return status;
1150 }
1151
1152 /**
1153 * vxge_hw_ring_rxd_free - Free descriptor.
1154 * @ring: Handle to the ring object used for receive
1155 * @rxdh: Descriptor handle.
1156 *
1157 * Free the reserved descriptor. This operation is "symmetrical" to
1158 * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1159 * lifecycle.
1160 *
1161 * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1162 * be:
1163 *
1164 * - reserved (vxge_hw_ring_rxd_reserve);
1165 *
1166 * - posted (vxge_hw_ring_rxd_post);
1167 *
1168 * - completed (vxge_hw_ring_rxd_next_completed);
1169 *
1170 * - and recycled again (vxge_hw_ring_rxd_free).
1171 *
1172 * For alternative state transitions and more details please refer to
1173 * the design doc.
1174 *
1175 */
vxge_hw_ring_rxd_free(struct __vxge_hw_ring * ring,void * rxdh)1176 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1177 {
1178 struct __vxge_hw_channel *channel;
1179
1180 channel = &ring->channel;
1181
1182 vxge_hw_channel_dtr_free(channel, rxdh);
1183
1184 }
1185
1186 /**
1187 * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1188 * @ring: Handle to the ring object used for receive
1189 * @rxdh: Descriptor handle.
1190 *
1191 * This routine prepares a rxd and posts
1192 */
vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring * ring,void * rxdh)1193 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1194 {
1195 struct __vxge_hw_channel *channel;
1196
1197 channel = &ring->channel;
1198
1199 vxge_hw_channel_dtr_post(channel, rxdh);
1200 }
1201
1202 /**
1203 * vxge_hw_ring_rxd_post_post - Process rxd after post.
1204 * @ring: Handle to the ring object used for receive
1205 * @rxdh: Descriptor handle.
1206 *
1207 * Processes rxd after post
1208 */
vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring * ring,void * rxdh)1209 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1210 {
1211 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1212
1213 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1214
1215 if (ring->stats->common_stats.usage_cnt > 0)
1216 ring->stats->common_stats.usage_cnt--;
1217 }
1218
1219 /**
1220 * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1221 * @ring: Handle to the ring object used for receive
1222 * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1223 *
1224 * Post descriptor on the ring.
1225 * Prior to posting the descriptor should be filled in accordance with
1226 * Host/Titan interface specification for a given service (LL, etc.).
1227 *
1228 */
vxge_hw_ring_rxd_post(struct __vxge_hw_ring * ring,void * rxdh)1229 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1230 {
1231 struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1232 struct __vxge_hw_channel *channel;
1233
1234 channel = &ring->channel;
1235
1236 wmb();
1237 rxdp->control_0 = VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1238
1239 vxge_hw_channel_dtr_post(channel, rxdh);
1240
1241 if (ring->stats->common_stats.usage_cnt > 0)
1242 ring->stats->common_stats.usage_cnt--;
1243 }
1244
1245 /**
1246 * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1247 * @ring: Handle to the ring object used for receive
1248 * @rxdh: Descriptor handle.
1249 *
1250 * Processes rxd after post with memory barrier.
1251 */
vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring * ring,void * rxdh)1252 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1253 {
1254 wmb();
1255 vxge_hw_ring_rxd_post_post(ring, rxdh);
1256 }
1257
1258 /**
1259 * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1260 * @ring: Handle to the ring object used for receive
1261 * @rxdh: Descriptor handle. Returned by HW.
1262 * @t_code: Transfer code, as per Titan User Guide,
1263 * Receive Descriptor Format. Returned by HW.
1264 *
1265 * Retrieve the _next_ completed descriptor.
1266 * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1267 * driver of new completed descriptors. After that
1268 * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1269 * completions (the very first completion is passed by HW via
1270 * vxge_hw_ring_callback_f).
1271 *
1272 * Implementation-wise, the driver is free to call
1273 * vxge_hw_ring_rxd_next_completed either immediately from inside the
1274 * ring callback, or in a deferred fashion and separate (from HW)
1275 * context.
1276 *
1277 * Non-zero @t_code means failure to fill-in receive buffer(s)
1278 * of the descriptor.
1279 * For instance, parity error detected during the data transfer.
1280 * In this case Titan will complete the descriptor and indicate
1281 * for the host that the received data is not to be used.
1282 * For details please refer to Titan User Guide.
1283 *
1284 * Returns: VXGE_HW_OK - success.
1285 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1286 * are currently available for processing.
1287 *
1288 * See also: vxge_hw_ring_callback_f{},
1289 * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1290 */
vxge_hw_ring_rxd_next_completed(struct __vxge_hw_ring * ring,void ** rxdh,u8 * t_code)1291 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1292 struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1293 {
1294 struct __vxge_hw_channel *channel;
1295 struct vxge_hw_ring_rxd_1 *rxdp;
1296 enum vxge_hw_status status = VXGE_HW_OK;
1297 u64 control_0, own;
1298
1299 channel = &ring->channel;
1300
1301 vxge_hw_channel_dtr_try_complete(channel, rxdh);
1302
1303 rxdp = *rxdh;
1304 if (rxdp == NULL) {
1305 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1306 goto exit;
1307 }
1308
1309 control_0 = rxdp->control_0;
1310 own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1311 *t_code = (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1312
1313 /* check whether it is not the end */
1314 if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1315
1316 vxge_assert((rxdp)->host_control !=
1317 0);
1318
1319 ++ring->cmpl_cnt;
1320 vxge_hw_channel_dtr_complete(channel);
1321
1322 vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1323
1324 ring->stats->common_stats.usage_cnt++;
1325 if (ring->stats->common_stats.usage_max <
1326 ring->stats->common_stats.usage_cnt)
1327 ring->stats->common_stats.usage_max =
1328 ring->stats->common_stats.usage_cnt;
1329
1330 status = VXGE_HW_OK;
1331 goto exit;
1332 }
1333
1334 /* reset it. since we don't want to return
1335 * garbage to the driver */
1336 *rxdh = NULL;
1337 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1338 exit:
1339 return status;
1340 }
1341
1342 /**
1343 * vxge_hw_ring_handle_tcode - Handle transfer code.
1344 * @ring: Handle to the ring object used for receive
1345 * @rxdh: Descriptor handle.
1346 * @t_code: One of the enumerated (and documented in the Titan user guide)
1347 * "transfer codes".
1348 *
1349 * Handle descriptor's transfer code. The latter comes with each completed
1350 * descriptor.
1351 *
1352 * Returns: one of the enum vxge_hw_status{} enumerated types.
1353 * VXGE_HW_OK - for success.
1354 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1355 */
vxge_hw_ring_handle_tcode(struct __vxge_hw_ring * ring,void * rxdh,u8 t_code)1356 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1357 struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1358 {
1359 enum vxge_hw_status status = VXGE_HW_OK;
1360
1361 /* If the t_code is not supported and if the
1362 * t_code is other than 0x5 (unparseable packet
1363 * such as unknown UPV6 header), Drop it !!!
1364 */
1365
1366 if (t_code == VXGE_HW_RING_T_CODE_OK ||
1367 t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1368 status = VXGE_HW_OK;
1369 goto exit;
1370 }
1371
1372 if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1373 status = VXGE_HW_ERR_INVALID_TCODE;
1374 goto exit;
1375 }
1376
1377 ring->stats->rxd_t_code_err_cnt[t_code]++;
1378 exit:
1379 return status;
1380 }
1381
1382 /**
1383 * __vxge_hw_non_offload_db_post - Post non offload doorbell
1384 *
1385 * @fifo: fifohandle
1386 * @txdl_ptr: The starting location of the TxDL in host memory
1387 * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1388 * @no_snoop: No snoop flags
1389 *
1390 * This function posts a non-offload doorbell to doorbell FIFO
1391 *
1392 */
__vxge_hw_non_offload_db_post(struct __vxge_hw_fifo * fifo,u64 txdl_ptr,u32 num_txds,u32 no_snoop)1393 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1394 u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1395 {
1396 writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1397 VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1398 VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1399 &fifo->nofl_db->control_0);
1400
1401 mmiowb();
1402
1403 writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1404
1405 mmiowb();
1406 }
1407
1408 /**
1409 * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1410 * the fifo
1411 * @fifoh: Handle to the fifo object used for non offload send
1412 */
vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo * fifoh)1413 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1414 {
1415 return vxge_hw_channel_dtr_count(&fifoh->channel);
1416 }
1417
1418 /**
1419 * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1420 * @fifoh: Handle to the fifo object used for non offload send
1421 * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1422 * with a valid handle.
1423 * @txdl_priv: Buffer to return the pointer to per txdl space
1424 *
1425 * Reserve a single TxDL (that is, fifo descriptor)
1426 * for the subsequent filling-in by driver)
1427 * and posting on the corresponding channel (@channelh)
1428 * via vxge_hw_fifo_txdl_post().
1429 *
1430 * Note: it is the responsibility of driver to reserve multiple descriptors
1431 * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1432 * carries up to configured number (fifo.max_frags) of contiguous buffers.
1433 *
1434 * Returns: VXGE_HW_OK - success;
1435 * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1436 *
1437 */
vxge_hw_fifo_txdl_reserve(struct __vxge_hw_fifo * fifo,void ** txdlh,void ** txdl_priv)1438 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1439 struct __vxge_hw_fifo *fifo,
1440 void **txdlh, void **txdl_priv)
1441 {
1442 struct __vxge_hw_channel *channel;
1443 enum vxge_hw_status status;
1444 int i;
1445
1446 channel = &fifo->channel;
1447
1448 status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1449
1450 if (status == VXGE_HW_OK) {
1451 struct vxge_hw_fifo_txd *txdp =
1452 (struct vxge_hw_fifo_txd *)*txdlh;
1453 struct __vxge_hw_fifo_txdl_priv *priv;
1454
1455 priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1456
1457 /* reset the TxDL's private */
1458 priv->align_dma_offset = 0;
1459 priv->align_vaddr_start = priv->align_vaddr;
1460 priv->align_used_frags = 0;
1461 priv->frags = 0;
1462 priv->alloc_frags = fifo->config->max_frags;
1463 priv->next_txdl_priv = NULL;
1464
1465 *txdl_priv = (void *)(size_t)txdp->host_control;
1466
1467 for (i = 0; i < fifo->config->max_frags; i++) {
1468 txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1469 txdp->control_0 = txdp->control_1 = 0;
1470 }
1471 }
1472
1473 return status;
1474 }
1475
1476 /**
1477 * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1478 * descriptor.
1479 * @fifo: Handle to the fifo object used for non offload send
1480 * @txdlh: Descriptor handle.
1481 * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1482 * (of buffers).
1483 * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1484 * @size: Size of the data buffer (in bytes).
1485 *
1486 * This API is part of the preparation of the transmit descriptor for posting
1487 * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1488 * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1489 * All three APIs fill in the fields of the fifo descriptor,
1490 * in accordance with the Titan specification.
1491 *
1492 */
vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo * fifo,void * txdlh,u32 frag_idx,dma_addr_t dma_pointer,u32 size)1493 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1494 void *txdlh, u32 frag_idx,
1495 dma_addr_t dma_pointer, u32 size)
1496 {
1497 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1498 struct vxge_hw_fifo_txd *txdp, *txdp_last;
1499
1500 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1501 txdp = (struct vxge_hw_fifo_txd *)txdlh + txdl_priv->frags;
1502
1503 if (frag_idx != 0)
1504 txdp->control_0 = txdp->control_1 = 0;
1505 else {
1506 txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1507 VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1508 txdp->control_1 |= fifo->interrupt_type;
1509 txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1510 fifo->tx_intr_num);
1511 if (txdl_priv->frags) {
1512 txdp_last = (struct vxge_hw_fifo_txd *)txdlh +
1513 (txdl_priv->frags - 1);
1514 txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1515 VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1516 }
1517 }
1518
1519 vxge_assert(frag_idx < txdl_priv->alloc_frags);
1520
1521 txdp->buffer_pointer = (u64)dma_pointer;
1522 txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1523 fifo->stats->total_buffers++;
1524 txdl_priv->frags++;
1525 }
1526
1527 /**
1528 * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1529 * @fifo: Handle to the fifo object used for non offload send
1530 * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1531 * @frags: Number of contiguous buffers that are part of a single
1532 * transmit operation.
1533 *
1534 * Post descriptor on the 'fifo' type channel for transmission.
1535 * Prior to posting the descriptor should be filled in accordance with
1536 * Host/Titan interface specification for a given service (LL, etc.).
1537 *
1538 */
vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo * fifo,void * txdlh)1539 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1540 {
1541 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1542 struct vxge_hw_fifo_txd *txdp_last;
1543 struct vxge_hw_fifo_txd *txdp_first;
1544
1545 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1546 txdp_first = txdlh;
1547
1548 txdp_last = (struct vxge_hw_fifo_txd *)txdlh + (txdl_priv->frags - 1);
1549 txdp_last->control_0 |=
1550 VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1551 txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1552
1553 vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1554
1555 __vxge_hw_non_offload_db_post(fifo,
1556 (u64)txdl_priv->dma_addr,
1557 txdl_priv->frags - 1,
1558 fifo->no_snoop_bits);
1559
1560 fifo->stats->total_posts++;
1561 fifo->stats->common_stats.usage_cnt++;
1562 if (fifo->stats->common_stats.usage_max <
1563 fifo->stats->common_stats.usage_cnt)
1564 fifo->stats->common_stats.usage_max =
1565 fifo->stats->common_stats.usage_cnt;
1566 }
1567
1568 /**
1569 * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1570 * @fifo: Handle to the fifo object used for non offload send
1571 * @txdlh: Descriptor handle. Returned by HW.
1572 * @t_code: Transfer code, as per Titan User Guide,
1573 * Transmit Descriptor Format.
1574 * Returned by HW.
1575 *
1576 * Retrieve the _next_ completed descriptor.
1577 * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1578 * driver of new completed descriptors. After that
1579 * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1580 * completions (the very first completion is passed by HW via
1581 * vxge_hw_channel_callback_f).
1582 *
1583 * Implementation-wise, the driver is free to call
1584 * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1585 * channel callback, or in a deferred fashion and separate (from HW)
1586 * context.
1587 *
1588 * Non-zero @t_code means failure to process the descriptor.
1589 * The failure could happen, for instance, when the link is
1590 * down, in which case Titan completes the descriptor because it
1591 * is not able to send the data out.
1592 *
1593 * For details please refer to Titan User Guide.
1594 *
1595 * Returns: VXGE_HW_OK - success.
1596 * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1597 * are currently available for processing.
1598 *
1599 */
vxge_hw_fifo_txdl_next_completed(struct __vxge_hw_fifo * fifo,void ** txdlh,enum vxge_hw_fifo_tcode * t_code)1600 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1601 struct __vxge_hw_fifo *fifo, void **txdlh,
1602 enum vxge_hw_fifo_tcode *t_code)
1603 {
1604 struct __vxge_hw_channel *channel;
1605 struct vxge_hw_fifo_txd *txdp;
1606 enum vxge_hw_status status = VXGE_HW_OK;
1607
1608 channel = &fifo->channel;
1609
1610 vxge_hw_channel_dtr_try_complete(channel, txdlh);
1611
1612 txdp = *txdlh;
1613 if (txdp == NULL) {
1614 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1615 goto exit;
1616 }
1617
1618 /* check whether host owns it */
1619 if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1620
1621 vxge_assert(txdp->host_control != 0);
1622
1623 vxge_hw_channel_dtr_complete(channel);
1624
1625 *t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1626
1627 if (fifo->stats->common_stats.usage_cnt > 0)
1628 fifo->stats->common_stats.usage_cnt--;
1629
1630 status = VXGE_HW_OK;
1631 goto exit;
1632 }
1633
1634 /* no more completions */
1635 *txdlh = NULL;
1636 status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1637 exit:
1638 return status;
1639 }
1640
1641 /**
1642 * vxge_hw_fifo_handle_tcode - Handle transfer code.
1643 * @fifo: Handle to the fifo object used for non offload send
1644 * @txdlh: Descriptor handle.
1645 * @t_code: One of the enumerated (and documented in the Titan user guide)
1646 * "transfer codes".
1647 *
1648 * Handle descriptor's transfer code. The latter comes with each completed
1649 * descriptor.
1650 *
1651 * Returns: one of the enum vxge_hw_status{} enumerated types.
1652 * VXGE_HW_OK - for success.
1653 * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1654 */
vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo * fifo,void * txdlh,enum vxge_hw_fifo_tcode t_code)1655 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1656 void *txdlh,
1657 enum vxge_hw_fifo_tcode t_code)
1658 {
1659 enum vxge_hw_status status = VXGE_HW_OK;
1660
1661 if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1662 status = VXGE_HW_ERR_INVALID_TCODE;
1663 goto exit;
1664 }
1665
1666 fifo->stats->txd_t_code_err_cnt[t_code]++;
1667 exit:
1668 return status;
1669 }
1670
1671 /**
1672 * vxge_hw_fifo_txdl_free - Free descriptor.
1673 * @fifo: Handle to the fifo object used for non offload send
1674 * @txdlh: Descriptor handle.
1675 *
1676 * Free the reserved descriptor. This operation is "symmetrical" to
1677 * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1678 * lifecycle.
1679 *
1680 * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1681 * be:
1682 *
1683 * - reserved (vxge_hw_fifo_txdl_reserve);
1684 *
1685 * - posted (vxge_hw_fifo_txdl_post);
1686 *
1687 * - completed (vxge_hw_fifo_txdl_next_completed);
1688 *
1689 * - and recycled again (vxge_hw_fifo_txdl_free).
1690 *
1691 * For alternative state transitions and more details please refer to
1692 * the design doc.
1693 *
1694 */
vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo * fifo,void * txdlh)1695 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1696 {
1697 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1698 u32 max_frags;
1699 struct __vxge_hw_channel *channel;
1700
1701 channel = &fifo->channel;
1702
1703 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo,
1704 (struct vxge_hw_fifo_txd *)txdlh);
1705
1706 max_frags = fifo->config->max_frags;
1707
1708 vxge_hw_channel_dtr_free(channel, txdlh);
1709 }
1710
1711 /**
1712 * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1713 * to MAC address table.
1714 * @vp: Vpath handle.
1715 * @macaddr: MAC address to be added for this vpath into the list
1716 * @macaddr_mask: MAC address mask for macaddr
1717 * @duplicate_mode: Duplicate MAC address add mode. Please see
1718 * enum vxge_hw_vpath_mac_addr_add_mode{}
1719 *
1720 * Adds the given mac address and mac address mask into the list for this
1721 * vpath.
1722 * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1723 * vxge_hw_vpath_mac_addr_get_next
1724 *
1725 */
1726 enum vxge_hw_status
vxge_hw_vpath_mac_addr_add(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN],enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)1727 vxge_hw_vpath_mac_addr_add(
1728 struct __vxge_hw_vpath_handle *vp,
1729 u8 (macaddr)[ETH_ALEN],
1730 u8 (macaddr_mask)[ETH_ALEN],
1731 enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1732 {
1733 u32 i;
1734 u64 data1 = 0ULL;
1735 u64 data2 = 0ULL;
1736 enum vxge_hw_status status = VXGE_HW_OK;
1737
1738 if (vp == NULL) {
1739 status = VXGE_HW_ERR_INVALID_HANDLE;
1740 goto exit;
1741 }
1742
1743 for (i = 0; i < ETH_ALEN; i++) {
1744 data1 <<= 8;
1745 data1 |= (u8)macaddr[i];
1746
1747 data2 <<= 8;
1748 data2 |= (u8)macaddr_mask[i];
1749 }
1750
1751 switch (duplicate_mode) {
1752 case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1753 i = 0;
1754 break;
1755 case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1756 i = 1;
1757 break;
1758 case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1759 i = 2;
1760 break;
1761 default:
1762 i = 0;
1763 break;
1764 }
1765
1766 status = __vxge_hw_vpath_rts_table_set(vp,
1767 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1768 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1769 0,
1770 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1771 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1772 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1773 exit:
1774 return status;
1775 }
1776
1777 /**
1778 * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1779 * from MAC address table.
1780 * @vp: Vpath handle.
1781 * @macaddr: First MAC address entry for this vpath in the list
1782 * @macaddr_mask: MAC address mask for macaddr
1783 *
1784 * Returns the first mac address and mac address mask in the list for this
1785 * vpath.
1786 * see also: vxge_hw_vpath_mac_addr_get_next
1787 *
1788 */
1789 enum vxge_hw_status
vxge_hw_vpath_mac_addr_get(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1790 vxge_hw_vpath_mac_addr_get(
1791 struct __vxge_hw_vpath_handle *vp,
1792 u8 (macaddr)[ETH_ALEN],
1793 u8 (macaddr_mask)[ETH_ALEN])
1794 {
1795 u32 i;
1796 u64 data1 = 0ULL;
1797 u64 data2 = 0ULL;
1798 enum vxge_hw_status status = VXGE_HW_OK;
1799
1800 if (vp == NULL) {
1801 status = VXGE_HW_ERR_INVALID_HANDLE;
1802 goto exit;
1803 }
1804
1805 status = __vxge_hw_vpath_rts_table_get(vp,
1806 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1807 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1808 0, &data1, &data2);
1809
1810 if (status != VXGE_HW_OK)
1811 goto exit;
1812
1813 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1814
1815 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1816
1817 for (i = ETH_ALEN; i > 0; i--) {
1818 macaddr[i-1] = (u8)(data1 & 0xFF);
1819 data1 >>= 8;
1820
1821 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1822 data2 >>= 8;
1823 }
1824 exit:
1825 return status;
1826 }
1827
1828 /**
1829 * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1830 * vpath
1831 * from MAC address table.
1832 * @vp: Vpath handle.
1833 * @macaddr: Next MAC address entry for this vpath in the list
1834 * @macaddr_mask: MAC address mask for macaddr
1835 *
1836 * Returns the next mac address and mac address mask in the list for this
1837 * vpath.
1838 * see also: vxge_hw_vpath_mac_addr_get
1839 *
1840 */
1841 enum vxge_hw_status
vxge_hw_vpath_mac_addr_get_next(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1842 vxge_hw_vpath_mac_addr_get_next(
1843 struct __vxge_hw_vpath_handle *vp,
1844 u8 (macaddr)[ETH_ALEN],
1845 u8 (macaddr_mask)[ETH_ALEN])
1846 {
1847 u32 i;
1848 u64 data1 = 0ULL;
1849 u64 data2 = 0ULL;
1850 enum vxge_hw_status status = VXGE_HW_OK;
1851
1852 if (vp == NULL) {
1853 status = VXGE_HW_ERR_INVALID_HANDLE;
1854 goto exit;
1855 }
1856
1857 status = __vxge_hw_vpath_rts_table_get(vp,
1858 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1859 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1860 0, &data1, &data2);
1861
1862 if (status != VXGE_HW_OK)
1863 goto exit;
1864
1865 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1866
1867 data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1868
1869 for (i = ETH_ALEN; i > 0; i--) {
1870 macaddr[i-1] = (u8)(data1 & 0xFF);
1871 data1 >>= 8;
1872
1873 macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1874 data2 >>= 8;
1875 }
1876
1877 exit:
1878 return status;
1879 }
1880
1881 /**
1882 * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1883 * to MAC address table.
1884 * @vp: Vpath handle.
1885 * @macaddr: MAC address to be added for this vpath into the list
1886 * @macaddr_mask: MAC address mask for macaddr
1887 *
1888 * Delete the given mac address and mac address mask into the list for this
1889 * vpath.
1890 * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1891 * vxge_hw_vpath_mac_addr_get_next
1892 *
1893 */
1894 enum vxge_hw_status
vxge_hw_vpath_mac_addr_delete(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1895 vxge_hw_vpath_mac_addr_delete(
1896 struct __vxge_hw_vpath_handle *vp,
1897 u8 (macaddr)[ETH_ALEN],
1898 u8 (macaddr_mask)[ETH_ALEN])
1899 {
1900 u32 i;
1901 u64 data1 = 0ULL;
1902 u64 data2 = 0ULL;
1903 enum vxge_hw_status status = VXGE_HW_OK;
1904
1905 if (vp == NULL) {
1906 status = VXGE_HW_ERR_INVALID_HANDLE;
1907 goto exit;
1908 }
1909
1910 for (i = 0; i < ETH_ALEN; i++) {
1911 data1 <<= 8;
1912 data1 |= (u8)macaddr[i];
1913
1914 data2 <<= 8;
1915 data2 |= (u8)macaddr_mask[i];
1916 }
1917
1918 status = __vxge_hw_vpath_rts_table_set(vp,
1919 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1920 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1921 0,
1922 VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1923 VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1924 exit:
1925 return status;
1926 }
1927
1928 /**
1929 * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1930 * to vlan id table.
1931 * @vp: Vpath handle.
1932 * @vid: vlan id to be added for this vpath into the list
1933 *
1934 * Adds the given vlan id into the list for this vpath.
1935 * see also: vxge_hw_vpath_vid_delete
1936 *
1937 */
1938 enum vxge_hw_status
vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle * vp,u64 vid)1939 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1940 {
1941 enum vxge_hw_status status = VXGE_HW_OK;
1942
1943 if (vp == NULL) {
1944 status = VXGE_HW_ERR_INVALID_HANDLE;
1945 goto exit;
1946 }
1947
1948 status = __vxge_hw_vpath_rts_table_set(vp,
1949 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1950 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1951 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1952 exit:
1953 return status;
1954 }
1955
1956 /**
1957 * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1958 * to vlan id table.
1959 * @vp: Vpath handle.
1960 * @vid: vlan id to be added for this vpath into the list
1961 *
1962 * Adds the given vlan id into the list for this vpath.
1963 * see also: vxge_hw_vpath_vid_add
1964 *
1965 */
1966 enum vxge_hw_status
vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle * vp,u64 vid)1967 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1968 {
1969 enum vxge_hw_status status = VXGE_HW_OK;
1970
1971 if (vp == NULL) {
1972 status = VXGE_HW_ERR_INVALID_HANDLE;
1973 goto exit;
1974 }
1975
1976 status = __vxge_hw_vpath_rts_table_set(vp,
1977 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1978 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1979 0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1980 exit:
1981 return status;
1982 }
1983
1984 /**
1985 * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1986 * @vp: Vpath handle.
1987 *
1988 * Enable promiscuous mode of Titan-e operation.
1989 *
1990 * See also: vxge_hw_vpath_promisc_disable().
1991 */
vxge_hw_vpath_promisc_enable(struct __vxge_hw_vpath_handle * vp)1992 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1993 struct __vxge_hw_vpath_handle *vp)
1994 {
1995 u64 val64;
1996 struct __vxge_hw_virtualpath *vpath;
1997 enum vxge_hw_status status = VXGE_HW_OK;
1998
1999 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2000 status = VXGE_HW_ERR_INVALID_HANDLE;
2001 goto exit;
2002 }
2003
2004 vpath = vp->vpath;
2005
2006 /* Enable promiscuous mode for function 0 only */
2007 if (!(vpath->hldev->access_rights &
2008 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
2009 return VXGE_HW_OK;
2010
2011 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2012
2013 if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2014
2015 val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2016 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2017 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2018 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2019
2020 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2021 }
2022 exit:
2023 return status;
2024 }
2025
2026 /**
2027 * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2028 * @vp: Vpath handle.
2029 *
2030 * Disable promiscuous mode of Titan-e operation.
2031 *
2032 * See also: vxge_hw_vpath_promisc_enable().
2033 */
vxge_hw_vpath_promisc_disable(struct __vxge_hw_vpath_handle * vp)2034 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2035 struct __vxge_hw_vpath_handle *vp)
2036 {
2037 u64 val64;
2038 struct __vxge_hw_virtualpath *vpath;
2039 enum vxge_hw_status status = VXGE_HW_OK;
2040
2041 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2042 status = VXGE_HW_ERR_INVALID_HANDLE;
2043 goto exit;
2044 }
2045
2046 vpath = vp->vpath;
2047
2048 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2049
2050 if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2051
2052 val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2053 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2054 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2055
2056 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2057 }
2058 exit:
2059 return status;
2060 }
2061
2062 /*
2063 * vxge_hw_vpath_bcast_enable - Enable broadcast
2064 * @vp: Vpath handle.
2065 *
2066 * Enable receiving broadcasts.
2067 */
vxge_hw_vpath_bcast_enable(struct __vxge_hw_vpath_handle * vp)2068 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2069 struct __vxge_hw_vpath_handle *vp)
2070 {
2071 u64 val64;
2072 struct __vxge_hw_virtualpath *vpath;
2073 enum vxge_hw_status status = VXGE_HW_OK;
2074
2075 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2076 status = VXGE_HW_ERR_INVALID_HANDLE;
2077 goto exit;
2078 }
2079
2080 vpath = vp->vpath;
2081
2082 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2083
2084 if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2085 val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2086 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2087 }
2088 exit:
2089 return status;
2090 }
2091
2092 /**
2093 * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2094 * @vp: Vpath handle.
2095 *
2096 * Enable Titan-e multicast addresses.
2097 * Returns: VXGE_HW_OK on success.
2098 *
2099 */
vxge_hw_vpath_mcast_enable(struct __vxge_hw_vpath_handle * vp)2100 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2101 struct __vxge_hw_vpath_handle *vp)
2102 {
2103 u64 val64;
2104 struct __vxge_hw_virtualpath *vpath;
2105 enum vxge_hw_status status = VXGE_HW_OK;
2106
2107 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2108 status = VXGE_HW_ERR_INVALID_HANDLE;
2109 goto exit;
2110 }
2111
2112 vpath = vp->vpath;
2113
2114 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2115
2116 if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2117 val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2118 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2119 }
2120 exit:
2121 return status;
2122 }
2123
2124 /**
2125 * vxge_hw_vpath_mcast_disable - Disable multicast addresses.
2126 * @vp: Vpath handle.
2127 *
2128 * Disable Titan-e multicast addresses.
2129 * Returns: VXGE_HW_OK - success.
2130 * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2131 *
2132 */
2133 enum vxge_hw_status
vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle * vp)2134 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2135 {
2136 u64 val64;
2137 struct __vxge_hw_virtualpath *vpath;
2138 enum vxge_hw_status status = VXGE_HW_OK;
2139
2140 if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2141 status = VXGE_HW_ERR_INVALID_HANDLE;
2142 goto exit;
2143 }
2144
2145 vpath = vp->vpath;
2146
2147 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2148
2149 if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2150 val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2151 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2152 }
2153 exit:
2154 return status;
2155 }
2156
2157 /*
2158 * vxge_hw_vpath_alarm_process - Process Alarms.
2159 * @vpath: Virtual Path.
2160 * @skip_alarms: Do not clear the alarms
2161 *
2162 * Process vpath alarms.
2163 *
2164 */
vxge_hw_vpath_alarm_process(struct __vxge_hw_vpath_handle * vp,u32 skip_alarms)2165 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2166 struct __vxge_hw_vpath_handle *vp,
2167 u32 skip_alarms)
2168 {
2169 enum vxge_hw_status status = VXGE_HW_OK;
2170
2171 if (vp == NULL) {
2172 status = VXGE_HW_ERR_INVALID_HANDLE;
2173 goto exit;
2174 }
2175
2176 status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2177 exit:
2178 return status;
2179 }
2180
2181 /**
2182 * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2183 * alrms
2184 * @vp: Virtual Path handle.
2185 * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2186 * interrupts(Can be repeated). If fifo or ring are not enabled
2187 * the MSIX vector for that should be set to 0
2188 * @alarm_msix_id: MSIX vector for alarm.
2189 *
2190 * This API will associate a given MSIX vector numbers with the four TIM
2191 * interrupts and alarm interrupt.
2192 */
2193 void
vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle * vp,int * tim_msix_id,int alarm_msix_id)2194 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2195 int alarm_msix_id)
2196 {
2197 u64 val64;
2198 struct __vxge_hw_virtualpath *vpath = vp->vpath;
2199 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2200 u32 vp_id = vp->vpath->vp_id;
2201
2202 val64 = VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2203 (vp_id * 4) + tim_msix_id[0]) |
2204 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2205 (vp_id * 4) + tim_msix_id[1]);
2206
2207 writeq(val64, &vp_reg->interrupt_cfg0);
2208
2209 writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2210 (vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2211 &vp_reg->interrupt_cfg2);
2212
2213 if (vpath->hldev->config.intr_mode ==
2214 VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2215 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2216 VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2217 0, 32), &vp_reg->one_shot_vect0_en);
2218 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2219 VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2220 0, 32), &vp_reg->one_shot_vect1_en);
2221 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2222 VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2223 0, 32), &vp_reg->one_shot_vect2_en);
2224 }
2225 }
2226
2227 /**
2228 * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2229 * @vp: Virtual Path handle.
2230 * @msix_id: MSIX ID
2231 *
2232 * The function masks the msix interrupt for the given msix_id
2233 *
2234 * Returns: 0,
2235 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2236 * status.
2237 * See also:
2238 */
2239 void
vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle * vp,int msix_id)2240 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2241 {
2242 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2243 __vxge_hw_pio_mem_write32_upper(
2244 (u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2245 &hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2246 }
2247
2248 /**
2249 * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2250 * @vp: Virtual Path handle.
2251 * @msix_id: MSI ID
2252 *
2253 * The function clears the msix interrupt for the given msix_id
2254 *
2255 * Returns: 0,
2256 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2257 * status.
2258 * See also:
2259 */
vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle * vp,int msix_id)2260 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2261 {
2262 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2263
2264 if ((hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT))
2265 __vxge_hw_pio_mem_write32_upper(
2266 (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2267 &hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2268 else
2269 __vxge_hw_pio_mem_write32_upper(
2270 (u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2271 &hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2272 }
2273
2274 /**
2275 * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2276 * @vp: Virtual Path handle.
2277 * @msix_id: MSI ID
2278 *
2279 * The function unmasks the msix interrupt for the given msix_id
2280 *
2281 * Returns: 0,
2282 * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2283 * status.
2284 * See also:
2285 */
2286 void
vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle * vp,int msix_id)2287 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2288 {
2289 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2290 __vxge_hw_pio_mem_write32_upper(
2291 (u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2292 &hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2293 }
2294
2295 /**
2296 * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2297 * @vp: Virtual Path handle.
2298 *
2299 * Mask Tx and Rx vpath interrupts.
2300 *
2301 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2302 */
vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle * vp)2303 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2304 {
2305 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2306 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2307 u64 val64;
2308 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2309
2310 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2311 tim_int_mask1, vp->vpath->vp_id);
2312
2313 val64 = readq(&hldev->common_reg->tim_int_mask0);
2314
2315 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2316 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2317 writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2318 tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2319 &hldev->common_reg->tim_int_mask0);
2320 }
2321
2322 val64 = readl(&hldev->common_reg->tim_int_mask1);
2323
2324 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2325 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2326 __vxge_hw_pio_mem_write32_upper(
2327 (tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2328 tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2329 &hldev->common_reg->tim_int_mask1);
2330 }
2331 }
2332
2333 /**
2334 * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2335 * @vp: Virtual Path handle.
2336 *
2337 * Unmask Tx and Rx vpath interrupts.
2338 *
2339 * See also: vxge_hw_vpath_inta_mask_tx_rx()
2340 */
vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle * vp)2341 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2342 {
2343 u64 tim_int_mask0[4] = {[0 ...3] = 0};
2344 u32 tim_int_mask1[4] = {[0 ...3] = 0};
2345 u64 val64;
2346 struct __vxge_hw_device *hldev = vp->vpath->hldev;
2347
2348 VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2349 tim_int_mask1, vp->vpath->vp_id);
2350
2351 val64 = readq(&hldev->common_reg->tim_int_mask0);
2352
2353 if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2354 (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2355 writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2356 tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2357 &hldev->common_reg->tim_int_mask0);
2358 }
2359
2360 if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2361 (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2362 __vxge_hw_pio_mem_write32_upper(
2363 (~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2364 tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2365 &hldev->common_reg->tim_int_mask1);
2366 }
2367 }
2368
2369 /**
2370 * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2371 * descriptors and process the same.
2372 * @ring: Handle to the ring object used for receive
2373 *
2374 * The function polls the Rx for the completed descriptors and calls
2375 * the driver via supplied completion callback.
2376 *
2377 * Returns: VXGE_HW_OK, if the polling is completed successful.
2378 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2379 * descriptors available which are yet to be processed.
2380 *
2381 * See also: vxge_hw_vpath_poll_rx()
2382 */
vxge_hw_vpath_poll_rx(struct __vxge_hw_ring * ring)2383 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2384 {
2385 u8 t_code;
2386 enum vxge_hw_status status = VXGE_HW_OK;
2387 void *first_rxdh;
2388 u64 val64 = 0;
2389 int new_count = 0;
2390
2391 ring->cmpl_cnt = 0;
2392
2393 status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2394 if (status == VXGE_HW_OK)
2395 ring->callback(ring, first_rxdh,
2396 t_code, ring->channel.userdata);
2397
2398 if (ring->cmpl_cnt != 0) {
2399 ring->doorbell_cnt += ring->cmpl_cnt;
2400 if (ring->doorbell_cnt >= ring->rxds_limit) {
2401 /*
2402 * Each RxD is of 4 qwords, update the number of
2403 * qwords replenished
2404 */
2405 new_count = (ring->doorbell_cnt * 4);
2406
2407 /* For each block add 4 more qwords */
2408 ring->total_db_cnt += ring->doorbell_cnt;
2409 if (ring->total_db_cnt >= ring->rxds_per_block) {
2410 new_count += 4;
2411 /* Reset total count */
2412 ring->total_db_cnt %= ring->rxds_per_block;
2413 }
2414 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2415 &ring->vp_reg->prc_rxd_doorbell);
2416 val64 =
2417 readl(&ring->common_reg->titan_general_int_status);
2418 ring->doorbell_cnt = 0;
2419 }
2420 }
2421
2422 return status;
2423 }
2424
2425 /**
2426 * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2427 * the same.
2428 * @fifo: Handle to the fifo object used for non offload send
2429 *
2430 * The function polls the Tx for the completed descriptors and calls
2431 * the driver via supplied completion callback.
2432 *
2433 * Returns: VXGE_HW_OK, if the polling is completed successful.
2434 * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2435 * descriptors available which are yet to be processed.
2436 */
vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo * fifo,struct sk_buff *** skb_ptr,int nr_skb,int * more)2437 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2438 struct sk_buff ***skb_ptr, int nr_skb,
2439 int *more)
2440 {
2441 enum vxge_hw_fifo_tcode t_code;
2442 void *first_txdlh;
2443 enum vxge_hw_status status = VXGE_HW_OK;
2444 struct __vxge_hw_channel *channel;
2445
2446 channel = &fifo->channel;
2447
2448 status = vxge_hw_fifo_txdl_next_completed(fifo,
2449 &first_txdlh, &t_code);
2450 if (status == VXGE_HW_OK)
2451 if (fifo->callback(fifo, first_txdlh, t_code,
2452 channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2453 status = VXGE_HW_COMPLETIONS_REMAIN;
2454
2455 return status;
2456 }
2457