1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19 
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
23 
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) {				\
25 	status = __vxge_hw_vpath_stats_access(vpath,			\
26 					      VXGE_HW_STATS_OP_READ,	\
27 					      offset,			\
28 					      &val64);			\
29 	if (status != VXGE_HW_OK)					\
30 		return status;						\
31 }
32 
33 static void
vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem * vp_reg)34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
35 {
36 	u64 val64;
37 
38 	val64 = readq(&vp_reg->rxmac_vcfg0);
39 	val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 	writeq(val64, &vp_reg->rxmac_vcfg0);
41 	val64 = readq(&vp_reg->rxmac_vcfg0);
42 }
43 
44 /*
45  * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
46  */
vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device * hldev,u32 vp_id)47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
48 {
49 	struct vxge_hw_vpath_reg __iomem *vp_reg;
50 	struct __vxge_hw_virtualpath *vpath;
51 	u64 val64, rxd_count, rxd_spat;
52 	int count = 0, total_count = 0;
53 
54 	vpath = &hldev->virtual_paths[vp_id];
55 	vp_reg = vpath->vp_reg;
56 
57 	vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
58 
59 	/* Check that the ring controller for this vpath has enough free RxDs
60 	 * to send frames to the host.  This is done by reading the
61 	 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 	 * RXD_SPAT value for the vpath.
63 	 */
64 	val64 = readq(&vp_reg->prc_cfg6);
65 	rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 	/* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 	 * leg room.
68 	 */
69 	rxd_spat *= 2;
70 
71 	do {
72 		mdelay(1);
73 
74 		rxd_count = readq(&vp_reg->prc_rxd_doorbell);
75 
76 		/* Check that the ring controller for this vpath does
77 		 * not have any frame in its pipeline.
78 		 */
79 		val64 = readq(&vp_reg->frm_in_progress_cnt);
80 		if ((rxd_count <= rxd_spat) || (val64 > 0))
81 			count = 0;
82 		else
83 			count++;
84 		total_count++;
85 	} while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 			(total_count < VXGE_HW_MAX_POLLING_COUNT));
87 
88 	if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 		printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 			__func__);
91 
92 	return total_count;
93 }
94 
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96  * stored in the frame buffer for each vpath assigned to the given
97  * function (hldev) have been sent to the host.
98  */
vxge_hw_device_wait_receive_idle(struct __vxge_hw_device * hldev)99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
100 {
101 	int i, total_count = 0;
102 
103 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 			continue;
106 
107 		total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 		if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 			break;
110 	}
111 }
112 
113 /*
114  * __vxge_hw_device_register_poll
115  * Will poll certain register for specified amount of time.
116  * Will poll until masked bit is not cleared.
117  */
118 static enum vxge_hw_status
__vxge_hw_device_register_poll(void __iomem * reg,u64 mask,u32 max_millis)119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
120 {
121 	u64 val64;
122 	u32 i = 0;
123 
124 	udelay(10);
125 
126 	do {
127 		val64 = readq(reg);
128 		if (!(val64 & mask))
129 			return VXGE_HW_OK;
130 		udelay(100);
131 	} while (++i <= 9);
132 
133 	i = 0;
134 	do {
135 		val64 = readq(reg);
136 		if (!(val64 & mask))
137 			return VXGE_HW_OK;
138 		mdelay(1);
139 	} while (++i <= max_millis);
140 
141 	return VXGE_HW_FAIL;
142 }
143 
144 static inline enum vxge_hw_status
__vxge_hw_pio_mem_write64(u64 val64,void __iomem * addr,u64 mask,u32 max_millis)145 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
146 			  u64 mask, u32 max_millis)
147 {
148 	__vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
149 	wmb();
150 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
151 	wmb();
152 
153 	return __vxge_hw_device_register_poll(addr, mask, max_millis);
154 }
155 
156 static enum vxge_hw_status
vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath * vpath,u32 action,u32 fw_memo,u32 offset,u64 * data0,u64 * data1,u64 * steer_ctrl)157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
158 		     u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
159 		     u64 *steer_ctrl)
160 {
161 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
162 	enum vxge_hw_status status;
163 	u64 val64;
164 	u32 retry = 0, max_retry = 3;
165 
166 	spin_lock(&vpath->lock);
167 	if (!vpath->vp_open) {
168 		spin_unlock(&vpath->lock);
169 		max_retry = 100;
170 	}
171 
172 	writeq(*data0, &vp_reg->rts_access_steer_data0);
173 	writeq(*data1, &vp_reg->rts_access_steer_data1);
174 	wmb();
175 
176 	val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
177 		VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
178 		VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
179 		VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
180 		*steer_ctrl;
181 
182 	status = __vxge_hw_pio_mem_write64(val64,
183 					   &vp_reg->rts_access_steer_ctrl,
184 					   VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
185 					   VXGE_HW_DEF_DEVICE_POLL_MILLIS);
186 
187 	/* The __vxge_hw_device_register_poll can udelay for a significant
188 	 * amount of time, blocking other process from the CPU.  If it delays
189 	 * for ~5secs, a NMI error can occur.  A way around this is to give up
190 	 * the processor via msleep, but this is not allowed is under lock.
191 	 * So, only allow it to sleep for ~4secs if open.  Otherwise, delay for
192 	 * 1sec and sleep for 10ms until the firmware operation has completed
193 	 * or timed-out.
194 	 */
195 	while ((status != VXGE_HW_OK) && retry++ < max_retry) {
196 		if (!vpath->vp_open)
197 			msleep(20);
198 		status = __vxge_hw_device_register_poll(
199 					&vp_reg->rts_access_steer_ctrl,
200 					VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
201 					VXGE_HW_DEF_DEVICE_POLL_MILLIS);
202 	}
203 
204 	if (status != VXGE_HW_OK)
205 		goto out;
206 
207 	val64 = readq(&vp_reg->rts_access_steer_ctrl);
208 	if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
209 		*data0 = readq(&vp_reg->rts_access_steer_data0);
210 		*data1 = readq(&vp_reg->rts_access_steer_data1);
211 		*steer_ctrl = val64;
212 	} else
213 		status = VXGE_HW_FAIL;
214 
215 out:
216 	if (vpath->vp_open)
217 		spin_unlock(&vpath->lock);
218 	return status;
219 }
220 
221 enum vxge_hw_status
vxge_hw_upgrade_read_version(struct __vxge_hw_device * hldev,u32 * major,u32 * minor,u32 * build)222 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
223 			     u32 *minor, u32 *build)
224 {
225 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
226 	struct __vxge_hw_virtualpath *vpath;
227 	enum vxge_hw_status status;
228 
229 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
230 
231 	status = vxge_hw_vpath_fw_api(vpath,
232 				      VXGE_HW_FW_UPGRADE_ACTION,
233 				      VXGE_HW_FW_UPGRADE_MEMO,
234 				      VXGE_HW_FW_UPGRADE_OFFSET_READ,
235 				      &data0, &data1, &steer_ctrl);
236 	if (status != VXGE_HW_OK)
237 		return status;
238 
239 	*major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
240 	*minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
241 	*build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
242 
243 	return status;
244 }
245 
vxge_hw_flash_fw(struct __vxge_hw_device * hldev)246 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
247 {
248 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
249 	struct __vxge_hw_virtualpath *vpath;
250 	enum vxge_hw_status status;
251 	u32 ret;
252 
253 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
254 
255 	status = vxge_hw_vpath_fw_api(vpath,
256 				      VXGE_HW_FW_UPGRADE_ACTION,
257 				      VXGE_HW_FW_UPGRADE_MEMO,
258 				      VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
259 				      &data0, &data1, &steer_ctrl);
260 	if (status != VXGE_HW_OK) {
261 		vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
262 		goto exit;
263 	}
264 
265 	ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
266 	if (ret != 1) {
267 		vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
268 				__func__, ret);
269 		status = VXGE_HW_FAIL;
270 	}
271 
272 exit:
273 	return status;
274 }
275 
276 enum vxge_hw_status
vxge_update_fw_image(struct __vxge_hw_device * hldev,const u8 * fwdata,int size)277 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
278 {
279 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
280 	struct __vxge_hw_virtualpath *vpath;
281 	enum vxge_hw_status status;
282 	int ret_code, sec_code;
283 
284 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
285 
286 	/* send upgrade start command */
287 	status = vxge_hw_vpath_fw_api(vpath,
288 				      VXGE_HW_FW_UPGRADE_ACTION,
289 				      VXGE_HW_FW_UPGRADE_MEMO,
290 				      VXGE_HW_FW_UPGRADE_OFFSET_START,
291 				      &data0, &data1, &steer_ctrl);
292 	if (status != VXGE_HW_OK) {
293 		vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
294 				__func__);
295 		return status;
296 	}
297 
298 	/* Transfer fw image to adapter 16 bytes at a time */
299 	for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
300 		steer_ctrl = 0;
301 
302 		/* The next 128bits of fwdata to be loaded onto the adapter */
303 		data0 = *((u64 *)fwdata);
304 		data1 = *((u64 *)fwdata + 1);
305 
306 		status = vxge_hw_vpath_fw_api(vpath,
307 					      VXGE_HW_FW_UPGRADE_ACTION,
308 					      VXGE_HW_FW_UPGRADE_MEMO,
309 					      VXGE_HW_FW_UPGRADE_OFFSET_SEND,
310 					      &data0, &data1, &steer_ctrl);
311 		if (status != VXGE_HW_OK) {
312 			vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
313 					__func__);
314 			goto out;
315 		}
316 
317 		ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
318 		switch (ret_code) {
319 		case VXGE_HW_FW_UPGRADE_OK:
320 			/* All OK, send next 16 bytes. */
321 			break;
322 		case VXGE_FW_UPGRADE_BYTES2SKIP:
323 			/* skip bytes in the stream */
324 			fwdata += (data0 >> 8) & 0xFFFFFFFF;
325 			break;
326 		case VXGE_HW_FW_UPGRADE_DONE:
327 			goto out;
328 		case VXGE_HW_FW_UPGRADE_ERR:
329 			sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
330 			switch (sec_code) {
331 			case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
332 			case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
333 				printk(KERN_ERR
334 				       "corrupted data from .ncf file\n");
335 				break;
336 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
337 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
338 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
339 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
340 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
341 				printk(KERN_ERR "invalid .ncf file\n");
342 				break;
343 			case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
344 				printk(KERN_ERR "buffer overflow\n");
345 				break;
346 			case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
347 				printk(KERN_ERR "failed to flash the image\n");
348 				break;
349 			case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
350 				printk(KERN_ERR
351 				       "generic error. Unknown error type\n");
352 				break;
353 			default:
354 				printk(KERN_ERR "Unknown error of type %d\n",
355 				       sec_code);
356 				break;
357 			}
358 			status = VXGE_HW_FAIL;
359 			goto out;
360 		default:
361 			printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
362 			status = VXGE_HW_FAIL;
363 			goto out;
364 		}
365 		/* point to next 16 bytes */
366 		fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
367 	}
368 out:
369 	return status;
370 }
371 
372 enum vxge_hw_status
vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device * hldev,struct eprom_image * img)373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
374 				struct eprom_image *img)
375 {
376 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
377 	struct __vxge_hw_virtualpath *vpath;
378 	enum vxge_hw_status status;
379 	int i;
380 
381 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
382 
383 	for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
384 		data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
385 		data1 = steer_ctrl = 0;
386 
387 		status = vxge_hw_vpath_fw_api(vpath,
388 			VXGE_HW_FW_API_GET_EPROM_REV,
389 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
390 			0, &data0, &data1, &steer_ctrl);
391 		if (status != VXGE_HW_OK)
392 			break;
393 
394 		img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
395 		img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
396 		img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
397 		img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
398 	}
399 
400 	return status;
401 }
402 
403 /*
404  * __vxge_hw_channel_free - Free memory allocated for channel
405  * This function deallocates memory from the channel and various arrays
406  * in the channel
407  */
__vxge_hw_channel_free(struct __vxge_hw_channel * channel)408 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
409 {
410 	kfree(channel->work_arr);
411 	kfree(channel->free_arr);
412 	kfree(channel->reserve_arr);
413 	kfree(channel->orig_arr);
414 	kfree(channel);
415 }
416 
417 /*
418  * __vxge_hw_channel_initialize - Initialize a channel
419  * This function initializes a channel by properly setting the
420  * various references
421  */
422 static enum vxge_hw_status
__vxge_hw_channel_initialize(struct __vxge_hw_channel * channel)423 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
424 {
425 	u32 i;
426 	struct __vxge_hw_virtualpath *vpath;
427 
428 	vpath = channel->vph->vpath;
429 
430 	if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
431 		for (i = 0; i < channel->length; i++)
432 			channel->orig_arr[i] = channel->reserve_arr[i];
433 	}
434 
435 	switch (channel->type) {
436 	case VXGE_HW_CHANNEL_TYPE_FIFO:
437 		vpath->fifoh = (struct __vxge_hw_fifo *)channel;
438 		channel->stats = &((struct __vxge_hw_fifo *)
439 				channel)->stats->common_stats;
440 		break;
441 	case VXGE_HW_CHANNEL_TYPE_RING:
442 		vpath->ringh = (struct __vxge_hw_ring *)channel;
443 		channel->stats = &((struct __vxge_hw_ring *)
444 				channel)->stats->common_stats;
445 		break;
446 	default:
447 		break;
448 	}
449 
450 	return VXGE_HW_OK;
451 }
452 
453 /*
454  * __vxge_hw_channel_reset - Resets a channel
455  * This function resets a channel by properly setting the various references
456  */
457 static enum vxge_hw_status
__vxge_hw_channel_reset(struct __vxge_hw_channel * channel)458 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
459 {
460 	u32 i;
461 
462 	for (i = 0; i < channel->length; i++) {
463 		if (channel->reserve_arr != NULL)
464 			channel->reserve_arr[i] = channel->orig_arr[i];
465 		if (channel->free_arr != NULL)
466 			channel->free_arr[i] = NULL;
467 		if (channel->work_arr != NULL)
468 			channel->work_arr[i] = NULL;
469 	}
470 	channel->free_ptr = channel->length;
471 	channel->reserve_ptr = channel->length;
472 	channel->reserve_top = 0;
473 	channel->post_index = 0;
474 	channel->compl_index = 0;
475 
476 	return VXGE_HW_OK;
477 }
478 
479 /*
480  * __vxge_hw_device_pci_e_init
481  * Initialize certain PCI/PCI-X configuration registers
482  * with recommended values. Save config space for future hw resets.
483  */
__vxge_hw_device_pci_e_init(struct __vxge_hw_device * hldev)484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
485 {
486 	u16 cmd = 0;
487 
488 	/* Set the PErr Repconse bit and SERR in PCI command register. */
489 	pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
490 	cmd |= 0x140;
491 	pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
492 
493 	pci_save_state(hldev->pdev);
494 }
495 
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
497  * in progress
498  * This routine checks the vpath reset in progress register is turned zero
499  */
500 static enum vxge_hw_status
__vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem * vpath_rst_in_prog)501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
502 {
503 	enum vxge_hw_status status;
504 	status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
505 			VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506 			VXGE_HW_DEF_DEVICE_POLL_MILLIS);
507 	return status;
508 }
509 
510 /*
511  * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512  * Set the swapper bits appropriately for the lagacy section.
513  */
514 static enum vxge_hw_status
__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem * legacy_reg)515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
516 {
517 	u64 val64;
518 	enum vxge_hw_status status = VXGE_HW_OK;
519 
520 	val64 = readq(&legacy_reg->toc_swapper_fb);
521 
522 	wmb();
523 
524 	switch (val64) {
525 	case VXGE_HW_SWAPPER_INITIAL_VALUE:
526 		return status;
527 
528 	case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
529 		writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
530 			&legacy_reg->pifm_rd_swap_en);
531 		writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
532 			&legacy_reg->pifm_rd_flip_en);
533 		writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
534 			&legacy_reg->pifm_wr_swap_en);
535 		writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
536 			&legacy_reg->pifm_wr_flip_en);
537 		break;
538 
539 	case VXGE_HW_SWAPPER_BYTE_SWAPPED:
540 		writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
541 			&legacy_reg->pifm_rd_swap_en);
542 		writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
543 			&legacy_reg->pifm_wr_swap_en);
544 		break;
545 
546 	case VXGE_HW_SWAPPER_BIT_FLIPPED:
547 		writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
548 			&legacy_reg->pifm_rd_flip_en);
549 		writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
550 			&legacy_reg->pifm_wr_flip_en);
551 		break;
552 	}
553 
554 	wmb();
555 
556 	val64 = readq(&legacy_reg->toc_swapper_fb);
557 
558 	if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
559 		status = VXGE_HW_ERR_SWAPPER_CTRL;
560 
561 	return status;
562 }
563 
564 /*
565  * __vxge_hw_device_toc_get
566  * This routine sets the swapper and reads the toc pointer and returns the
567  * memory mapped address of the toc
568  */
569 static struct vxge_hw_toc_reg __iomem *
__vxge_hw_device_toc_get(void __iomem * bar0)570 __vxge_hw_device_toc_get(void __iomem *bar0)
571 {
572 	u64 val64;
573 	struct vxge_hw_toc_reg __iomem *toc = NULL;
574 	enum vxge_hw_status status;
575 
576 	struct vxge_hw_legacy_reg __iomem *legacy_reg =
577 		(struct vxge_hw_legacy_reg __iomem *)bar0;
578 
579 	status = __vxge_hw_legacy_swapper_set(legacy_reg);
580 	if (status != VXGE_HW_OK)
581 		goto exit;
582 
583 	val64 =	readq(&legacy_reg->toc_first_pointer);
584 	toc = bar0 + val64;
585 exit:
586 	return toc;
587 }
588 
589 /*
590  * __vxge_hw_device_reg_addr_get
591  * This routine sets the swapper and reads the toc pointer and initializes the
592  * register location pointers in the device object. It waits until the ric is
593  * completed initializing registers.
594  */
595 static enum vxge_hw_status
__vxge_hw_device_reg_addr_get(struct __vxge_hw_device * hldev)596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
597 {
598 	u64 val64;
599 	u32 i;
600 	enum vxge_hw_status status = VXGE_HW_OK;
601 
602 	hldev->legacy_reg = hldev->bar0;
603 
604 	hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
605 	if (hldev->toc_reg  == NULL) {
606 		status = VXGE_HW_FAIL;
607 		goto exit;
608 	}
609 
610 	val64 = readq(&hldev->toc_reg->toc_common_pointer);
611 	hldev->common_reg = hldev->bar0 + val64;
612 
613 	val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
614 	hldev->mrpcim_reg = hldev->bar0 + val64;
615 
616 	for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
617 		val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
618 		hldev->srpcim_reg[i] = hldev->bar0 + val64;
619 	}
620 
621 	for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
622 		val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
623 		hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
624 	}
625 
626 	for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
627 		val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
628 		hldev->vpath_reg[i] = hldev->bar0 + val64;
629 	}
630 
631 	val64 = readq(&hldev->toc_reg->toc_kdfc);
632 
633 	switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
634 	case 0:
635 		hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
636 		break;
637 	default:
638 		break;
639 	}
640 
641 	status = __vxge_hw_device_vpath_reset_in_prog_check(
642 			(u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
643 exit:
644 	return status;
645 }
646 
647 /*
648  * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649  * This routine returns the Access Rights of the driver
650  */
651 static u32
__vxge_hw_device_access_rights_get(u32 host_type,u32 func_id)652 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
653 {
654 	u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
655 
656 	switch (host_type) {
657 	case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
658 		if (func_id == 0) {
659 			access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
660 					VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
661 		}
662 		break;
663 	case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
664 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
665 				VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
666 		break;
667 	case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
668 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669 				VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
670 		break;
671 	case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
672 	case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
673 	case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
674 		break;
675 	case VXGE_HW_SR_VH_FUNCTION0:
676 	case VXGE_HW_VH_NORMAL_FUNCTION:
677 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
678 		break;
679 	}
680 
681 	return access_rights;
682 }
683 /*
684  * __vxge_hw_device_is_privilaged
685  * This routine checks if the device function is privilaged or not
686  */
687 
688 enum vxge_hw_status
__vxge_hw_device_is_privilaged(u32 host_type,u32 func_id)689 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
690 {
691 	if (__vxge_hw_device_access_rights_get(host_type,
692 		func_id) &
693 		VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
694 		return VXGE_HW_OK;
695 	else
696 		return VXGE_HW_ERR_PRIVILEGED_OPERATION;
697 }
698 
699 /*
700  * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701  * Returns the function number of the vpath.
702  */
703 static u32
__vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem * vpmgmt_reg)704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
705 {
706 	u64 val64;
707 
708 	val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
709 
710 	return
711 	 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
712 }
713 
714 /*
715  * __vxge_hw_device_host_info_get
716  * This routine returns the host type assignments
717  */
__vxge_hw_device_host_info_get(struct __vxge_hw_device * hldev)718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
719 {
720 	u64 val64;
721 	u32 i;
722 
723 	val64 = readq(&hldev->common_reg->host_type_assignments);
724 
725 	hldev->host_type =
726 	   (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
727 
728 	hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
729 
730 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
731 		if (!(hldev->vpath_assignments & vxge_mBIT(i)))
732 			continue;
733 
734 		hldev->func_id =
735 			__vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
736 
737 		hldev->access_rights = __vxge_hw_device_access_rights_get(
738 			hldev->host_type, hldev->func_id);
739 
740 		hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
741 		hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
742 
743 		hldev->first_vp_id = i;
744 		break;
745 	}
746 }
747 
748 /*
749  * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750  * link width and signalling rate.
751  */
752 static enum vxge_hw_status
__vxge_hw_verify_pci_e_info(struct __vxge_hw_device * hldev)753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
754 {
755 	struct pci_dev *dev = hldev->pdev;
756 	u16 lnk;
757 
758 	/* Get the negotiated link width and speed from PCI config space */
759 	pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
760 
761 	if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
762 		return VXGE_HW_ERR_INVALID_PCI_INFO;
763 
764 	switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
765 	case PCIE_LNK_WIDTH_RESRV:
766 	case PCIE_LNK_X1:
767 	case PCIE_LNK_X2:
768 	case PCIE_LNK_X4:
769 	case PCIE_LNK_X8:
770 		break;
771 	default:
772 		return VXGE_HW_ERR_INVALID_PCI_INFO;
773 	}
774 
775 	return VXGE_HW_OK;
776 }
777 
778 /*
779  * __vxge_hw_device_initialize
780  * Initialize Titan-V hardware.
781  */
782 static enum vxge_hw_status
__vxge_hw_device_initialize(struct __vxge_hw_device * hldev)783 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
784 {
785 	enum vxge_hw_status status = VXGE_HW_OK;
786 
787 	if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
788 				hldev->func_id)) {
789 		/* Validate the pci-e link width and speed */
790 		status = __vxge_hw_verify_pci_e_info(hldev);
791 		if (status != VXGE_HW_OK)
792 			goto exit;
793 	}
794 
795 exit:
796 	return status;
797 }
798 
799 /*
800  * __vxge_hw_vpath_fw_ver_get - Get the fw version
801  * Returns FW Version
802  */
803 static enum vxge_hw_status
__vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
805 			   struct vxge_hw_device_hw_info *hw_info)
806 {
807 	struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
808 	struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
809 	struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
810 	struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
811 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
812 	enum vxge_hw_status status;
813 
814 	status = vxge_hw_vpath_fw_api(vpath,
815 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
816 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
817 			0, &data0, &data1, &steer_ctrl);
818 	if (status != VXGE_HW_OK)
819 		goto exit;
820 
821 	fw_date->day =
822 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
823 	fw_date->month =
824 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
825 	fw_date->year =
826 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
827 
828 	snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
829 		 fw_date->month, fw_date->day, fw_date->year);
830 
831 	fw_version->major =
832 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
833 	fw_version->minor =
834 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
835 	fw_version->build =
836 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
837 
838 	snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
839 		 fw_version->major, fw_version->minor, fw_version->build);
840 
841 	flash_date->day =
842 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
843 	flash_date->month =
844 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
845 	flash_date->year =
846 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
847 
848 	snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
849 		 flash_date->month, flash_date->day, flash_date->year);
850 
851 	flash_version->major =
852 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
853 	flash_version->minor =
854 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
855 	flash_version->build =
856 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
857 
858 	snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
859 		 flash_version->major, flash_version->minor,
860 		 flash_version->build);
861 
862 exit:
863 	return status;
864 }
865 
866 /*
867  * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868  * part number and product description.
869  */
870 static enum vxge_hw_status
__vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
872 			      struct vxge_hw_device_hw_info *hw_info)
873 {
874 	enum vxge_hw_status status;
875 	u64 data0, data1 = 0, steer_ctrl = 0;
876 	u8 *serial_number = hw_info->serial_number;
877 	u8 *part_number = hw_info->part_number;
878 	u8 *product_desc = hw_info->product_desc;
879 	u32 i, j = 0;
880 
881 	data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
882 
883 	status = vxge_hw_vpath_fw_api(vpath,
884 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
885 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
886 			0, &data0, &data1, &steer_ctrl);
887 	if (status != VXGE_HW_OK)
888 		return status;
889 
890 	((u64 *)serial_number)[0] = be64_to_cpu(data0);
891 	((u64 *)serial_number)[1] = be64_to_cpu(data1);
892 
893 	data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
894 	data1 = steer_ctrl = 0;
895 
896 	status = vxge_hw_vpath_fw_api(vpath,
897 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
898 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
899 			0, &data0, &data1, &steer_ctrl);
900 	if (status != VXGE_HW_OK)
901 		return status;
902 
903 	((u64 *)part_number)[0] = be64_to_cpu(data0);
904 	((u64 *)part_number)[1] = be64_to_cpu(data1);
905 
906 	for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
907 	     i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
908 		data0 = i;
909 		data1 = steer_ctrl = 0;
910 
911 		status = vxge_hw_vpath_fw_api(vpath,
912 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
913 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
914 			0, &data0, &data1, &steer_ctrl);
915 		if (status != VXGE_HW_OK)
916 			return status;
917 
918 		((u64 *)product_desc)[j++] = be64_to_cpu(data0);
919 		((u64 *)product_desc)[j++] = be64_to_cpu(data1);
920 	}
921 
922 	return status;
923 }
924 
925 /*
926  * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927  * Returns pci function mode
928  */
929 static enum vxge_hw_status
__vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
931 				  struct vxge_hw_device_hw_info *hw_info)
932 {
933 	u64 data0, data1 = 0, steer_ctrl = 0;
934 	enum vxge_hw_status status;
935 
936 	data0 = 0;
937 
938 	status = vxge_hw_vpath_fw_api(vpath,
939 			VXGE_HW_FW_API_GET_FUNC_MODE,
940 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
941 			0, &data0, &data1, &steer_ctrl);
942 	if (status != VXGE_HW_OK)
943 		return status;
944 
945 	hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
946 	return status;
947 }
948 
949 /*
950  * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951  *               from MAC address table.
952  */
953 static enum vxge_hw_status
__vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath * vpath,u8 * macaddr,u8 * macaddr_mask)954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
955 			 u8 *macaddr, u8 *macaddr_mask)
956 {
957 	u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
958 	    data0 = 0, data1 = 0, steer_ctrl = 0;
959 	enum vxge_hw_status status;
960 	int i;
961 
962 	do {
963 		status = vxge_hw_vpath_fw_api(vpath, action,
964 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
965 			0, &data0, &data1, &steer_ctrl);
966 		if (status != VXGE_HW_OK)
967 			goto exit;
968 
969 		data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
970 		data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
971 									data1);
972 
973 		for (i = ETH_ALEN; i > 0; i--) {
974 			macaddr[i - 1] = (u8) (data0 & 0xFF);
975 			data0 >>= 8;
976 
977 			macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
978 			data1 >>= 8;
979 		}
980 
981 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
982 		data0 = 0, data1 = 0, steer_ctrl = 0;
983 
984 	} while (!is_valid_ether_addr(macaddr));
985 exit:
986 	return status;
987 }
988 
989 /**
990  * vxge_hw_device_hw_info_get - Get the hw information
991  * Returns the vpath mask that has the bits set for each vpath allocated
992  * for the driver, FW version information, and the first mac address for
993  * each vpath
994  */
995 enum vxge_hw_status
vxge_hw_device_hw_info_get(void __iomem * bar0,struct vxge_hw_device_hw_info * hw_info)996 vxge_hw_device_hw_info_get(void __iomem *bar0,
997 			   struct vxge_hw_device_hw_info *hw_info)
998 {
999 	u32 i;
1000 	u64 val64;
1001 	struct vxge_hw_toc_reg __iomem *toc;
1002 	struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1003 	struct vxge_hw_common_reg __iomem *common_reg;
1004 	struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1005 	enum vxge_hw_status status;
1006 	struct __vxge_hw_virtualpath vpath;
1007 
1008 	memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1009 
1010 	toc = __vxge_hw_device_toc_get(bar0);
1011 	if (toc == NULL) {
1012 		status = VXGE_HW_ERR_CRITICAL;
1013 		goto exit;
1014 	}
1015 
1016 	val64 = readq(&toc->toc_common_pointer);
1017 	common_reg = bar0 + val64;
1018 
1019 	status = __vxge_hw_device_vpath_reset_in_prog_check(
1020 		(u64 __iomem *)&common_reg->vpath_rst_in_prog);
1021 	if (status != VXGE_HW_OK)
1022 		goto exit;
1023 
1024 	hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1025 
1026 	val64 = readq(&common_reg->host_type_assignments);
1027 
1028 	hw_info->host_type =
1029 	   (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1030 
1031 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1032 		if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1033 			continue;
1034 
1035 		val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1036 
1037 		vpmgmt_reg = bar0 + val64;
1038 
1039 		hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1040 		if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1041 			hw_info->func_id) &
1042 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1043 
1044 			val64 = readq(&toc->toc_mrpcim_pointer);
1045 
1046 			mrpcim_reg = bar0 + val64;
1047 
1048 			writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1049 			wmb();
1050 		}
1051 
1052 		val64 = readq(&toc->toc_vpath_pointer[i]);
1053 
1054 		spin_lock_init(&vpath.lock);
1055 		vpath.vp_reg = bar0 + val64;
1056 		vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1057 
1058 		status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1059 		if (status != VXGE_HW_OK)
1060 			goto exit;
1061 
1062 		status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1063 		if (status != VXGE_HW_OK)
1064 			goto exit;
1065 
1066 		status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1067 		if (status != VXGE_HW_OK)
1068 			goto exit;
1069 
1070 		break;
1071 	}
1072 
1073 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1074 		if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1075 			continue;
1076 
1077 		val64 = readq(&toc->toc_vpath_pointer[i]);
1078 		vpath.vp_reg = bar0 + val64;
1079 		vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1080 
1081 		status =  __vxge_hw_vpath_addr_get(&vpath,
1082 				hw_info->mac_addrs[i],
1083 				hw_info->mac_addr_masks[i]);
1084 		if (status != VXGE_HW_OK)
1085 			goto exit;
1086 	}
1087 exit:
1088 	return status;
1089 }
1090 
1091 /*
1092  * __vxge_hw_blockpool_destroy - Deallocates the block pool
1093  */
__vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool * blockpool)1094 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1095 {
1096 	struct __vxge_hw_device *hldev;
1097 	struct list_head *p, *n;
1098 
1099 	if (!blockpool)
1100 		return;
1101 
1102 	hldev = blockpool->hldev;
1103 
1104 	list_for_each_safe(p, n, &blockpool->free_block_list) {
1105 		pci_unmap_single(hldev->pdev,
1106 			((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1107 			((struct __vxge_hw_blockpool_entry *)p)->length,
1108 			PCI_DMA_BIDIRECTIONAL);
1109 
1110 		vxge_os_dma_free(hldev->pdev,
1111 			((struct __vxge_hw_blockpool_entry *)p)->memblock,
1112 			&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1113 
1114 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1115 		kfree(p);
1116 		blockpool->pool_size--;
1117 	}
1118 
1119 	list_for_each_safe(p, n, &blockpool->free_entry_list) {
1120 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1121 		kfree((void *)p);
1122 	}
1123 
1124 	return;
1125 }
1126 
1127 /*
1128  * __vxge_hw_blockpool_create - Create block pool
1129  */
1130 static enum vxge_hw_status
__vxge_hw_blockpool_create(struct __vxge_hw_device * hldev,struct __vxge_hw_blockpool * blockpool,u32 pool_size,u32 pool_max)1131 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1132 			   struct __vxge_hw_blockpool *blockpool,
1133 			   u32 pool_size,
1134 			   u32 pool_max)
1135 {
1136 	u32 i;
1137 	struct __vxge_hw_blockpool_entry *entry = NULL;
1138 	void *memblock;
1139 	dma_addr_t dma_addr;
1140 	struct pci_dev *dma_handle;
1141 	struct pci_dev *acc_handle;
1142 	enum vxge_hw_status status = VXGE_HW_OK;
1143 
1144 	if (blockpool == NULL) {
1145 		status = VXGE_HW_FAIL;
1146 		goto blockpool_create_exit;
1147 	}
1148 
1149 	blockpool->hldev = hldev;
1150 	blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1151 	blockpool->pool_size = 0;
1152 	blockpool->pool_max = pool_max;
1153 	blockpool->req_out = 0;
1154 
1155 	INIT_LIST_HEAD(&blockpool->free_block_list);
1156 	INIT_LIST_HEAD(&blockpool->free_entry_list);
1157 
1158 	for (i = 0; i < pool_size + pool_max; i++) {
1159 		entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1160 				GFP_KERNEL);
1161 		if (entry == NULL) {
1162 			__vxge_hw_blockpool_destroy(blockpool);
1163 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1164 			goto blockpool_create_exit;
1165 		}
1166 		list_add(&entry->item, &blockpool->free_entry_list);
1167 	}
1168 
1169 	for (i = 0; i < pool_size; i++) {
1170 		memblock = vxge_os_dma_malloc(
1171 				hldev->pdev,
1172 				VXGE_HW_BLOCK_SIZE,
1173 				&dma_handle,
1174 				&acc_handle);
1175 		if (memblock == NULL) {
1176 			__vxge_hw_blockpool_destroy(blockpool);
1177 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1178 			goto blockpool_create_exit;
1179 		}
1180 
1181 		dma_addr = pci_map_single(hldev->pdev, memblock,
1182 				VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1183 		if (unlikely(pci_dma_mapping_error(hldev->pdev,
1184 				dma_addr))) {
1185 			vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1186 			__vxge_hw_blockpool_destroy(blockpool);
1187 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1188 			goto blockpool_create_exit;
1189 		}
1190 
1191 		if (!list_empty(&blockpool->free_entry_list))
1192 			entry = (struct __vxge_hw_blockpool_entry *)
1193 				list_first_entry(&blockpool->free_entry_list,
1194 					struct __vxge_hw_blockpool_entry,
1195 					item);
1196 
1197 		if (entry == NULL)
1198 			entry =
1199 			    kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1200 					GFP_KERNEL);
1201 		if (entry != NULL) {
1202 			list_del(&entry->item);
1203 			entry->length = VXGE_HW_BLOCK_SIZE;
1204 			entry->memblock = memblock;
1205 			entry->dma_addr = dma_addr;
1206 			entry->acc_handle = acc_handle;
1207 			entry->dma_handle = dma_handle;
1208 			list_add(&entry->item,
1209 					  &blockpool->free_block_list);
1210 			blockpool->pool_size++;
1211 		} else {
1212 			__vxge_hw_blockpool_destroy(blockpool);
1213 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1214 			goto blockpool_create_exit;
1215 		}
1216 	}
1217 
1218 blockpool_create_exit:
1219 	return status;
1220 }
1221 
1222 /*
1223  * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1224  * Check the fifo configuration
1225  */
1226 static enum vxge_hw_status
__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config * fifo_config)1227 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1228 {
1229 	if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1230 	    (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1231 		return VXGE_HW_BADCFG_FIFO_BLOCKS;
1232 
1233 	return VXGE_HW_OK;
1234 }
1235 
1236 /*
1237  * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1238  * Check the vpath configuration
1239  */
1240 static enum vxge_hw_status
__vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config * vp_config)1241 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1242 {
1243 	enum vxge_hw_status status;
1244 
1245 	if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1246 	    (vp_config->min_bandwidth >	VXGE_HW_VPATH_BANDWIDTH_MAX))
1247 		return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1248 
1249 	status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1250 	if (status != VXGE_HW_OK)
1251 		return status;
1252 
1253 	if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1254 		((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1255 		(vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1256 		return VXGE_HW_BADCFG_VPATH_MTU;
1257 
1258 	if ((vp_config->rpa_strip_vlan_tag !=
1259 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1260 		(vp_config->rpa_strip_vlan_tag !=
1261 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1262 		(vp_config->rpa_strip_vlan_tag !=
1263 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1264 		return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1265 
1266 	return VXGE_HW_OK;
1267 }
1268 
1269 /*
1270  * __vxge_hw_device_config_check - Check device configuration.
1271  * Check the device configuration
1272  */
1273 static enum vxge_hw_status
__vxge_hw_device_config_check(struct vxge_hw_device_config * new_config)1274 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1275 {
1276 	u32 i;
1277 	enum vxge_hw_status status;
1278 
1279 	if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1280 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1281 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1282 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1283 		return VXGE_HW_BADCFG_INTR_MODE;
1284 
1285 	if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1286 	    (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1287 		return VXGE_HW_BADCFG_RTS_MAC_EN;
1288 
1289 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1290 		status = __vxge_hw_device_vpath_config_check(
1291 				&new_config->vp_config[i]);
1292 		if (status != VXGE_HW_OK)
1293 			return status;
1294 	}
1295 
1296 	return VXGE_HW_OK;
1297 }
1298 
1299 /*
1300  * vxge_hw_device_initialize - Initialize Titan device.
1301  * Initialize Titan device. Note that all the arguments of this public API
1302  * are 'IN', including @hldev. Driver cooperates with
1303  * OS to find new Titan device, locate its PCI and memory spaces.
1304  *
1305  * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1306  * to enable the latter to perform Titan hardware initialization.
1307  */
1308 enum vxge_hw_status
vxge_hw_device_initialize(struct __vxge_hw_device ** devh,struct vxge_hw_device_attr * attr,struct vxge_hw_device_config * device_config)1309 vxge_hw_device_initialize(
1310 	struct __vxge_hw_device **devh,
1311 	struct vxge_hw_device_attr *attr,
1312 	struct vxge_hw_device_config *device_config)
1313 {
1314 	u32 i;
1315 	u32 nblocks = 0;
1316 	struct __vxge_hw_device *hldev = NULL;
1317 	enum vxge_hw_status status = VXGE_HW_OK;
1318 
1319 	status = __vxge_hw_device_config_check(device_config);
1320 	if (status != VXGE_HW_OK)
1321 		goto exit;
1322 
1323 	hldev = vzalloc(sizeof(struct __vxge_hw_device));
1324 	if (hldev == NULL) {
1325 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
1326 		goto exit;
1327 	}
1328 
1329 	hldev->magic = VXGE_HW_DEVICE_MAGIC;
1330 
1331 	vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1332 
1333 	/* apply config */
1334 	memcpy(&hldev->config, device_config,
1335 		sizeof(struct vxge_hw_device_config));
1336 
1337 	hldev->bar0 = attr->bar0;
1338 	hldev->pdev = attr->pdev;
1339 
1340 	hldev->uld_callbacks = attr->uld_callbacks;
1341 
1342 	__vxge_hw_device_pci_e_init(hldev);
1343 
1344 	status = __vxge_hw_device_reg_addr_get(hldev);
1345 	if (status != VXGE_HW_OK) {
1346 		vfree(hldev);
1347 		goto exit;
1348 	}
1349 
1350 	__vxge_hw_device_host_info_get(hldev);
1351 
1352 	/* Incrementing for stats blocks */
1353 	nblocks++;
1354 
1355 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1356 		if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1357 			continue;
1358 
1359 		if (device_config->vp_config[i].ring.enable ==
1360 			VXGE_HW_RING_ENABLE)
1361 			nblocks += device_config->vp_config[i].ring.ring_blocks;
1362 
1363 		if (device_config->vp_config[i].fifo.enable ==
1364 			VXGE_HW_FIFO_ENABLE)
1365 			nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1366 		nblocks++;
1367 	}
1368 
1369 	if (__vxge_hw_blockpool_create(hldev,
1370 		&hldev->block_pool,
1371 		device_config->dma_blockpool_initial + nblocks,
1372 		device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1373 
1374 		vxge_hw_device_terminate(hldev);
1375 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
1376 		goto exit;
1377 	}
1378 
1379 	status = __vxge_hw_device_initialize(hldev);
1380 	if (status != VXGE_HW_OK) {
1381 		vxge_hw_device_terminate(hldev);
1382 		goto exit;
1383 	}
1384 
1385 	*devh = hldev;
1386 exit:
1387 	return status;
1388 }
1389 
1390 /*
1391  * vxge_hw_device_terminate - Terminate Titan device.
1392  * Terminate HW device.
1393  */
1394 void
vxge_hw_device_terminate(struct __vxge_hw_device * hldev)1395 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1396 {
1397 	vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1398 
1399 	hldev->magic = VXGE_HW_DEVICE_DEAD;
1400 	__vxge_hw_blockpool_destroy(&hldev->block_pool);
1401 	vfree(hldev);
1402 }
1403 
1404 /*
1405  * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1406  *                           and offset and perform an operation
1407  */
1408 static enum vxge_hw_status
__vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath * vpath,u32 operation,u32 offset,u64 * stat)1409 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1410 			     u32 operation, u32 offset, u64 *stat)
1411 {
1412 	u64 val64;
1413 	enum vxge_hw_status status = VXGE_HW_OK;
1414 	struct vxge_hw_vpath_reg __iomem *vp_reg;
1415 
1416 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1417 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1418 		goto vpath_stats_access_exit;
1419 	}
1420 
1421 	vp_reg = vpath->vp_reg;
1422 
1423 	val64 =  VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1424 		 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1425 		 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1426 
1427 	status = __vxge_hw_pio_mem_write64(val64,
1428 				&vp_reg->xmac_stats_access_cmd,
1429 				VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1430 				vpath->hldev->config.device_poll_millis);
1431 	if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1432 		*stat = readq(&vp_reg->xmac_stats_access_data);
1433 	else
1434 		*stat = 0;
1435 
1436 vpath_stats_access_exit:
1437 	return status;
1438 }
1439 
1440 /*
1441  * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1442  */
1443 static enum vxge_hw_status
__vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_xmac_vpath_tx_stats * vpath_tx_stats)1444 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1445 			struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1446 {
1447 	u64 *val64;
1448 	int i;
1449 	u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1450 	enum vxge_hw_status status = VXGE_HW_OK;
1451 
1452 	val64 = (u64 *)vpath_tx_stats;
1453 
1454 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1455 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1456 		goto exit;
1457 	}
1458 
1459 	for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1460 		status = __vxge_hw_vpath_stats_access(vpath,
1461 					VXGE_HW_STATS_OP_READ,
1462 					offset, val64);
1463 		if (status != VXGE_HW_OK)
1464 			goto exit;
1465 		offset++;
1466 		val64++;
1467 	}
1468 exit:
1469 	return status;
1470 }
1471 
1472 /*
1473  * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1474  */
1475 static enum vxge_hw_status
__vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_xmac_vpath_rx_stats * vpath_rx_stats)1476 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1477 			struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1478 {
1479 	u64 *val64;
1480 	enum vxge_hw_status status = VXGE_HW_OK;
1481 	int i;
1482 	u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1483 	val64 = (u64 *) vpath_rx_stats;
1484 
1485 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1486 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1487 		goto exit;
1488 	}
1489 	for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1490 		status = __vxge_hw_vpath_stats_access(vpath,
1491 					VXGE_HW_STATS_OP_READ,
1492 					offset >> 3, val64);
1493 		if (status != VXGE_HW_OK)
1494 			goto exit;
1495 
1496 		offset += 8;
1497 		val64++;
1498 	}
1499 exit:
1500 	return status;
1501 }
1502 
1503 /*
1504  * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1505  */
1506 static enum vxge_hw_status
__vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_vpath_stats_hw_info * hw_stats)1507 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1508 			  struct vxge_hw_vpath_stats_hw_info *hw_stats)
1509 {
1510 	u64 val64;
1511 	enum vxge_hw_status status = VXGE_HW_OK;
1512 	struct vxge_hw_vpath_reg __iomem *vp_reg;
1513 
1514 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1515 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1516 		goto exit;
1517 	}
1518 	vp_reg = vpath->vp_reg;
1519 
1520 	val64 = readq(&vp_reg->vpath_debug_stats0);
1521 	hw_stats->ini_num_mwr_sent =
1522 		(u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1523 
1524 	val64 = readq(&vp_reg->vpath_debug_stats1);
1525 	hw_stats->ini_num_mrd_sent =
1526 		(u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1527 
1528 	val64 = readq(&vp_reg->vpath_debug_stats2);
1529 	hw_stats->ini_num_cpl_rcvd =
1530 		(u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1531 
1532 	val64 = readq(&vp_reg->vpath_debug_stats3);
1533 	hw_stats->ini_num_mwr_byte_sent =
1534 		VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1535 
1536 	val64 = readq(&vp_reg->vpath_debug_stats4);
1537 	hw_stats->ini_num_cpl_byte_rcvd =
1538 		VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1539 
1540 	val64 = readq(&vp_reg->vpath_debug_stats5);
1541 	hw_stats->wrcrdtarb_xoff =
1542 		(u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1543 
1544 	val64 = readq(&vp_reg->vpath_debug_stats6);
1545 	hw_stats->rdcrdtarb_xoff =
1546 		(u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1547 
1548 	val64 = readq(&vp_reg->vpath_genstats_count01);
1549 	hw_stats->vpath_genstats_count0 =
1550 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1551 		val64);
1552 
1553 	val64 = readq(&vp_reg->vpath_genstats_count01);
1554 	hw_stats->vpath_genstats_count1 =
1555 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1556 		val64);
1557 
1558 	val64 = readq(&vp_reg->vpath_genstats_count23);
1559 	hw_stats->vpath_genstats_count2 =
1560 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1561 		val64);
1562 
1563 	val64 = readq(&vp_reg->vpath_genstats_count01);
1564 	hw_stats->vpath_genstats_count3 =
1565 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1566 		val64);
1567 
1568 	val64 = readq(&vp_reg->vpath_genstats_count4);
1569 	hw_stats->vpath_genstats_count4 =
1570 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1571 		val64);
1572 
1573 	val64 = readq(&vp_reg->vpath_genstats_count5);
1574 	hw_stats->vpath_genstats_count5 =
1575 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1576 		val64);
1577 
1578 	status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1579 	if (status != VXGE_HW_OK)
1580 		goto exit;
1581 
1582 	status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1583 	if (status != VXGE_HW_OK)
1584 		goto exit;
1585 
1586 	VXGE_HW_VPATH_STATS_PIO_READ(
1587 		VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1588 
1589 	hw_stats->prog_event_vnum0 =
1590 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1591 
1592 	hw_stats->prog_event_vnum1 =
1593 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1594 
1595 	VXGE_HW_VPATH_STATS_PIO_READ(
1596 		VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1597 
1598 	hw_stats->prog_event_vnum2 =
1599 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1600 
1601 	hw_stats->prog_event_vnum3 =
1602 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1603 
1604 	val64 = readq(&vp_reg->rx_multi_cast_stats);
1605 	hw_stats->rx_multi_cast_frame_discard =
1606 		(u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1607 
1608 	val64 = readq(&vp_reg->rx_frm_transferred);
1609 	hw_stats->rx_frm_transferred =
1610 		(u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1611 
1612 	val64 = readq(&vp_reg->rxd_returned);
1613 	hw_stats->rxd_returned =
1614 		(u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1615 
1616 	val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1617 	hw_stats->rx_mpa_len_fail_frms =
1618 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1619 	hw_stats->rx_mpa_mrk_fail_frms =
1620 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1621 	hw_stats->rx_mpa_crc_fail_frms =
1622 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1623 
1624 	val64 = readq(&vp_reg->dbg_stats_rx_fau);
1625 	hw_stats->rx_permitted_frms =
1626 		(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1627 	hw_stats->rx_vp_reset_discarded_frms =
1628 	(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1629 	hw_stats->rx_wol_frms =
1630 		(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1631 
1632 	val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1633 	hw_stats->tx_vp_reset_discarded_frms =
1634 	(u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1635 		val64);
1636 exit:
1637 	return status;
1638 }
1639 
1640 /*
1641  * vxge_hw_device_stats_get - Get the device hw statistics.
1642  * Returns the vpath h/w stats for the device.
1643  */
1644 enum vxge_hw_status
vxge_hw_device_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_device_stats_hw_info * hw_stats)1645 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1646 			struct vxge_hw_device_stats_hw_info *hw_stats)
1647 {
1648 	u32 i;
1649 	enum vxge_hw_status status = VXGE_HW_OK;
1650 
1651 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1652 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1653 			(hldev->virtual_paths[i].vp_open ==
1654 				VXGE_HW_VP_NOT_OPEN))
1655 			continue;
1656 
1657 		memcpy(hldev->virtual_paths[i].hw_stats_sav,
1658 				hldev->virtual_paths[i].hw_stats,
1659 				sizeof(struct vxge_hw_vpath_stats_hw_info));
1660 
1661 		status = __vxge_hw_vpath_stats_get(
1662 			&hldev->virtual_paths[i],
1663 			hldev->virtual_paths[i].hw_stats);
1664 	}
1665 
1666 	memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1667 			sizeof(struct vxge_hw_device_stats_hw_info));
1668 
1669 	return status;
1670 }
1671 
1672 /*
1673  * vxge_hw_driver_stats_get - Get the device sw statistics.
1674  * Returns the vpath s/w stats for the device.
1675  */
vxge_hw_driver_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_device_stats_sw_info * sw_stats)1676 enum vxge_hw_status vxge_hw_driver_stats_get(
1677 			struct __vxge_hw_device *hldev,
1678 			struct vxge_hw_device_stats_sw_info *sw_stats)
1679 {
1680 	memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1681 		sizeof(struct vxge_hw_device_stats_sw_info));
1682 
1683 	return VXGE_HW_OK;
1684 }
1685 
1686 /*
1687  * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1688  *                           and offset and perform an operation
1689  * Get the statistics from the given location and offset.
1690  */
1691 enum vxge_hw_status
vxge_hw_mrpcim_stats_access(struct __vxge_hw_device * hldev,u32 operation,u32 location,u32 offset,u64 * stat)1692 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1693 			    u32 operation, u32 location, u32 offset, u64 *stat)
1694 {
1695 	u64 val64;
1696 	enum vxge_hw_status status = VXGE_HW_OK;
1697 
1698 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1699 			hldev->func_id);
1700 	if (status != VXGE_HW_OK)
1701 		goto exit;
1702 
1703 	val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1704 		VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1705 		VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1706 		VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1707 
1708 	status = __vxge_hw_pio_mem_write64(val64,
1709 				&hldev->mrpcim_reg->xmac_stats_sys_cmd,
1710 				VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1711 				hldev->config.device_poll_millis);
1712 
1713 	if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1714 		*stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1715 	else
1716 		*stat = 0;
1717 exit:
1718 	return status;
1719 }
1720 
1721 /*
1722  * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1723  * Get the Statistics on aggregate port
1724  */
1725 static enum vxge_hw_status
vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device * hldev,u32 port,struct vxge_hw_xmac_aggr_stats * aggr_stats)1726 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1727 				   struct vxge_hw_xmac_aggr_stats *aggr_stats)
1728 {
1729 	u64 *val64;
1730 	int i;
1731 	u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1732 	enum vxge_hw_status status = VXGE_HW_OK;
1733 
1734 	val64 = (u64 *)aggr_stats;
1735 
1736 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1737 			hldev->func_id);
1738 	if (status != VXGE_HW_OK)
1739 		goto exit;
1740 
1741 	for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1742 		status = vxge_hw_mrpcim_stats_access(hldev,
1743 					VXGE_HW_STATS_OP_READ,
1744 					VXGE_HW_STATS_LOC_AGGR,
1745 					((offset + (104 * port)) >> 3), val64);
1746 		if (status != VXGE_HW_OK)
1747 			goto exit;
1748 
1749 		offset += 8;
1750 		val64++;
1751 	}
1752 exit:
1753 	return status;
1754 }
1755 
1756 /*
1757  * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1758  * Get the Statistics on port
1759  */
1760 static enum vxge_hw_status
vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device * hldev,u32 port,struct vxge_hw_xmac_port_stats * port_stats)1761 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1762 				   struct vxge_hw_xmac_port_stats *port_stats)
1763 {
1764 	u64 *val64;
1765 	enum vxge_hw_status status = VXGE_HW_OK;
1766 	int i;
1767 	u32 offset = 0x0;
1768 	val64 = (u64 *) port_stats;
1769 
1770 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1771 			hldev->func_id);
1772 	if (status != VXGE_HW_OK)
1773 		goto exit;
1774 
1775 	for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1776 		status = vxge_hw_mrpcim_stats_access(hldev,
1777 					VXGE_HW_STATS_OP_READ,
1778 					VXGE_HW_STATS_LOC_AGGR,
1779 					((offset + (608 * port)) >> 3), val64);
1780 		if (status != VXGE_HW_OK)
1781 			goto exit;
1782 
1783 		offset += 8;
1784 		val64++;
1785 	}
1786 
1787 exit:
1788 	return status;
1789 }
1790 
1791 /*
1792  * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1793  * Get the XMAC Statistics
1794  */
1795 enum vxge_hw_status
vxge_hw_device_xmac_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_xmac_stats * xmac_stats)1796 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1797 			      struct vxge_hw_xmac_stats *xmac_stats)
1798 {
1799 	enum vxge_hw_status status = VXGE_HW_OK;
1800 	u32 i;
1801 
1802 	status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1803 					0, &xmac_stats->aggr_stats[0]);
1804 	if (status != VXGE_HW_OK)
1805 		goto exit;
1806 
1807 	status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1808 				1, &xmac_stats->aggr_stats[1]);
1809 	if (status != VXGE_HW_OK)
1810 		goto exit;
1811 
1812 	for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1813 
1814 		status = vxge_hw_device_xmac_port_stats_get(hldev,
1815 					i, &xmac_stats->port_stats[i]);
1816 		if (status != VXGE_HW_OK)
1817 			goto exit;
1818 	}
1819 
1820 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1821 
1822 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1823 			continue;
1824 
1825 		status = __vxge_hw_vpath_xmac_tx_stats_get(
1826 					&hldev->virtual_paths[i],
1827 					&xmac_stats->vpath_tx_stats[i]);
1828 		if (status != VXGE_HW_OK)
1829 			goto exit;
1830 
1831 		status = __vxge_hw_vpath_xmac_rx_stats_get(
1832 					&hldev->virtual_paths[i],
1833 					&xmac_stats->vpath_rx_stats[i]);
1834 		if (status != VXGE_HW_OK)
1835 			goto exit;
1836 	}
1837 exit:
1838 	return status;
1839 }
1840 
1841 /*
1842  * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1843  * This routine is used to dynamically change the debug output
1844  */
vxge_hw_device_debug_set(struct __vxge_hw_device * hldev,enum vxge_debug_level level,u32 mask)1845 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1846 			      enum vxge_debug_level level, u32 mask)
1847 {
1848 	if (hldev == NULL)
1849 		return;
1850 
1851 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1852 	defined(VXGE_DEBUG_ERR_MASK)
1853 	hldev->debug_module_mask = mask;
1854 	hldev->debug_level = level;
1855 #endif
1856 
1857 #if defined(VXGE_DEBUG_ERR_MASK)
1858 	hldev->level_err = level & VXGE_ERR;
1859 #endif
1860 
1861 #if defined(VXGE_DEBUG_TRACE_MASK)
1862 	hldev->level_trace = level & VXGE_TRACE;
1863 #endif
1864 }
1865 
1866 /*
1867  * vxge_hw_device_error_level_get - Get the error level
1868  * This routine returns the current error level set
1869  */
vxge_hw_device_error_level_get(struct __vxge_hw_device * hldev)1870 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1871 {
1872 #if defined(VXGE_DEBUG_ERR_MASK)
1873 	if (hldev == NULL)
1874 		return VXGE_ERR;
1875 	else
1876 		return hldev->level_err;
1877 #else
1878 	return 0;
1879 #endif
1880 }
1881 
1882 /*
1883  * vxge_hw_device_trace_level_get - Get the trace level
1884  * This routine returns the current trace level set
1885  */
vxge_hw_device_trace_level_get(struct __vxge_hw_device * hldev)1886 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1887 {
1888 #if defined(VXGE_DEBUG_TRACE_MASK)
1889 	if (hldev == NULL)
1890 		return VXGE_TRACE;
1891 	else
1892 		return hldev->level_trace;
1893 #else
1894 	return 0;
1895 #endif
1896 }
1897 
1898 /*
1899  * vxge_hw_getpause_data -Pause frame frame generation and reception.
1900  * Returns the Pause frame generation and reception capability of the NIC.
1901  */
vxge_hw_device_getpause_data(struct __vxge_hw_device * hldev,u32 port,u32 * tx,u32 * rx)1902 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1903 						 u32 port, u32 *tx, u32 *rx)
1904 {
1905 	u64 val64;
1906 	enum vxge_hw_status status = VXGE_HW_OK;
1907 
1908 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1909 		status = VXGE_HW_ERR_INVALID_DEVICE;
1910 		goto exit;
1911 	}
1912 
1913 	if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1914 		status = VXGE_HW_ERR_INVALID_PORT;
1915 		goto exit;
1916 	}
1917 
1918 	if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1919 		status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
1920 		goto exit;
1921 	}
1922 
1923 	val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1924 	if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1925 		*tx = 1;
1926 	if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1927 		*rx = 1;
1928 exit:
1929 	return status;
1930 }
1931 
1932 /*
1933  * vxge_hw_device_setpause_data -  set/reset pause frame generation.
1934  * It can be used to set or reset Pause frame generation or reception
1935  * support of the NIC.
1936  */
vxge_hw_device_setpause_data(struct __vxge_hw_device * hldev,u32 port,u32 tx,u32 rx)1937 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1938 						 u32 port, u32 tx, u32 rx)
1939 {
1940 	u64 val64;
1941 	enum vxge_hw_status status = VXGE_HW_OK;
1942 
1943 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1944 		status = VXGE_HW_ERR_INVALID_DEVICE;
1945 		goto exit;
1946 	}
1947 
1948 	if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1949 		status = VXGE_HW_ERR_INVALID_PORT;
1950 		goto exit;
1951 	}
1952 
1953 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1954 			hldev->func_id);
1955 	if (status != VXGE_HW_OK)
1956 		goto exit;
1957 
1958 	val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1959 	if (tx)
1960 		val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1961 	else
1962 		val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1963 	if (rx)
1964 		val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1965 	else
1966 		val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1967 
1968 	writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1969 exit:
1970 	return status;
1971 }
1972 
vxge_hw_device_link_width_get(struct __vxge_hw_device * hldev)1973 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1974 {
1975 	struct pci_dev *dev = hldev->pdev;
1976 	u16 lnk;
1977 
1978 	pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1979 	return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1980 }
1981 
1982 /*
1983  * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1984  * This function returns the index of memory block
1985  */
1986 static inline u32
__vxge_hw_ring_block_memblock_idx(u8 * block)1987 __vxge_hw_ring_block_memblock_idx(u8 *block)
1988 {
1989 	return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1990 }
1991 
1992 /*
1993  * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1994  * This function sets index to a memory block
1995  */
1996 static inline void
__vxge_hw_ring_block_memblock_idx_set(u8 * block,u32 memblock_idx)1997 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1998 {
1999 	*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2000 }
2001 
2002 /*
2003  * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2004  * in RxD block
2005  * Sets the next block pointer in RxD block
2006  */
2007 static inline void
__vxge_hw_ring_block_next_pointer_set(u8 * block,dma_addr_t dma_next)2008 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2009 {
2010 	*((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2011 }
2012 
2013 /*
2014  * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2015  *             first block
2016  * Returns the dma address of the first RxD block
2017  */
__vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring * ring)2018 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2019 {
2020 	struct vxge_hw_mempool_dma *dma_object;
2021 
2022 	dma_object = ring->mempool->memblocks_dma_arr;
2023 	vxge_assert(dma_object != NULL);
2024 
2025 	return dma_object->addr;
2026 }
2027 
2028 /*
2029  * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2030  * This function returns the dma address of a given item
2031  */
__vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool * mempoolh,void * item)2032 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2033 					       void *item)
2034 {
2035 	u32 memblock_idx;
2036 	void *memblock;
2037 	struct vxge_hw_mempool_dma *memblock_dma_object;
2038 	ptrdiff_t dma_item_offset;
2039 
2040 	/* get owner memblock index */
2041 	memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2042 
2043 	/* get owner memblock by memblock index */
2044 	memblock = mempoolh->memblocks_arr[memblock_idx];
2045 
2046 	/* get memblock DMA object by memblock index */
2047 	memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2048 
2049 	/* calculate offset in the memblock of this item */
2050 	dma_item_offset = (u8 *)item - (u8 *)memblock;
2051 
2052 	return memblock_dma_object->addr + dma_item_offset;
2053 }
2054 
2055 /*
2056  * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2057  * This function returns the dma address of a given item
2058  */
__vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool * mempoolh,struct __vxge_hw_ring * ring,u32 from,u32 to)2059 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2060 					 struct __vxge_hw_ring *ring, u32 from,
2061 					 u32 to)
2062 {
2063 	u8 *to_item , *from_item;
2064 	dma_addr_t to_dma;
2065 
2066 	/* get "from" RxD block */
2067 	from_item = mempoolh->items_arr[from];
2068 	vxge_assert(from_item);
2069 
2070 	/* get "to" RxD block */
2071 	to_item = mempoolh->items_arr[to];
2072 	vxge_assert(to_item);
2073 
2074 	/* return address of the beginning of previous RxD block */
2075 	to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2076 
2077 	/* set next pointer for this RxD block to point on
2078 	 * previous item's DMA start address */
2079 	__vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2080 }
2081 
2082 /*
2083  * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2084  * block callback
2085  * This function is callback passed to __vxge_hw_mempool_create to create memory
2086  * pool for RxD block
2087  */
2088 static void
__vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool * mempoolh,u32 memblock_index,struct vxge_hw_mempool_dma * dma_object,u32 index,u32 is_last)2089 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2090 				  u32 memblock_index,
2091 				  struct vxge_hw_mempool_dma *dma_object,
2092 				  u32 index, u32 is_last)
2093 {
2094 	u32 i;
2095 	void *item = mempoolh->items_arr[index];
2096 	struct __vxge_hw_ring *ring =
2097 		(struct __vxge_hw_ring *)mempoolh->userdata;
2098 
2099 	/* format rxds array */
2100 	for (i = 0; i < ring->rxds_per_block; i++) {
2101 		void *rxdblock_priv;
2102 		void *uld_priv;
2103 		struct vxge_hw_ring_rxd_1 *rxdp;
2104 
2105 		u32 reserve_index = ring->channel.reserve_ptr -
2106 				(index * ring->rxds_per_block + i + 1);
2107 		u32 memblock_item_idx;
2108 
2109 		ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2110 						i * ring->rxd_size;
2111 
2112 		/* Note: memblock_item_idx is index of the item within
2113 		 *       the memblock. For instance, in case of three RxD-blocks
2114 		 *       per memblock this value can be 0, 1 or 2. */
2115 		rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2116 					memblock_index, item,
2117 					&memblock_item_idx);
2118 
2119 		rxdp = ring->channel.reserve_arr[reserve_index];
2120 
2121 		uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2122 
2123 		/* pre-format Host_Control */
2124 		rxdp->host_control = (u64)(size_t)uld_priv;
2125 	}
2126 
2127 	__vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2128 
2129 	if (is_last) {
2130 		/* link last one with first one */
2131 		__vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2132 	}
2133 
2134 	if (index > 0) {
2135 		/* link this RxD block with previous one */
2136 		__vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2137 	}
2138 }
2139 
2140 /*
2141  * __vxge_hw_ring_replenish - Initial replenish of RxDs
2142  * This function replenishes the RxDs from reserve array to work array
2143  */
2144 static enum vxge_hw_status
vxge_hw_ring_replenish(struct __vxge_hw_ring * ring)2145 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2146 {
2147 	void *rxd;
2148 	struct __vxge_hw_channel *channel;
2149 	enum vxge_hw_status status = VXGE_HW_OK;
2150 
2151 	channel = &ring->channel;
2152 
2153 	while (vxge_hw_channel_dtr_count(channel) > 0) {
2154 
2155 		status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2156 
2157 		vxge_assert(status == VXGE_HW_OK);
2158 
2159 		if (ring->rxd_init) {
2160 			status = ring->rxd_init(rxd, channel->userdata);
2161 			if (status != VXGE_HW_OK) {
2162 				vxge_hw_ring_rxd_free(ring, rxd);
2163 				goto exit;
2164 			}
2165 		}
2166 
2167 		vxge_hw_ring_rxd_post(ring, rxd);
2168 	}
2169 	status = VXGE_HW_OK;
2170 exit:
2171 	return status;
2172 }
2173 
2174 /*
2175  * __vxge_hw_channel_allocate - Allocate memory for channel
2176  * This function allocates required memory for the channel and various arrays
2177  * in the channel
2178  */
2179 static struct __vxge_hw_channel *
__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle * vph,enum __vxge_hw_channel_type type,u32 length,u32 per_dtr_space,void * userdata)2180 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2181 			   enum __vxge_hw_channel_type type,
2182 			   u32 length, u32 per_dtr_space,
2183 			   void *userdata)
2184 {
2185 	struct __vxge_hw_channel *channel;
2186 	struct __vxge_hw_device *hldev;
2187 	int size = 0;
2188 	u32 vp_id;
2189 
2190 	hldev = vph->vpath->hldev;
2191 	vp_id = vph->vpath->vp_id;
2192 
2193 	switch (type) {
2194 	case VXGE_HW_CHANNEL_TYPE_FIFO:
2195 		size = sizeof(struct __vxge_hw_fifo);
2196 		break;
2197 	case VXGE_HW_CHANNEL_TYPE_RING:
2198 		size = sizeof(struct __vxge_hw_ring);
2199 		break;
2200 	default:
2201 		break;
2202 	}
2203 
2204 	channel = kzalloc(size, GFP_KERNEL);
2205 	if (channel == NULL)
2206 		goto exit0;
2207 	INIT_LIST_HEAD(&channel->item);
2208 
2209 	channel->common_reg = hldev->common_reg;
2210 	channel->first_vp_id = hldev->first_vp_id;
2211 	channel->type = type;
2212 	channel->devh = hldev;
2213 	channel->vph = vph;
2214 	channel->userdata = userdata;
2215 	channel->per_dtr_space = per_dtr_space;
2216 	channel->length = length;
2217 	channel->vp_id = vp_id;
2218 
2219 	channel->work_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2220 	if (channel->work_arr == NULL)
2221 		goto exit1;
2222 
2223 	channel->free_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2224 	if (channel->free_arr == NULL)
2225 		goto exit1;
2226 	channel->free_ptr = length;
2227 
2228 	channel->reserve_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2229 	if (channel->reserve_arr == NULL)
2230 		goto exit1;
2231 	channel->reserve_ptr = length;
2232 	channel->reserve_top = 0;
2233 
2234 	channel->orig_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2235 	if (channel->orig_arr == NULL)
2236 		goto exit1;
2237 
2238 	return channel;
2239 exit1:
2240 	__vxge_hw_channel_free(channel);
2241 
2242 exit0:
2243 	return NULL;
2244 }
2245 
2246 /*
2247  * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2248  * Adds a block to block pool
2249  */
vxge_hw_blockpool_block_add(struct __vxge_hw_device * devh,void * block_addr,u32 length,struct pci_dev * dma_h,struct pci_dev * acc_handle)2250 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2251 					void *block_addr,
2252 					u32 length,
2253 					struct pci_dev *dma_h,
2254 					struct pci_dev *acc_handle)
2255 {
2256 	struct __vxge_hw_blockpool *blockpool;
2257 	struct __vxge_hw_blockpool_entry *entry = NULL;
2258 	dma_addr_t dma_addr;
2259 
2260 	blockpool = &devh->block_pool;
2261 
2262 	if (block_addr == NULL) {
2263 		blockpool->req_out--;
2264 		goto exit;
2265 	}
2266 
2267 	dma_addr = pci_map_single(devh->pdev, block_addr, length,
2268 				PCI_DMA_BIDIRECTIONAL);
2269 
2270 	if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2271 		vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2272 		blockpool->req_out--;
2273 		goto exit;
2274 	}
2275 
2276 	if (!list_empty(&blockpool->free_entry_list))
2277 		entry = (struct __vxge_hw_blockpool_entry *)
2278 			list_first_entry(&blockpool->free_entry_list,
2279 				struct __vxge_hw_blockpool_entry,
2280 				item);
2281 
2282 	if (entry == NULL)
2283 		entry =	vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2284 	else
2285 		list_del(&entry->item);
2286 
2287 	if (entry) {
2288 		entry->length = length;
2289 		entry->memblock = block_addr;
2290 		entry->dma_addr = dma_addr;
2291 		entry->acc_handle = acc_handle;
2292 		entry->dma_handle = dma_h;
2293 		list_add(&entry->item, &blockpool->free_block_list);
2294 		blockpool->pool_size++;
2295 	}
2296 
2297 	blockpool->req_out--;
2298 
2299 exit:
2300 	return;
2301 }
2302 
2303 static inline void
vxge_os_dma_malloc_async(struct pci_dev * pdev,void * devh,unsigned long size)2304 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2305 {
2306 	gfp_t flags;
2307 	void *vaddr;
2308 
2309 	if (in_interrupt())
2310 		flags = GFP_ATOMIC | GFP_DMA;
2311 	else
2312 		flags = GFP_KERNEL | GFP_DMA;
2313 
2314 	vaddr = kmalloc((size), flags);
2315 
2316 	vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2317 }
2318 
2319 /*
2320  * __vxge_hw_blockpool_blocks_add - Request additional blocks
2321  */
2322 static
__vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool * blockpool)2323 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2324 {
2325 	u32 nreq = 0, i;
2326 
2327 	if ((blockpool->pool_size  +  blockpool->req_out) <
2328 		VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2329 		nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2330 		blockpool->req_out += nreq;
2331 	}
2332 
2333 	for (i = 0; i < nreq; i++)
2334 		vxge_os_dma_malloc_async(
2335 			(blockpool->hldev)->pdev,
2336 			blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2337 }
2338 
2339 /*
2340  * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2341  * Allocates a block of memory of given size, either from block pool
2342  * or by calling vxge_os_dma_malloc()
2343  */
__vxge_hw_blockpool_malloc(struct __vxge_hw_device * devh,u32 size,struct vxge_hw_mempool_dma * dma_object)2344 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2345 					struct vxge_hw_mempool_dma *dma_object)
2346 {
2347 	struct __vxge_hw_blockpool_entry *entry = NULL;
2348 	struct __vxge_hw_blockpool  *blockpool;
2349 	void *memblock = NULL;
2350 
2351 	blockpool = &devh->block_pool;
2352 
2353 	if (size != blockpool->block_size) {
2354 
2355 		memblock = vxge_os_dma_malloc(devh->pdev, size,
2356 						&dma_object->handle,
2357 						&dma_object->acc_handle);
2358 
2359 		if (!memblock)
2360 			goto exit;
2361 
2362 		dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2363 					PCI_DMA_BIDIRECTIONAL);
2364 
2365 		if (unlikely(pci_dma_mapping_error(devh->pdev,
2366 				dma_object->addr))) {
2367 			vxge_os_dma_free(devh->pdev, memblock,
2368 				&dma_object->acc_handle);
2369 			memblock = NULL;
2370 			goto exit;
2371 		}
2372 
2373 	} else {
2374 
2375 		if (!list_empty(&blockpool->free_block_list))
2376 			entry = (struct __vxge_hw_blockpool_entry *)
2377 				list_first_entry(&blockpool->free_block_list,
2378 					struct __vxge_hw_blockpool_entry,
2379 					item);
2380 
2381 		if (entry != NULL) {
2382 			list_del(&entry->item);
2383 			dma_object->addr = entry->dma_addr;
2384 			dma_object->handle = entry->dma_handle;
2385 			dma_object->acc_handle = entry->acc_handle;
2386 			memblock = entry->memblock;
2387 
2388 			list_add(&entry->item,
2389 				&blockpool->free_entry_list);
2390 			blockpool->pool_size--;
2391 		}
2392 
2393 		if (memblock != NULL)
2394 			__vxge_hw_blockpool_blocks_add(blockpool);
2395 	}
2396 exit:
2397 	return memblock;
2398 }
2399 
2400 /*
2401  * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2402  */
2403 static void
__vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool * blockpool)2404 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2405 {
2406 	struct list_head *p, *n;
2407 
2408 	list_for_each_safe(p, n, &blockpool->free_block_list) {
2409 
2410 		if (blockpool->pool_size < blockpool->pool_max)
2411 			break;
2412 
2413 		pci_unmap_single(
2414 			(blockpool->hldev)->pdev,
2415 			((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2416 			((struct __vxge_hw_blockpool_entry *)p)->length,
2417 			PCI_DMA_BIDIRECTIONAL);
2418 
2419 		vxge_os_dma_free(
2420 			(blockpool->hldev)->pdev,
2421 			((struct __vxge_hw_blockpool_entry *)p)->memblock,
2422 			&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2423 
2424 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2425 
2426 		list_add(p, &blockpool->free_entry_list);
2427 
2428 		blockpool->pool_size--;
2429 
2430 	}
2431 }
2432 
2433 /*
2434  * __vxge_hw_blockpool_free - Frees the memory allcoated with
2435  *				__vxge_hw_blockpool_malloc
2436  */
__vxge_hw_blockpool_free(struct __vxge_hw_device * devh,void * memblock,u32 size,struct vxge_hw_mempool_dma * dma_object)2437 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2438 				     void *memblock, u32 size,
2439 				     struct vxge_hw_mempool_dma *dma_object)
2440 {
2441 	struct __vxge_hw_blockpool_entry *entry = NULL;
2442 	struct __vxge_hw_blockpool  *blockpool;
2443 	enum vxge_hw_status status = VXGE_HW_OK;
2444 
2445 	blockpool = &devh->block_pool;
2446 
2447 	if (size != blockpool->block_size) {
2448 		pci_unmap_single(devh->pdev, dma_object->addr, size,
2449 			PCI_DMA_BIDIRECTIONAL);
2450 		vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2451 	} else {
2452 
2453 		if (!list_empty(&blockpool->free_entry_list))
2454 			entry = (struct __vxge_hw_blockpool_entry *)
2455 				list_first_entry(&blockpool->free_entry_list,
2456 					struct __vxge_hw_blockpool_entry,
2457 					item);
2458 
2459 		if (entry == NULL)
2460 			entry =	vmalloc(sizeof(
2461 					struct __vxge_hw_blockpool_entry));
2462 		else
2463 			list_del(&entry->item);
2464 
2465 		if (entry != NULL) {
2466 			entry->length = size;
2467 			entry->memblock = memblock;
2468 			entry->dma_addr = dma_object->addr;
2469 			entry->acc_handle = dma_object->acc_handle;
2470 			entry->dma_handle = dma_object->handle;
2471 			list_add(&entry->item,
2472 					&blockpool->free_block_list);
2473 			blockpool->pool_size++;
2474 			status = VXGE_HW_OK;
2475 		} else
2476 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2477 
2478 		if (status == VXGE_HW_OK)
2479 			__vxge_hw_blockpool_blocks_remove(blockpool);
2480 	}
2481 }
2482 
2483 /*
2484  * vxge_hw_mempool_destroy
2485  */
__vxge_hw_mempool_destroy(struct vxge_hw_mempool * mempool)2486 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2487 {
2488 	u32 i, j;
2489 	struct __vxge_hw_device *devh = mempool->devh;
2490 
2491 	for (i = 0; i < mempool->memblocks_allocated; i++) {
2492 		struct vxge_hw_mempool_dma *dma_object;
2493 
2494 		vxge_assert(mempool->memblocks_arr[i]);
2495 		vxge_assert(mempool->memblocks_dma_arr + i);
2496 
2497 		dma_object = mempool->memblocks_dma_arr + i;
2498 
2499 		for (j = 0; j < mempool->items_per_memblock; j++) {
2500 			u32 index = i * mempool->items_per_memblock + j;
2501 
2502 			/* to skip last partially filled(if any) memblock */
2503 			if (index >= mempool->items_current)
2504 				break;
2505 		}
2506 
2507 		vfree(mempool->memblocks_priv_arr[i]);
2508 
2509 		__vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2510 				mempool->memblock_size, dma_object);
2511 	}
2512 
2513 	vfree(mempool->items_arr);
2514 	vfree(mempool->memblocks_dma_arr);
2515 	vfree(mempool->memblocks_priv_arr);
2516 	vfree(mempool->memblocks_arr);
2517 	vfree(mempool);
2518 }
2519 
2520 /*
2521  * __vxge_hw_mempool_grow
2522  * Will resize mempool up to %num_allocate value.
2523  */
2524 static enum vxge_hw_status
__vxge_hw_mempool_grow(struct vxge_hw_mempool * mempool,u32 num_allocate,u32 * num_allocated)2525 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2526 		       u32 *num_allocated)
2527 {
2528 	u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2529 	u32 n_items = mempool->items_per_memblock;
2530 	u32 start_block_idx = mempool->memblocks_allocated;
2531 	u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2532 	enum vxge_hw_status status = VXGE_HW_OK;
2533 
2534 	*num_allocated = 0;
2535 
2536 	if (end_block_idx > mempool->memblocks_max) {
2537 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2538 		goto exit;
2539 	}
2540 
2541 	for (i = start_block_idx; i < end_block_idx; i++) {
2542 		u32 j;
2543 		u32 is_last = ((end_block_idx - 1) == i);
2544 		struct vxge_hw_mempool_dma *dma_object =
2545 			mempool->memblocks_dma_arr + i;
2546 		void *the_memblock;
2547 
2548 		/* allocate memblock's private part. Each DMA memblock
2549 		 * has a space allocated for item's private usage upon
2550 		 * mempool's user request. Each time mempool grows, it will
2551 		 * allocate new memblock and its private part at once.
2552 		 * This helps to minimize memory usage a lot. */
2553 		mempool->memblocks_priv_arr[i] =
2554 			vzalloc(array_size(mempool->items_priv_size, n_items));
2555 		if (mempool->memblocks_priv_arr[i] == NULL) {
2556 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2557 			goto exit;
2558 		}
2559 
2560 		/* allocate DMA-capable memblock */
2561 		mempool->memblocks_arr[i] =
2562 			__vxge_hw_blockpool_malloc(mempool->devh,
2563 				mempool->memblock_size, dma_object);
2564 		if (mempool->memblocks_arr[i] == NULL) {
2565 			vfree(mempool->memblocks_priv_arr[i]);
2566 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2567 			goto exit;
2568 		}
2569 
2570 		(*num_allocated)++;
2571 		mempool->memblocks_allocated++;
2572 
2573 		memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2574 
2575 		the_memblock = mempool->memblocks_arr[i];
2576 
2577 		/* fill the items hash array */
2578 		for (j = 0; j < n_items; j++) {
2579 			u32 index = i * n_items + j;
2580 
2581 			if (first_time && index >= mempool->items_initial)
2582 				break;
2583 
2584 			mempool->items_arr[index] =
2585 				((char *)the_memblock + j*mempool->item_size);
2586 
2587 			/* let caller to do more job on each item */
2588 			if (mempool->item_func_alloc != NULL)
2589 				mempool->item_func_alloc(mempool, i,
2590 					dma_object, index, is_last);
2591 
2592 			mempool->items_current = index + 1;
2593 		}
2594 
2595 		if (first_time && mempool->items_current ==
2596 					mempool->items_initial)
2597 			break;
2598 	}
2599 exit:
2600 	return status;
2601 }
2602 
2603 /*
2604  * vxge_hw_mempool_create
2605  * This function will create memory pool object. Pool may grow but will
2606  * never shrink. Pool consists of number of dynamically allocated blocks
2607  * with size enough to hold %items_initial number of items. Memory is
2608  * DMA-able but client must map/unmap before interoperating with the device.
2609  */
2610 static struct vxge_hw_mempool *
__vxge_hw_mempool_create(struct __vxge_hw_device * devh,u32 memblock_size,u32 item_size,u32 items_priv_size,u32 items_initial,u32 items_max,const struct vxge_hw_mempool_cbs * mp_callback,void * userdata)2611 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2612 			 u32 memblock_size,
2613 			 u32 item_size,
2614 			 u32 items_priv_size,
2615 			 u32 items_initial,
2616 			 u32 items_max,
2617 			 const struct vxge_hw_mempool_cbs *mp_callback,
2618 			 void *userdata)
2619 {
2620 	enum vxge_hw_status status = VXGE_HW_OK;
2621 	u32 memblocks_to_allocate;
2622 	struct vxge_hw_mempool *mempool = NULL;
2623 	u32 allocated;
2624 
2625 	if (memblock_size < item_size) {
2626 		status = VXGE_HW_FAIL;
2627 		goto exit;
2628 	}
2629 
2630 	mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2631 	if (mempool == NULL) {
2632 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2633 		goto exit;
2634 	}
2635 
2636 	mempool->devh			= devh;
2637 	mempool->memblock_size		= memblock_size;
2638 	mempool->items_max		= items_max;
2639 	mempool->items_initial		= items_initial;
2640 	mempool->item_size		= item_size;
2641 	mempool->items_priv_size	= items_priv_size;
2642 	mempool->item_func_alloc	= mp_callback->item_func_alloc;
2643 	mempool->userdata		= userdata;
2644 
2645 	mempool->memblocks_allocated = 0;
2646 
2647 	mempool->items_per_memblock = memblock_size / item_size;
2648 
2649 	mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2650 					mempool->items_per_memblock;
2651 
2652 	/* allocate array of memblocks */
2653 	mempool->memblocks_arr =
2654 		vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2655 	if (mempool->memblocks_arr == NULL) {
2656 		__vxge_hw_mempool_destroy(mempool);
2657 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2658 		mempool = NULL;
2659 		goto exit;
2660 	}
2661 
2662 	/* allocate array of private parts of items per memblocks */
2663 	mempool->memblocks_priv_arr =
2664 		vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2665 	if (mempool->memblocks_priv_arr == NULL) {
2666 		__vxge_hw_mempool_destroy(mempool);
2667 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2668 		mempool = NULL;
2669 		goto exit;
2670 	}
2671 
2672 	/* allocate array of memblocks DMA objects */
2673 	mempool->memblocks_dma_arr =
2674 		vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma),
2675 				   mempool->memblocks_max));
2676 	if (mempool->memblocks_dma_arr == NULL) {
2677 		__vxge_hw_mempool_destroy(mempool);
2678 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2679 		mempool = NULL;
2680 		goto exit;
2681 	}
2682 
2683 	/* allocate hash array of items */
2684 	mempool->items_arr = vzalloc(array_size(sizeof(void *),
2685 						mempool->items_max));
2686 	if (mempool->items_arr == NULL) {
2687 		__vxge_hw_mempool_destroy(mempool);
2688 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2689 		mempool = NULL;
2690 		goto exit;
2691 	}
2692 
2693 	/* calculate initial number of memblocks */
2694 	memblocks_to_allocate = (mempool->items_initial +
2695 				 mempool->items_per_memblock - 1) /
2696 						mempool->items_per_memblock;
2697 
2698 	/* pre-allocate the mempool */
2699 	status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2700 					&allocated);
2701 	if (status != VXGE_HW_OK) {
2702 		__vxge_hw_mempool_destroy(mempool);
2703 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2704 		mempool = NULL;
2705 		goto exit;
2706 	}
2707 
2708 exit:
2709 	return mempool;
2710 }
2711 
2712 /*
2713  * __vxge_hw_ring_abort - Returns the RxD
2714  * This function terminates the RxDs of ring
2715  */
__vxge_hw_ring_abort(struct __vxge_hw_ring * ring)2716 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2717 {
2718 	void *rxdh;
2719 	struct __vxge_hw_channel *channel;
2720 
2721 	channel = &ring->channel;
2722 
2723 	for (;;) {
2724 		vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2725 
2726 		if (rxdh == NULL)
2727 			break;
2728 
2729 		vxge_hw_channel_dtr_complete(channel);
2730 
2731 		if (ring->rxd_term)
2732 			ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2733 				channel->userdata);
2734 
2735 		vxge_hw_channel_dtr_free(channel, rxdh);
2736 	}
2737 
2738 	return VXGE_HW_OK;
2739 }
2740 
2741 /*
2742  * __vxge_hw_ring_reset - Resets the ring
2743  * This function resets the ring during vpath reset operation
2744  */
__vxge_hw_ring_reset(struct __vxge_hw_ring * ring)2745 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2746 {
2747 	enum vxge_hw_status status = VXGE_HW_OK;
2748 	struct __vxge_hw_channel *channel;
2749 
2750 	channel = &ring->channel;
2751 
2752 	__vxge_hw_ring_abort(ring);
2753 
2754 	status = __vxge_hw_channel_reset(channel);
2755 
2756 	if (status != VXGE_HW_OK)
2757 		goto exit;
2758 
2759 	if (ring->rxd_init) {
2760 		status = vxge_hw_ring_replenish(ring);
2761 		if (status != VXGE_HW_OK)
2762 			goto exit;
2763 	}
2764 exit:
2765 	return status;
2766 }
2767 
2768 /*
2769  * __vxge_hw_ring_delete - Removes the ring
2770  * This function freeup the memory pool and removes the ring
2771  */
2772 static enum vxge_hw_status
__vxge_hw_ring_delete(struct __vxge_hw_vpath_handle * vp)2773 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2774 {
2775 	struct __vxge_hw_ring *ring = vp->vpath->ringh;
2776 
2777 	__vxge_hw_ring_abort(ring);
2778 
2779 	if (ring->mempool)
2780 		__vxge_hw_mempool_destroy(ring->mempool);
2781 
2782 	vp->vpath->ringh = NULL;
2783 	__vxge_hw_channel_free(&ring->channel);
2784 
2785 	return VXGE_HW_OK;
2786 }
2787 
2788 /*
2789  * __vxge_hw_ring_create - Create a Ring
2790  * This function creates Ring and initializes it.
2791  */
2792 static enum vxge_hw_status
__vxge_hw_ring_create(struct __vxge_hw_vpath_handle * vp,struct vxge_hw_ring_attr * attr)2793 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2794 		      struct vxge_hw_ring_attr *attr)
2795 {
2796 	enum vxge_hw_status status = VXGE_HW_OK;
2797 	struct __vxge_hw_ring *ring;
2798 	u32 ring_length;
2799 	struct vxge_hw_ring_config *config;
2800 	struct __vxge_hw_device *hldev;
2801 	u32 vp_id;
2802 	static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2803 		.item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2804 	};
2805 
2806 	if ((vp == NULL) || (attr == NULL)) {
2807 		status = VXGE_HW_FAIL;
2808 		goto exit;
2809 	}
2810 
2811 	hldev = vp->vpath->hldev;
2812 	vp_id = vp->vpath->vp_id;
2813 
2814 	config = &hldev->config.vp_config[vp_id].ring;
2815 
2816 	ring_length = config->ring_blocks *
2817 			vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2818 
2819 	ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2820 						VXGE_HW_CHANNEL_TYPE_RING,
2821 						ring_length,
2822 						attr->per_rxd_space,
2823 						attr->userdata);
2824 	if (ring == NULL) {
2825 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2826 		goto exit;
2827 	}
2828 
2829 	vp->vpath->ringh = ring;
2830 	ring->vp_id = vp_id;
2831 	ring->vp_reg = vp->vpath->vp_reg;
2832 	ring->common_reg = hldev->common_reg;
2833 	ring->stats = &vp->vpath->sw_stats->ring_stats;
2834 	ring->config = config;
2835 	ring->callback = attr->callback;
2836 	ring->rxd_init = attr->rxd_init;
2837 	ring->rxd_term = attr->rxd_term;
2838 	ring->buffer_mode = config->buffer_mode;
2839 	ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2840 	ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2841 	ring->rxds_limit = config->rxds_limit;
2842 
2843 	ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2844 	ring->rxd_priv_size =
2845 		sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2846 	ring->per_rxd_space = attr->per_rxd_space;
2847 
2848 	ring->rxd_priv_size =
2849 		((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2850 		VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2851 
2852 	/* how many RxDs can fit into one block. Depends on configured
2853 	 * buffer_mode. */
2854 	ring->rxds_per_block =
2855 		vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2856 
2857 	/* calculate actual RxD block private size */
2858 	ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2859 	ring->mempool = __vxge_hw_mempool_create(hldev,
2860 				VXGE_HW_BLOCK_SIZE,
2861 				VXGE_HW_BLOCK_SIZE,
2862 				ring->rxdblock_priv_size,
2863 				ring->config->ring_blocks,
2864 				ring->config->ring_blocks,
2865 				&ring_mp_callback,
2866 				ring);
2867 	if (ring->mempool == NULL) {
2868 		__vxge_hw_ring_delete(vp);
2869 		return VXGE_HW_ERR_OUT_OF_MEMORY;
2870 	}
2871 
2872 	status = __vxge_hw_channel_initialize(&ring->channel);
2873 	if (status != VXGE_HW_OK) {
2874 		__vxge_hw_ring_delete(vp);
2875 		goto exit;
2876 	}
2877 
2878 	/* Note:
2879 	 * Specifying rxd_init callback means two things:
2880 	 * 1) rxds need to be initialized by driver at channel-open time;
2881 	 * 2) rxds need to be posted at channel-open time
2882 	 *    (that's what the initial_replenish() below does)
2883 	 * Currently we don't have a case when the 1) is done without the 2).
2884 	 */
2885 	if (ring->rxd_init) {
2886 		status = vxge_hw_ring_replenish(ring);
2887 		if (status != VXGE_HW_OK) {
2888 			__vxge_hw_ring_delete(vp);
2889 			goto exit;
2890 		}
2891 	}
2892 
2893 	/* initial replenish will increment the counter in its post() routine,
2894 	 * we have to reset it */
2895 	ring->stats->common_stats.usage_cnt = 0;
2896 exit:
2897 	return status;
2898 }
2899 
2900 /*
2901  * vxge_hw_device_config_default_get - Initialize device config with defaults.
2902  * Initialize Titan device config with default values.
2903  */
2904 enum vxge_hw_status
vxge_hw_device_config_default_get(struct vxge_hw_device_config * device_config)2905 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2906 {
2907 	u32 i;
2908 
2909 	device_config->dma_blockpool_initial =
2910 					VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2911 	device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2912 	device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2913 	device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2914 	device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2915 	device_config->device_poll_millis =  VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2916 	device_config->rts_mac_en =  VXGE_HW_RTS_MAC_DEFAULT;
2917 
2918 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2919 		device_config->vp_config[i].vp_id = i;
2920 
2921 		device_config->vp_config[i].min_bandwidth =
2922 				VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2923 
2924 		device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2925 
2926 		device_config->vp_config[i].ring.ring_blocks =
2927 				VXGE_HW_DEF_RING_BLOCKS;
2928 
2929 		device_config->vp_config[i].ring.buffer_mode =
2930 				VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2931 
2932 		device_config->vp_config[i].ring.scatter_mode =
2933 				VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2934 
2935 		device_config->vp_config[i].ring.rxds_limit =
2936 				VXGE_HW_DEF_RING_RXDS_LIMIT;
2937 
2938 		device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2939 
2940 		device_config->vp_config[i].fifo.fifo_blocks =
2941 				VXGE_HW_MIN_FIFO_BLOCKS;
2942 
2943 		device_config->vp_config[i].fifo.max_frags =
2944 				VXGE_HW_MAX_FIFO_FRAGS;
2945 
2946 		device_config->vp_config[i].fifo.memblock_size =
2947 				VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2948 
2949 		device_config->vp_config[i].fifo.alignment_size =
2950 				VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2951 
2952 		device_config->vp_config[i].fifo.intr =
2953 				VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2954 
2955 		device_config->vp_config[i].fifo.no_snoop_bits =
2956 				VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2957 		device_config->vp_config[i].tti.intr_enable =
2958 				VXGE_HW_TIM_INTR_DEFAULT;
2959 
2960 		device_config->vp_config[i].tti.btimer_val =
2961 				VXGE_HW_USE_FLASH_DEFAULT;
2962 
2963 		device_config->vp_config[i].tti.timer_ac_en =
2964 				VXGE_HW_USE_FLASH_DEFAULT;
2965 
2966 		device_config->vp_config[i].tti.timer_ci_en =
2967 				VXGE_HW_USE_FLASH_DEFAULT;
2968 
2969 		device_config->vp_config[i].tti.timer_ri_en =
2970 				VXGE_HW_USE_FLASH_DEFAULT;
2971 
2972 		device_config->vp_config[i].tti.rtimer_val =
2973 				VXGE_HW_USE_FLASH_DEFAULT;
2974 
2975 		device_config->vp_config[i].tti.util_sel =
2976 				VXGE_HW_USE_FLASH_DEFAULT;
2977 
2978 		device_config->vp_config[i].tti.ltimer_val =
2979 				VXGE_HW_USE_FLASH_DEFAULT;
2980 
2981 		device_config->vp_config[i].tti.urange_a =
2982 				VXGE_HW_USE_FLASH_DEFAULT;
2983 
2984 		device_config->vp_config[i].tti.uec_a =
2985 				VXGE_HW_USE_FLASH_DEFAULT;
2986 
2987 		device_config->vp_config[i].tti.urange_b =
2988 				VXGE_HW_USE_FLASH_DEFAULT;
2989 
2990 		device_config->vp_config[i].tti.uec_b =
2991 				VXGE_HW_USE_FLASH_DEFAULT;
2992 
2993 		device_config->vp_config[i].tti.urange_c =
2994 				VXGE_HW_USE_FLASH_DEFAULT;
2995 
2996 		device_config->vp_config[i].tti.uec_c =
2997 				VXGE_HW_USE_FLASH_DEFAULT;
2998 
2999 		device_config->vp_config[i].tti.uec_d =
3000 				VXGE_HW_USE_FLASH_DEFAULT;
3001 
3002 		device_config->vp_config[i].rti.intr_enable =
3003 				VXGE_HW_TIM_INTR_DEFAULT;
3004 
3005 		device_config->vp_config[i].rti.btimer_val =
3006 				VXGE_HW_USE_FLASH_DEFAULT;
3007 
3008 		device_config->vp_config[i].rti.timer_ac_en =
3009 				VXGE_HW_USE_FLASH_DEFAULT;
3010 
3011 		device_config->vp_config[i].rti.timer_ci_en =
3012 				VXGE_HW_USE_FLASH_DEFAULT;
3013 
3014 		device_config->vp_config[i].rti.timer_ri_en =
3015 				VXGE_HW_USE_FLASH_DEFAULT;
3016 
3017 		device_config->vp_config[i].rti.rtimer_val =
3018 				VXGE_HW_USE_FLASH_DEFAULT;
3019 
3020 		device_config->vp_config[i].rti.util_sel =
3021 				VXGE_HW_USE_FLASH_DEFAULT;
3022 
3023 		device_config->vp_config[i].rti.ltimer_val =
3024 				VXGE_HW_USE_FLASH_DEFAULT;
3025 
3026 		device_config->vp_config[i].rti.urange_a =
3027 				VXGE_HW_USE_FLASH_DEFAULT;
3028 
3029 		device_config->vp_config[i].rti.uec_a =
3030 				VXGE_HW_USE_FLASH_DEFAULT;
3031 
3032 		device_config->vp_config[i].rti.urange_b =
3033 				VXGE_HW_USE_FLASH_DEFAULT;
3034 
3035 		device_config->vp_config[i].rti.uec_b =
3036 				VXGE_HW_USE_FLASH_DEFAULT;
3037 
3038 		device_config->vp_config[i].rti.urange_c =
3039 				VXGE_HW_USE_FLASH_DEFAULT;
3040 
3041 		device_config->vp_config[i].rti.uec_c =
3042 				VXGE_HW_USE_FLASH_DEFAULT;
3043 
3044 		device_config->vp_config[i].rti.uec_d =
3045 				VXGE_HW_USE_FLASH_DEFAULT;
3046 
3047 		device_config->vp_config[i].mtu =
3048 				VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3049 
3050 		device_config->vp_config[i].rpa_strip_vlan_tag =
3051 			VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3052 	}
3053 
3054 	return VXGE_HW_OK;
3055 }
3056 
3057 /*
3058  * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3059  * Set the swapper bits appropriately for the vpath.
3060  */
3061 static enum vxge_hw_status
__vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem * vpath_reg)3062 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3063 {
3064 #ifndef __BIG_ENDIAN
3065 	u64 val64;
3066 
3067 	val64 = readq(&vpath_reg->vpath_general_cfg1);
3068 	wmb();
3069 	val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3070 	writeq(val64, &vpath_reg->vpath_general_cfg1);
3071 	wmb();
3072 #endif
3073 	return VXGE_HW_OK;
3074 }
3075 
3076 /*
3077  * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3078  * Set the swapper bits appropriately for the vpath.
3079  */
3080 static enum vxge_hw_status
__vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem * legacy_reg,struct vxge_hw_vpath_reg __iomem * vpath_reg)3081 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3082 			   struct vxge_hw_vpath_reg __iomem *vpath_reg)
3083 {
3084 	u64 val64;
3085 
3086 	val64 = readq(&legacy_reg->pifm_wr_swap_en);
3087 
3088 	if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3089 		val64 = readq(&vpath_reg->kdfcctl_cfg0);
3090 		wmb();
3091 
3092 		val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0	|
3093 			VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1	|
3094 			VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3095 
3096 		writeq(val64, &vpath_reg->kdfcctl_cfg0);
3097 		wmb();
3098 	}
3099 
3100 	return VXGE_HW_OK;
3101 }
3102 
3103 /*
3104  * vxge_hw_mgmt_reg_read - Read Titan register.
3105  */
3106 enum vxge_hw_status
vxge_hw_mgmt_reg_read(struct __vxge_hw_device * hldev,enum vxge_hw_mgmt_reg_type type,u32 index,u32 offset,u64 * value)3107 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3108 		      enum vxge_hw_mgmt_reg_type type,
3109 		      u32 index, u32 offset, u64 *value)
3110 {
3111 	enum vxge_hw_status status = VXGE_HW_OK;
3112 
3113 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3114 		status = VXGE_HW_ERR_INVALID_DEVICE;
3115 		goto exit;
3116 	}
3117 
3118 	switch (type) {
3119 	case vxge_hw_mgmt_reg_type_legacy:
3120 		if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3121 			status = VXGE_HW_ERR_INVALID_OFFSET;
3122 			break;
3123 		}
3124 		*value = readq((void __iomem *)hldev->legacy_reg + offset);
3125 		break;
3126 	case vxge_hw_mgmt_reg_type_toc:
3127 		if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3128 			status = VXGE_HW_ERR_INVALID_OFFSET;
3129 			break;
3130 		}
3131 		*value = readq((void __iomem *)hldev->toc_reg + offset);
3132 		break;
3133 	case vxge_hw_mgmt_reg_type_common:
3134 		if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3135 			status = VXGE_HW_ERR_INVALID_OFFSET;
3136 			break;
3137 		}
3138 		*value = readq((void __iomem *)hldev->common_reg + offset);
3139 		break;
3140 	case vxge_hw_mgmt_reg_type_mrpcim:
3141 		if (!(hldev->access_rights &
3142 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3143 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3144 			break;
3145 		}
3146 		if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3147 			status = VXGE_HW_ERR_INVALID_OFFSET;
3148 			break;
3149 		}
3150 		*value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3151 		break;
3152 	case vxge_hw_mgmt_reg_type_srpcim:
3153 		if (!(hldev->access_rights &
3154 			VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3155 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3156 			break;
3157 		}
3158 		if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3159 			status = VXGE_HW_ERR_INVALID_INDEX;
3160 			break;
3161 		}
3162 		if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3163 			status = VXGE_HW_ERR_INVALID_OFFSET;
3164 			break;
3165 		}
3166 		*value = readq((void __iomem *)hldev->srpcim_reg[index] +
3167 				offset);
3168 		break;
3169 	case vxge_hw_mgmt_reg_type_vpmgmt:
3170 		if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3171 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3172 			status = VXGE_HW_ERR_INVALID_INDEX;
3173 			break;
3174 		}
3175 		if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3176 			status = VXGE_HW_ERR_INVALID_OFFSET;
3177 			break;
3178 		}
3179 		*value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3180 				offset);
3181 		break;
3182 	case vxge_hw_mgmt_reg_type_vpath:
3183 		if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3184 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3185 			status = VXGE_HW_ERR_INVALID_INDEX;
3186 			break;
3187 		}
3188 		if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3189 			status = VXGE_HW_ERR_INVALID_INDEX;
3190 			break;
3191 		}
3192 		if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3193 			status = VXGE_HW_ERR_INVALID_OFFSET;
3194 			break;
3195 		}
3196 		*value = readq((void __iomem *)hldev->vpath_reg[index] +
3197 				offset);
3198 		break;
3199 	default:
3200 		status = VXGE_HW_ERR_INVALID_TYPE;
3201 		break;
3202 	}
3203 
3204 exit:
3205 	return status;
3206 }
3207 
3208 /*
3209  * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3210  */
3211 enum vxge_hw_status
vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device * hldev,u64 vpath_mask)3212 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3213 {
3214 	struct vxge_hw_vpmgmt_reg       __iomem *vpmgmt_reg;
3215 	int i = 0, j = 0;
3216 
3217 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3218 		if (!((vpath_mask) & vxge_mBIT(i)))
3219 			continue;
3220 		vpmgmt_reg = hldev->vpmgmt_reg[i];
3221 		for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3222 			if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3223 			& VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3224 				return VXGE_HW_FAIL;
3225 		}
3226 	}
3227 	return VXGE_HW_OK;
3228 }
3229 /*
3230  * vxge_hw_mgmt_reg_Write - Write Titan register.
3231  */
3232 enum vxge_hw_status
vxge_hw_mgmt_reg_write(struct __vxge_hw_device * hldev,enum vxge_hw_mgmt_reg_type type,u32 index,u32 offset,u64 value)3233 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3234 		      enum vxge_hw_mgmt_reg_type type,
3235 		      u32 index, u32 offset, u64 value)
3236 {
3237 	enum vxge_hw_status status = VXGE_HW_OK;
3238 
3239 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3240 		status = VXGE_HW_ERR_INVALID_DEVICE;
3241 		goto exit;
3242 	}
3243 
3244 	switch (type) {
3245 	case vxge_hw_mgmt_reg_type_legacy:
3246 		if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3247 			status = VXGE_HW_ERR_INVALID_OFFSET;
3248 			break;
3249 		}
3250 		writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3251 		break;
3252 	case vxge_hw_mgmt_reg_type_toc:
3253 		if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3254 			status = VXGE_HW_ERR_INVALID_OFFSET;
3255 			break;
3256 		}
3257 		writeq(value, (void __iomem *)hldev->toc_reg + offset);
3258 		break;
3259 	case vxge_hw_mgmt_reg_type_common:
3260 		if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3261 			status = VXGE_HW_ERR_INVALID_OFFSET;
3262 			break;
3263 		}
3264 		writeq(value, (void __iomem *)hldev->common_reg + offset);
3265 		break;
3266 	case vxge_hw_mgmt_reg_type_mrpcim:
3267 		if (!(hldev->access_rights &
3268 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3269 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3270 			break;
3271 		}
3272 		if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3273 			status = VXGE_HW_ERR_INVALID_OFFSET;
3274 			break;
3275 		}
3276 		writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3277 		break;
3278 	case vxge_hw_mgmt_reg_type_srpcim:
3279 		if (!(hldev->access_rights &
3280 			VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3281 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3282 			break;
3283 		}
3284 		if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3285 			status = VXGE_HW_ERR_INVALID_INDEX;
3286 			break;
3287 		}
3288 		if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3289 			status = VXGE_HW_ERR_INVALID_OFFSET;
3290 			break;
3291 		}
3292 		writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3293 			offset);
3294 
3295 		break;
3296 	case vxge_hw_mgmt_reg_type_vpmgmt:
3297 		if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3298 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3299 			status = VXGE_HW_ERR_INVALID_INDEX;
3300 			break;
3301 		}
3302 		if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3303 			status = VXGE_HW_ERR_INVALID_OFFSET;
3304 			break;
3305 		}
3306 		writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3307 			offset);
3308 		break;
3309 	case vxge_hw_mgmt_reg_type_vpath:
3310 		if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3311 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3312 			status = VXGE_HW_ERR_INVALID_INDEX;
3313 			break;
3314 		}
3315 		if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3316 			status = VXGE_HW_ERR_INVALID_OFFSET;
3317 			break;
3318 		}
3319 		writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3320 			offset);
3321 		break;
3322 	default:
3323 		status = VXGE_HW_ERR_INVALID_TYPE;
3324 		break;
3325 	}
3326 exit:
3327 	return status;
3328 }
3329 
3330 /*
3331  * __vxge_hw_fifo_abort - Returns the TxD
3332  * This function terminates the TxDs of fifo
3333  */
__vxge_hw_fifo_abort(struct __vxge_hw_fifo * fifo)3334 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3335 {
3336 	void *txdlh;
3337 
3338 	for (;;) {
3339 		vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3340 
3341 		if (txdlh == NULL)
3342 			break;
3343 
3344 		vxge_hw_channel_dtr_complete(&fifo->channel);
3345 
3346 		if (fifo->txdl_term) {
3347 			fifo->txdl_term(txdlh,
3348 			VXGE_HW_TXDL_STATE_POSTED,
3349 			fifo->channel.userdata);
3350 		}
3351 
3352 		vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3353 	}
3354 
3355 	return VXGE_HW_OK;
3356 }
3357 
3358 /*
3359  * __vxge_hw_fifo_reset - Resets the fifo
3360  * This function resets the fifo during vpath reset operation
3361  */
__vxge_hw_fifo_reset(struct __vxge_hw_fifo * fifo)3362 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3363 {
3364 	enum vxge_hw_status status = VXGE_HW_OK;
3365 
3366 	__vxge_hw_fifo_abort(fifo);
3367 	status = __vxge_hw_channel_reset(&fifo->channel);
3368 
3369 	return status;
3370 }
3371 
3372 /*
3373  * __vxge_hw_fifo_delete - Removes the FIFO
3374  * This function freeup the memory pool and removes the FIFO
3375  */
3376 static enum vxge_hw_status
__vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle * vp)3377 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3378 {
3379 	struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3380 
3381 	__vxge_hw_fifo_abort(fifo);
3382 
3383 	if (fifo->mempool)
3384 		__vxge_hw_mempool_destroy(fifo->mempool);
3385 
3386 	vp->vpath->fifoh = NULL;
3387 
3388 	__vxge_hw_channel_free(&fifo->channel);
3389 
3390 	return VXGE_HW_OK;
3391 }
3392 
3393 /*
3394  * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3395  * list callback
3396  * This function is callback passed to __vxge_hw_mempool_create to create memory
3397  * pool for TxD list
3398  */
3399 static void
__vxge_hw_fifo_mempool_item_alloc(struct vxge_hw_mempool * mempoolh,u32 memblock_index,struct vxge_hw_mempool_dma * dma_object,u32 index,u32 is_last)3400 __vxge_hw_fifo_mempool_item_alloc(
3401 	struct vxge_hw_mempool *mempoolh,
3402 	u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3403 	u32 index, u32 is_last)
3404 {
3405 	u32 memblock_item_idx;
3406 	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3407 	struct vxge_hw_fifo_txd *txdp =
3408 		(struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3409 	struct __vxge_hw_fifo *fifo =
3410 			(struct __vxge_hw_fifo *)mempoolh->userdata;
3411 	void *memblock = mempoolh->memblocks_arr[memblock_index];
3412 
3413 	vxge_assert(txdp);
3414 
3415 	txdp->host_control = (u64) (size_t)
3416 	__vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3417 					&memblock_item_idx);
3418 
3419 	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3420 
3421 	vxge_assert(txdl_priv);
3422 
3423 	fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3424 
3425 	/* pre-format HW's TxDL's private */
3426 	txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3427 	txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3428 	txdl_priv->dma_handle = dma_object->handle;
3429 	txdl_priv->memblock   = memblock;
3430 	txdl_priv->first_txdp = txdp;
3431 	txdl_priv->next_txdl_priv = NULL;
3432 	txdl_priv->alloc_frags = 0;
3433 }
3434 
3435 /*
3436  * __vxge_hw_fifo_create - Create a FIFO
3437  * This function creates FIFO and initializes it.
3438  */
3439 static enum vxge_hw_status
__vxge_hw_fifo_create(struct __vxge_hw_vpath_handle * vp,struct vxge_hw_fifo_attr * attr)3440 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3441 		      struct vxge_hw_fifo_attr *attr)
3442 {
3443 	enum vxge_hw_status status = VXGE_HW_OK;
3444 	struct __vxge_hw_fifo *fifo;
3445 	struct vxge_hw_fifo_config *config;
3446 	u32 txdl_size, txdl_per_memblock;
3447 	struct vxge_hw_mempool_cbs fifo_mp_callback;
3448 	struct __vxge_hw_virtualpath *vpath;
3449 
3450 	if ((vp == NULL) || (attr == NULL)) {
3451 		status = VXGE_HW_ERR_INVALID_HANDLE;
3452 		goto exit;
3453 	}
3454 	vpath = vp->vpath;
3455 	config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3456 
3457 	txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3458 
3459 	txdl_per_memblock = config->memblock_size / txdl_size;
3460 
3461 	fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3462 					VXGE_HW_CHANNEL_TYPE_FIFO,
3463 					config->fifo_blocks * txdl_per_memblock,
3464 					attr->per_txdl_space, attr->userdata);
3465 
3466 	if (fifo == NULL) {
3467 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
3468 		goto exit;
3469 	}
3470 
3471 	vpath->fifoh = fifo;
3472 	fifo->nofl_db = vpath->nofl_db;
3473 
3474 	fifo->vp_id = vpath->vp_id;
3475 	fifo->vp_reg = vpath->vp_reg;
3476 	fifo->stats = &vpath->sw_stats->fifo_stats;
3477 
3478 	fifo->config = config;
3479 
3480 	/* apply "interrupts per txdl" attribute */
3481 	fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3482 	fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3483 	fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3484 
3485 	if (fifo->config->intr)
3486 		fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3487 
3488 	fifo->no_snoop_bits = config->no_snoop_bits;
3489 
3490 	/*
3491 	 * FIFO memory management strategy:
3492 	 *
3493 	 * TxDL split into three independent parts:
3494 	 *	- set of TxD's
3495 	 *	- TxD HW private part
3496 	 *	- driver private part
3497 	 *
3498 	 * Adaptative memory allocation used. i.e. Memory allocated on
3499 	 * demand with the size which will fit into one memory block.
3500 	 * One memory block may contain more than one TxDL.
3501 	 *
3502 	 * During "reserve" operations more memory can be allocated on demand
3503 	 * for example due to FIFO full condition.
3504 	 *
3505 	 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3506 	 * routine which will essentially stop the channel and free resources.
3507 	 */
3508 
3509 	/* TxDL common private size == TxDL private  +  driver private */
3510 	fifo->priv_size =
3511 		sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3512 	fifo->priv_size = ((fifo->priv_size  +  VXGE_CACHE_LINE_SIZE - 1) /
3513 			VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3514 
3515 	fifo->per_txdl_space = attr->per_txdl_space;
3516 
3517 	/* recompute txdl size to be cacheline aligned */
3518 	fifo->txdl_size = txdl_size;
3519 	fifo->txdl_per_memblock = txdl_per_memblock;
3520 
3521 	fifo->txdl_term = attr->txdl_term;
3522 	fifo->callback = attr->callback;
3523 
3524 	if (fifo->txdl_per_memblock == 0) {
3525 		__vxge_hw_fifo_delete(vp);
3526 		status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3527 		goto exit;
3528 	}
3529 
3530 	fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3531 
3532 	fifo->mempool =
3533 		__vxge_hw_mempool_create(vpath->hldev,
3534 			fifo->config->memblock_size,
3535 			fifo->txdl_size,
3536 			fifo->priv_size,
3537 			(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3538 			(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3539 			&fifo_mp_callback,
3540 			fifo);
3541 
3542 	if (fifo->mempool == NULL) {
3543 		__vxge_hw_fifo_delete(vp);
3544 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
3545 		goto exit;
3546 	}
3547 
3548 	status = __vxge_hw_channel_initialize(&fifo->channel);
3549 	if (status != VXGE_HW_OK) {
3550 		__vxge_hw_fifo_delete(vp);
3551 		goto exit;
3552 	}
3553 
3554 	vxge_assert(fifo->channel.reserve_ptr);
3555 exit:
3556 	return status;
3557 }
3558 
3559 /*
3560  * __vxge_hw_vpath_pci_read - Read the content of given address
3561  *                          in pci config space.
3562  * Read from the vpath pci config space.
3563  */
3564 static enum vxge_hw_status
__vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath * vpath,u32 phy_func_0,u32 offset,u32 * val)3565 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3566 			 u32 phy_func_0, u32 offset, u32 *val)
3567 {
3568 	u64 val64;
3569 	enum vxge_hw_status status = VXGE_HW_OK;
3570 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3571 
3572 	val64 =	VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3573 
3574 	if (phy_func_0)
3575 		val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3576 
3577 	writeq(val64, &vp_reg->pci_config_access_cfg1);
3578 	wmb();
3579 	writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3580 			&vp_reg->pci_config_access_cfg2);
3581 	wmb();
3582 
3583 	status = __vxge_hw_device_register_poll(
3584 			&vp_reg->pci_config_access_cfg2,
3585 			VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3586 
3587 	if (status != VXGE_HW_OK)
3588 		goto exit;
3589 
3590 	val64 = readq(&vp_reg->pci_config_access_status);
3591 
3592 	if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3593 		status = VXGE_HW_FAIL;
3594 		*val = 0;
3595 	} else
3596 		*val = (u32)vxge_bVALn(val64, 32, 32);
3597 exit:
3598 	return status;
3599 }
3600 
3601 /**
3602  * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3603  * @hldev: HW device.
3604  * @on_off: TRUE if flickering to be on, FALSE to be off
3605  *
3606  * Flicker the link LED.
3607  */
3608 enum vxge_hw_status
vxge_hw_device_flick_link_led(struct __vxge_hw_device * hldev,u64 on_off)3609 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3610 {
3611 	struct __vxge_hw_virtualpath *vpath;
3612 	u64 data0, data1 = 0, steer_ctrl = 0;
3613 	enum vxge_hw_status status;
3614 
3615 	if (hldev == NULL) {
3616 		status = VXGE_HW_ERR_INVALID_DEVICE;
3617 		goto exit;
3618 	}
3619 
3620 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
3621 
3622 	data0 = on_off;
3623 	status = vxge_hw_vpath_fw_api(vpath,
3624 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3625 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3626 			0, &data0, &data1, &steer_ctrl);
3627 exit:
3628 	return status;
3629 }
3630 
3631 /*
3632  * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3633  */
3634 enum vxge_hw_status
__vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle * vp,u32 action,u32 rts_table,u32 offset,u64 * data0,u64 * data1)3635 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3636 			      u32 action, u32 rts_table, u32 offset,
3637 			      u64 *data0, u64 *data1)
3638 {
3639 	enum vxge_hw_status status;
3640 	u64 steer_ctrl = 0;
3641 
3642 	if (vp == NULL) {
3643 		status = VXGE_HW_ERR_INVALID_HANDLE;
3644 		goto exit;
3645 	}
3646 
3647 	if ((rts_table ==
3648 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3649 	    (rts_table ==
3650 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3651 	    (rts_table ==
3652 	     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3653 	    (rts_table ==
3654 	     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3655 		steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3656 	}
3657 
3658 	status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3659 				      data0, data1, &steer_ctrl);
3660 	if (status != VXGE_HW_OK)
3661 		goto exit;
3662 
3663 	if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3664 	    (rts_table !=
3665 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3666 		*data1 = 0;
3667 exit:
3668 	return status;
3669 }
3670 
3671 /*
3672  * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3673  */
3674 enum vxge_hw_status
__vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle * vp,u32 action,u32 rts_table,u32 offset,u64 steer_data0,u64 steer_data1)3675 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3676 			      u32 rts_table, u32 offset, u64 steer_data0,
3677 			      u64 steer_data1)
3678 {
3679 	u64 data0, data1 = 0, steer_ctrl = 0;
3680 	enum vxge_hw_status status;
3681 
3682 	if (vp == NULL) {
3683 		status = VXGE_HW_ERR_INVALID_HANDLE;
3684 		goto exit;
3685 	}
3686 
3687 	data0 = steer_data0;
3688 
3689 	if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3690 	    (rts_table ==
3691 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3692 		data1 = steer_data1;
3693 
3694 	status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3695 				      &data0, &data1, &steer_ctrl);
3696 exit:
3697 	return status;
3698 }
3699 
3700 /*
3701  * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3702  */
vxge_hw_vpath_rts_rth_set(struct __vxge_hw_vpath_handle * vp,enum vxge_hw_rth_algoritms algorithm,struct vxge_hw_rth_hash_types * hash_type,u16 bucket_size)3703 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3704 			struct __vxge_hw_vpath_handle *vp,
3705 			enum vxge_hw_rth_algoritms algorithm,
3706 			struct vxge_hw_rth_hash_types *hash_type,
3707 			u16 bucket_size)
3708 {
3709 	u64 data0, data1;
3710 	enum vxge_hw_status status = VXGE_HW_OK;
3711 
3712 	if (vp == NULL) {
3713 		status = VXGE_HW_ERR_INVALID_HANDLE;
3714 		goto exit;
3715 	}
3716 
3717 	status = __vxge_hw_vpath_rts_table_get(vp,
3718 		     VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3719 		     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3720 			0, &data0, &data1);
3721 	if (status != VXGE_HW_OK)
3722 		goto exit;
3723 
3724 	data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3725 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3726 
3727 	data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3728 	VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3729 	VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3730 
3731 	if (hash_type->hash_type_tcpipv4_en)
3732 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3733 
3734 	if (hash_type->hash_type_ipv4_en)
3735 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3736 
3737 	if (hash_type->hash_type_tcpipv6_en)
3738 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3739 
3740 	if (hash_type->hash_type_ipv6_en)
3741 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3742 
3743 	if (hash_type->hash_type_tcpipv6ex_en)
3744 		data0 |=
3745 		VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3746 
3747 	if (hash_type->hash_type_ipv6ex_en)
3748 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3749 
3750 	if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3751 		data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3752 	else
3753 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3754 
3755 	status = __vxge_hw_vpath_rts_table_set(vp,
3756 		VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3757 		VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3758 		0, data0, 0);
3759 exit:
3760 	return status;
3761 }
3762 
3763 static void
vxge_hw_rts_rth_data0_data1_get(u32 j,u64 * data0,u64 * data1,u16 flag,u8 * itable)3764 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3765 				u16 flag, u8 *itable)
3766 {
3767 	switch (flag) {
3768 	case 1:
3769 		*data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3770 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3771 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3772 			itable[j]);
3773 		/* fall through */
3774 	case 2:
3775 		*data0 |=
3776 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3777 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3778 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3779 			itable[j]);
3780 		/* fall through */
3781 	case 3:
3782 		*data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3783 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3784 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3785 			itable[j]);
3786 		/* fall through */
3787 	case 4:
3788 		*data1 |=
3789 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3790 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3791 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3792 			itable[j]);
3793 	default:
3794 		return;
3795 	}
3796 }
3797 /*
3798  * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3799  */
vxge_hw_vpath_rts_rth_itable_set(struct __vxge_hw_vpath_handle ** vpath_handles,u32 vpath_count,u8 * mtable,u8 * itable,u32 itable_size)3800 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3801 			struct __vxge_hw_vpath_handle **vpath_handles,
3802 			u32 vpath_count,
3803 			u8 *mtable,
3804 			u8 *itable,
3805 			u32 itable_size)
3806 {
3807 	u32 i, j, action, rts_table;
3808 	u64 data0;
3809 	u64 data1;
3810 	u32 max_entries;
3811 	enum vxge_hw_status status = VXGE_HW_OK;
3812 	struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3813 
3814 	if (vp == NULL) {
3815 		status = VXGE_HW_ERR_INVALID_HANDLE;
3816 		goto exit;
3817 	}
3818 
3819 	max_entries = (((u32)1) << itable_size);
3820 
3821 	if (vp->vpath->hldev->config.rth_it_type
3822 				== VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3823 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3824 		rts_table =
3825 			VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3826 
3827 		for (j = 0; j < max_entries; j++) {
3828 
3829 			data1 = 0;
3830 
3831 			data0 =
3832 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3833 				itable[j]);
3834 
3835 			status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3836 				action, rts_table, j, data0, data1);
3837 
3838 			if (status != VXGE_HW_OK)
3839 				goto exit;
3840 		}
3841 
3842 		for (j = 0; j < max_entries; j++) {
3843 
3844 			data1 = 0;
3845 
3846 			data0 =
3847 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3848 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3849 				itable[j]);
3850 
3851 			status = __vxge_hw_vpath_rts_table_set(
3852 				vpath_handles[mtable[itable[j]]], action,
3853 				rts_table, j, data0, data1);
3854 
3855 			if (status != VXGE_HW_OK)
3856 				goto exit;
3857 		}
3858 	} else {
3859 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3860 		rts_table =
3861 			VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3862 		for (i = 0; i < vpath_count; i++) {
3863 
3864 			for (j = 0; j < max_entries;) {
3865 
3866 				data0 = 0;
3867 				data1 = 0;
3868 
3869 				while (j < max_entries) {
3870 					if (mtable[itable[j]] != i) {
3871 						j++;
3872 						continue;
3873 					}
3874 					vxge_hw_rts_rth_data0_data1_get(j,
3875 						&data0, &data1, 1, itable);
3876 					j++;
3877 					break;
3878 				}
3879 
3880 				while (j < max_entries) {
3881 					if (mtable[itable[j]] != i) {
3882 						j++;
3883 						continue;
3884 					}
3885 					vxge_hw_rts_rth_data0_data1_get(j,
3886 						&data0, &data1, 2, itable);
3887 					j++;
3888 					break;
3889 				}
3890 
3891 				while (j < max_entries) {
3892 					if (mtable[itable[j]] != i) {
3893 						j++;
3894 						continue;
3895 					}
3896 					vxge_hw_rts_rth_data0_data1_get(j,
3897 						&data0, &data1, 3, itable);
3898 					j++;
3899 					break;
3900 				}
3901 
3902 				while (j < max_entries) {
3903 					if (mtable[itable[j]] != i) {
3904 						j++;
3905 						continue;
3906 					}
3907 					vxge_hw_rts_rth_data0_data1_get(j,
3908 						&data0, &data1, 4, itable);
3909 					j++;
3910 					break;
3911 				}
3912 
3913 				if (data0 != 0) {
3914 					status = __vxge_hw_vpath_rts_table_set(
3915 							vpath_handles[i],
3916 							action, rts_table,
3917 							0, data0, data1);
3918 
3919 					if (status != VXGE_HW_OK)
3920 						goto exit;
3921 				}
3922 			}
3923 		}
3924 	}
3925 exit:
3926 	return status;
3927 }
3928 
3929 /**
3930  * vxge_hw_vpath_check_leak - Check for memory leak
3931  * @ringh: Handle to the ring object used for receive
3932  *
3933  * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3934  * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3935  * Returns: VXGE_HW_FAIL, if leak has occurred.
3936  *
3937  */
3938 enum vxge_hw_status
vxge_hw_vpath_check_leak(struct __vxge_hw_ring * ring)3939 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3940 {
3941 	enum vxge_hw_status status = VXGE_HW_OK;
3942 	u64 rxd_new_count, rxd_spat;
3943 
3944 	if (ring == NULL)
3945 		return status;
3946 
3947 	rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3948 	rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3949 	rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3950 
3951 	if (rxd_new_count >= rxd_spat)
3952 		status = VXGE_HW_FAIL;
3953 
3954 	return status;
3955 }
3956 
3957 /*
3958  * __vxge_hw_vpath_mgmt_read
3959  * This routine reads the vpath_mgmt registers
3960  */
3961 static enum vxge_hw_status
__vxge_hw_vpath_mgmt_read(struct __vxge_hw_device * hldev,struct __vxge_hw_virtualpath * vpath)3962 __vxge_hw_vpath_mgmt_read(
3963 	struct __vxge_hw_device *hldev,
3964 	struct __vxge_hw_virtualpath *vpath)
3965 {
3966 	u32 i, mtu = 0, max_pyld = 0;
3967 	u64 val64;
3968 
3969 	for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3970 
3971 		val64 = readq(&vpath->vpmgmt_reg->
3972 				rxmac_cfg0_port_vpmgmt_clone[i]);
3973 		max_pyld =
3974 			(u32)
3975 			VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3976 			(val64);
3977 		if (mtu < max_pyld)
3978 			mtu = max_pyld;
3979 	}
3980 
3981 	vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3982 
3983 	val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3984 
3985 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3986 		if (val64 & vxge_mBIT(i))
3987 			vpath->vsport_number = i;
3988 	}
3989 
3990 	val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3991 
3992 	if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3993 		VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3994 	else
3995 		VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3996 
3997 	return VXGE_HW_OK;
3998 }
3999 
4000 /*
4001  * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4002  * This routine checks the vpath_rst_in_prog register to see if
4003  * adapter completed the reset process for the vpath
4004  */
4005 static enum vxge_hw_status
__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath * vpath)4006 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4007 {
4008 	enum vxge_hw_status status;
4009 
4010 	status = __vxge_hw_device_register_poll(
4011 			&vpath->hldev->common_reg->vpath_rst_in_prog,
4012 			VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4013 				1 << (16 - vpath->vp_id)),
4014 			vpath->hldev->config.device_poll_millis);
4015 
4016 	return status;
4017 }
4018 
4019 /*
4020  * __vxge_hw_vpath_reset
4021  * This routine resets the vpath on the device
4022  */
4023 static enum vxge_hw_status
__vxge_hw_vpath_reset(struct __vxge_hw_device * hldev,u32 vp_id)4024 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4025 {
4026 	u64 val64;
4027 
4028 	val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4029 
4030 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4031 				&hldev->common_reg->cmn_rsthdlr_cfg0);
4032 
4033 	return VXGE_HW_OK;
4034 }
4035 
4036 /*
4037  * __vxge_hw_vpath_sw_reset
4038  * This routine resets the vpath structures
4039  */
4040 static enum vxge_hw_status
__vxge_hw_vpath_sw_reset(struct __vxge_hw_device * hldev,u32 vp_id)4041 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4042 {
4043 	enum vxge_hw_status status = VXGE_HW_OK;
4044 	struct __vxge_hw_virtualpath *vpath;
4045 
4046 	vpath = &hldev->virtual_paths[vp_id];
4047 
4048 	if (vpath->ringh) {
4049 		status = __vxge_hw_ring_reset(vpath->ringh);
4050 		if (status != VXGE_HW_OK)
4051 			goto exit;
4052 	}
4053 
4054 	if (vpath->fifoh)
4055 		status = __vxge_hw_fifo_reset(vpath->fifoh);
4056 exit:
4057 	return status;
4058 }
4059 
4060 /*
4061  * __vxge_hw_vpath_prc_configure
4062  * This routine configures the prc registers of virtual path using the config
4063  * passed
4064  */
4065 static void
__vxge_hw_vpath_prc_configure(struct __vxge_hw_device * hldev,u32 vp_id)4066 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4067 {
4068 	u64 val64;
4069 	struct __vxge_hw_virtualpath *vpath;
4070 	struct vxge_hw_vp_config *vp_config;
4071 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4072 
4073 	vpath = &hldev->virtual_paths[vp_id];
4074 	vp_reg = vpath->vp_reg;
4075 	vp_config = vpath->vp_config;
4076 
4077 	if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4078 		return;
4079 
4080 	val64 = readq(&vp_reg->prc_cfg1);
4081 	val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4082 	writeq(val64, &vp_reg->prc_cfg1);
4083 
4084 	val64 = readq(&vpath->vp_reg->prc_cfg6);
4085 	val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4086 	writeq(val64, &vpath->vp_reg->prc_cfg6);
4087 
4088 	val64 = readq(&vp_reg->prc_cfg7);
4089 
4090 	if (vpath->vp_config->ring.scatter_mode !=
4091 		VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4092 
4093 		val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4094 
4095 		switch (vpath->vp_config->ring.scatter_mode) {
4096 		case VXGE_HW_RING_SCATTER_MODE_A:
4097 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4098 					VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4099 			break;
4100 		case VXGE_HW_RING_SCATTER_MODE_B:
4101 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4102 					VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4103 			break;
4104 		case VXGE_HW_RING_SCATTER_MODE_C:
4105 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4106 					VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4107 			break;
4108 		}
4109 	}
4110 
4111 	writeq(val64, &vp_reg->prc_cfg7);
4112 
4113 	writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4114 				__vxge_hw_ring_first_block_address_get(
4115 					vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4116 
4117 	val64 = readq(&vp_reg->prc_cfg4);
4118 	val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4119 	val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4120 
4121 	val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4122 			VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4123 
4124 	if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4125 		val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4126 	else
4127 		val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4128 
4129 	writeq(val64, &vp_reg->prc_cfg4);
4130 }
4131 
4132 /*
4133  * __vxge_hw_vpath_kdfc_configure
4134  * This routine configures the kdfc registers of virtual path using the
4135  * config passed
4136  */
4137 static enum vxge_hw_status
__vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device * hldev,u32 vp_id)4138 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4139 {
4140 	u64 val64;
4141 	u64 vpath_stride;
4142 	enum vxge_hw_status status = VXGE_HW_OK;
4143 	struct __vxge_hw_virtualpath *vpath;
4144 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4145 
4146 	vpath = &hldev->virtual_paths[vp_id];
4147 	vp_reg = vpath->vp_reg;
4148 	status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4149 
4150 	if (status != VXGE_HW_OK)
4151 		goto exit;
4152 
4153 	val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4154 
4155 	vpath->max_kdfc_db =
4156 		(u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4157 			val64+1)/2;
4158 
4159 	if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4160 
4161 		vpath->max_nofl_db = vpath->max_kdfc_db;
4162 
4163 		if (vpath->max_nofl_db <
4164 			((vpath->vp_config->fifo.memblock_size /
4165 			(vpath->vp_config->fifo.max_frags *
4166 			sizeof(struct vxge_hw_fifo_txd))) *
4167 			vpath->vp_config->fifo.fifo_blocks)) {
4168 
4169 			return VXGE_HW_BADCFG_FIFO_BLOCKS;
4170 		}
4171 		val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4172 				(vpath->max_nofl_db*2)-1);
4173 	}
4174 
4175 	writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4176 
4177 	writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4178 		&vp_reg->kdfc_fifo_trpl_ctrl);
4179 
4180 	val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4181 
4182 	val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4183 		   VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4184 
4185 	val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4186 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4187 #ifndef __BIG_ENDIAN
4188 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4189 #endif
4190 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4191 
4192 	writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4193 	writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4194 	wmb();
4195 	vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4196 
4197 	vpath->nofl_db =
4198 		(struct __vxge_hw_non_offload_db_wrapper __iomem *)
4199 		(hldev->kdfc + (vp_id *
4200 		VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4201 					vpath_stride)));
4202 exit:
4203 	return status;
4204 }
4205 
4206 /*
4207  * __vxge_hw_vpath_mac_configure
4208  * This routine configures the mac of virtual path using the config passed
4209  */
4210 static enum vxge_hw_status
__vxge_hw_vpath_mac_configure(struct __vxge_hw_device * hldev,u32 vp_id)4211 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4212 {
4213 	u64 val64;
4214 	struct __vxge_hw_virtualpath *vpath;
4215 	struct vxge_hw_vp_config *vp_config;
4216 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4217 
4218 	vpath = &hldev->virtual_paths[vp_id];
4219 	vp_reg = vpath->vp_reg;
4220 	vp_config = vpath->vp_config;
4221 
4222 	writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4223 			vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4224 
4225 	if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4226 
4227 		val64 = readq(&vp_reg->xmac_rpa_vcfg);
4228 
4229 		if (vp_config->rpa_strip_vlan_tag !=
4230 			VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4231 			if (vp_config->rpa_strip_vlan_tag)
4232 				val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4233 			else
4234 				val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4235 		}
4236 
4237 		writeq(val64, &vp_reg->xmac_rpa_vcfg);
4238 		val64 = readq(&vp_reg->rxmac_vcfg0);
4239 
4240 		if (vp_config->mtu !=
4241 				VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4242 			val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4243 			if ((vp_config->mtu  +
4244 				VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4245 				val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4246 					vp_config->mtu  +
4247 					VXGE_HW_MAC_HEADER_MAX_SIZE);
4248 			else
4249 				val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4250 					vpath->max_mtu);
4251 		}
4252 
4253 		writeq(val64, &vp_reg->rxmac_vcfg0);
4254 
4255 		val64 = readq(&vp_reg->rxmac_vcfg1);
4256 
4257 		val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4258 			VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4259 
4260 		if (hldev->config.rth_it_type ==
4261 				VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4262 			val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4263 				0x2) |
4264 				VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4265 		}
4266 
4267 		writeq(val64, &vp_reg->rxmac_vcfg1);
4268 	}
4269 	return VXGE_HW_OK;
4270 }
4271 
4272 /*
4273  * __vxge_hw_vpath_tim_configure
4274  * This routine configures the tim registers of virtual path using the config
4275  * passed
4276  */
4277 static enum vxge_hw_status
__vxge_hw_vpath_tim_configure(struct __vxge_hw_device * hldev,u32 vp_id)4278 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4279 {
4280 	u64 val64;
4281 	struct __vxge_hw_virtualpath *vpath;
4282 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4283 	struct vxge_hw_vp_config *config;
4284 
4285 	vpath = &hldev->virtual_paths[vp_id];
4286 	vp_reg = vpath->vp_reg;
4287 	config = vpath->vp_config;
4288 
4289 	writeq(0, &vp_reg->tim_dest_addr);
4290 	writeq(0, &vp_reg->tim_vpath_map);
4291 	writeq(0, &vp_reg->tim_bitmap);
4292 	writeq(0, &vp_reg->tim_remap);
4293 
4294 	if (config->ring.enable == VXGE_HW_RING_ENABLE)
4295 		writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4296 			(vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4297 			VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4298 
4299 	val64 = readq(&vp_reg->tim_pci_cfg);
4300 	val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4301 	writeq(val64, &vp_reg->tim_pci_cfg);
4302 
4303 	if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4304 
4305 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4306 
4307 		if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4308 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4309 				0x3ffffff);
4310 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4311 					config->tti.btimer_val);
4312 		}
4313 
4314 		val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4315 
4316 		if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4317 			if (config->tti.timer_ac_en)
4318 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4319 			else
4320 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4321 		}
4322 
4323 		if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4324 			if (config->tti.timer_ci_en)
4325 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4326 			else
4327 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4328 		}
4329 
4330 		if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4331 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4332 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4333 					config->tti.urange_a);
4334 		}
4335 
4336 		if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4337 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4338 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4339 					config->tti.urange_b);
4340 		}
4341 
4342 		if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4343 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4344 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4345 					config->tti.urange_c);
4346 		}
4347 
4348 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4349 		vpath->tim_tti_cfg1_saved = val64;
4350 
4351 		val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4352 
4353 		if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4354 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4355 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4356 						config->tti.uec_a);
4357 		}
4358 
4359 		if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4360 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4361 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4362 						config->tti.uec_b);
4363 		}
4364 
4365 		if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4366 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4367 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4368 						config->tti.uec_c);
4369 		}
4370 
4371 		if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4372 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4373 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4374 						config->tti.uec_d);
4375 		}
4376 
4377 		writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4378 		val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4379 
4380 		if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4381 			if (config->tti.timer_ri_en)
4382 				val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4383 			else
4384 				val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4385 		}
4386 
4387 		if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4388 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4389 					0x3ffffff);
4390 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4391 					config->tti.rtimer_val);
4392 		}
4393 
4394 		if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4395 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4396 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4397 		}
4398 
4399 		if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4400 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4401 					0x3ffffff);
4402 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4403 					config->tti.ltimer_val);
4404 		}
4405 
4406 		writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4407 		vpath->tim_tti_cfg3_saved = val64;
4408 	}
4409 
4410 	if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4411 
4412 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4413 
4414 		if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4415 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4416 					0x3ffffff);
4417 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4418 					config->rti.btimer_val);
4419 		}
4420 
4421 		val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4422 
4423 		if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4424 			if (config->rti.timer_ac_en)
4425 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4426 			else
4427 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4428 		}
4429 
4430 		if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4431 			if (config->rti.timer_ci_en)
4432 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4433 			else
4434 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4435 		}
4436 
4437 		if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4438 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4439 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4440 					config->rti.urange_a);
4441 		}
4442 
4443 		if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4444 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4445 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4446 					config->rti.urange_b);
4447 		}
4448 
4449 		if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4450 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4451 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4452 					config->rti.urange_c);
4453 		}
4454 
4455 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4456 		vpath->tim_rti_cfg1_saved = val64;
4457 
4458 		val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4459 
4460 		if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4461 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4462 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4463 						config->rti.uec_a);
4464 		}
4465 
4466 		if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4467 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4468 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4469 						config->rti.uec_b);
4470 		}
4471 
4472 		if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4473 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4474 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4475 						config->rti.uec_c);
4476 		}
4477 
4478 		if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4479 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4480 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4481 						config->rti.uec_d);
4482 		}
4483 
4484 		writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4485 		val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4486 
4487 		if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4488 			if (config->rti.timer_ri_en)
4489 				val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4490 			else
4491 				val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4492 		}
4493 
4494 		if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4495 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4496 					0x3ffffff);
4497 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4498 					config->rti.rtimer_val);
4499 		}
4500 
4501 		if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4502 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4503 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4504 		}
4505 
4506 		if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4507 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4508 					0x3ffffff);
4509 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4510 					config->rti.ltimer_val);
4511 		}
4512 
4513 		writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4514 		vpath->tim_rti_cfg3_saved = val64;
4515 	}
4516 
4517 	val64 = 0;
4518 	writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4519 	writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4520 	writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4521 	writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4522 	writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4523 	writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4524 
4525 	val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4526 	val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4527 	val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4528 	writeq(val64, &vp_reg->tim_wrkld_clc);
4529 
4530 	return VXGE_HW_OK;
4531 }
4532 
4533 /*
4534  * __vxge_hw_vpath_initialize
4535  * This routine is the final phase of init which initializes the
4536  * registers of the vpath using the configuration passed.
4537  */
4538 static enum vxge_hw_status
__vxge_hw_vpath_initialize(struct __vxge_hw_device * hldev,u32 vp_id)4539 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4540 {
4541 	u64 val64;
4542 	u32 val32;
4543 	enum vxge_hw_status status = VXGE_HW_OK;
4544 	struct __vxge_hw_virtualpath *vpath;
4545 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4546 
4547 	vpath = &hldev->virtual_paths[vp_id];
4548 
4549 	if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4550 		status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4551 		goto exit;
4552 	}
4553 	vp_reg = vpath->vp_reg;
4554 
4555 	status =  __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4556 	if (status != VXGE_HW_OK)
4557 		goto exit;
4558 
4559 	status =  __vxge_hw_vpath_mac_configure(hldev, vp_id);
4560 	if (status != VXGE_HW_OK)
4561 		goto exit;
4562 
4563 	status =  __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4564 	if (status != VXGE_HW_OK)
4565 		goto exit;
4566 
4567 	status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4568 	if (status != VXGE_HW_OK)
4569 		goto exit;
4570 
4571 	val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4572 
4573 	/* Get MRRS value from device control */
4574 	status  = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4575 	if (status == VXGE_HW_OK) {
4576 		val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4577 		val64 &=
4578 		    ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4579 		val64 |=
4580 		    VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4581 
4582 		val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4583 	}
4584 
4585 	val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4586 	val64 |=
4587 	    VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4588 		    VXGE_HW_MAX_PAYLOAD_SIZE_512);
4589 
4590 	val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4591 	writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4592 
4593 exit:
4594 	return status;
4595 }
4596 
4597 /*
4598  * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4599  * This routine closes all channels it opened and freeup memory
4600  */
__vxge_hw_vp_terminate(struct __vxge_hw_device * hldev,u32 vp_id)4601 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4602 {
4603 	struct __vxge_hw_virtualpath *vpath;
4604 
4605 	vpath = &hldev->virtual_paths[vp_id];
4606 
4607 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4608 		goto exit;
4609 
4610 	VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4611 		vpath->hldev->tim_int_mask1, vpath->vp_id);
4612 	hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4613 
4614 	/* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4615 	 * work after the interface is brought down.
4616 	 */
4617 	spin_lock(&vpath->lock);
4618 	vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4619 	spin_unlock(&vpath->lock);
4620 
4621 	vpath->vpmgmt_reg = NULL;
4622 	vpath->nofl_db = NULL;
4623 	vpath->max_mtu = 0;
4624 	vpath->vsport_number = 0;
4625 	vpath->max_kdfc_db = 0;
4626 	vpath->max_nofl_db = 0;
4627 	vpath->ringh = NULL;
4628 	vpath->fifoh = NULL;
4629 	memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4630 	vpath->stats_block = NULL;
4631 	vpath->hw_stats = NULL;
4632 	vpath->hw_stats_sav = NULL;
4633 	vpath->sw_stats = NULL;
4634 
4635 exit:
4636 	return;
4637 }
4638 
4639 /*
4640  * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4641  * This routine is the initial phase of init which resets the vpath and
4642  * initializes the software support structures.
4643  */
4644 static enum vxge_hw_status
__vxge_hw_vp_initialize(struct __vxge_hw_device * hldev,u32 vp_id,struct vxge_hw_vp_config * config)4645 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4646 			struct vxge_hw_vp_config *config)
4647 {
4648 	struct __vxge_hw_virtualpath *vpath;
4649 	enum vxge_hw_status status = VXGE_HW_OK;
4650 
4651 	if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4652 		status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4653 		goto exit;
4654 	}
4655 
4656 	vpath = &hldev->virtual_paths[vp_id];
4657 
4658 	spin_lock_init(&vpath->lock);
4659 	vpath->vp_id = vp_id;
4660 	vpath->vp_open = VXGE_HW_VP_OPEN;
4661 	vpath->hldev = hldev;
4662 	vpath->vp_config = config;
4663 	vpath->vp_reg = hldev->vpath_reg[vp_id];
4664 	vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4665 
4666 	__vxge_hw_vpath_reset(hldev, vp_id);
4667 
4668 	status = __vxge_hw_vpath_reset_check(vpath);
4669 	if (status != VXGE_HW_OK) {
4670 		memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4671 		goto exit;
4672 	}
4673 
4674 	status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4675 	if (status != VXGE_HW_OK) {
4676 		memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4677 		goto exit;
4678 	}
4679 
4680 	INIT_LIST_HEAD(&vpath->vpath_handles);
4681 
4682 	vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4683 
4684 	VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4685 		hldev->tim_int_mask1, vp_id);
4686 
4687 	status = __vxge_hw_vpath_initialize(hldev, vp_id);
4688 	if (status != VXGE_HW_OK)
4689 		__vxge_hw_vp_terminate(hldev, vp_id);
4690 exit:
4691 	return status;
4692 }
4693 
4694 /*
4695  * vxge_hw_vpath_mtu_set - Set MTU.
4696  * Set new MTU value. Example, to use jumbo frames:
4697  * vxge_hw_vpath_mtu_set(my_device, 9600);
4698  */
4699 enum vxge_hw_status
vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle * vp,u32 new_mtu)4700 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4701 {
4702 	u64 val64;
4703 	enum vxge_hw_status status = VXGE_HW_OK;
4704 	struct __vxge_hw_virtualpath *vpath;
4705 
4706 	if (vp == NULL) {
4707 		status = VXGE_HW_ERR_INVALID_HANDLE;
4708 		goto exit;
4709 	}
4710 	vpath = vp->vpath;
4711 
4712 	new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4713 
4714 	if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4715 		status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4716 
4717 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4718 
4719 	val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4720 	val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4721 
4722 	writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4723 
4724 	vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4725 
4726 exit:
4727 	return status;
4728 }
4729 
4730 /*
4731  * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4732  * Enable the DMA vpath statistics. The function is to be called to re-enable
4733  * the adapter to update stats into the host memory
4734  */
4735 static enum vxge_hw_status
vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle * vp)4736 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4737 {
4738 	enum vxge_hw_status status = VXGE_HW_OK;
4739 	struct __vxge_hw_virtualpath *vpath;
4740 
4741 	vpath = vp->vpath;
4742 
4743 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4744 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4745 		goto exit;
4746 	}
4747 
4748 	memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4749 			sizeof(struct vxge_hw_vpath_stats_hw_info));
4750 
4751 	status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4752 exit:
4753 	return status;
4754 }
4755 
4756 /*
4757  * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4758  * This function allocates a block from block pool or from the system
4759  */
4760 static struct __vxge_hw_blockpool_entry *
__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device * devh,u32 size)4761 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4762 {
4763 	struct __vxge_hw_blockpool_entry *entry = NULL;
4764 	struct __vxge_hw_blockpool  *blockpool;
4765 
4766 	blockpool = &devh->block_pool;
4767 
4768 	if (size == blockpool->block_size) {
4769 
4770 		if (!list_empty(&blockpool->free_block_list))
4771 			entry = (struct __vxge_hw_blockpool_entry *)
4772 				list_first_entry(&blockpool->free_block_list,
4773 					struct __vxge_hw_blockpool_entry,
4774 					item);
4775 
4776 		if (entry != NULL) {
4777 			list_del(&entry->item);
4778 			blockpool->pool_size--;
4779 		}
4780 	}
4781 
4782 	if (entry != NULL)
4783 		__vxge_hw_blockpool_blocks_add(blockpool);
4784 
4785 	return entry;
4786 }
4787 
4788 /*
4789  * vxge_hw_vpath_open - Open a virtual path on a given adapter
4790  * This function is used to open access to virtual path of an
4791  * adapter for offload, GRO operations. This function returns
4792  * synchronously.
4793  */
4794 enum vxge_hw_status
vxge_hw_vpath_open(struct __vxge_hw_device * hldev,struct vxge_hw_vpath_attr * attr,struct __vxge_hw_vpath_handle ** vpath_handle)4795 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4796 		   struct vxge_hw_vpath_attr *attr,
4797 		   struct __vxge_hw_vpath_handle **vpath_handle)
4798 {
4799 	struct __vxge_hw_virtualpath *vpath;
4800 	struct __vxge_hw_vpath_handle *vp;
4801 	enum vxge_hw_status status;
4802 
4803 	vpath = &hldev->virtual_paths[attr->vp_id];
4804 
4805 	if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4806 		status = VXGE_HW_ERR_INVALID_STATE;
4807 		goto vpath_open_exit1;
4808 	}
4809 
4810 	status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4811 			&hldev->config.vp_config[attr->vp_id]);
4812 	if (status != VXGE_HW_OK)
4813 		goto vpath_open_exit1;
4814 
4815 	vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4816 	if (vp == NULL) {
4817 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
4818 		goto vpath_open_exit2;
4819 	}
4820 
4821 	vp->vpath = vpath;
4822 
4823 	if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4824 		status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4825 		if (status != VXGE_HW_OK)
4826 			goto vpath_open_exit6;
4827 	}
4828 
4829 	if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4830 		status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4831 		if (status != VXGE_HW_OK)
4832 			goto vpath_open_exit7;
4833 
4834 		__vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4835 	}
4836 
4837 	vpath->fifoh->tx_intr_num =
4838 		(attr->vp_id * VXGE_HW_MAX_INTR_PER_VP)  +
4839 			VXGE_HW_VPATH_INTR_TX;
4840 
4841 	vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4842 				VXGE_HW_BLOCK_SIZE);
4843 	if (vpath->stats_block == NULL) {
4844 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
4845 		goto vpath_open_exit8;
4846 	}
4847 
4848 	vpath->hw_stats = vpath->stats_block->memblock;
4849 	memset(vpath->hw_stats, 0,
4850 		sizeof(struct vxge_hw_vpath_stats_hw_info));
4851 
4852 	hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4853 						vpath->hw_stats;
4854 
4855 	vpath->hw_stats_sav =
4856 		&hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4857 	memset(vpath->hw_stats_sav, 0,
4858 			sizeof(struct vxge_hw_vpath_stats_hw_info));
4859 
4860 	writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4861 
4862 	status = vxge_hw_vpath_stats_enable(vp);
4863 	if (status != VXGE_HW_OK)
4864 		goto vpath_open_exit8;
4865 
4866 	list_add(&vp->item, &vpath->vpath_handles);
4867 
4868 	hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4869 
4870 	*vpath_handle = vp;
4871 
4872 	attr->fifo_attr.userdata = vpath->fifoh;
4873 	attr->ring_attr.userdata = vpath->ringh;
4874 
4875 	return VXGE_HW_OK;
4876 
4877 vpath_open_exit8:
4878 	if (vpath->ringh != NULL)
4879 		__vxge_hw_ring_delete(vp);
4880 vpath_open_exit7:
4881 	if (vpath->fifoh != NULL)
4882 		__vxge_hw_fifo_delete(vp);
4883 vpath_open_exit6:
4884 	vfree(vp);
4885 vpath_open_exit2:
4886 	__vxge_hw_vp_terminate(hldev, attr->vp_id);
4887 vpath_open_exit1:
4888 
4889 	return status;
4890 }
4891 
4892 /**
4893  * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4894  * (vpath) open
4895  * @vp: Handle got from previous vpath open
4896  *
4897  * This function is used to close access to virtual path opened
4898  * earlier.
4899  */
vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle * vp)4900 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4901 {
4902 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
4903 	struct __vxge_hw_ring *ring = vpath->ringh;
4904 	struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4905 	u64 new_count, val64, val164;
4906 
4907 	if (vdev->titan1) {
4908 		new_count = readq(&vpath->vp_reg->rxdmem_size);
4909 		new_count &= 0x1fff;
4910 	} else
4911 		new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4912 
4913 	val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4914 
4915 	writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4916 		&vpath->vp_reg->prc_rxd_doorbell);
4917 	readl(&vpath->vp_reg->prc_rxd_doorbell);
4918 
4919 	val164 /= 2;
4920 	val64 = readq(&vpath->vp_reg->prc_cfg6);
4921 	val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4922 	val64 &= 0x1ff;
4923 
4924 	/*
4925 	 * Each RxD is of 4 qwords
4926 	 */
4927 	new_count -= (val64 + 1);
4928 	val64 = min(val164, new_count) / 4;
4929 
4930 	ring->rxds_limit = min(ring->rxds_limit, val64);
4931 	if (ring->rxds_limit < 4)
4932 		ring->rxds_limit = 4;
4933 }
4934 
4935 /*
4936  * __vxge_hw_blockpool_block_free - Frees a block from block pool
4937  * @devh: Hal device
4938  * @entry: Entry of block to be freed
4939  *
4940  * This function frees a block from block pool
4941  */
4942 static void
__vxge_hw_blockpool_block_free(struct __vxge_hw_device * devh,struct __vxge_hw_blockpool_entry * entry)4943 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4944 			       struct __vxge_hw_blockpool_entry *entry)
4945 {
4946 	struct __vxge_hw_blockpool  *blockpool;
4947 
4948 	blockpool = &devh->block_pool;
4949 
4950 	if (entry->length == blockpool->block_size) {
4951 		list_add(&entry->item, &blockpool->free_block_list);
4952 		blockpool->pool_size++;
4953 	}
4954 
4955 	__vxge_hw_blockpool_blocks_remove(blockpool);
4956 }
4957 
4958 /*
4959  * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4960  * This function is used to close access to virtual path opened
4961  * earlier.
4962  */
vxge_hw_vpath_close(struct __vxge_hw_vpath_handle * vp)4963 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4964 {
4965 	struct __vxge_hw_virtualpath *vpath = NULL;
4966 	struct __vxge_hw_device *devh = NULL;
4967 	u32 vp_id = vp->vpath->vp_id;
4968 	u32 is_empty = TRUE;
4969 	enum vxge_hw_status status = VXGE_HW_OK;
4970 
4971 	vpath = vp->vpath;
4972 	devh = vpath->hldev;
4973 
4974 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4975 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4976 		goto vpath_close_exit;
4977 	}
4978 
4979 	list_del(&vp->item);
4980 
4981 	if (!list_empty(&vpath->vpath_handles)) {
4982 		list_add(&vp->item, &vpath->vpath_handles);
4983 		is_empty = FALSE;
4984 	}
4985 
4986 	if (!is_empty) {
4987 		status = VXGE_HW_FAIL;
4988 		goto vpath_close_exit;
4989 	}
4990 
4991 	devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4992 
4993 	if (vpath->ringh != NULL)
4994 		__vxge_hw_ring_delete(vp);
4995 
4996 	if (vpath->fifoh != NULL)
4997 		__vxge_hw_fifo_delete(vp);
4998 
4999 	if (vpath->stats_block != NULL)
5000 		__vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5001 
5002 	vfree(vp);
5003 
5004 	__vxge_hw_vp_terminate(devh, vp_id);
5005 
5006 vpath_close_exit:
5007 	return status;
5008 }
5009 
5010 /*
5011  * vxge_hw_vpath_reset - Resets vpath
5012  * This function is used to request a reset of vpath
5013  */
vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle * vp)5014 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5015 {
5016 	enum vxge_hw_status status;
5017 	u32 vp_id;
5018 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
5019 
5020 	vp_id = vpath->vp_id;
5021 
5022 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5023 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5024 		goto exit;
5025 	}
5026 
5027 	status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5028 	if (status == VXGE_HW_OK)
5029 		vpath->sw_stats->soft_reset_cnt++;
5030 exit:
5031 	return status;
5032 }
5033 
5034 /*
5035  * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5036  * This function poll's for the vpath reset completion and re initializes
5037  * the vpath.
5038  */
5039 enum vxge_hw_status
vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle * vp)5040 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5041 {
5042 	struct __vxge_hw_virtualpath *vpath = NULL;
5043 	enum vxge_hw_status status;
5044 	struct __vxge_hw_device *hldev;
5045 	u32 vp_id;
5046 
5047 	vp_id = vp->vpath->vp_id;
5048 	vpath = vp->vpath;
5049 	hldev = vpath->hldev;
5050 
5051 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5052 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5053 		goto exit;
5054 	}
5055 
5056 	status = __vxge_hw_vpath_reset_check(vpath);
5057 	if (status != VXGE_HW_OK)
5058 		goto exit;
5059 
5060 	status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5061 	if (status != VXGE_HW_OK)
5062 		goto exit;
5063 
5064 	status = __vxge_hw_vpath_initialize(hldev, vp_id);
5065 	if (status != VXGE_HW_OK)
5066 		goto exit;
5067 
5068 	if (vpath->ringh != NULL)
5069 		__vxge_hw_vpath_prc_configure(hldev, vp_id);
5070 
5071 	memset(vpath->hw_stats, 0,
5072 		sizeof(struct vxge_hw_vpath_stats_hw_info));
5073 
5074 	memset(vpath->hw_stats_sav, 0,
5075 		sizeof(struct vxge_hw_vpath_stats_hw_info));
5076 
5077 	writeq(vpath->stats_block->dma_addr,
5078 		&vpath->vp_reg->stats_cfg);
5079 
5080 	status = vxge_hw_vpath_stats_enable(vp);
5081 
5082 exit:
5083 	return status;
5084 }
5085 
5086 /*
5087  * vxge_hw_vpath_enable - Enable vpath.
5088  * This routine clears the vpath reset thereby enabling a vpath
5089  * to start forwarding frames and generating interrupts.
5090  */
5091 void
vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle * vp)5092 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5093 {
5094 	struct __vxge_hw_device *hldev;
5095 	u64 val64;
5096 
5097 	hldev = vp->vpath->hldev;
5098 
5099 	val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5100 		1 << (16 - vp->vpath->vp_id));
5101 
5102 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5103 		&hldev->common_reg->cmn_rsthdlr_cfg1);
5104 }
5105