1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-traffic.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                 Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/etherdevice.h>
15 #include <linux/io-64-nonatomic-lo-hi.h>
16 #include <linux/prefetch.h>
17 
18 #include "vxge-traffic.h"
19 #include "vxge-config.h"
20 #include "vxge-main.h"
21 
22 /*
23  * vxge_hw_vpath_intr_enable - Enable vpath interrupts.
24  * @vp: Virtual Path handle.
25  *
26  * Enable vpath interrupts. The function is to be executed the last in
27  * vpath initialization sequence.
28  *
29  * See also: vxge_hw_vpath_intr_disable()
30  */
vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle * vp)31 enum vxge_hw_status vxge_hw_vpath_intr_enable(struct __vxge_hw_vpath_handle *vp)
32 {
33 	u64 val64;
34 
35 	struct __vxge_hw_virtualpath *vpath;
36 	struct vxge_hw_vpath_reg __iomem *vp_reg;
37 	enum vxge_hw_status status = VXGE_HW_OK;
38 	if (vp == NULL) {
39 		status = VXGE_HW_ERR_INVALID_HANDLE;
40 		goto exit;
41 	}
42 
43 	vpath = vp->vpath;
44 
45 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
46 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
47 		goto exit;
48 	}
49 
50 	vp_reg = vpath->vp_reg;
51 
52 	writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_reg);
53 
54 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
55 			&vp_reg->general_errors_reg);
56 
57 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
58 			&vp_reg->pci_config_errors_reg);
59 
60 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
61 			&vp_reg->mrpcim_to_vpath_alarm_reg);
62 
63 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
64 			&vp_reg->srpcim_to_vpath_alarm_reg);
65 
66 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
67 			&vp_reg->vpath_ppif_int_status);
68 
69 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
70 			&vp_reg->srpcim_msg_to_vpath_reg);
71 
72 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
73 			&vp_reg->vpath_pcipif_int_status);
74 
75 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
76 			&vp_reg->prc_alarm_reg);
77 
78 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
79 			&vp_reg->wrdma_alarm_status);
80 
81 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
82 			&vp_reg->asic_ntwk_vp_err_reg);
83 
84 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
85 			&vp_reg->xgmac_vp_int_status);
86 
87 	val64 = readq(&vp_reg->vpath_general_int_status);
88 
89 	/* Mask unwanted interrupts */
90 
91 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
92 			&vp_reg->vpath_pcipif_int_mask);
93 
94 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
95 			&vp_reg->srpcim_msg_to_vpath_mask);
96 
97 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
98 			&vp_reg->srpcim_to_vpath_alarm_mask);
99 
100 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
101 			&vp_reg->mrpcim_to_vpath_alarm_mask);
102 
103 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
104 			&vp_reg->pci_config_errors_mask);
105 
106 	/* Unmask the individual interrupts */
107 
108 	writeq((u32)vxge_bVALn((VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO1_OVRFLOW|
109 		VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO2_OVRFLOW|
110 		VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ|
111 		VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR), 0, 32),
112 		&vp_reg->general_errors_mask);
113 
114 	__vxge_hw_pio_mem_write32_upper(
115 		(u32)vxge_bVALn((VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_OVRWR|
116 		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_OVRWR|
117 		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_POISON|
118 		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_POISON|
119 		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO1_DMA_ERR|
120 		VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO2_DMA_ERR), 0, 32),
121 		&vp_reg->kdfcctl_errors_mask);
122 
123 	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->vpath_ppif_int_mask);
124 
125 	__vxge_hw_pio_mem_write32_upper(
126 		(u32)vxge_bVALn(VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP, 0, 32),
127 		&vp_reg->prc_alarm_mask);
128 
129 	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->wrdma_alarm_mask);
130 	__vxge_hw_pio_mem_write32_upper(0, &vp_reg->xgmac_vp_int_mask);
131 
132 	if (vpath->hldev->first_vp_id != vpath->vp_id)
133 		__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
134 			&vp_reg->asic_ntwk_vp_err_mask);
135 	else
136 		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn((
137 		VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_FAULT |
138 		VXGE_HW_ASIC_NTWK_VP_ERR_REG_XMACJ_NTWK_REAFFIRMED_OK), 0, 32),
139 		&vp_reg->asic_ntwk_vp_err_mask);
140 
141 	__vxge_hw_pio_mem_write32_upper(0,
142 		&vp_reg->vpath_general_int_mask);
143 exit:
144 	return status;
145 
146 }
147 
148 /*
149  * vxge_hw_vpath_intr_disable - Disable vpath interrupts.
150  * @vp: Virtual Path handle.
151  *
152  * Disable vpath interrupts. The function is to be executed the last in
153  * vpath initialization sequence.
154  *
155  * See also: vxge_hw_vpath_intr_enable()
156  */
vxge_hw_vpath_intr_disable(struct __vxge_hw_vpath_handle * vp)157 enum vxge_hw_status vxge_hw_vpath_intr_disable(
158 			struct __vxge_hw_vpath_handle *vp)
159 {
160 	u64 val64;
161 
162 	struct __vxge_hw_virtualpath *vpath;
163 	enum vxge_hw_status status = VXGE_HW_OK;
164 	struct vxge_hw_vpath_reg __iomem *vp_reg;
165 	if (vp == NULL) {
166 		status = VXGE_HW_ERR_INVALID_HANDLE;
167 		goto exit;
168 	}
169 
170 	vpath = vp->vpath;
171 
172 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
173 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
174 		goto exit;
175 	}
176 	vp_reg = vpath->vp_reg;
177 
178 	__vxge_hw_pio_mem_write32_upper(
179 		(u32)VXGE_HW_INTR_MASK_ALL,
180 		&vp_reg->vpath_general_int_mask);
181 
182 	val64 = VXGE_HW_TIM_CLR_INT_EN_VP(1 << (16 - vpath->vp_id));
183 
184 	writeq(VXGE_HW_INTR_MASK_ALL, &vp_reg->kdfcctl_errors_mask);
185 
186 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
187 			&vp_reg->general_errors_mask);
188 
189 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
190 			&vp_reg->pci_config_errors_mask);
191 
192 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
193 			&vp_reg->mrpcim_to_vpath_alarm_mask);
194 
195 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
196 			&vp_reg->srpcim_to_vpath_alarm_mask);
197 
198 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
199 			&vp_reg->vpath_ppif_int_mask);
200 
201 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
202 			&vp_reg->srpcim_msg_to_vpath_mask);
203 
204 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
205 			&vp_reg->vpath_pcipif_int_mask);
206 
207 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
208 			&vp_reg->wrdma_alarm_mask);
209 
210 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
211 			&vp_reg->prc_alarm_mask);
212 
213 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
214 			&vp_reg->xgmac_vp_int_mask);
215 
216 	__vxge_hw_pio_mem_write32_upper((u32)VXGE_HW_INTR_MASK_ALL,
217 			&vp_reg->asic_ntwk_vp_err_mask);
218 
219 exit:
220 	return status;
221 }
222 
vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo * fifo)223 void vxge_hw_vpath_tti_ci_set(struct __vxge_hw_fifo *fifo)
224 {
225 	struct vxge_hw_vpath_reg __iomem *vp_reg;
226 	struct vxge_hw_vp_config *config;
227 	u64 val64;
228 
229 	if (fifo->config->enable != VXGE_HW_FIFO_ENABLE)
230 		return;
231 
232 	vp_reg = fifo->vp_reg;
233 	config = container_of(fifo->config, struct vxge_hw_vp_config, fifo);
234 
235 	if (config->tti.timer_ci_en != VXGE_HW_TIM_TIMER_CI_ENABLE) {
236 		config->tti.timer_ci_en = VXGE_HW_TIM_TIMER_CI_ENABLE;
237 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
238 		val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
239 		fifo->tim_tti_cfg1_saved = val64;
240 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
241 	}
242 }
243 
vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring * ring)244 void vxge_hw_vpath_dynamic_rti_ci_set(struct __vxge_hw_ring *ring)
245 {
246 	u64 val64 = ring->tim_rti_cfg1_saved;
247 
248 	val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
249 	ring->tim_rti_cfg1_saved = val64;
250 	writeq(val64, &ring->vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
251 }
252 
vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo * fifo)253 void vxge_hw_vpath_dynamic_tti_rtimer_set(struct __vxge_hw_fifo *fifo)
254 {
255 	u64 val64 = fifo->tim_tti_cfg3_saved;
256 	u64 timer = (fifo->rtimer * 1000) / 272;
257 
258 	val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
259 	if (timer)
260 		val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
261 			VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(5);
262 
263 	writeq(val64, &fifo->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
264 	/* tti_cfg3_saved is not updated again because it is
265 	 * initialized at one place only - init time.
266 	 */
267 }
268 
vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring * ring)269 void vxge_hw_vpath_dynamic_rti_rtimer_set(struct __vxge_hw_ring *ring)
270 {
271 	u64 val64 = ring->tim_rti_cfg3_saved;
272 	u64 timer = (ring->rtimer * 1000) / 272;
273 
274 	val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(0x3ffffff);
275 	if (timer)
276 		val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(timer) |
277 			VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_EVENT_SF(4);
278 
279 	writeq(val64, &ring->vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
280 	/* rti_cfg3_saved is not updated again because it is
281 	 * initialized at one place only - init time.
282 	 */
283 }
284 
285 /**
286  * vxge_hw_channel_msix_mask - Mask MSIX Vector.
287  * @channeh: Channel for rx or tx handle
288  * @msix_id:  MSIX ID
289  *
290  * The function masks the msix interrupt for the given msix_id
291  *
292  * Returns: 0
293  */
vxge_hw_channel_msix_mask(struct __vxge_hw_channel * channel,int msix_id)294 void vxge_hw_channel_msix_mask(struct __vxge_hw_channel *channel, int msix_id)
295 {
296 
297 	__vxge_hw_pio_mem_write32_upper(
298 		(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
299 		&channel->common_reg->set_msix_mask_vect[msix_id%4]);
300 }
301 
302 /**
303  * vxge_hw_channel_msix_unmask - Unmask the MSIX Vector.
304  * @channeh: Channel for rx or tx handle
305  * @msix_id:  MSI ID
306  *
307  * The function unmasks the msix interrupt for the given msix_id
308  *
309  * Returns: 0
310  */
311 void
vxge_hw_channel_msix_unmask(struct __vxge_hw_channel * channel,int msix_id)312 vxge_hw_channel_msix_unmask(struct __vxge_hw_channel *channel, int msix_id)
313 {
314 
315 	__vxge_hw_pio_mem_write32_upper(
316 		(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
317 		&channel->common_reg->clear_msix_mask_vect[msix_id%4]);
318 }
319 
320 /**
321  * vxge_hw_channel_msix_clear - Unmask the MSIX Vector.
322  * @channel: Channel for rx or tx handle
323  * @msix_id:  MSI ID
324  *
325  * The function unmasks the msix interrupt for the given msix_id
326  * if configured in MSIX oneshot mode
327  *
328  * Returns: 0
329  */
vxge_hw_channel_msix_clear(struct __vxge_hw_channel * channel,int msix_id)330 void vxge_hw_channel_msix_clear(struct __vxge_hw_channel *channel, int msix_id)
331 {
332 	__vxge_hw_pio_mem_write32_upper(
333 		(u32) vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
334 		&channel->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
335 }
336 
337 /**
338  * vxge_hw_device_set_intr_type - Updates the configuration
339  *		with new interrupt type.
340  * @hldev: HW device handle.
341  * @intr_mode: New interrupt type
342  */
vxge_hw_device_set_intr_type(struct __vxge_hw_device * hldev,u32 intr_mode)343 u32 vxge_hw_device_set_intr_type(struct __vxge_hw_device *hldev, u32 intr_mode)
344 {
345 
346 	if ((intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
347 	   (intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
348 	   (intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
349 	   (intr_mode != VXGE_HW_INTR_MODE_DEF))
350 		intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
351 
352 	hldev->config.intr_mode = intr_mode;
353 	return intr_mode;
354 }
355 
356 /**
357  * vxge_hw_device_intr_enable - Enable interrupts.
358  * @hldev: HW device handle.
359  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
360  *      the type(s) of interrupts to enable.
361  *
362  * Enable Titan interrupts. The function is to be executed the last in
363  * Titan initialization sequence.
364  *
365  * See also: vxge_hw_device_intr_disable()
366  */
vxge_hw_device_intr_enable(struct __vxge_hw_device * hldev)367 void vxge_hw_device_intr_enable(struct __vxge_hw_device *hldev)
368 {
369 	u32 i;
370 	u64 val64;
371 	u32 val32;
372 
373 	vxge_hw_device_mask_all(hldev);
374 
375 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
376 
377 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
378 			continue;
379 
380 		vxge_hw_vpath_intr_enable(
381 			VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
382 	}
383 
384 	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE) {
385 		val64 = hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
386 			hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX];
387 
388 		if (val64 != 0) {
389 			writeq(val64, &hldev->common_reg->tim_int_status0);
390 
391 			writeq(~val64, &hldev->common_reg->tim_int_mask0);
392 		}
393 
394 		val32 = hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
395 			hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX];
396 
397 		if (val32 != 0) {
398 			__vxge_hw_pio_mem_write32_upper(val32,
399 					&hldev->common_reg->tim_int_status1);
400 
401 			__vxge_hw_pio_mem_write32_upper(~val32,
402 					&hldev->common_reg->tim_int_mask1);
403 		}
404 	}
405 
406 	val64 = readq(&hldev->common_reg->titan_general_int_status);
407 
408 	vxge_hw_device_unmask_all(hldev);
409 }
410 
411 /**
412  * vxge_hw_device_intr_disable - Disable Titan interrupts.
413  * @hldev: HW device handle.
414  * @op: One of the enum vxge_hw_device_intr enumerated values specifying
415  *      the type(s) of interrupts to disable.
416  *
417  * Disable Titan interrupts.
418  *
419  * See also: vxge_hw_device_intr_enable()
420  */
vxge_hw_device_intr_disable(struct __vxge_hw_device * hldev)421 void vxge_hw_device_intr_disable(struct __vxge_hw_device *hldev)
422 {
423 	u32 i;
424 
425 	vxge_hw_device_mask_all(hldev);
426 
427 	/* mask all the tim interrupts */
428 	writeq(VXGE_HW_INTR_MASK_ALL, &hldev->common_reg->tim_int_mask0);
429 	__vxge_hw_pio_mem_write32_upper(VXGE_HW_DEFAULT_32,
430 		&hldev->common_reg->tim_int_mask1);
431 
432 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
433 
434 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
435 			continue;
436 
437 		vxge_hw_vpath_intr_disable(
438 			VXGE_HW_VIRTUAL_PATH_HANDLE(&hldev->virtual_paths[i]));
439 	}
440 }
441 
442 /**
443  * vxge_hw_device_mask_all - Mask all device interrupts.
444  * @hldev: HW device handle.
445  *
446  * Mask	all device interrupts.
447  *
448  * See also: vxge_hw_device_unmask_all()
449  */
vxge_hw_device_mask_all(struct __vxge_hw_device * hldev)450 void vxge_hw_device_mask_all(struct __vxge_hw_device *hldev)
451 {
452 	u64 val64;
453 
454 	val64 = VXGE_HW_TITAN_MASK_ALL_INT_ALARM |
455 		VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
456 
457 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
458 				&hldev->common_reg->titan_mask_all_int);
459 }
460 
461 /**
462  * vxge_hw_device_unmask_all - Unmask all device interrupts.
463  * @hldev: HW device handle.
464  *
465  * Unmask all device interrupts.
466  *
467  * See also: vxge_hw_device_mask_all()
468  */
vxge_hw_device_unmask_all(struct __vxge_hw_device * hldev)469 void vxge_hw_device_unmask_all(struct __vxge_hw_device *hldev)
470 {
471 	u64 val64 = 0;
472 
473 	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_IRQLINE)
474 		val64 =  VXGE_HW_TITAN_MASK_ALL_INT_TRAFFIC;
475 
476 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
477 			&hldev->common_reg->titan_mask_all_int);
478 }
479 
480 /**
481  * vxge_hw_device_flush_io - Flush io writes.
482  * @hldev: HW device handle.
483  *
484  * The function	performs a read operation to flush io writes.
485  *
486  * Returns: void
487  */
vxge_hw_device_flush_io(struct __vxge_hw_device * hldev)488 void vxge_hw_device_flush_io(struct __vxge_hw_device *hldev)
489 {
490 	u32 val32;
491 
492 	val32 = readl(&hldev->common_reg->titan_general_int_status);
493 }
494 
495 /**
496  * __vxge_hw_device_handle_error - Handle error
497  * @hldev: HW device
498  * @vp_id: Vpath Id
499  * @type: Error type. Please see enum vxge_hw_event{}
500  *
501  * Handle error.
502  */
503 static enum vxge_hw_status
__vxge_hw_device_handle_error(struct __vxge_hw_device * hldev,u32 vp_id,enum vxge_hw_event type)504 __vxge_hw_device_handle_error(struct __vxge_hw_device *hldev, u32 vp_id,
505 			      enum vxge_hw_event type)
506 {
507 	switch (type) {
508 	case VXGE_HW_EVENT_UNKNOWN:
509 		break;
510 	case VXGE_HW_EVENT_RESET_START:
511 	case VXGE_HW_EVENT_RESET_COMPLETE:
512 	case VXGE_HW_EVENT_LINK_DOWN:
513 	case VXGE_HW_EVENT_LINK_UP:
514 		goto out;
515 	case VXGE_HW_EVENT_ALARM_CLEARED:
516 		goto out;
517 	case VXGE_HW_EVENT_ECCERR:
518 	case VXGE_HW_EVENT_MRPCIM_ECCERR:
519 		goto out;
520 	case VXGE_HW_EVENT_FIFO_ERR:
521 	case VXGE_HW_EVENT_VPATH_ERR:
522 	case VXGE_HW_EVENT_CRITICAL_ERR:
523 	case VXGE_HW_EVENT_SERR:
524 		break;
525 	case VXGE_HW_EVENT_SRPCIM_SERR:
526 	case VXGE_HW_EVENT_MRPCIM_SERR:
527 		goto out;
528 	case VXGE_HW_EVENT_SLOT_FREEZE:
529 		break;
530 	default:
531 		vxge_assert(0);
532 		goto out;
533 	}
534 
535 	/* notify driver */
536 	if (hldev->uld_callbacks->crit_err)
537 		hldev->uld_callbacks->crit_err(hldev,
538 			type, vp_id);
539 out:
540 
541 	return VXGE_HW_OK;
542 }
543 
544 /*
545  * __vxge_hw_device_handle_link_down_ind
546  * @hldev: HW device handle.
547  *
548  * Link down indication handler. The function is invoked by HW when
549  * Titan indicates that the link is down.
550  */
551 static enum vxge_hw_status
__vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device * hldev)552 __vxge_hw_device_handle_link_down_ind(struct __vxge_hw_device *hldev)
553 {
554 	/*
555 	 * If the previous link state is not down, return.
556 	 */
557 	if (hldev->link_state == VXGE_HW_LINK_DOWN)
558 		goto exit;
559 
560 	hldev->link_state = VXGE_HW_LINK_DOWN;
561 
562 	/* notify driver */
563 	if (hldev->uld_callbacks->link_down)
564 		hldev->uld_callbacks->link_down(hldev);
565 exit:
566 	return VXGE_HW_OK;
567 }
568 
569 /*
570  * __vxge_hw_device_handle_link_up_ind
571  * @hldev: HW device handle.
572  *
573  * Link up indication handler. The function is invoked by HW when
574  * Titan indicates that the link is up for programmable amount of time.
575  */
576 static enum vxge_hw_status
__vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device * hldev)577 __vxge_hw_device_handle_link_up_ind(struct __vxge_hw_device *hldev)
578 {
579 	/*
580 	 * If the previous link state is not down, return.
581 	 */
582 	if (hldev->link_state == VXGE_HW_LINK_UP)
583 		goto exit;
584 
585 	hldev->link_state = VXGE_HW_LINK_UP;
586 
587 	/* notify driver */
588 	if (hldev->uld_callbacks->link_up)
589 		hldev->uld_callbacks->link_up(hldev);
590 exit:
591 	return VXGE_HW_OK;
592 }
593 
594 /*
595  * __vxge_hw_vpath_alarm_process - Process Alarms.
596  * @vpath: Virtual Path.
597  * @skip_alarms: Do not clear the alarms
598  *
599  * Process vpath alarms.
600  *
601  */
602 static enum vxge_hw_status
__vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath * vpath,u32 skip_alarms)603 __vxge_hw_vpath_alarm_process(struct __vxge_hw_virtualpath *vpath,
604 			      u32 skip_alarms)
605 {
606 	u64 val64;
607 	u64 alarm_status;
608 	u64 pic_status;
609 	struct __vxge_hw_device *hldev = NULL;
610 	enum vxge_hw_event alarm_event = VXGE_HW_EVENT_UNKNOWN;
611 	u64 mask64;
612 	struct vxge_hw_vpath_stats_sw_info *sw_stats;
613 	struct vxge_hw_vpath_reg __iomem *vp_reg;
614 
615 	if (vpath == NULL) {
616 		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
617 			alarm_event);
618 		goto out2;
619 	}
620 
621 	hldev = vpath->hldev;
622 	vp_reg = vpath->vp_reg;
623 	alarm_status = readq(&vp_reg->vpath_general_int_status);
624 
625 	if (alarm_status == VXGE_HW_ALL_FOXES) {
626 		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_SLOT_FREEZE,
627 			alarm_event);
628 		goto out;
629 	}
630 
631 	sw_stats = vpath->sw_stats;
632 
633 	if (alarm_status & ~(
634 		VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT |
635 		VXGE_HW_VPATH_GENERAL_INT_STATUS_PCI_INT |
636 		VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT |
637 		VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT)) {
638 		sw_stats->error_stats.unknown_alarms++;
639 
640 		alarm_event = VXGE_HW_SET_LEVEL(VXGE_HW_EVENT_UNKNOWN,
641 			alarm_event);
642 		goto out;
643 	}
644 
645 	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_XMAC_INT) {
646 
647 		val64 = readq(&vp_reg->xgmac_vp_int_status);
648 
649 		if (val64 &
650 		VXGE_HW_XGMAC_VP_INT_STATUS_ASIC_NTWK_VP_ERR_ASIC_NTWK_VP_INT) {
651 
652 			val64 = readq(&vp_reg->asic_ntwk_vp_err_reg);
653 
654 			if (((val64 &
655 			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT) &&
656 			     (!(val64 &
657 				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK))) ||
658 			    ((val64 &
659 			     VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR) &&
660 			     (!(val64 &
661 				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR)
662 				     ))) {
663 				sw_stats->error_stats.network_sustained_fault++;
664 
665 				writeq(
666 				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT,
667 					&vp_reg->asic_ntwk_vp_err_mask);
668 
669 				__vxge_hw_device_handle_link_down_ind(hldev);
670 				alarm_event = VXGE_HW_SET_LEVEL(
671 					VXGE_HW_EVENT_LINK_DOWN, alarm_event);
672 			}
673 
674 			if (((val64 &
675 			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK) &&
676 			     (!(val64 &
677 				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT))) ||
678 			    ((val64 &
679 			      VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK_OCCURR) &&
680 			     (!(val64 &
681 				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_FLT_OCCURR)
682 				     ))) {
683 
684 				sw_stats->error_stats.network_sustained_ok++;
685 
686 				writeq(
687 				VXGE_HW_ASIC_NW_VP_ERR_REG_XMACJ_STN_OK,
688 					&vp_reg->asic_ntwk_vp_err_mask);
689 
690 				__vxge_hw_device_handle_link_up_ind(hldev);
691 				alarm_event = VXGE_HW_SET_LEVEL(
692 					VXGE_HW_EVENT_LINK_UP, alarm_event);
693 			}
694 
695 			writeq(VXGE_HW_INTR_MASK_ALL,
696 				&vp_reg->asic_ntwk_vp_err_reg);
697 
698 			alarm_event = VXGE_HW_SET_LEVEL(
699 				VXGE_HW_EVENT_ALARM_CLEARED, alarm_event);
700 
701 			if (skip_alarms)
702 				return VXGE_HW_OK;
703 		}
704 	}
705 
706 	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_PIC_INT) {
707 
708 		pic_status = readq(&vp_reg->vpath_ppif_int_status);
709 
710 		if (pic_status &
711 		    VXGE_HW_VPATH_PPIF_INT_STATUS_GENERAL_ERRORS_GENERAL_INT) {
712 
713 			val64 = readq(&vp_reg->general_errors_reg);
714 			mask64 = readq(&vp_reg->general_errors_mask);
715 
716 			if ((val64 &
717 				VXGE_HW_GENERAL_ERRORS_REG_INI_SERR_DET) &
718 				~mask64) {
719 				sw_stats->error_stats.ini_serr_det++;
720 
721 				alarm_event = VXGE_HW_SET_LEVEL(
722 					VXGE_HW_EVENT_SERR, alarm_event);
723 			}
724 
725 			if ((val64 &
726 			    VXGE_HW_GENERAL_ERRORS_REG_DBLGEN_FIFO0_OVRFLOW) &
727 				~mask64) {
728 				sw_stats->error_stats.dblgen_fifo0_overflow++;
729 
730 				alarm_event = VXGE_HW_SET_LEVEL(
731 					VXGE_HW_EVENT_FIFO_ERR, alarm_event);
732 			}
733 
734 			if ((val64 &
735 			    VXGE_HW_GENERAL_ERRORS_REG_STATSB_PIF_CHAIN_ERR) &
736 				~mask64)
737 				sw_stats->error_stats.statsb_pif_chain_error++;
738 
739 			if ((val64 &
740 			   VXGE_HW_GENERAL_ERRORS_REG_STATSB_DROP_TIMEOUT_REQ) &
741 				~mask64)
742 				sw_stats->error_stats.statsb_drop_timeout++;
743 
744 			if ((val64 &
745 				VXGE_HW_GENERAL_ERRORS_REG_TGT_ILLEGAL_ACCESS) &
746 				~mask64)
747 				sw_stats->error_stats.target_illegal_access++;
748 
749 			if (!skip_alarms) {
750 				writeq(VXGE_HW_INTR_MASK_ALL,
751 					&vp_reg->general_errors_reg);
752 				alarm_event = VXGE_HW_SET_LEVEL(
753 					VXGE_HW_EVENT_ALARM_CLEARED,
754 					alarm_event);
755 			}
756 		}
757 
758 		if (pic_status &
759 		    VXGE_HW_VPATH_PPIF_INT_STATUS_KDFCCTL_ERRORS_KDFCCTL_INT) {
760 
761 			val64 = readq(&vp_reg->kdfcctl_errors_reg);
762 			mask64 = readq(&vp_reg->kdfcctl_errors_mask);
763 
764 			if ((val64 &
765 			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_OVRWR) &
766 				~mask64) {
767 				sw_stats->error_stats.kdfcctl_fifo0_overwrite++;
768 
769 				alarm_event = VXGE_HW_SET_LEVEL(
770 					VXGE_HW_EVENT_FIFO_ERR,
771 					alarm_event);
772 			}
773 
774 			if ((val64 &
775 			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_POISON) &
776 				~mask64) {
777 				sw_stats->error_stats.kdfcctl_fifo0_poison++;
778 
779 				alarm_event = VXGE_HW_SET_LEVEL(
780 					VXGE_HW_EVENT_FIFO_ERR,
781 					alarm_event);
782 			}
783 
784 			if ((val64 &
785 			    VXGE_HW_KDFCCTL_ERRORS_REG_KDFCCTL_FIFO0_DMA_ERR) &
786 				~mask64) {
787 				sw_stats->error_stats.kdfcctl_fifo0_dma_error++;
788 
789 				alarm_event = VXGE_HW_SET_LEVEL(
790 					VXGE_HW_EVENT_FIFO_ERR,
791 					alarm_event);
792 			}
793 
794 			if (!skip_alarms) {
795 				writeq(VXGE_HW_INTR_MASK_ALL,
796 					&vp_reg->kdfcctl_errors_reg);
797 				alarm_event = VXGE_HW_SET_LEVEL(
798 					VXGE_HW_EVENT_ALARM_CLEARED,
799 					alarm_event);
800 			}
801 		}
802 
803 	}
804 
805 	if (alarm_status & VXGE_HW_VPATH_GENERAL_INT_STATUS_WRDMA_INT) {
806 
807 		val64 = readq(&vp_reg->wrdma_alarm_status);
808 
809 		if (val64 & VXGE_HW_WRDMA_ALARM_STATUS_PRC_ALARM_PRC_INT) {
810 
811 			val64 = readq(&vp_reg->prc_alarm_reg);
812 			mask64 = readq(&vp_reg->prc_alarm_mask);
813 
814 			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RING_BUMP)&
815 				~mask64)
816 				sw_stats->error_stats.prc_ring_bumps++;
817 
818 			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ERR) &
819 				~mask64) {
820 				sw_stats->error_stats.prc_rxdcm_sc_err++;
821 
822 				alarm_event = VXGE_HW_SET_LEVEL(
823 					VXGE_HW_EVENT_VPATH_ERR,
824 					alarm_event);
825 			}
826 
827 			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_RXDCM_SC_ABORT)
828 				& ~mask64) {
829 				sw_stats->error_stats.prc_rxdcm_sc_abort++;
830 
831 				alarm_event = VXGE_HW_SET_LEVEL(
832 						VXGE_HW_EVENT_VPATH_ERR,
833 						alarm_event);
834 			}
835 
836 			if ((val64 & VXGE_HW_PRC_ALARM_REG_PRC_QUANTA_SIZE_ERR)
837 				 & ~mask64) {
838 				sw_stats->error_stats.prc_quanta_size_err++;
839 
840 				alarm_event = VXGE_HW_SET_LEVEL(
841 					VXGE_HW_EVENT_VPATH_ERR,
842 					alarm_event);
843 			}
844 
845 			if (!skip_alarms) {
846 				writeq(VXGE_HW_INTR_MASK_ALL,
847 					&vp_reg->prc_alarm_reg);
848 				alarm_event = VXGE_HW_SET_LEVEL(
849 						VXGE_HW_EVENT_ALARM_CLEARED,
850 						alarm_event);
851 			}
852 		}
853 	}
854 out:
855 	hldev->stats.sw_dev_err_stats.vpath_alarms++;
856 out2:
857 	if ((alarm_event == VXGE_HW_EVENT_ALARM_CLEARED) ||
858 		(alarm_event == VXGE_HW_EVENT_UNKNOWN))
859 		return VXGE_HW_OK;
860 
861 	__vxge_hw_device_handle_error(hldev, vpath->vp_id, alarm_event);
862 
863 	if (alarm_event == VXGE_HW_EVENT_SERR)
864 		return VXGE_HW_ERR_CRITICAL;
865 
866 	return (alarm_event == VXGE_HW_EVENT_SLOT_FREEZE) ?
867 		VXGE_HW_ERR_SLOT_FREEZE :
868 		(alarm_event == VXGE_HW_EVENT_FIFO_ERR) ? VXGE_HW_ERR_FIFO :
869 		VXGE_HW_ERR_VPATH;
870 }
871 
872 /**
873  * vxge_hw_device_begin_irq - Begin IRQ processing.
874  * @hldev: HW device handle.
875  * @skip_alarms: Do not clear the alarms
876  * @reason: "Reason" for the interrupt, the value of Titan's
877  *	general_int_status register.
878  *
879  * The function	performs two actions, It first checks whether (shared IRQ) the
880  * interrupt was raised	by the device. Next, it	masks the device interrupts.
881  *
882  * Note:
883  * vxge_hw_device_begin_irq() does not flush MMIO writes through the
884  * bridge. Therefore, two back-to-back interrupts are potentially possible.
885  *
886  * Returns: 0, if the interrupt	is not "ours" (note that in this case the
887  * device remain enabled).
888  * Otherwise, vxge_hw_device_begin_irq() returns 64bit general adapter
889  * status.
890  */
vxge_hw_device_begin_irq(struct __vxge_hw_device * hldev,u32 skip_alarms,u64 * reason)891 enum vxge_hw_status vxge_hw_device_begin_irq(struct __vxge_hw_device *hldev,
892 					     u32 skip_alarms, u64 *reason)
893 {
894 	u32 i;
895 	u64 val64;
896 	u64 adapter_status;
897 	u64 vpath_mask;
898 	enum vxge_hw_status ret = VXGE_HW_OK;
899 
900 	val64 = readq(&hldev->common_reg->titan_general_int_status);
901 
902 	if (unlikely(!val64)) {
903 		/* not Titan interrupt	*/
904 		*reason	= 0;
905 		ret = VXGE_HW_ERR_WRONG_IRQ;
906 		goto exit;
907 	}
908 
909 	if (unlikely(val64 == VXGE_HW_ALL_FOXES)) {
910 
911 		adapter_status = readq(&hldev->common_reg->adapter_status);
912 
913 		if (adapter_status == VXGE_HW_ALL_FOXES) {
914 
915 			__vxge_hw_device_handle_error(hldev,
916 				NULL_VPID, VXGE_HW_EVENT_SLOT_FREEZE);
917 			*reason	= 0;
918 			ret = VXGE_HW_ERR_SLOT_FREEZE;
919 			goto exit;
920 		}
921 	}
922 
923 	hldev->stats.sw_dev_info_stats.total_intr_cnt++;
924 
925 	*reason	= val64;
926 
927 	vpath_mask = hldev->vpaths_deployed >>
928 				(64 - VXGE_HW_MAX_VIRTUAL_PATHS);
929 
930 	if (val64 &
931 	    VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(vpath_mask)) {
932 		hldev->stats.sw_dev_info_stats.traffic_intr_cnt++;
933 
934 		return VXGE_HW_OK;
935 	}
936 
937 	hldev->stats.sw_dev_info_stats.not_traffic_intr_cnt++;
938 
939 	if (unlikely(val64 &
940 			VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_ALARM_INT)) {
941 
942 		enum vxge_hw_status error_level = VXGE_HW_OK;
943 
944 		hldev->stats.sw_dev_err_stats.vpath_alarms++;
945 
946 		for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
947 
948 			if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
949 				continue;
950 
951 			ret = __vxge_hw_vpath_alarm_process(
952 				&hldev->virtual_paths[i], skip_alarms);
953 
954 			error_level = VXGE_HW_SET_LEVEL(ret, error_level);
955 
956 			if (unlikely((ret == VXGE_HW_ERR_CRITICAL) ||
957 				(ret == VXGE_HW_ERR_SLOT_FREEZE)))
958 				break;
959 		}
960 
961 		ret = error_level;
962 	}
963 exit:
964 	return ret;
965 }
966 
967 /**
968  * vxge_hw_device_clear_tx_rx - Acknowledge (that is, clear) the
969  * condition that has caused the Tx and RX interrupt.
970  * @hldev: HW device.
971  *
972  * Acknowledge (that is, clear) the condition that has caused
973  * the Tx and Rx interrupt.
974  * See also: vxge_hw_device_begin_irq(),
975  * vxge_hw_device_mask_tx_rx(), vxge_hw_device_unmask_tx_rx().
976  */
vxge_hw_device_clear_tx_rx(struct __vxge_hw_device * hldev)977 void vxge_hw_device_clear_tx_rx(struct __vxge_hw_device *hldev)
978 {
979 
980 	if ((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
981 	   (hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
982 		writeq((hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
983 				 hldev->tim_int_mask0[VXGE_HW_VPATH_INTR_RX]),
984 				&hldev->common_reg->tim_int_status0);
985 	}
986 
987 	if ((hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
988 	   (hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
989 		__vxge_hw_pio_mem_write32_upper(
990 				(hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
991 				 hldev->tim_int_mask1[VXGE_HW_VPATH_INTR_RX]),
992 				&hldev->common_reg->tim_int_status1);
993 	}
994 }
995 
996 /*
997  * vxge_hw_channel_dtr_alloc - Allocate a dtr from the channel
998  * @channel: Channel
999  * @dtrh: Buffer to return the DTR pointer
1000  *
1001  * Allocates a dtr from the reserve array. If the reserve array is empty,
1002  * it swaps the reserve and free arrays.
1003  *
1004  */
1005 static enum vxge_hw_status
vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel * channel,void ** dtrh)1006 vxge_hw_channel_dtr_alloc(struct __vxge_hw_channel *channel, void **dtrh)
1007 {
1008 	if (channel->reserve_ptr - channel->reserve_top > 0) {
1009 _alloc_after_swap:
1010 		*dtrh =	channel->reserve_arr[--channel->reserve_ptr];
1011 
1012 		return VXGE_HW_OK;
1013 	}
1014 
1015 	/* switch between empty	and full arrays	*/
1016 
1017 	/* the idea behind such	a design is that by having free	and reserved
1018 	 * arrays separated we basically separated irq and non-irq parts.
1019 	 * i.e.	no additional lock need	to be done when	we free	a resource */
1020 
1021 	if (channel->length - channel->free_ptr > 0) {
1022 		swap(channel->reserve_arr, channel->free_arr);
1023 		channel->reserve_ptr = channel->length;
1024 		channel->reserve_top = channel->free_ptr;
1025 		channel->free_ptr = channel->length;
1026 
1027 		channel->stats->reserve_free_swaps_cnt++;
1028 
1029 		goto _alloc_after_swap;
1030 	}
1031 
1032 	channel->stats->full_cnt++;
1033 
1034 	*dtrh =	NULL;
1035 	return VXGE_HW_INF_OUT_OF_DESCRIPTORS;
1036 }
1037 
1038 /*
1039  * vxge_hw_channel_dtr_post - Post a dtr to the channel
1040  * @channelh: Channel
1041  * @dtrh: DTR pointer
1042  *
1043  * Posts a dtr to work array.
1044  *
1045  */
1046 static void
vxge_hw_channel_dtr_post(struct __vxge_hw_channel * channel,void * dtrh)1047 vxge_hw_channel_dtr_post(struct __vxge_hw_channel *channel, void *dtrh)
1048 {
1049 	vxge_assert(channel->work_arr[channel->post_index] == NULL);
1050 
1051 	channel->work_arr[channel->post_index++] = dtrh;
1052 
1053 	/* wrap-around */
1054 	if (channel->post_index	== channel->length)
1055 		channel->post_index = 0;
1056 }
1057 
1058 /*
1059  * vxge_hw_channel_dtr_try_complete - Returns next completed dtr
1060  * @channel: Channel
1061  * @dtr: Buffer to return the next completed DTR pointer
1062  *
1063  * Returns the next completed dtr with out removing it from work array
1064  *
1065  */
1066 void
vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel * channel,void ** dtrh)1067 vxge_hw_channel_dtr_try_complete(struct __vxge_hw_channel *channel, void **dtrh)
1068 {
1069 	vxge_assert(channel->compl_index < channel->length);
1070 
1071 	*dtrh =	channel->work_arr[channel->compl_index];
1072 	prefetch(*dtrh);
1073 }
1074 
1075 /*
1076  * vxge_hw_channel_dtr_complete - Removes next completed dtr from the work array
1077  * @channel: Channel handle
1078  *
1079  * Removes the next completed dtr from work array
1080  *
1081  */
vxge_hw_channel_dtr_complete(struct __vxge_hw_channel * channel)1082 void vxge_hw_channel_dtr_complete(struct __vxge_hw_channel *channel)
1083 {
1084 	channel->work_arr[channel->compl_index]	= NULL;
1085 
1086 	/* wrap-around */
1087 	if (++channel->compl_index == channel->length)
1088 		channel->compl_index = 0;
1089 
1090 	channel->stats->total_compl_cnt++;
1091 }
1092 
1093 /*
1094  * vxge_hw_channel_dtr_free - Frees a dtr
1095  * @channel: Channel handle
1096  * @dtr:  DTR pointer
1097  *
1098  * Returns the dtr to free array
1099  *
1100  */
vxge_hw_channel_dtr_free(struct __vxge_hw_channel * channel,void * dtrh)1101 void vxge_hw_channel_dtr_free(struct __vxge_hw_channel *channel, void *dtrh)
1102 {
1103 	channel->free_arr[--channel->free_ptr] = dtrh;
1104 }
1105 
1106 /*
1107  * vxge_hw_channel_dtr_count
1108  * @channel: Channel handle. Obtained via vxge_hw_channel_open().
1109  *
1110  * Retrieve number of DTRs available. This function can not be called
1111  * from data path. ring_initial_replenishi() is the only user.
1112  */
vxge_hw_channel_dtr_count(struct __vxge_hw_channel * channel)1113 int vxge_hw_channel_dtr_count(struct __vxge_hw_channel *channel)
1114 {
1115 	return (channel->reserve_ptr - channel->reserve_top) +
1116 		(channel->length - channel->free_ptr);
1117 }
1118 
1119 /**
1120  * vxge_hw_ring_rxd_reserve	- Reserve ring descriptor.
1121  * @ring: Handle to the ring object used for receive
1122  * @rxdh: Reserved descriptor. On success HW fills this "out" parameter
1123  * with a valid handle.
1124  *
1125  * Reserve Rx descriptor for the subsequent filling-in driver
1126  * and posting on the corresponding channel (@channelh)
1127  * via vxge_hw_ring_rxd_post().
1128  *
1129  * Returns: VXGE_HW_OK - success.
1130  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available.
1131  *
1132  */
vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring * ring,void ** rxdh)1133 enum vxge_hw_status vxge_hw_ring_rxd_reserve(struct __vxge_hw_ring *ring,
1134 	void **rxdh)
1135 {
1136 	enum vxge_hw_status status;
1137 	struct __vxge_hw_channel *channel;
1138 
1139 	channel = &ring->channel;
1140 
1141 	status = vxge_hw_channel_dtr_alloc(channel, rxdh);
1142 
1143 	if (status == VXGE_HW_OK) {
1144 		struct vxge_hw_ring_rxd_1 *rxdp =
1145 			(struct vxge_hw_ring_rxd_1 *)*rxdh;
1146 
1147 		rxdp->control_0	= rxdp->control_1 = 0;
1148 	}
1149 
1150 	return status;
1151 }
1152 
1153 /**
1154  * vxge_hw_ring_rxd_free - Free descriptor.
1155  * @ring: Handle to the ring object used for receive
1156  * @rxdh: Descriptor handle.
1157  *
1158  * Free	the reserved descriptor. This operation is "symmetrical" to
1159  * vxge_hw_ring_rxd_reserve. The "free-ing" completes the descriptor's
1160  * lifecycle.
1161  *
1162  * After free-ing (see vxge_hw_ring_rxd_free()) the descriptor again can
1163  * be:
1164  *
1165  * - reserved (vxge_hw_ring_rxd_reserve);
1166  *
1167  * - posted	(vxge_hw_ring_rxd_post);
1168  *
1169  * - completed (vxge_hw_ring_rxd_next_completed);
1170  *
1171  * - and recycled again	(vxge_hw_ring_rxd_free).
1172  *
1173  * For alternative state transitions and more details please refer to
1174  * the design doc.
1175  *
1176  */
vxge_hw_ring_rxd_free(struct __vxge_hw_ring * ring,void * rxdh)1177 void vxge_hw_ring_rxd_free(struct __vxge_hw_ring *ring, void *rxdh)
1178 {
1179 	struct __vxge_hw_channel *channel;
1180 
1181 	channel = &ring->channel;
1182 
1183 	vxge_hw_channel_dtr_free(channel, rxdh);
1184 
1185 }
1186 
1187 /**
1188  * vxge_hw_ring_rxd_pre_post - Prepare rxd and post
1189  * @ring: Handle to the ring object used for receive
1190  * @rxdh: Descriptor handle.
1191  *
1192  * This routine prepares a rxd and posts
1193  */
vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring * ring,void * rxdh)1194 void vxge_hw_ring_rxd_pre_post(struct __vxge_hw_ring *ring, void *rxdh)
1195 {
1196 	struct __vxge_hw_channel *channel;
1197 
1198 	channel = &ring->channel;
1199 
1200 	vxge_hw_channel_dtr_post(channel, rxdh);
1201 }
1202 
1203 /**
1204  * vxge_hw_ring_rxd_post_post - Process rxd after post.
1205  * @ring: Handle to the ring object used for receive
1206  * @rxdh: Descriptor handle.
1207  *
1208  * Processes rxd after post
1209  */
vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring * ring,void * rxdh)1210 void vxge_hw_ring_rxd_post_post(struct __vxge_hw_ring *ring, void *rxdh)
1211 {
1212 	struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1213 
1214 	rxdp->control_0	= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1215 
1216 	if (ring->stats->common_stats.usage_cnt > 0)
1217 		ring->stats->common_stats.usage_cnt--;
1218 }
1219 
1220 /**
1221  * vxge_hw_ring_rxd_post - Post descriptor on the ring.
1222  * @ring: Handle to the ring object used for receive
1223  * @rxdh: Descriptor obtained via vxge_hw_ring_rxd_reserve().
1224  *
1225  * Post	descriptor on the ring.
1226  * Prior to posting the	descriptor should be filled in accordance with
1227  * Host/Titan interface specification for a given service (LL, etc.).
1228  *
1229  */
vxge_hw_ring_rxd_post(struct __vxge_hw_ring * ring,void * rxdh)1230 void vxge_hw_ring_rxd_post(struct __vxge_hw_ring *ring, void *rxdh)
1231 {
1232 	struct vxge_hw_ring_rxd_1 *rxdp = (struct vxge_hw_ring_rxd_1 *)rxdh;
1233 	struct __vxge_hw_channel *channel;
1234 
1235 	channel = &ring->channel;
1236 
1237 	wmb();
1238 	rxdp->control_0	= VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1239 
1240 	vxge_hw_channel_dtr_post(channel, rxdh);
1241 
1242 	if (ring->stats->common_stats.usage_cnt > 0)
1243 		ring->stats->common_stats.usage_cnt--;
1244 }
1245 
1246 /**
1247  * vxge_hw_ring_rxd_post_post_wmb - Process rxd after post with memory barrier.
1248  * @ring: Handle to the ring object used for receive
1249  * @rxdh: Descriptor handle.
1250  *
1251  * Processes rxd after post with memory barrier.
1252  */
vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring * ring,void * rxdh)1253 void vxge_hw_ring_rxd_post_post_wmb(struct __vxge_hw_ring *ring, void *rxdh)
1254 {
1255 	wmb();
1256 	vxge_hw_ring_rxd_post_post(ring, rxdh);
1257 }
1258 
1259 /**
1260  * vxge_hw_ring_rxd_next_completed - Get the _next_ completed descriptor.
1261  * @ring: Handle to the ring object used for receive
1262  * @rxdh: Descriptor handle. Returned by HW.
1263  * @t_code:	Transfer code, as per Titan User Guide,
1264  *	 Receive Descriptor Format. Returned by HW.
1265  *
1266  * Retrieve the	_next_ completed descriptor.
1267  * HW uses ring callback (*vxge_hw_ring_callback_f) to notifiy
1268  * driver of new completed descriptors. After that
1269  * the driver can use vxge_hw_ring_rxd_next_completed to retrieve the rest
1270  * completions (the very first completion is passed by HW via
1271  * vxge_hw_ring_callback_f).
1272  *
1273  * Implementation-wise, the driver is free to call
1274  * vxge_hw_ring_rxd_next_completed either immediately from inside the
1275  * ring callback, or in a deferred fashion and separate (from HW)
1276  * context.
1277  *
1278  * Non-zero @t_code means failure to fill-in receive buffer(s)
1279  * of the descriptor.
1280  * For instance, parity	error detected during the data transfer.
1281  * In this case	Titan will complete the descriptor and indicate
1282  * for the host	that the received data is not to be used.
1283  * For details please refer to Titan User Guide.
1284  *
1285  * Returns: VXGE_HW_OK - success.
1286  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1287  * are currently available for processing.
1288  *
1289  * See also: vxge_hw_ring_callback_f{},
1290  * vxge_hw_fifo_rxd_next_completed(), enum vxge_hw_status{}.
1291  */
vxge_hw_ring_rxd_next_completed(struct __vxge_hw_ring * ring,void ** rxdh,u8 * t_code)1292 enum vxge_hw_status vxge_hw_ring_rxd_next_completed(
1293 	struct __vxge_hw_ring *ring, void **rxdh, u8 *t_code)
1294 {
1295 	struct __vxge_hw_channel *channel;
1296 	struct vxge_hw_ring_rxd_1 *rxdp;
1297 	enum vxge_hw_status status = VXGE_HW_OK;
1298 	u64 control_0, own;
1299 
1300 	channel = &ring->channel;
1301 
1302 	vxge_hw_channel_dtr_try_complete(channel, rxdh);
1303 
1304 	rxdp = *rxdh;
1305 	if (rxdp == NULL) {
1306 		status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1307 		goto exit;
1308 	}
1309 
1310 	control_0 = rxdp->control_0;
1311 	own = control_0 & VXGE_HW_RING_RXD_LIST_OWN_ADAPTER;
1312 	*t_code	= (u8)VXGE_HW_RING_RXD_T_CODE_GET(control_0);
1313 
1314 	/* check whether it is not the end */
1315 	if (!own || *t_code == VXGE_HW_RING_T_CODE_FRM_DROP) {
1316 
1317 		vxge_assert((rxdp)->host_control !=
1318 				0);
1319 
1320 		++ring->cmpl_cnt;
1321 		vxge_hw_channel_dtr_complete(channel);
1322 
1323 		vxge_assert(*t_code != VXGE_HW_RING_RXD_T_CODE_UNUSED);
1324 
1325 		ring->stats->common_stats.usage_cnt++;
1326 		if (ring->stats->common_stats.usage_max <
1327 				ring->stats->common_stats.usage_cnt)
1328 			ring->stats->common_stats.usage_max =
1329 				ring->stats->common_stats.usage_cnt;
1330 
1331 		status = VXGE_HW_OK;
1332 		goto exit;
1333 	}
1334 
1335 	/* reset it. since we don't want to return
1336 	 * garbage to the driver */
1337 	*rxdh =	NULL;
1338 	status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1339 exit:
1340 	return status;
1341 }
1342 
1343 /**
1344  * vxge_hw_ring_handle_tcode - Handle transfer code.
1345  * @ring: Handle to the ring object used for receive
1346  * @rxdh: Descriptor handle.
1347  * @t_code: One of the enumerated (and documented in the Titan user guide)
1348  * "transfer codes".
1349  *
1350  * Handle descriptor's transfer code. The latter comes with each completed
1351  * descriptor.
1352  *
1353  * Returns: one of the enum vxge_hw_status{} enumerated types.
1354  * VXGE_HW_OK			- for success.
1355  * VXGE_HW_ERR_CRITICAL         - when encounters critical error.
1356  */
vxge_hw_ring_handle_tcode(struct __vxge_hw_ring * ring,void * rxdh,u8 t_code)1357 enum vxge_hw_status vxge_hw_ring_handle_tcode(
1358 	struct __vxge_hw_ring *ring, void *rxdh, u8 t_code)
1359 {
1360 	enum vxge_hw_status status = VXGE_HW_OK;
1361 
1362 	/* If the t_code is not supported and if the
1363 	 * t_code is other than 0x5 (unparseable packet
1364 	 * such as unknown UPV6 header), Drop it !!!
1365 	 */
1366 
1367 	if (t_code ==  VXGE_HW_RING_T_CODE_OK ||
1368 		t_code == VXGE_HW_RING_T_CODE_L3_PKT_ERR) {
1369 		status = VXGE_HW_OK;
1370 		goto exit;
1371 	}
1372 
1373 	if (t_code > VXGE_HW_RING_T_CODE_MULTI_ERR) {
1374 		status = VXGE_HW_ERR_INVALID_TCODE;
1375 		goto exit;
1376 	}
1377 
1378 	ring->stats->rxd_t_code_err_cnt[t_code]++;
1379 exit:
1380 	return status;
1381 }
1382 
1383 /**
1384  * __vxge_hw_non_offload_db_post - Post non offload doorbell
1385  *
1386  * @fifo: fifohandle
1387  * @txdl_ptr: The starting location of the TxDL in host memory
1388  * @num_txds: The highest TxD in this TxDL (0 to 255 means 1 to 256)
1389  * @no_snoop: No snoop flags
1390  *
1391  * This function posts a non-offload doorbell to doorbell FIFO
1392  *
1393  */
__vxge_hw_non_offload_db_post(struct __vxge_hw_fifo * fifo,u64 txdl_ptr,u32 num_txds,u32 no_snoop)1394 static void __vxge_hw_non_offload_db_post(struct __vxge_hw_fifo *fifo,
1395 	u64 txdl_ptr, u32 num_txds, u32 no_snoop)
1396 {
1397 	writeq(VXGE_HW_NODBW_TYPE(VXGE_HW_NODBW_TYPE_NODBW) |
1398 		VXGE_HW_NODBW_LAST_TXD_NUMBER(num_txds) |
1399 		VXGE_HW_NODBW_GET_NO_SNOOP(no_snoop),
1400 		&fifo->nofl_db->control_0);
1401 
1402 	writeq(txdl_ptr, &fifo->nofl_db->txdl_ptr);
1403 }
1404 
1405 /**
1406  * vxge_hw_fifo_free_txdl_count_get - returns the number of txdls available in
1407  * the fifo
1408  * @fifoh: Handle to the fifo object used for non offload send
1409  */
vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo * fifoh)1410 u32 vxge_hw_fifo_free_txdl_count_get(struct __vxge_hw_fifo *fifoh)
1411 {
1412 	return vxge_hw_channel_dtr_count(&fifoh->channel);
1413 }
1414 
1415 /**
1416  * vxge_hw_fifo_txdl_reserve - Reserve fifo descriptor.
1417  * @fifoh: Handle to the fifo object used for non offload send
1418  * @txdlh: Reserved descriptor. On success HW fills this "out" parameter
1419  *        with a valid handle.
1420  * @txdl_priv: Buffer to return the pointer to per txdl space
1421  *
1422  * Reserve a single TxDL (that is, fifo descriptor)
1423  * for the subsequent filling-in by driver)
1424  * and posting on the corresponding channel (@channelh)
1425  * via vxge_hw_fifo_txdl_post().
1426  *
1427  * Note: it is the responsibility of driver to reserve multiple descriptors
1428  * for lengthy (e.g., LSO) transmit operation. A single fifo descriptor
1429  * carries up to configured number (fifo.max_frags) of contiguous buffers.
1430  *
1431  * Returns: VXGE_HW_OK - success;
1432  * VXGE_HW_INF_OUT_OF_DESCRIPTORS - Currently no descriptors available
1433  *
1434  */
vxge_hw_fifo_txdl_reserve(struct __vxge_hw_fifo * fifo,void ** txdlh,void ** txdl_priv)1435 enum vxge_hw_status vxge_hw_fifo_txdl_reserve(
1436 	struct __vxge_hw_fifo *fifo,
1437 	void **txdlh, void **txdl_priv)
1438 {
1439 	struct __vxge_hw_channel *channel;
1440 	enum vxge_hw_status status;
1441 	int i;
1442 
1443 	channel = &fifo->channel;
1444 
1445 	status = vxge_hw_channel_dtr_alloc(channel, txdlh);
1446 
1447 	if (status == VXGE_HW_OK) {
1448 		struct vxge_hw_fifo_txd *txdp =
1449 			(struct vxge_hw_fifo_txd *)*txdlh;
1450 		struct __vxge_hw_fifo_txdl_priv *priv;
1451 
1452 		priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
1453 
1454 		/* reset the TxDL's private */
1455 		priv->align_dma_offset = 0;
1456 		priv->align_vaddr_start = priv->align_vaddr;
1457 		priv->align_used_frags = 0;
1458 		priv->frags = 0;
1459 		priv->alloc_frags = fifo->config->max_frags;
1460 		priv->next_txdl_priv = NULL;
1461 
1462 		*txdl_priv = (void *)(size_t)txdp->host_control;
1463 
1464 		for (i = 0; i < fifo->config->max_frags; i++) {
1465 			txdp = ((struct vxge_hw_fifo_txd *)*txdlh) + i;
1466 			txdp->control_0 = txdp->control_1 = 0;
1467 		}
1468 	}
1469 
1470 	return status;
1471 }
1472 
1473 /**
1474  * vxge_hw_fifo_txdl_buffer_set - Set transmit buffer pointer in the
1475  * descriptor.
1476  * @fifo: Handle to the fifo object used for non offload send
1477  * @txdlh: Descriptor handle.
1478  * @frag_idx: Index of the data buffer in the caller's scatter-gather list
1479  *            (of buffers).
1480  * @dma_pointer: DMA address of the data buffer referenced by @frag_idx.
1481  * @size: Size of the data buffer (in bytes).
1482  *
1483  * This API is part of the preparation of the transmit descriptor for posting
1484  * (via vxge_hw_fifo_txdl_post()). The related "preparation" APIs include
1485  * vxge_hw_fifo_txdl_mss_set() and vxge_hw_fifo_txdl_cksum_set_bits().
1486  * All three APIs fill in the fields of the fifo descriptor,
1487  * in accordance with the Titan specification.
1488  *
1489  */
vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo * fifo,void * txdlh,u32 frag_idx,dma_addr_t dma_pointer,u32 size)1490 void vxge_hw_fifo_txdl_buffer_set(struct __vxge_hw_fifo *fifo,
1491 				  void *txdlh, u32 frag_idx,
1492 				  dma_addr_t dma_pointer, u32 size)
1493 {
1494 	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1495 	struct vxge_hw_fifo_txd *txdp, *txdp_last;
1496 
1497 	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1498 	txdp = (struct vxge_hw_fifo_txd *)txdlh  +  txdl_priv->frags;
1499 
1500 	if (frag_idx != 0)
1501 		txdp->control_0 = txdp->control_1 = 0;
1502 	else {
1503 		txdp->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1504 			VXGE_HW_FIFO_TXD_GATHER_CODE_FIRST);
1505 		txdp->control_1 |= fifo->interrupt_type;
1506 		txdp->control_1 |= VXGE_HW_FIFO_TXD_INT_NUMBER(
1507 			fifo->tx_intr_num);
1508 		if (txdl_priv->frags) {
1509 			txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +
1510 			(txdl_priv->frags - 1);
1511 			txdp_last->control_0 |= VXGE_HW_FIFO_TXD_GATHER_CODE(
1512 				VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1513 		}
1514 	}
1515 
1516 	vxge_assert(frag_idx < txdl_priv->alloc_frags);
1517 
1518 	txdp->buffer_pointer = (u64)dma_pointer;
1519 	txdp->control_0 |= VXGE_HW_FIFO_TXD_BUFFER_SIZE(size);
1520 	fifo->stats->total_buffers++;
1521 	txdl_priv->frags++;
1522 }
1523 
1524 /**
1525  * vxge_hw_fifo_txdl_post - Post descriptor on the fifo channel.
1526  * @fifo: Handle to the fifo object used for non offload send
1527  * @txdlh: Descriptor obtained via vxge_hw_fifo_txdl_reserve()
1528  * @frags: Number of contiguous buffers that are part of a single
1529  *         transmit operation.
1530  *
1531  * Post descriptor on the 'fifo' type channel for transmission.
1532  * Prior to posting the descriptor should be filled in accordance with
1533  * Host/Titan interface specification for a given service (LL, etc.).
1534  *
1535  */
vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo * fifo,void * txdlh)1536 void vxge_hw_fifo_txdl_post(struct __vxge_hw_fifo *fifo, void *txdlh)
1537 {
1538 	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
1539 	struct vxge_hw_fifo_txd *txdp_last;
1540 	struct vxge_hw_fifo_txd *txdp_first;
1541 
1542 	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdlh);
1543 	txdp_first = txdlh;
1544 
1545 	txdp_last = (struct vxge_hw_fifo_txd *)txdlh  +  (txdl_priv->frags - 1);
1546 	txdp_last->control_0 |=
1547 	      VXGE_HW_FIFO_TXD_GATHER_CODE(VXGE_HW_FIFO_TXD_GATHER_CODE_LAST);
1548 	txdp_first->control_0 |= VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER;
1549 
1550 	vxge_hw_channel_dtr_post(&fifo->channel, txdlh);
1551 
1552 	__vxge_hw_non_offload_db_post(fifo,
1553 		(u64)txdl_priv->dma_addr,
1554 		txdl_priv->frags - 1,
1555 		fifo->no_snoop_bits);
1556 
1557 	fifo->stats->total_posts++;
1558 	fifo->stats->common_stats.usage_cnt++;
1559 	if (fifo->stats->common_stats.usage_max <
1560 		fifo->stats->common_stats.usage_cnt)
1561 		fifo->stats->common_stats.usage_max =
1562 			fifo->stats->common_stats.usage_cnt;
1563 }
1564 
1565 /**
1566  * vxge_hw_fifo_txdl_next_completed - Retrieve next completed descriptor.
1567  * @fifo: Handle to the fifo object used for non offload send
1568  * @txdlh: Descriptor handle. Returned by HW.
1569  * @t_code: Transfer code, as per Titan User Guide,
1570  *          Transmit Descriptor Format.
1571  *          Returned by HW.
1572  *
1573  * Retrieve the _next_ completed descriptor.
1574  * HW uses channel callback (*vxge_hw_channel_callback_f) to notifiy
1575  * driver of new completed descriptors. After that
1576  * the driver can use vxge_hw_fifo_txdl_next_completed to retrieve the rest
1577  * completions (the very first completion is passed by HW via
1578  * vxge_hw_channel_callback_f).
1579  *
1580  * Implementation-wise, the driver is free to call
1581  * vxge_hw_fifo_txdl_next_completed either immediately from inside the
1582  * channel callback, or in a deferred fashion and separate (from HW)
1583  * context.
1584  *
1585  * Non-zero @t_code means failure to process the descriptor.
1586  * The failure could happen, for instance, when the link is
1587  * down, in which case Titan completes the descriptor because it
1588  * is not able to send the data out.
1589  *
1590  * For details please refer to Titan User Guide.
1591  *
1592  * Returns: VXGE_HW_OK - success.
1593  * VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS - No completed descriptors
1594  * are currently available for processing.
1595  *
1596  */
vxge_hw_fifo_txdl_next_completed(struct __vxge_hw_fifo * fifo,void ** txdlh,enum vxge_hw_fifo_tcode * t_code)1597 enum vxge_hw_status vxge_hw_fifo_txdl_next_completed(
1598 	struct __vxge_hw_fifo *fifo, void **txdlh,
1599 	enum vxge_hw_fifo_tcode *t_code)
1600 {
1601 	struct __vxge_hw_channel *channel;
1602 	struct vxge_hw_fifo_txd *txdp;
1603 	enum vxge_hw_status status = VXGE_HW_OK;
1604 
1605 	channel = &fifo->channel;
1606 
1607 	vxge_hw_channel_dtr_try_complete(channel, txdlh);
1608 
1609 	txdp = *txdlh;
1610 	if (txdp == NULL) {
1611 		status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1612 		goto exit;
1613 	}
1614 
1615 	/* check whether host owns it */
1616 	if (!(txdp->control_0 & VXGE_HW_FIFO_TXD_LIST_OWN_ADAPTER)) {
1617 
1618 		vxge_assert(txdp->host_control != 0);
1619 
1620 		vxge_hw_channel_dtr_complete(channel);
1621 
1622 		*t_code = (u8)VXGE_HW_FIFO_TXD_T_CODE_GET(txdp->control_0);
1623 
1624 		if (fifo->stats->common_stats.usage_cnt > 0)
1625 			fifo->stats->common_stats.usage_cnt--;
1626 
1627 		status = VXGE_HW_OK;
1628 		goto exit;
1629 	}
1630 
1631 	/* no more completions */
1632 	*txdlh = NULL;
1633 	status = VXGE_HW_INF_NO_MORE_COMPLETED_DESCRIPTORS;
1634 exit:
1635 	return status;
1636 }
1637 
1638 /**
1639  * vxge_hw_fifo_handle_tcode - Handle transfer code.
1640  * @fifo: Handle to the fifo object used for non offload send
1641  * @txdlh: Descriptor handle.
1642  * @t_code: One of the enumerated (and documented in the Titan user guide)
1643  *          "transfer codes".
1644  *
1645  * Handle descriptor's transfer code. The latter comes with each completed
1646  * descriptor.
1647  *
1648  * Returns: one of the enum vxge_hw_status{} enumerated types.
1649  * VXGE_HW_OK - for success.
1650  * VXGE_HW_ERR_CRITICAL - when encounters critical error.
1651  */
vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo * fifo,void * txdlh,enum vxge_hw_fifo_tcode t_code)1652 enum vxge_hw_status vxge_hw_fifo_handle_tcode(struct __vxge_hw_fifo *fifo,
1653 					      void *txdlh,
1654 					      enum vxge_hw_fifo_tcode t_code)
1655 {
1656 	enum vxge_hw_status status = VXGE_HW_OK;
1657 
1658 	if (((t_code & 0x7) < 0) || ((t_code & 0x7) > 0x4)) {
1659 		status = VXGE_HW_ERR_INVALID_TCODE;
1660 		goto exit;
1661 	}
1662 
1663 	fifo->stats->txd_t_code_err_cnt[t_code]++;
1664 exit:
1665 	return status;
1666 }
1667 
1668 /**
1669  * vxge_hw_fifo_txdl_free - Free descriptor.
1670  * @fifo: Handle to the fifo object used for non offload send
1671  * @txdlh: Descriptor handle.
1672  *
1673  * Free the reserved descriptor. This operation is "symmetrical" to
1674  * vxge_hw_fifo_txdl_reserve. The "free-ing" completes the descriptor's
1675  * lifecycle.
1676  *
1677  * After free-ing (see vxge_hw_fifo_txdl_free()) the descriptor again can
1678  * be:
1679  *
1680  * - reserved (vxge_hw_fifo_txdl_reserve);
1681  *
1682  * - posted (vxge_hw_fifo_txdl_post);
1683  *
1684  * - completed (vxge_hw_fifo_txdl_next_completed);
1685  *
1686  * - and recycled again (vxge_hw_fifo_txdl_free).
1687  *
1688  * For alternative state transitions and more details please refer to
1689  * the design doc.
1690  *
1691  */
vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo * fifo,void * txdlh)1692 void vxge_hw_fifo_txdl_free(struct __vxge_hw_fifo *fifo, void *txdlh)
1693 {
1694 	struct __vxge_hw_channel *channel;
1695 
1696 	channel = &fifo->channel;
1697 
1698 	vxge_hw_channel_dtr_free(channel, txdlh);
1699 }
1700 
1701 /**
1702  * vxge_hw_vpath_mac_addr_add - Add the mac address entry for this vpath
1703  *               to MAC address table.
1704  * @vp: Vpath handle.
1705  * @macaddr: MAC address to be added for this vpath into the list
1706  * @macaddr_mask: MAC address mask for macaddr
1707  * @duplicate_mode: Duplicate MAC address add mode. Please see
1708  *             enum vxge_hw_vpath_mac_addr_add_mode{}
1709  *
1710  * Adds the given mac address and mac address mask into the list for this
1711  * vpath.
1712  * see also: vxge_hw_vpath_mac_addr_delete, vxge_hw_vpath_mac_addr_get and
1713  * vxge_hw_vpath_mac_addr_get_next
1714  *
1715  */
1716 enum vxge_hw_status
vxge_hw_vpath_mac_addr_add(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN],enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)1717 vxge_hw_vpath_mac_addr_add(
1718 	struct __vxge_hw_vpath_handle *vp,
1719 	u8 (macaddr)[ETH_ALEN],
1720 	u8 (macaddr_mask)[ETH_ALEN],
1721 	enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode)
1722 {
1723 	u32 i;
1724 	u64 data1 = 0ULL;
1725 	u64 data2 = 0ULL;
1726 	enum vxge_hw_status status = VXGE_HW_OK;
1727 
1728 	if (vp == NULL) {
1729 		status = VXGE_HW_ERR_INVALID_HANDLE;
1730 		goto exit;
1731 	}
1732 
1733 	for (i = 0; i < ETH_ALEN; i++) {
1734 		data1 <<= 8;
1735 		data1 |= (u8)macaddr[i];
1736 
1737 		data2 <<= 8;
1738 		data2 |= (u8)macaddr_mask[i];
1739 	}
1740 
1741 	switch (duplicate_mode) {
1742 	case VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE:
1743 		i = 0;
1744 		break;
1745 	case VXGE_HW_VPATH_MAC_ADDR_DISCARD_DUPLICATE:
1746 		i = 1;
1747 		break;
1748 	case VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE:
1749 		i = 2;
1750 		break;
1751 	default:
1752 		i = 0;
1753 		break;
1754 	}
1755 
1756 	status = __vxge_hw_vpath_rts_table_set(vp,
1757 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1758 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1759 			0,
1760 			VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1761 			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2)|
1762 			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MODE(i));
1763 exit:
1764 	return status;
1765 }
1766 
1767 /**
1768  * vxge_hw_vpath_mac_addr_get - Get the first mac address entry for this vpath
1769  *               from MAC address table.
1770  * @vp: Vpath handle.
1771  * @macaddr: First MAC address entry for this vpath in the list
1772  * @macaddr_mask: MAC address mask for macaddr
1773  *
1774  * Returns the first mac address and mac address mask in the list for this
1775  * vpath.
1776  * see also: vxge_hw_vpath_mac_addr_get_next
1777  *
1778  */
1779 enum vxge_hw_status
vxge_hw_vpath_mac_addr_get(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1780 vxge_hw_vpath_mac_addr_get(
1781 	struct __vxge_hw_vpath_handle *vp,
1782 	u8 (macaddr)[ETH_ALEN],
1783 	u8 (macaddr_mask)[ETH_ALEN])
1784 {
1785 	u32 i;
1786 	u64 data1 = 0ULL;
1787 	u64 data2 = 0ULL;
1788 	enum vxge_hw_status status = VXGE_HW_OK;
1789 
1790 	if (vp == NULL) {
1791 		status = VXGE_HW_ERR_INVALID_HANDLE;
1792 		goto exit;
1793 	}
1794 
1795 	status = __vxge_hw_vpath_rts_table_get(vp,
1796 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
1797 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1798 			0, &data1, &data2);
1799 
1800 	if (status != VXGE_HW_OK)
1801 		goto exit;
1802 
1803 	data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1804 
1805 	data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1806 
1807 	for (i = ETH_ALEN; i > 0; i--) {
1808 		macaddr[i-1] = (u8)(data1 & 0xFF);
1809 		data1 >>= 8;
1810 
1811 		macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1812 		data2 >>= 8;
1813 	}
1814 exit:
1815 	return status;
1816 }
1817 
1818 /**
1819  * vxge_hw_vpath_mac_addr_get_next - Get the next mac address entry for this
1820  * vpath
1821  *               from MAC address table.
1822  * @vp: Vpath handle.
1823  * @macaddr: Next MAC address entry for this vpath in the list
1824  * @macaddr_mask: MAC address mask for macaddr
1825  *
1826  * Returns the next mac address and mac address mask in the list for this
1827  * vpath.
1828  * see also: vxge_hw_vpath_mac_addr_get
1829  *
1830  */
1831 enum vxge_hw_status
vxge_hw_vpath_mac_addr_get_next(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1832 vxge_hw_vpath_mac_addr_get_next(
1833 	struct __vxge_hw_vpath_handle *vp,
1834 	u8 (macaddr)[ETH_ALEN],
1835 	u8 (macaddr_mask)[ETH_ALEN])
1836 {
1837 	u32 i;
1838 	u64 data1 = 0ULL;
1839 	u64 data2 = 0ULL;
1840 	enum vxge_hw_status status = VXGE_HW_OK;
1841 
1842 	if (vp == NULL) {
1843 		status = VXGE_HW_ERR_INVALID_HANDLE;
1844 		goto exit;
1845 	}
1846 
1847 	status = __vxge_hw_vpath_rts_table_get(vp,
1848 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY,
1849 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1850 			0, &data1, &data2);
1851 
1852 	if (status != VXGE_HW_OK)
1853 		goto exit;
1854 
1855 	data1 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data1);
1856 
1857 	data2 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(data2);
1858 
1859 	for (i = ETH_ALEN; i > 0; i--) {
1860 		macaddr[i-1] = (u8)(data1 & 0xFF);
1861 		data1 >>= 8;
1862 
1863 		macaddr_mask[i-1] = (u8)(data2 & 0xFF);
1864 		data2 >>= 8;
1865 	}
1866 
1867 exit:
1868 	return status;
1869 }
1870 
1871 /**
1872  * vxge_hw_vpath_mac_addr_delete - Delete the mac address entry for this vpath
1873  *               to MAC address table.
1874  * @vp: Vpath handle.
1875  * @macaddr: MAC address to be added for this vpath into the list
1876  * @macaddr_mask: MAC address mask for macaddr
1877  *
1878  * Delete the given mac address and mac address mask into the list for this
1879  * vpath.
1880  * see also: vxge_hw_vpath_mac_addr_add, vxge_hw_vpath_mac_addr_get and
1881  * vxge_hw_vpath_mac_addr_get_next
1882  *
1883  */
1884 enum vxge_hw_status
vxge_hw_vpath_mac_addr_delete(struct __vxge_hw_vpath_handle * vp,u8 (macaddr)[ETH_ALEN],u8 (macaddr_mask)[ETH_ALEN])1885 vxge_hw_vpath_mac_addr_delete(
1886 	struct __vxge_hw_vpath_handle *vp,
1887 	u8 (macaddr)[ETH_ALEN],
1888 	u8 (macaddr_mask)[ETH_ALEN])
1889 {
1890 	u32 i;
1891 	u64 data1 = 0ULL;
1892 	u64 data2 = 0ULL;
1893 	enum vxge_hw_status status = VXGE_HW_OK;
1894 
1895 	if (vp == NULL) {
1896 		status = VXGE_HW_ERR_INVALID_HANDLE;
1897 		goto exit;
1898 	}
1899 
1900 	for (i = 0; i < ETH_ALEN; i++) {
1901 		data1 <<= 8;
1902 		data1 |= (u8)macaddr[i];
1903 
1904 		data2 <<= 8;
1905 		data2 |= (u8)macaddr_mask[i];
1906 	}
1907 
1908 	status = __vxge_hw_vpath_rts_table_set(vp,
1909 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1910 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
1911 			0,
1912 			VXGE_HW_RTS_ACCESS_STEER_DATA0_DA_MAC_ADDR(data1),
1913 			VXGE_HW_RTS_ACCESS_STEER_DATA1_DA_MAC_ADDR_MASK(data2));
1914 exit:
1915 	return status;
1916 }
1917 
1918 /**
1919  * vxge_hw_vpath_vid_add - Add the vlan id entry for this vpath
1920  *               to vlan id table.
1921  * @vp: Vpath handle.
1922  * @vid: vlan id to be added for this vpath into the list
1923  *
1924  * Adds the given vlan id into the list for this  vpath.
1925  * see also: vxge_hw_vpath_vid_delete
1926  *
1927  */
1928 enum vxge_hw_status
vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle * vp,u64 vid)1929 vxge_hw_vpath_vid_add(struct __vxge_hw_vpath_handle *vp, u64 vid)
1930 {
1931 	enum vxge_hw_status status = VXGE_HW_OK;
1932 
1933 	if (vp == NULL) {
1934 		status = VXGE_HW_ERR_INVALID_HANDLE;
1935 		goto exit;
1936 	}
1937 
1938 	status = __vxge_hw_vpath_rts_table_set(vp,
1939 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_ADD_ENTRY,
1940 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1941 			0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1942 exit:
1943 	return status;
1944 }
1945 
1946 /**
1947  * vxge_hw_vpath_vid_delete - Delete the vlan id entry for this vpath
1948  *               to vlan id table.
1949  * @vp: Vpath handle.
1950  * @vid: vlan id to be added for this vpath into the list
1951  *
1952  * Adds the given vlan id into the list for this  vpath.
1953  * see also: vxge_hw_vpath_vid_add
1954  *
1955  */
1956 enum vxge_hw_status
vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle * vp,u64 vid)1957 vxge_hw_vpath_vid_delete(struct __vxge_hw_vpath_handle *vp, u64 vid)
1958 {
1959 	enum vxge_hw_status status = VXGE_HW_OK;
1960 
1961 	if (vp == NULL) {
1962 		status = VXGE_HW_ERR_INVALID_HANDLE;
1963 		goto exit;
1964 	}
1965 
1966 	status = __vxge_hw_vpath_rts_table_set(vp,
1967 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_DELETE_ENTRY,
1968 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_VID,
1969 			0, VXGE_HW_RTS_ACCESS_STEER_DATA0_VLAN_ID(vid), 0);
1970 exit:
1971 	return status;
1972 }
1973 
1974 /**
1975  * vxge_hw_vpath_promisc_enable - Enable promiscuous mode.
1976  * @vp: Vpath handle.
1977  *
1978  * Enable promiscuous mode of Titan-e operation.
1979  *
1980  * See also: vxge_hw_vpath_promisc_disable().
1981  */
vxge_hw_vpath_promisc_enable(struct __vxge_hw_vpath_handle * vp)1982 enum vxge_hw_status vxge_hw_vpath_promisc_enable(
1983 			struct __vxge_hw_vpath_handle *vp)
1984 {
1985 	u64 val64;
1986 	struct __vxge_hw_virtualpath *vpath;
1987 	enum vxge_hw_status status = VXGE_HW_OK;
1988 
1989 	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
1990 		status = VXGE_HW_ERR_INVALID_HANDLE;
1991 		goto exit;
1992 	}
1993 
1994 	vpath = vp->vpath;
1995 
1996 	/* Enable promiscuous mode for function 0 only */
1997 	if (!(vpath->hldev->access_rights &
1998 		VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM))
1999 		return VXGE_HW_OK;
2000 
2001 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2002 
2003 	if (!(val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN)) {
2004 
2005 		val64 |= VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2006 			 VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2007 			 VXGE_HW_RXMAC_VCFG0_BCAST_EN |
2008 			 VXGE_HW_RXMAC_VCFG0_ALL_VID_EN;
2009 
2010 		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2011 	}
2012 exit:
2013 	return status;
2014 }
2015 
2016 /**
2017  * vxge_hw_vpath_promisc_disable - Disable promiscuous mode.
2018  * @vp: Vpath handle.
2019  *
2020  * Disable promiscuous mode of Titan-e operation.
2021  *
2022  * See also: vxge_hw_vpath_promisc_enable().
2023  */
vxge_hw_vpath_promisc_disable(struct __vxge_hw_vpath_handle * vp)2024 enum vxge_hw_status vxge_hw_vpath_promisc_disable(
2025 			struct __vxge_hw_vpath_handle *vp)
2026 {
2027 	u64 val64;
2028 	struct __vxge_hw_virtualpath *vpath;
2029 	enum vxge_hw_status status = VXGE_HW_OK;
2030 
2031 	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2032 		status = VXGE_HW_ERR_INVALID_HANDLE;
2033 		goto exit;
2034 	}
2035 
2036 	vpath = vp->vpath;
2037 
2038 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2039 
2040 	if (val64 & VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN) {
2041 
2042 		val64 &= ~(VXGE_HW_RXMAC_VCFG0_UCAST_ALL_ADDR_EN |
2043 			   VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN |
2044 			   VXGE_HW_RXMAC_VCFG0_ALL_VID_EN);
2045 
2046 		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2047 	}
2048 exit:
2049 	return status;
2050 }
2051 
2052 /*
2053  * vxge_hw_vpath_bcast_enable - Enable broadcast
2054  * @vp: Vpath handle.
2055  *
2056  * Enable receiving broadcasts.
2057  */
vxge_hw_vpath_bcast_enable(struct __vxge_hw_vpath_handle * vp)2058 enum vxge_hw_status vxge_hw_vpath_bcast_enable(
2059 			struct __vxge_hw_vpath_handle *vp)
2060 {
2061 	u64 val64;
2062 	struct __vxge_hw_virtualpath *vpath;
2063 	enum vxge_hw_status status = VXGE_HW_OK;
2064 
2065 	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2066 		status = VXGE_HW_ERR_INVALID_HANDLE;
2067 		goto exit;
2068 	}
2069 
2070 	vpath = vp->vpath;
2071 
2072 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2073 
2074 	if (!(val64 & VXGE_HW_RXMAC_VCFG0_BCAST_EN)) {
2075 		val64 |= VXGE_HW_RXMAC_VCFG0_BCAST_EN;
2076 		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2077 	}
2078 exit:
2079 	return status;
2080 }
2081 
2082 /**
2083  * vxge_hw_vpath_mcast_enable - Enable multicast addresses.
2084  * @vp: Vpath handle.
2085  *
2086  * Enable Titan-e multicast addresses.
2087  * Returns: VXGE_HW_OK on success.
2088  *
2089  */
vxge_hw_vpath_mcast_enable(struct __vxge_hw_vpath_handle * vp)2090 enum vxge_hw_status vxge_hw_vpath_mcast_enable(
2091 			struct __vxge_hw_vpath_handle *vp)
2092 {
2093 	u64 val64;
2094 	struct __vxge_hw_virtualpath *vpath;
2095 	enum vxge_hw_status status = VXGE_HW_OK;
2096 
2097 	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2098 		status = VXGE_HW_ERR_INVALID_HANDLE;
2099 		goto exit;
2100 	}
2101 
2102 	vpath = vp->vpath;
2103 
2104 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2105 
2106 	if (!(val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN)) {
2107 		val64 |= VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2108 		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2109 	}
2110 exit:
2111 	return status;
2112 }
2113 
2114 /**
2115  * vxge_hw_vpath_mcast_disable - Disable  multicast addresses.
2116  * @vp: Vpath handle.
2117  *
2118  * Disable Titan-e multicast addresses.
2119  * Returns: VXGE_HW_OK - success.
2120  * VXGE_HW_ERR_INVALID_HANDLE - Invalid handle
2121  *
2122  */
2123 enum vxge_hw_status
vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle * vp)2124 vxge_hw_vpath_mcast_disable(struct __vxge_hw_vpath_handle *vp)
2125 {
2126 	u64 val64;
2127 	struct __vxge_hw_virtualpath *vpath;
2128 	enum vxge_hw_status status = VXGE_HW_OK;
2129 
2130 	if ((vp == NULL) || (vp->vpath->ringh == NULL)) {
2131 		status = VXGE_HW_ERR_INVALID_HANDLE;
2132 		goto exit;
2133 	}
2134 
2135 	vpath = vp->vpath;
2136 
2137 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
2138 
2139 	if (val64 & VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN) {
2140 		val64 &= ~VXGE_HW_RXMAC_VCFG0_MCAST_ALL_ADDR_EN;
2141 		writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
2142 	}
2143 exit:
2144 	return status;
2145 }
2146 
2147 /*
2148  * vxge_hw_vpath_alarm_process - Process Alarms.
2149  * @vpath: Virtual Path.
2150  * @skip_alarms: Do not clear the alarms
2151  *
2152  * Process vpath alarms.
2153  *
2154  */
vxge_hw_vpath_alarm_process(struct __vxge_hw_vpath_handle * vp,u32 skip_alarms)2155 enum vxge_hw_status vxge_hw_vpath_alarm_process(
2156 			struct __vxge_hw_vpath_handle *vp,
2157 			u32 skip_alarms)
2158 {
2159 	enum vxge_hw_status status = VXGE_HW_OK;
2160 
2161 	if (vp == NULL) {
2162 		status = VXGE_HW_ERR_INVALID_HANDLE;
2163 		goto exit;
2164 	}
2165 
2166 	status = __vxge_hw_vpath_alarm_process(vp->vpath, skip_alarms);
2167 exit:
2168 	return status;
2169 }
2170 
2171 /**
2172  * vxge_hw_vpath_msix_set - Associate MSIX vectors with TIM interrupts and
2173  *                            alrms
2174  * @vp: Virtual Path handle.
2175  * @tim_msix_id: MSIX vectors associated with VXGE_HW_MAX_INTR_PER_VP number of
2176  *             interrupts(Can be repeated). If fifo or ring are not enabled
2177  *             the MSIX vector for that should be set to 0
2178  * @alarm_msix_id: MSIX vector for alarm.
2179  *
2180  * This API will associate a given MSIX vector numbers with the four TIM
2181  * interrupts and alarm interrupt.
2182  */
2183 void
vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle * vp,int * tim_msix_id,int alarm_msix_id)2184 vxge_hw_vpath_msix_set(struct __vxge_hw_vpath_handle *vp, int *tim_msix_id,
2185 		       int alarm_msix_id)
2186 {
2187 	u64 val64;
2188 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
2189 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
2190 	u32 vp_id = vp->vpath->vp_id;
2191 
2192 	val64 =  VXGE_HW_INTERRUPT_CFG0_GROUP0_MSIX_FOR_TXTI(
2193 		  (vp_id * 4) + tim_msix_id[0]) |
2194 		 VXGE_HW_INTERRUPT_CFG0_GROUP1_MSIX_FOR_TXTI(
2195 		  (vp_id * 4) + tim_msix_id[1]);
2196 
2197 	writeq(val64, &vp_reg->interrupt_cfg0);
2198 
2199 	writeq(VXGE_HW_INTERRUPT_CFG2_ALARM_MAP_TO_MSG(
2200 			(vpath->hldev->first_vp_id * 4) + alarm_msix_id),
2201 			&vp_reg->interrupt_cfg2);
2202 
2203 	if (vpath->hldev->config.intr_mode ==
2204 					VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) {
2205 		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2206 				VXGE_HW_ONE_SHOT_VECT0_EN_ONE_SHOT_VECT0_EN,
2207 				0, 32), &vp_reg->one_shot_vect0_en);
2208 		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2209 				VXGE_HW_ONE_SHOT_VECT1_EN_ONE_SHOT_VECT1_EN,
2210 				0, 32), &vp_reg->one_shot_vect1_en);
2211 		__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(
2212 				VXGE_HW_ONE_SHOT_VECT2_EN_ONE_SHOT_VECT2_EN,
2213 				0, 32), &vp_reg->one_shot_vect2_en);
2214 	}
2215 }
2216 
2217 /**
2218  * vxge_hw_vpath_msix_mask - Mask MSIX Vector.
2219  * @vp: Virtual Path handle.
2220  * @msix_id:  MSIX ID
2221  *
2222  * The function masks the msix interrupt for the given msix_id
2223  *
2224  * Returns: 0,
2225  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2226  * status.
2227  * See also:
2228  */
2229 void
vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle * vp,int msix_id)2230 vxge_hw_vpath_msix_mask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2231 {
2232 	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2233 	__vxge_hw_pio_mem_write32_upper(
2234 		(u32) vxge_bVALn(vxge_mBIT(msix_id  >> 2), 0, 32),
2235 		&hldev->common_reg->set_msix_mask_vect[msix_id % 4]);
2236 }
2237 
2238 /**
2239  * vxge_hw_vpath_msix_clear - Clear MSIX Vector.
2240  * @vp: Virtual Path handle.
2241  * @msix_id:  MSI ID
2242  *
2243  * The function clears the msix interrupt for the given msix_id
2244  *
2245  * Returns: 0,
2246  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2247  * status.
2248  * See also:
2249  */
vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle * vp,int msix_id)2250 void vxge_hw_vpath_msix_clear(struct __vxge_hw_vpath_handle *vp, int msix_id)
2251 {
2252 	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2253 
2254 	if (hldev->config.intr_mode == VXGE_HW_INTR_MODE_MSIX_ONE_SHOT)
2255 		__vxge_hw_pio_mem_write32_upper(
2256 			(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2257 			&hldev->common_reg->clr_msix_one_shot_vec[msix_id % 4]);
2258 	else
2259 		__vxge_hw_pio_mem_write32_upper(
2260 			(u32) vxge_bVALn(vxge_mBIT((msix_id >> 2)), 0, 32),
2261 			&hldev->common_reg->clear_msix_mask_vect[msix_id % 4]);
2262 }
2263 
2264 /**
2265  * vxge_hw_vpath_msix_unmask - Unmask the MSIX Vector.
2266  * @vp: Virtual Path handle.
2267  * @msix_id:  MSI ID
2268  *
2269  * The function unmasks the msix interrupt for the given msix_id
2270  *
2271  * Returns: 0,
2272  * Otherwise, VXGE_HW_ERR_WRONG_IRQ if the msix index is out of range
2273  * status.
2274  * See also:
2275  */
2276 void
vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle * vp,int msix_id)2277 vxge_hw_vpath_msix_unmask(struct __vxge_hw_vpath_handle *vp, int msix_id)
2278 {
2279 	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2280 	__vxge_hw_pio_mem_write32_upper(
2281 			(u32)vxge_bVALn(vxge_mBIT(msix_id >> 2), 0, 32),
2282 			&hldev->common_reg->clear_msix_mask_vect[msix_id%4]);
2283 }
2284 
2285 /**
2286  * vxge_hw_vpath_inta_mask_tx_rx - Mask Tx and Rx interrupts.
2287  * @vp: Virtual Path handle.
2288  *
2289  * Mask Tx and Rx vpath interrupts.
2290  *
2291  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2292  */
vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle * vp)2293 void vxge_hw_vpath_inta_mask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2294 {
2295 	u64	tim_int_mask0[4] = {[0 ...3] = 0};
2296 	u32	tim_int_mask1[4] = {[0 ...3] = 0};
2297 	u64	val64;
2298 	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2299 
2300 	VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2301 		tim_int_mask1, vp->vpath->vp_id);
2302 
2303 	val64 = readq(&hldev->common_reg->tim_int_mask0);
2304 
2305 	if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2306 		(tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2307 		writeq((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2308 			tim_int_mask0[VXGE_HW_VPATH_INTR_RX] | val64),
2309 			&hldev->common_reg->tim_int_mask0);
2310 	}
2311 
2312 	val64 = readl(&hldev->common_reg->tim_int_mask1);
2313 
2314 	if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2315 		(tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2316 		__vxge_hw_pio_mem_write32_upper(
2317 			(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2318 			tim_int_mask1[VXGE_HW_VPATH_INTR_RX] | val64),
2319 			&hldev->common_reg->tim_int_mask1);
2320 	}
2321 }
2322 
2323 /**
2324  * vxge_hw_vpath_inta_unmask_tx_rx - Unmask Tx and Rx interrupts.
2325  * @vp: Virtual Path handle.
2326  *
2327  * Unmask Tx and Rx vpath interrupts.
2328  *
2329  * See also: vxge_hw_vpath_inta_mask_tx_rx()
2330  */
vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle * vp)2331 void vxge_hw_vpath_inta_unmask_tx_rx(struct __vxge_hw_vpath_handle *vp)
2332 {
2333 	u64	tim_int_mask0[4] = {[0 ...3] = 0};
2334 	u32	tim_int_mask1[4] = {[0 ...3] = 0};
2335 	u64	val64;
2336 	struct __vxge_hw_device *hldev = vp->vpath->hldev;
2337 
2338 	VXGE_HW_DEVICE_TIM_INT_MASK_SET(tim_int_mask0,
2339 		tim_int_mask1, vp->vpath->vp_id);
2340 
2341 	val64 = readq(&hldev->common_reg->tim_int_mask0);
2342 
2343 	if ((tim_int_mask0[VXGE_HW_VPATH_INTR_TX] != 0) ||
2344 	   (tim_int_mask0[VXGE_HW_VPATH_INTR_RX] != 0)) {
2345 		writeq((~(tim_int_mask0[VXGE_HW_VPATH_INTR_TX] |
2346 			tim_int_mask0[VXGE_HW_VPATH_INTR_RX])) & val64,
2347 			&hldev->common_reg->tim_int_mask0);
2348 	}
2349 
2350 	if ((tim_int_mask1[VXGE_HW_VPATH_INTR_TX] != 0) ||
2351 	   (tim_int_mask1[VXGE_HW_VPATH_INTR_RX] != 0)) {
2352 		__vxge_hw_pio_mem_write32_upper(
2353 			(~(tim_int_mask1[VXGE_HW_VPATH_INTR_TX] |
2354 			  tim_int_mask1[VXGE_HW_VPATH_INTR_RX])) & val64,
2355 			&hldev->common_reg->tim_int_mask1);
2356 	}
2357 }
2358 
2359 /**
2360  * vxge_hw_vpath_poll_rx - Poll Rx Virtual Path for completed
2361  * descriptors and process the same.
2362  * @ring: Handle to the ring object used for receive
2363  *
2364  * The function	polls the Rx for the completed	descriptors and	calls
2365  * the driver via supplied completion	callback.
2366  *
2367  * Returns: VXGE_HW_OK, if the polling is completed successful.
2368  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2369  * descriptors available which are yet to be processed.
2370  *
2371  * See also: vxge_hw_vpath_poll_rx()
2372  */
vxge_hw_vpath_poll_rx(struct __vxge_hw_ring * ring)2373 enum vxge_hw_status vxge_hw_vpath_poll_rx(struct __vxge_hw_ring *ring)
2374 {
2375 	u8 t_code;
2376 	enum vxge_hw_status status = VXGE_HW_OK;
2377 	void *first_rxdh;
2378 	u64 val64 = 0;
2379 	int new_count = 0;
2380 
2381 	ring->cmpl_cnt = 0;
2382 
2383 	status = vxge_hw_ring_rxd_next_completed(ring, &first_rxdh, &t_code);
2384 	if (status == VXGE_HW_OK)
2385 		ring->callback(ring, first_rxdh,
2386 			t_code, ring->channel.userdata);
2387 
2388 	if (ring->cmpl_cnt != 0) {
2389 		ring->doorbell_cnt += ring->cmpl_cnt;
2390 		if (ring->doorbell_cnt >= ring->rxds_limit) {
2391 			/*
2392 			 * Each RxD is of 4 qwords, update the number of
2393 			 * qwords replenished
2394 			 */
2395 			new_count = (ring->doorbell_cnt * 4);
2396 
2397 			/* For each block add 4 more qwords */
2398 			ring->total_db_cnt += ring->doorbell_cnt;
2399 			if (ring->total_db_cnt >= ring->rxds_per_block) {
2400 				new_count += 4;
2401 				/* Reset total count */
2402 				ring->total_db_cnt %= ring->rxds_per_block;
2403 			}
2404 			writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(new_count),
2405 				&ring->vp_reg->prc_rxd_doorbell);
2406 			val64 =
2407 			  readl(&ring->common_reg->titan_general_int_status);
2408 			ring->doorbell_cnt = 0;
2409 		}
2410 	}
2411 
2412 	return status;
2413 }
2414 
2415 /**
2416  * vxge_hw_vpath_poll_tx - Poll Tx for completed descriptors and process
2417  * the same.
2418  * @fifo: Handle to the fifo object used for non offload send
2419  *
2420  * The function polls the Tx for the completed descriptors and calls
2421  * the driver via supplied completion callback.
2422  *
2423  * Returns: VXGE_HW_OK, if the polling is completed successful.
2424  * VXGE_HW_COMPLETIONS_REMAIN: There are still more completed
2425  * descriptors available which are yet to be processed.
2426  */
vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo * fifo,struct sk_buff *** skb_ptr,int nr_skb,int * more)2427 enum vxge_hw_status vxge_hw_vpath_poll_tx(struct __vxge_hw_fifo *fifo,
2428 					struct sk_buff ***skb_ptr, int nr_skb,
2429 					int *more)
2430 {
2431 	enum vxge_hw_fifo_tcode t_code;
2432 	void *first_txdlh;
2433 	enum vxge_hw_status status = VXGE_HW_OK;
2434 	struct __vxge_hw_channel *channel;
2435 
2436 	channel = &fifo->channel;
2437 
2438 	status = vxge_hw_fifo_txdl_next_completed(fifo,
2439 				&first_txdlh, &t_code);
2440 	if (status == VXGE_HW_OK)
2441 		if (fifo->callback(fifo, first_txdlh, t_code,
2442 			channel->userdata, skb_ptr, nr_skb, more) != VXGE_HW_OK)
2443 			status = VXGE_HW_COMPLETIONS_REMAIN;
2444 
2445 	return status;
2446 }
2447