1 /******************************************************************************
2  * This software may be used and distributed according to the terms of
3  * the GNU General Public License (GPL), incorporated herein by reference.
4  * Drivers based on or derived from this code fall under the GPL and must
5  * retain the authorship, copyright and license notice.  This file is not
6  * a complete program and may only be used when the entire operating
7  * system is licensed under the GPL.
8  * See the file COPYING in this distribution for more information.
9  *
10  * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11  *                Virtualized Server Adapter.
12  * Copyright(c) 2002-2010 Exar Corp.
13  ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/pci.h>
17 #include <linux/slab.h>
18 
19 #include "vxge-traffic.h"
20 #include "vxge-config.h"
21 #include "vxge-main.h"
22 
23 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) {				\
24 	status = __vxge_hw_vpath_stats_access(vpath,			\
25 					      VXGE_HW_STATS_OP_READ,	\
26 					      offset,			\
27 					      &val64);			\
28 	if (status != VXGE_HW_OK)					\
29 		return status;						\
30 }
31 
32 static void
vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem * vp_reg)33 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
34 {
35 	u64 val64;
36 
37 	val64 = readq(&vp_reg->rxmac_vcfg0);
38 	val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
39 	writeq(val64, &vp_reg->rxmac_vcfg0);
40 	val64 = readq(&vp_reg->rxmac_vcfg0);
41 }
42 
43 /*
44  * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
45  */
vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device * hldev,u32 vp_id)46 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
47 {
48 	struct vxge_hw_vpath_reg __iomem *vp_reg;
49 	struct __vxge_hw_virtualpath *vpath;
50 	u64 val64, rxd_count, rxd_spat;
51 	int count = 0, total_count = 0;
52 
53 	vpath = &hldev->virtual_paths[vp_id];
54 	vp_reg = vpath->vp_reg;
55 
56 	vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
57 
58 	/* Check that the ring controller for this vpath has enough free RxDs
59 	 * to send frames to the host.  This is done by reading the
60 	 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
61 	 * RXD_SPAT value for the vpath.
62 	 */
63 	val64 = readq(&vp_reg->prc_cfg6);
64 	rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
65 	/* Use a factor of 2 when comparing rxd_count against rxd_spat for some
66 	 * leg room.
67 	 */
68 	rxd_spat *= 2;
69 
70 	do {
71 		mdelay(1);
72 
73 		rxd_count = readq(&vp_reg->prc_rxd_doorbell);
74 
75 		/* Check that the ring controller for this vpath does
76 		 * not have any frame in its pipeline.
77 		 */
78 		val64 = readq(&vp_reg->frm_in_progress_cnt);
79 		if ((rxd_count <= rxd_spat) || (val64 > 0))
80 			count = 0;
81 		else
82 			count++;
83 		total_count++;
84 	} while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
85 			(total_count < VXGE_HW_MAX_POLLING_COUNT));
86 
87 	if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
88 		printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
89 			__func__);
90 
91 	return total_count;
92 }
93 
94 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
95  * stored in the frame buffer for each vpath assigned to the given
96  * function (hldev) have been sent to the host.
97  */
vxge_hw_device_wait_receive_idle(struct __vxge_hw_device * hldev)98 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
99 {
100 	int i, total_count = 0;
101 
102 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
103 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
104 			continue;
105 
106 		total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
107 		if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
108 			break;
109 	}
110 }
111 
112 /*
113  * __vxge_hw_device_register_poll
114  * Will poll certain register for specified amount of time.
115  * Will poll until masked bit is not cleared.
116  */
117 static enum vxge_hw_status
__vxge_hw_device_register_poll(void __iomem * reg,u64 mask,u32 max_millis)118 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
119 {
120 	u64 val64;
121 	u32 i = 0;
122 
123 	udelay(10);
124 
125 	do {
126 		val64 = readq(reg);
127 		if (!(val64 & mask))
128 			return VXGE_HW_OK;
129 		udelay(100);
130 	} while (++i <= 9);
131 
132 	i = 0;
133 	do {
134 		val64 = readq(reg);
135 		if (!(val64 & mask))
136 			return VXGE_HW_OK;
137 		mdelay(1);
138 	} while (++i <= max_millis);
139 
140 	return VXGE_HW_FAIL;
141 }
142 
143 static inline enum vxge_hw_status
__vxge_hw_pio_mem_write64(u64 val64,void __iomem * addr,u64 mask,u32 max_millis)144 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
145 			  u64 mask, u32 max_millis)
146 {
147 	__vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
148 	wmb();
149 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
150 	wmb();
151 
152 	return __vxge_hw_device_register_poll(addr, mask, max_millis);
153 }
154 
155 static enum vxge_hw_status
vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath * vpath,u32 action,u32 fw_memo,u32 offset,u64 * data0,u64 * data1,u64 * steer_ctrl)156 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
157 		     u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
158 		     u64 *steer_ctrl)
159 {
160 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
161 	enum vxge_hw_status status;
162 	u64 val64;
163 	u32 retry = 0, max_retry = 3;
164 
165 	spin_lock(&vpath->lock);
166 	if (!vpath->vp_open) {
167 		spin_unlock(&vpath->lock);
168 		max_retry = 100;
169 	}
170 
171 	writeq(*data0, &vp_reg->rts_access_steer_data0);
172 	writeq(*data1, &vp_reg->rts_access_steer_data1);
173 	wmb();
174 
175 	val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
176 		VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
177 		VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
178 		VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
179 		*steer_ctrl;
180 
181 	status = __vxge_hw_pio_mem_write64(val64,
182 					   &vp_reg->rts_access_steer_ctrl,
183 					   VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
184 					   VXGE_HW_DEF_DEVICE_POLL_MILLIS);
185 
186 	/* The __vxge_hw_device_register_poll can udelay for a significant
187 	 * amount of time, blocking other process from the CPU.  If it delays
188 	 * for ~5secs, a NMI error can occur.  A way around this is to give up
189 	 * the processor via msleep, but this is not allowed is under lock.
190 	 * So, only allow it to sleep for ~4secs if open.  Otherwise, delay for
191 	 * 1sec and sleep for 10ms until the firmware operation has completed
192 	 * or timed-out.
193 	 */
194 	while ((status != VXGE_HW_OK) && retry++ < max_retry) {
195 		if (!vpath->vp_open)
196 			msleep(20);
197 		status = __vxge_hw_device_register_poll(
198 					&vp_reg->rts_access_steer_ctrl,
199 					VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
200 					VXGE_HW_DEF_DEVICE_POLL_MILLIS);
201 	}
202 
203 	if (status != VXGE_HW_OK)
204 		goto out;
205 
206 	val64 = readq(&vp_reg->rts_access_steer_ctrl);
207 	if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
208 		*data0 = readq(&vp_reg->rts_access_steer_data0);
209 		*data1 = readq(&vp_reg->rts_access_steer_data1);
210 		*steer_ctrl = val64;
211 	} else
212 		status = VXGE_HW_FAIL;
213 
214 out:
215 	if (vpath->vp_open)
216 		spin_unlock(&vpath->lock);
217 	return status;
218 }
219 
220 enum vxge_hw_status
vxge_hw_upgrade_read_version(struct __vxge_hw_device * hldev,u32 * major,u32 * minor,u32 * build)221 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
222 			     u32 *minor, u32 *build)
223 {
224 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
225 	struct __vxge_hw_virtualpath *vpath;
226 	enum vxge_hw_status status;
227 
228 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
229 
230 	status = vxge_hw_vpath_fw_api(vpath,
231 				      VXGE_HW_FW_UPGRADE_ACTION,
232 				      VXGE_HW_FW_UPGRADE_MEMO,
233 				      VXGE_HW_FW_UPGRADE_OFFSET_READ,
234 				      &data0, &data1, &steer_ctrl);
235 	if (status != VXGE_HW_OK)
236 		return status;
237 
238 	*major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
239 	*minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
240 	*build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
241 
242 	return status;
243 }
244 
vxge_hw_flash_fw(struct __vxge_hw_device * hldev)245 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
246 {
247 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
248 	struct __vxge_hw_virtualpath *vpath;
249 	enum vxge_hw_status status;
250 	u32 ret;
251 
252 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
253 
254 	status = vxge_hw_vpath_fw_api(vpath,
255 				      VXGE_HW_FW_UPGRADE_ACTION,
256 				      VXGE_HW_FW_UPGRADE_MEMO,
257 				      VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
258 				      &data0, &data1, &steer_ctrl);
259 	if (status != VXGE_HW_OK) {
260 		vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
261 		goto exit;
262 	}
263 
264 	ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
265 	if (ret != 1) {
266 		vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
267 				__func__, ret);
268 		status = VXGE_HW_FAIL;
269 	}
270 
271 exit:
272 	return status;
273 }
274 
275 enum vxge_hw_status
vxge_update_fw_image(struct __vxge_hw_device * hldev,const u8 * fwdata,int size)276 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
277 {
278 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
279 	struct __vxge_hw_virtualpath *vpath;
280 	enum vxge_hw_status status;
281 	int ret_code, sec_code;
282 
283 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
284 
285 	/* send upgrade start command */
286 	status = vxge_hw_vpath_fw_api(vpath,
287 				      VXGE_HW_FW_UPGRADE_ACTION,
288 				      VXGE_HW_FW_UPGRADE_MEMO,
289 				      VXGE_HW_FW_UPGRADE_OFFSET_START,
290 				      &data0, &data1, &steer_ctrl);
291 	if (status != VXGE_HW_OK) {
292 		vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
293 				__func__);
294 		return status;
295 	}
296 
297 	/* Transfer fw image to adapter 16 bytes at a time */
298 	for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
299 		steer_ctrl = 0;
300 
301 		/* The next 128bits of fwdata to be loaded onto the adapter */
302 		data0 = *((u64 *)fwdata);
303 		data1 = *((u64 *)fwdata + 1);
304 
305 		status = vxge_hw_vpath_fw_api(vpath,
306 					      VXGE_HW_FW_UPGRADE_ACTION,
307 					      VXGE_HW_FW_UPGRADE_MEMO,
308 					      VXGE_HW_FW_UPGRADE_OFFSET_SEND,
309 					      &data0, &data1, &steer_ctrl);
310 		if (status != VXGE_HW_OK) {
311 			vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
312 					__func__);
313 			goto out;
314 		}
315 
316 		ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
317 		switch (ret_code) {
318 		case VXGE_HW_FW_UPGRADE_OK:
319 			/* All OK, send next 16 bytes. */
320 			break;
321 		case VXGE_FW_UPGRADE_BYTES2SKIP:
322 			/* skip bytes in the stream */
323 			fwdata += (data0 >> 8) & 0xFFFFFFFF;
324 			break;
325 		case VXGE_HW_FW_UPGRADE_DONE:
326 			goto out;
327 		case VXGE_HW_FW_UPGRADE_ERR:
328 			sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
329 			switch (sec_code) {
330 			case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
331 			case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
332 				printk(KERN_ERR
333 				       "corrupted data from .ncf file\n");
334 				break;
335 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
336 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
337 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
338 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
339 			case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
340 				printk(KERN_ERR "invalid .ncf file\n");
341 				break;
342 			case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
343 				printk(KERN_ERR "buffer overflow\n");
344 				break;
345 			case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
346 				printk(KERN_ERR "failed to flash the image\n");
347 				break;
348 			case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
349 				printk(KERN_ERR
350 				       "generic error. Unknown error type\n");
351 				break;
352 			default:
353 				printk(KERN_ERR "Unknown error of type %d\n",
354 				       sec_code);
355 				break;
356 			}
357 			status = VXGE_HW_FAIL;
358 			goto out;
359 		default:
360 			printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
361 			status = VXGE_HW_FAIL;
362 			goto out;
363 		}
364 		/* point to next 16 bytes */
365 		fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
366 	}
367 out:
368 	return status;
369 }
370 
371 enum vxge_hw_status
vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device * hldev,struct eprom_image * img)372 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
373 				struct eprom_image *img)
374 {
375 	u64 data0 = 0, data1 = 0, steer_ctrl = 0;
376 	struct __vxge_hw_virtualpath *vpath;
377 	enum vxge_hw_status status;
378 	int i;
379 
380 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
381 
382 	for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
383 		data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
384 		data1 = steer_ctrl = 0;
385 
386 		status = vxge_hw_vpath_fw_api(vpath,
387 			VXGE_HW_FW_API_GET_EPROM_REV,
388 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
389 			0, &data0, &data1, &steer_ctrl);
390 		if (status != VXGE_HW_OK)
391 			break;
392 
393 		img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
394 		img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
395 		img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
396 		img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
397 	}
398 
399 	return status;
400 }
401 
402 /*
403  * __vxge_hw_channel_free - Free memory allocated for channel
404  * This function deallocates memory from the channel and various arrays
405  * in the channel
406  */
__vxge_hw_channel_free(struct __vxge_hw_channel * channel)407 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
408 {
409 	kfree(channel->work_arr);
410 	kfree(channel->free_arr);
411 	kfree(channel->reserve_arr);
412 	kfree(channel->orig_arr);
413 	kfree(channel);
414 }
415 
416 /*
417  * __vxge_hw_channel_initialize - Initialize a channel
418  * This function initializes a channel by properly setting the
419  * various references
420  */
421 static enum vxge_hw_status
__vxge_hw_channel_initialize(struct __vxge_hw_channel * channel)422 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
423 {
424 	u32 i;
425 	struct __vxge_hw_virtualpath *vpath;
426 
427 	vpath = channel->vph->vpath;
428 
429 	if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
430 		for (i = 0; i < channel->length; i++)
431 			channel->orig_arr[i] = channel->reserve_arr[i];
432 	}
433 
434 	switch (channel->type) {
435 	case VXGE_HW_CHANNEL_TYPE_FIFO:
436 		vpath->fifoh = (struct __vxge_hw_fifo *)channel;
437 		channel->stats = &((struct __vxge_hw_fifo *)
438 				channel)->stats->common_stats;
439 		break;
440 	case VXGE_HW_CHANNEL_TYPE_RING:
441 		vpath->ringh = (struct __vxge_hw_ring *)channel;
442 		channel->stats = &((struct __vxge_hw_ring *)
443 				channel)->stats->common_stats;
444 		break;
445 	default:
446 		break;
447 	}
448 
449 	return VXGE_HW_OK;
450 }
451 
452 /*
453  * __vxge_hw_channel_reset - Resets a channel
454  * This function resets a channel by properly setting the various references
455  */
456 static enum vxge_hw_status
__vxge_hw_channel_reset(struct __vxge_hw_channel * channel)457 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
458 {
459 	u32 i;
460 
461 	for (i = 0; i < channel->length; i++) {
462 		if (channel->reserve_arr != NULL)
463 			channel->reserve_arr[i] = channel->orig_arr[i];
464 		if (channel->free_arr != NULL)
465 			channel->free_arr[i] = NULL;
466 		if (channel->work_arr != NULL)
467 			channel->work_arr[i] = NULL;
468 	}
469 	channel->free_ptr = channel->length;
470 	channel->reserve_ptr = channel->length;
471 	channel->reserve_top = 0;
472 	channel->post_index = 0;
473 	channel->compl_index = 0;
474 
475 	return VXGE_HW_OK;
476 }
477 
478 /*
479  * __vxge_hw_device_pci_e_init
480  * Initialize certain PCI/PCI-X configuration registers
481  * with recommended values. Save config space for future hw resets.
482  */
__vxge_hw_device_pci_e_init(struct __vxge_hw_device * hldev)483 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
484 {
485 	u16 cmd = 0;
486 
487 	/* Set the PErr Repconse bit and SERR in PCI command register. */
488 	pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
489 	cmd |= 0x140;
490 	pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
491 
492 	pci_save_state(hldev->pdev);
493 }
494 
495 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
496  * in progress
497  * This routine checks the vpath reset in progress register is turned zero
498  */
499 static enum vxge_hw_status
__vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem * vpath_rst_in_prog)500 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
501 {
502 	enum vxge_hw_status status;
503 	status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
504 			VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
505 			VXGE_HW_DEF_DEVICE_POLL_MILLIS);
506 	return status;
507 }
508 
509 /*
510  * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
511  * Set the swapper bits appropriately for the lagacy section.
512  */
513 static enum vxge_hw_status
__vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem * legacy_reg)514 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
515 {
516 	u64 val64;
517 	enum vxge_hw_status status = VXGE_HW_OK;
518 
519 	val64 = readq(&legacy_reg->toc_swapper_fb);
520 
521 	wmb();
522 
523 	switch (val64) {
524 	case VXGE_HW_SWAPPER_INITIAL_VALUE:
525 		return status;
526 
527 	case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
528 		writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
529 			&legacy_reg->pifm_rd_swap_en);
530 		writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
531 			&legacy_reg->pifm_rd_flip_en);
532 		writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
533 			&legacy_reg->pifm_wr_swap_en);
534 		writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
535 			&legacy_reg->pifm_wr_flip_en);
536 		break;
537 
538 	case VXGE_HW_SWAPPER_BYTE_SWAPPED:
539 		writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
540 			&legacy_reg->pifm_rd_swap_en);
541 		writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
542 			&legacy_reg->pifm_wr_swap_en);
543 		break;
544 
545 	case VXGE_HW_SWAPPER_BIT_FLIPPED:
546 		writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
547 			&legacy_reg->pifm_rd_flip_en);
548 		writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
549 			&legacy_reg->pifm_wr_flip_en);
550 		break;
551 	}
552 
553 	wmb();
554 
555 	val64 = readq(&legacy_reg->toc_swapper_fb);
556 
557 	if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
558 		status = VXGE_HW_ERR_SWAPPER_CTRL;
559 
560 	return status;
561 }
562 
563 /*
564  * __vxge_hw_device_toc_get
565  * This routine sets the swapper and reads the toc pointer and returns the
566  * memory mapped address of the toc
567  */
568 static struct vxge_hw_toc_reg __iomem *
__vxge_hw_device_toc_get(void __iomem * bar0)569 __vxge_hw_device_toc_get(void __iomem *bar0)
570 {
571 	u64 val64;
572 	struct vxge_hw_toc_reg __iomem *toc = NULL;
573 	enum vxge_hw_status status;
574 
575 	struct vxge_hw_legacy_reg __iomem *legacy_reg =
576 		(struct vxge_hw_legacy_reg __iomem *)bar0;
577 
578 	status = __vxge_hw_legacy_swapper_set(legacy_reg);
579 	if (status != VXGE_HW_OK)
580 		goto exit;
581 
582 	val64 =	readq(&legacy_reg->toc_first_pointer);
583 	toc = bar0 + val64;
584 exit:
585 	return toc;
586 }
587 
588 /*
589  * __vxge_hw_device_reg_addr_get
590  * This routine sets the swapper and reads the toc pointer and initializes the
591  * register location pointers in the device object. It waits until the ric is
592  * completed initializing registers.
593  */
594 static enum vxge_hw_status
__vxge_hw_device_reg_addr_get(struct __vxge_hw_device * hldev)595 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
596 {
597 	u64 val64;
598 	u32 i;
599 	enum vxge_hw_status status = VXGE_HW_OK;
600 
601 	hldev->legacy_reg = hldev->bar0;
602 
603 	hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
604 	if (hldev->toc_reg  == NULL) {
605 		status = VXGE_HW_FAIL;
606 		goto exit;
607 	}
608 
609 	val64 = readq(&hldev->toc_reg->toc_common_pointer);
610 	hldev->common_reg = hldev->bar0 + val64;
611 
612 	val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
613 	hldev->mrpcim_reg = hldev->bar0 + val64;
614 
615 	for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
616 		val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
617 		hldev->srpcim_reg[i] = hldev->bar0 + val64;
618 	}
619 
620 	for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
621 		val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
622 		hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
623 	}
624 
625 	for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
626 		val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
627 		hldev->vpath_reg[i] = hldev->bar0 + val64;
628 	}
629 
630 	val64 = readq(&hldev->toc_reg->toc_kdfc);
631 
632 	switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
633 	case 0:
634 		hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
635 		break;
636 	default:
637 		break;
638 	}
639 
640 	status = __vxge_hw_device_vpath_reset_in_prog_check(
641 			(u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
642 exit:
643 	return status;
644 }
645 
646 /*
647  * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
648  * This routine returns the Access Rights of the driver
649  */
650 static u32
__vxge_hw_device_access_rights_get(u32 host_type,u32 func_id)651 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
652 {
653 	u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
654 
655 	switch (host_type) {
656 	case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
657 		if (func_id == 0) {
658 			access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
659 					VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
660 		}
661 		break;
662 	case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
663 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
664 				VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
665 		break;
666 	case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
667 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
668 				VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
669 		break;
670 	case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
671 	case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
672 	case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
673 		break;
674 	case VXGE_HW_SR_VH_FUNCTION0:
675 	case VXGE_HW_VH_NORMAL_FUNCTION:
676 		access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
677 		break;
678 	}
679 
680 	return access_rights;
681 }
682 /*
683  * __vxge_hw_device_is_privilaged
684  * This routine checks if the device function is privilaged or not
685  */
686 
687 enum vxge_hw_status
__vxge_hw_device_is_privilaged(u32 host_type,u32 func_id)688 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
689 {
690 	if (__vxge_hw_device_access_rights_get(host_type,
691 		func_id) &
692 		VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
693 		return VXGE_HW_OK;
694 	else
695 		return VXGE_HW_ERR_PRIVILEGED_OPERATION;
696 }
697 
698 /*
699  * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
700  * Returns the function number of the vpath.
701  */
702 static u32
__vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem * vpmgmt_reg)703 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
704 {
705 	u64 val64;
706 
707 	val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
708 
709 	return
710 	 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
711 }
712 
713 /*
714  * __vxge_hw_device_host_info_get
715  * This routine returns the host type assignments
716  */
__vxge_hw_device_host_info_get(struct __vxge_hw_device * hldev)717 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
718 {
719 	u64 val64;
720 	u32 i;
721 
722 	val64 = readq(&hldev->common_reg->host_type_assignments);
723 
724 	hldev->host_type =
725 	   (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
726 
727 	hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
728 
729 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
730 		if (!(hldev->vpath_assignments & vxge_mBIT(i)))
731 			continue;
732 
733 		hldev->func_id =
734 			__vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
735 
736 		hldev->access_rights = __vxge_hw_device_access_rights_get(
737 			hldev->host_type, hldev->func_id);
738 
739 		hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
740 		hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
741 
742 		hldev->first_vp_id = i;
743 		break;
744 	}
745 }
746 
747 /*
748  * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
749  * link width and signalling rate.
750  */
751 static enum vxge_hw_status
__vxge_hw_verify_pci_e_info(struct __vxge_hw_device * hldev)752 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
753 {
754 	struct pci_dev *dev = hldev->pdev;
755 	u16 lnk;
756 
757 	/* Get the negotiated link width and speed from PCI config space */
758 	pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
759 
760 	if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
761 		return VXGE_HW_ERR_INVALID_PCI_INFO;
762 
763 	switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
764 	case PCIE_LNK_WIDTH_RESRV:
765 	case PCIE_LNK_X1:
766 	case PCIE_LNK_X2:
767 	case PCIE_LNK_X4:
768 	case PCIE_LNK_X8:
769 		break;
770 	default:
771 		return VXGE_HW_ERR_INVALID_PCI_INFO;
772 	}
773 
774 	return VXGE_HW_OK;
775 }
776 
777 /*
778  * __vxge_hw_device_initialize
779  * Initialize Titan-V hardware.
780  */
781 static enum vxge_hw_status
__vxge_hw_device_initialize(struct __vxge_hw_device * hldev)782 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
783 {
784 	enum vxge_hw_status status = VXGE_HW_OK;
785 
786 	if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
787 				hldev->func_id)) {
788 		/* Validate the pci-e link width and speed */
789 		status = __vxge_hw_verify_pci_e_info(hldev);
790 		if (status != VXGE_HW_OK)
791 			goto exit;
792 	}
793 
794 exit:
795 	return status;
796 }
797 
798 /*
799  * __vxge_hw_vpath_fw_ver_get - Get the fw version
800  * Returns FW Version
801  */
802 static enum vxge_hw_status
__vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)803 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
804 			   struct vxge_hw_device_hw_info *hw_info)
805 {
806 	struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
807 	struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
808 	struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
809 	struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
810 	u64 data0, data1 = 0, steer_ctrl = 0;
811 	enum vxge_hw_status status;
812 
813 	status = vxge_hw_vpath_fw_api(vpath,
814 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
815 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
816 			0, &data0, &data1, &steer_ctrl);
817 	if (status != VXGE_HW_OK)
818 		goto exit;
819 
820 	fw_date->day =
821 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
822 	fw_date->month =
823 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
824 	fw_date->year =
825 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
826 
827 	snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
828 		 fw_date->month, fw_date->day, fw_date->year);
829 
830 	fw_version->major =
831 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
832 	fw_version->minor =
833 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
834 	fw_version->build =
835 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
836 
837 	snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
838 		 fw_version->major, fw_version->minor, fw_version->build);
839 
840 	flash_date->day =
841 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
842 	flash_date->month =
843 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
844 	flash_date->year =
845 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
846 
847 	snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
848 		 flash_date->month, flash_date->day, flash_date->year);
849 
850 	flash_version->major =
851 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
852 	flash_version->minor =
853 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
854 	flash_version->build =
855 	    (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
856 
857 	snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
858 		 flash_version->major, flash_version->minor,
859 		 flash_version->build);
860 
861 exit:
862 	return status;
863 }
864 
865 /*
866  * __vxge_hw_vpath_card_info_get - Get the serial numbers,
867  * part number and product description.
868  */
869 static enum vxge_hw_status
__vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)870 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
871 			      struct vxge_hw_device_hw_info *hw_info)
872 {
873 	enum vxge_hw_status status;
874 	u64 data0, data1 = 0, steer_ctrl = 0;
875 	u8 *serial_number = hw_info->serial_number;
876 	u8 *part_number = hw_info->part_number;
877 	u8 *product_desc = hw_info->product_desc;
878 	u32 i, j = 0;
879 
880 	data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
881 
882 	status = vxge_hw_vpath_fw_api(vpath,
883 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
884 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
885 			0, &data0, &data1, &steer_ctrl);
886 	if (status != VXGE_HW_OK)
887 		return status;
888 
889 	((u64 *)serial_number)[0] = be64_to_cpu(data0);
890 	((u64 *)serial_number)[1] = be64_to_cpu(data1);
891 
892 	data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
893 	data1 = steer_ctrl = 0;
894 
895 	status = vxge_hw_vpath_fw_api(vpath,
896 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
897 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
898 			0, &data0, &data1, &steer_ctrl);
899 	if (status != VXGE_HW_OK)
900 		return status;
901 
902 	((u64 *)part_number)[0] = be64_to_cpu(data0);
903 	((u64 *)part_number)[1] = be64_to_cpu(data1);
904 
905 	for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
906 	     i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
907 		data0 = i;
908 		data1 = steer_ctrl = 0;
909 
910 		status = vxge_hw_vpath_fw_api(vpath,
911 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
912 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
913 			0, &data0, &data1, &steer_ctrl);
914 		if (status != VXGE_HW_OK)
915 			return status;
916 
917 		((u64 *)product_desc)[j++] = be64_to_cpu(data0);
918 		((u64 *)product_desc)[j++] = be64_to_cpu(data1);
919 	}
920 
921 	return status;
922 }
923 
924 /*
925  * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
926  * Returns pci function mode
927  */
928 static enum vxge_hw_status
__vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_device_hw_info * hw_info)929 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
930 				  struct vxge_hw_device_hw_info *hw_info)
931 {
932 	u64 data0, data1 = 0, steer_ctrl = 0;
933 	enum vxge_hw_status status;
934 
935 	data0 = 0;
936 
937 	status = vxge_hw_vpath_fw_api(vpath,
938 			VXGE_HW_FW_API_GET_FUNC_MODE,
939 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
940 			0, &data0, &data1, &steer_ctrl);
941 	if (status != VXGE_HW_OK)
942 		return status;
943 
944 	hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
945 	return status;
946 }
947 
948 /*
949  * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
950  *               from MAC address table.
951  */
952 static enum vxge_hw_status
__vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath * vpath,u8 * macaddr,u8 * macaddr_mask)953 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
954 			 u8 *macaddr, u8 *macaddr_mask)
955 {
956 	u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
957 	    data0 = 0, data1 = 0, steer_ctrl = 0;
958 	enum vxge_hw_status status;
959 	int i;
960 
961 	do {
962 		status = vxge_hw_vpath_fw_api(vpath, action,
963 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
964 			0, &data0, &data1, &steer_ctrl);
965 		if (status != VXGE_HW_OK)
966 			goto exit;
967 
968 		data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
969 		data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
970 									data1);
971 
972 		for (i = ETH_ALEN; i > 0; i--) {
973 			macaddr[i - 1] = (u8) (data0 & 0xFF);
974 			data0 >>= 8;
975 
976 			macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
977 			data1 >>= 8;
978 		}
979 
980 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
981 		data0 = 0, data1 = 0, steer_ctrl = 0;
982 
983 	} while (!is_valid_ether_addr(macaddr));
984 exit:
985 	return status;
986 }
987 
988 /**
989  * vxge_hw_device_hw_info_get - Get the hw information
990  * Returns the vpath mask that has the bits set for each vpath allocated
991  * for the driver, FW version information, and the first mac address for
992  * each vpath
993  */
994 enum vxge_hw_status
vxge_hw_device_hw_info_get(void __iomem * bar0,struct vxge_hw_device_hw_info * hw_info)995 vxge_hw_device_hw_info_get(void __iomem *bar0,
996 			   struct vxge_hw_device_hw_info *hw_info)
997 {
998 	u32 i;
999 	u64 val64;
1000 	struct vxge_hw_toc_reg __iomem *toc;
1001 	struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1002 	struct vxge_hw_common_reg __iomem *common_reg;
1003 	struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1004 	enum vxge_hw_status status;
1005 	struct __vxge_hw_virtualpath vpath;
1006 
1007 	memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1008 
1009 	toc = __vxge_hw_device_toc_get(bar0);
1010 	if (toc == NULL) {
1011 		status = VXGE_HW_ERR_CRITICAL;
1012 		goto exit;
1013 	}
1014 
1015 	val64 = readq(&toc->toc_common_pointer);
1016 	common_reg = bar0 + val64;
1017 
1018 	status = __vxge_hw_device_vpath_reset_in_prog_check(
1019 		(u64 __iomem *)&common_reg->vpath_rst_in_prog);
1020 	if (status != VXGE_HW_OK)
1021 		goto exit;
1022 
1023 	hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1024 
1025 	val64 = readq(&common_reg->host_type_assignments);
1026 
1027 	hw_info->host_type =
1028 	   (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1029 
1030 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1031 		if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1032 			continue;
1033 
1034 		val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1035 
1036 		vpmgmt_reg = bar0 + val64;
1037 
1038 		hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1039 		if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1040 			hw_info->func_id) &
1041 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1042 
1043 			val64 = readq(&toc->toc_mrpcim_pointer);
1044 
1045 			mrpcim_reg = bar0 + val64;
1046 
1047 			writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1048 			wmb();
1049 		}
1050 
1051 		val64 = readq(&toc->toc_vpath_pointer[i]);
1052 
1053 		spin_lock_init(&vpath.lock);
1054 		vpath.vp_reg = bar0 + val64;
1055 		vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1056 
1057 		status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1058 		if (status != VXGE_HW_OK)
1059 			goto exit;
1060 
1061 		status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1062 		if (status != VXGE_HW_OK)
1063 			goto exit;
1064 
1065 		status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1066 		if (status != VXGE_HW_OK)
1067 			goto exit;
1068 
1069 		break;
1070 	}
1071 
1072 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1073 		if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1074 			continue;
1075 
1076 		val64 = readq(&toc->toc_vpath_pointer[i]);
1077 		vpath.vp_reg = bar0 + val64;
1078 		vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1079 
1080 		status =  __vxge_hw_vpath_addr_get(&vpath,
1081 				hw_info->mac_addrs[i],
1082 				hw_info->mac_addr_masks[i]);
1083 		if (status != VXGE_HW_OK)
1084 			goto exit;
1085 	}
1086 exit:
1087 	return status;
1088 }
1089 
1090 /*
1091  * __vxge_hw_blockpool_destroy - Deallocates the block pool
1092  */
__vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool * blockpool)1093 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1094 {
1095 	struct __vxge_hw_device *hldev;
1096 	struct list_head *p, *n;
1097 
1098 	if (!blockpool)
1099 		return;
1100 
1101 	hldev = blockpool->hldev;
1102 
1103 	list_for_each_safe(p, n, &blockpool->free_block_list) {
1104 		pci_unmap_single(hldev->pdev,
1105 			((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1106 			((struct __vxge_hw_blockpool_entry *)p)->length,
1107 			PCI_DMA_BIDIRECTIONAL);
1108 
1109 		vxge_os_dma_free(hldev->pdev,
1110 			((struct __vxge_hw_blockpool_entry *)p)->memblock,
1111 			&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1112 
1113 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1114 		kfree(p);
1115 		blockpool->pool_size--;
1116 	}
1117 
1118 	list_for_each_safe(p, n, &blockpool->free_entry_list) {
1119 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1120 		kfree((void *)p);
1121 	}
1122 
1123 	return;
1124 }
1125 
1126 /*
1127  * __vxge_hw_blockpool_create - Create block pool
1128  */
1129 static enum vxge_hw_status
__vxge_hw_blockpool_create(struct __vxge_hw_device * hldev,struct __vxge_hw_blockpool * blockpool,u32 pool_size,u32 pool_max)1130 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1131 			   struct __vxge_hw_blockpool *blockpool,
1132 			   u32 pool_size,
1133 			   u32 pool_max)
1134 {
1135 	u32 i;
1136 	struct __vxge_hw_blockpool_entry *entry = NULL;
1137 	void *memblock;
1138 	dma_addr_t dma_addr;
1139 	struct pci_dev *dma_handle;
1140 	struct pci_dev *acc_handle;
1141 	enum vxge_hw_status status = VXGE_HW_OK;
1142 
1143 	if (blockpool == NULL) {
1144 		status = VXGE_HW_FAIL;
1145 		goto blockpool_create_exit;
1146 	}
1147 
1148 	blockpool->hldev = hldev;
1149 	blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1150 	blockpool->pool_size = 0;
1151 	blockpool->pool_max = pool_max;
1152 	blockpool->req_out = 0;
1153 
1154 	INIT_LIST_HEAD(&blockpool->free_block_list);
1155 	INIT_LIST_HEAD(&blockpool->free_entry_list);
1156 
1157 	for (i = 0; i < pool_size + pool_max; i++) {
1158 		entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1159 				GFP_KERNEL);
1160 		if (entry == NULL) {
1161 			__vxge_hw_blockpool_destroy(blockpool);
1162 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1163 			goto blockpool_create_exit;
1164 		}
1165 		list_add(&entry->item, &blockpool->free_entry_list);
1166 	}
1167 
1168 	for (i = 0; i < pool_size; i++) {
1169 		memblock = vxge_os_dma_malloc(
1170 				hldev->pdev,
1171 				VXGE_HW_BLOCK_SIZE,
1172 				&dma_handle,
1173 				&acc_handle);
1174 		if (memblock == NULL) {
1175 			__vxge_hw_blockpool_destroy(blockpool);
1176 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1177 			goto blockpool_create_exit;
1178 		}
1179 
1180 		dma_addr = pci_map_single(hldev->pdev, memblock,
1181 				VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1182 		if (unlikely(pci_dma_mapping_error(hldev->pdev,
1183 				dma_addr))) {
1184 			vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1185 			__vxge_hw_blockpool_destroy(blockpool);
1186 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1187 			goto blockpool_create_exit;
1188 		}
1189 
1190 		if (!list_empty(&blockpool->free_entry_list))
1191 			entry = (struct __vxge_hw_blockpool_entry *)
1192 				list_first_entry(&blockpool->free_entry_list,
1193 					struct __vxge_hw_blockpool_entry,
1194 					item);
1195 
1196 		if (entry == NULL)
1197 			entry =
1198 			    kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1199 					GFP_KERNEL);
1200 		if (entry != NULL) {
1201 			list_del(&entry->item);
1202 			entry->length = VXGE_HW_BLOCK_SIZE;
1203 			entry->memblock = memblock;
1204 			entry->dma_addr = dma_addr;
1205 			entry->acc_handle = acc_handle;
1206 			entry->dma_handle = dma_handle;
1207 			list_add(&entry->item,
1208 					  &blockpool->free_block_list);
1209 			blockpool->pool_size++;
1210 		} else {
1211 			__vxge_hw_blockpool_destroy(blockpool);
1212 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
1213 			goto blockpool_create_exit;
1214 		}
1215 	}
1216 
1217 blockpool_create_exit:
1218 	return status;
1219 }
1220 
1221 /*
1222  * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1223  * Check the fifo configuration
1224  */
1225 static enum vxge_hw_status
__vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config * fifo_config)1226 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1227 {
1228 	if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1229 	    (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1230 		return VXGE_HW_BADCFG_FIFO_BLOCKS;
1231 
1232 	return VXGE_HW_OK;
1233 }
1234 
1235 /*
1236  * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1237  * Check the vpath configuration
1238  */
1239 static enum vxge_hw_status
__vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config * vp_config)1240 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1241 {
1242 	enum vxge_hw_status status;
1243 
1244 	if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1245 	    (vp_config->min_bandwidth >	VXGE_HW_VPATH_BANDWIDTH_MAX))
1246 		return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1247 
1248 	status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1249 	if (status != VXGE_HW_OK)
1250 		return status;
1251 
1252 	if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1253 		((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1254 		(vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1255 		return VXGE_HW_BADCFG_VPATH_MTU;
1256 
1257 	if ((vp_config->rpa_strip_vlan_tag !=
1258 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1259 		(vp_config->rpa_strip_vlan_tag !=
1260 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1261 		(vp_config->rpa_strip_vlan_tag !=
1262 		VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1263 		return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1264 
1265 	return VXGE_HW_OK;
1266 }
1267 
1268 /*
1269  * __vxge_hw_device_config_check - Check device configuration.
1270  * Check the device configuration
1271  */
1272 static enum vxge_hw_status
__vxge_hw_device_config_check(struct vxge_hw_device_config * new_config)1273 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1274 {
1275 	u32 i;
1276 	enum vxge_hw_status status;
1277 
1278 	if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1279 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1280 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1281 	    (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1282 		return VXGE_HW_BADCFG_INTR_MODE;
1283 
1284 	if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1285 	    (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1286 		return VXGE_HW_BADCFG_RTS_MAC_EN;
1287 
1288 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1289 		status = __vxge_hw_device_vpath_config_check(
1290 				&new_config->vp_config[i]);
1291 		if (status != VXGE_HW_OK)
1292 			return status;
1293 	}
1294 
1295 	return VXGE_HW_OK;
1296 }
1297 
1298 /*
1299  * vxge_hw_device_initialize - Initialize Titan device.
1300  * Initialize Titan device. Note that all the arguments of this public API
1301  * are 'IN', including @hldev. Driver cooperates with
1302  * OS to find new Titan device, locate its PCI and memory spaces.
1303  *
1304  * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1305  * to enable the latter to perform Titan hardware initialization.
1306  */
1307 enum vxge_hw_status
vxge_hw_device_initialize(struct __vxge_hw_device ** devh,struct vxge_hw_device_attr * attr,struct vxge_hw_device_config * device_config)1308 vxge_hw_device_initialize(
1309 	struct __vxge_hw_device **devh,
1310 	struct vxge_hw_device_attr *attr,
1311 	struct vxge_hw_device_config *device_config)
1312 {
1313 	u32 i;
1314 	u32 nblocks = 0;
1315 	struct __vxge_hw_device *hldev = NULL;
1316 	enum vxge_hw_status status = VXGE_HW_OK;
1317 
1318 	status = __vxge_hw_device_config_check(device_config);
1319 	if (status != VXGE_HW_OK)
1320 		goto exit;
1321 
1322 	hldev = vzalloc(sizeof(struct __vxge_hw_device));
1323 	if (hldev == NULL) {
1324 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
1325 		goto exit;
1326 	}
1327 
1328 	hldev->magic = VXGE_HW_DEVICE_MAGIC;
1329 
1330 	vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1331 
1332 	/* apply config */
1333 	memcpy(&hldev->config, device_config,
1334 		sizeof(struct vxge_hw_device_config));
1335 
1336 	hldev->bar0 = attr->bar0;
1337 	hldev->pdev = attr->pdev;
1338 
1339 	hldev->uld_callbacks = attr->uld_callbacks;
1340 
1341 	__vxge_hw_device_pci_e_init(hldev);
1342 
1343 	status = __vxge_hw_device_reg_addr_get(hldev);
1344 	if (status != VXGE_HW_OK) {
1345 		vfree(hldev);
1346 		goto exit;
1347 	}
1348 
1349 	__vxge_hw_device_host_info_get(hldev);
1350 
1351 	/* Incrementing for stats blocks */
1352 	nblocks++;
1353 
1354 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1355 		if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1356 			continue;
1357 
1358 		if (device_config->vp_config[i].ring.enable ==
1359 			VXGE_HW_RING_ENABLE)
1360 			nblocks += device_config->vp_config[i].ring.ring_blocks;
1361 
1362 		if (device_config->vp_config[i].fifo.enable ==
1363 			VXGE_HW_FIFO_ENABLE)
1364 			nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1365 		nblocks++;
1366 	}
1367 
1368 	if (__vxge_hw_blockpool_create(hldev,
1369 		&hldev->block_pool,
1370 		device_config->dma_blockpool_initial + nblocks,
1371 		device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1372 
1373 		vxge_hw_device_terminate(hldev);
1374 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
1375 		goto exit;
1376 	}
1377 
1378 	status = __vxge_hw_device_initialize(hldev);
1379 	if (status != VXGE_HW_OK) {
1380 		vxge_hw_device_terminate(hldev);
1381 		goto exit;
1382 	}
1383 
1384 	*devh = hldev;
1385 exit:
1386 	return status;
1387 }
1388 
1389 /*
1390  * vxge_hw_device_terminate - Terminate Titan device.
1391  * Terminate HW device.
1392  */
1393 void
vxge_hw_device_terminate(struct __vxge_hw_device * hldev)1394 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1395 {
1396 	vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1397 
1398 	hldev->magic = VXGE_HW_DEVICE_DEAD;
1399 	__vxge_hw_blockpool_destroy(&hldev->block_pool);
1400 	vfree(hldev);
1401 }
1402 
1403 /*
1404  * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1405  *                           and offset and perform an operation
1406  */
1407 static enum vxge_hw_status
__vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath * vpath,u32 operation,u32 offset,u64 * stat)1408 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1409 			     u32 operation, u32 offset, u64 *stat)
1410 {
1411 	u64 val64;
1412 	enum vxge_hw_status status = VXGE_HW_OK;
1413 	struct vxge_hw_vpath_reg __iomem *vp_reg;
1414 
1415 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1416 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1417 		goto vpath_stats_access_exit;
1418 	}
1419 
1420 	vp_reg = vpath->vp_reg;
1421 
1422 	val64 =  VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1423 		 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1424 		 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1425 
1426 	status = __vxge_hw_pio_mem_write64(val64,
1427 				&vp_reg->xmac_stats_access_cmd,
1428 				VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1429 				vpath->hldev->config.device_poll_millis);
1430 	if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1431 		*stat = readq(&vp_reg->xmac_stats_access_data);
1432 	else
1433 		*stat = 0;
1434 
1435 vpath_stats_access_exit:
1436 	return status;
1437 }
1438 
1439 /*
1440  * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1441  */
1442 static enum vxge_hw_status
__vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_xmac_vpath_tx_stats * vpath_tx_stats)1443 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1444 			struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1445 {
1446 	u64 *val64;
1447 	int i;
1448 	u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1449 	enum vxge_hw_status status = VXGE_HW_OK;
1450 
1451 	val64 = (u64 *)vpath_tx_stats;
1452 
1453 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1454 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1455 		goto exit;
1456 	}
1457 
1458 	for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1459 		status = __vxge_hw_vpath_stats_access(vpath,
1460 					VXGE_HW_STATS_OP_READ,
1461 					offset, val64);
1462 		if (status != VXGE_HW_OK)
1463 			goto exit;
1464 		offset++;
1465 		val64++;
1466 	}
1467 exit:
1468 	return status;
1469 }
1470 
1471 /*
1472  * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1473  */
1474 static enum vxge_hw_status
__vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_xmac_vpath_rx_stats * vpath_rx_stats)1475 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1476 			struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1477 {
1478 	u64 *val64;
1479 	enum vxge_hw_status status = VXGE_HW_OK;
1480 	int i;
1481 	u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1482 	val64 = (u64 *) vpath_rx_stats;
1483 
1484 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1485 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1486 		goto exit;
1487 	}
1488 	for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1489 		status = __vxge_hw_vpath_stats_access(vpath,
1490 					VXGE_HW_STATS_OP_READ,
1491 					offset >> 3, val64);
1492 		if (status != VXGE_HW_OK)
1493 			goto exit;
1494 
1495 		offset += 8;
1496 		val64++;
1497 	}
1498 exit:
1499 	return status;
1500 }
1501 
1502 /*
1503  * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1504  */
1505 static enum vxge_hw_status
__vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath * vpath,struct vxge_hw_vpath_stats_hw_info * hw_stats)1506 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1507 			  struct vxge_hw_vpath_stats_hw_info *hw_stats)
1508 {
1509 	u64 val64;
1510 	enum vxge_hw_status status = VXGE_HW_OK;
1511 	struct vxge_hw_vpath_reg __iomem *vp_reg;
1512 
1513 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1514 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1515 		goto exit;
1516 	}
1517 	vp_reg = vpath->vp_reg;
1518 
1519 	val64 = readq(&vp_reg->vpath_debug_stats0);
1520 	hw_stats->ini_num_mwr_sent =
1521 		(u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1522 
1523 	val64 = readq(&vp_reg->vpath_debug_stats1);
1524 	hw_stats->ini_num_mrd_sent =
1525 		(u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1526 
1527 	val64 = readq(&vp_reg->vpath_debug_stats2);
1528 	hw_stats->ini_num_cpl_rcvd =
1529 		(u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1530 
1531 	val64 = readq(&vp_reg->vpath_debug_stats3);
1532 	hw_stats->ini_num_mwr_byte_sent =
1533 		VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1534 
1535 	val64 = readq(&vp_reg->vpath_debug_stats4);
1536 	hw_stats->ini_num_cpl_byte_rcvd =
1537 		VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1538 
1539 	val64 = readq(&vp_reg->vpath_debug_stats5);
1540 	hw_stats->wrcrdtarb_xoff =
1541 		(u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1542 
1543 	val64 = readq(&vp_reg->vpath_debug_stats6);
1544 	hw_stats->rdcrdtarb_xoff =
1545 		(u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1546 
1547 	val64 = readq(&vp_reg->vpath_genstats_count01);
1548 	hw_stats->vpath_genstats_count0 =
1549 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1550 		val64);
1551 
1552 	val64 = readq(&vp_reg->vpath_genstats_count01);
1553 	hw_stats->vpath_genstats_count1 =
1554 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1555 		val64);
1556 
1557 	val64 = readq(&vp_reg->vpath_genstats_count23);
1558 	hw_stats->vpath_genstats_count2 =
1559 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1560 		val64);
1561 
1562 	val64 = readq(&vp_reg->vpath_genstats_count01);
1563 	hw_stats->vpath_genstats_count3 =
1564 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1565 		val64);
1566 
1567 	val64 = readq(&vp_reg->vpath_genstats_count4);
1568 	hw_stats->vpath_genstats_count4 =
1569 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1570 		val64);
1571 
1572 	val64 = readq(&vp_reg->vpath_genstats_count5);
1573 	hw_stats->vpath_genstats_count5 =
1574 	(u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1575 		val64);
1576 
1577 	status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1578 	if (status != VXGE_HW_OK)
1579 		goto exit;
1580 
1581 	status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1582 	if (status != VXGE_HW_OK)
1583 		goto exit;
1584 
1585 	VXGE_HW_VPATH_STATS_PIO_READ(
1586 		VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1587 
1588 	hw_stats->prog_event_vnum0 =
1589 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1590 
1591 	hw_stats->prog_event_vnum1 =
1592 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1593 
1594 	VXGE_HW_VPATH_STATS_PIO_READ(
1595 		VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1596 
1597 	hw_stats->prog_event_vnum2 =
1598 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1599 
1600 	hw_stats->prog_event_vnum3 =
1601 			(u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1602 
1603 	val64 = readq(&vp_reg->rx_multi_cast_stats);
1604 	hw_stats->rx_multi_cast_frame_discard =
1605 		(u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1606 
1607 	val64 = readq(&vp_reg->rx_frm_transferred);
1608 	hw_stats->rx_frm_transferred =
1609 		(u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1610 
1611 	val64 = readq(&vp_reg->rxd_returned);
1612 	hw_stats->rxd_returned =
1613 		(u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1614 
1615 	val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1616 	hw_stats->rx_mpa_len_fail_frms =
1617 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1618 	hw_stats->rx_mpa_mrk_fail_frms =
1619 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1620 	hw_stats->rx_mpa_crc_fail_frms =
1621 		(u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1622 
1623 	val64 = readq(&vp_reg->dbg_stats_rx_fau);
1624 	hw_stats->rx_permitted_frms =
1625 		(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1626 	hw_stats->rx_vp_reset_discarded_frms =
1627 	(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1628 	hw_stats->rx_wol_frms =
1629 		(u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1630 
1631 	val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1632 	hw_stats->tx_vp_reset_discarded_frms =
1633 	(u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1634 		val64);
1635 exit:
1636 	return status;
1637 }
1638 
1639 /*
1640  * vxge_hw_device_stats_get - Get the device hw statistics.
1641  * Returns the vpath h/w stats for the device.
1642  */
1643 enum vxge_hw_status
vxge_hw_device_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_device_stats_hw_info * hw_stats)1644 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1645 			struct vxge_hw_device_stats_hw_info *hw_stats)
1646 {
1647 	u32 i;
1648 	enum vxge_hw_status status = VXGE_HW_OK;
1649 
1650 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1651 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1652 			(hldev->virtual_paths[i].vp_open ==
1653 				VXGE_HW_VP_NOT_OPEN))
1654 			continue;
1655 
1656 		memcpy(hldev->virtual_paths[i].hw_stats_sav,
1657 				hldev->virtual_paths[i].hw_stats,
1658 				sizeof(struct vxge_hw_vpath_stats_hw_info));
1659 
1660 		status = __vxge_hw_vpath_stats_get(
1661 			&hldev->virtual_paths[i],
1662 			hldev->virtual_paths[i].hw_stats);
1663 	}
1664 
1665 	memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1666 			sizeof(struct vxge_hw_device_stats_hw_info));
1667 
1668 	return status;
1669 }
1670 
1671 /*
1672  * vxge_hw_driver_stats_get - Get the device sw statistics.
1673  * Returns the vpath s/w stats for the device.
1674  */
vxge_hw_driver_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_device_stats_sw_info * sw_stats)1675 enum vxge_hw_status vxge_hw_driver_stats_get(
1676 			struct __vxge_hw_device *hldev,
1677 			struct vxge_hw_device_stats_sw_info *sw_stats)
1678 {
1679 	memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1680 		sizeof(struct vxge_hw_device_stats_sw_info));
1681 
1682 	return VXGE_HW_OK;
1683 }
1684 
1685 /*
1686  * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1687  *                           and offset and perform an operation
1688  * Get the statistics from the given location and offset.
1689  */
1690 enum vxge_hw_status
vxge_hw_mrpcim_stats_access(struct __vxge_hw_device * hldev,u32 operation,u32 location,u32 offset,u64 * stat)1691 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1692 			    u32 operation, u32 location, u32 offset, u64 *stat)
1693 {
1694 	u64 val64;
1695 	enum vxge_hw_status status = VXGE_HW_OK;
1696 
1697 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1698 			hldev->func_id);
1699 	if (status != VXGE_HW_OK)
1700 		goto exit;
1701 
1702 	val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1703 		VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1704 		VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1705 		VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1706 
1707 	status = __vxge_hw_pio_mem_write64(val64,
1708 				&hldev->mrpcim_reg->xmac_stats_sys_cmd,
1709 				VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1710 				hldev->config.device_poll_millis);
1711 
1712 	if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1713 		*stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1714 	else
1715 		*stat = 0;
1716 exit:
1717 	return status;
1718 }
1719 
1720 /*
1721  * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1722  * Get the Statistics on aggregate port
1723  */
1724 static enum vxge_hw_status
vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device * hldev,u32 port,struct vxge_hw_xmac_aggr_stats * aggr_stats)1725 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1726 				   struct vxge_hw_xmac_aggr_stats *aggr_stats)
1727 {
1728 	u64 *val64;
1729 	int i;
1730 	u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1731 	enum vxge_hw_status status = VXGE_HW_OK;
1732 
1733 	val64 = (u64 *)aggr_stats;
1734 
1735 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1736 			hldev->func_id);
1737 	if (status != VXGE_HW_OK)
1738 		goto exit;
1739 
1740 	for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1741 		status = vxge_hw_mrpcim_stats_access(hldev,
1742 					VXGE_HW_STATS_OP_READ,
1743 					VXGE_HW_STATS_LOC_AGGR,
1744 					((offset + (104 * port)) >> 3), val64);
1745 		if (status != VXGE_HW_OK)
1746 			goto exit;
1747 
1748 		offset += 8;
1749 		val64++;
1750 	}
1751 exit:
1752 	return status;
1753 }
1754 
1755 /*
1756  * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1757  * Get the Statistics on port
1758  */
1759 static enum vxge_hw_status
vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device * hldev,u32 port,struct vxge_hw_xmac_port_stats * port_stats)1760 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1761 				   struct vxge_hw_xmac_port_stats *port_stats)
1762 {
1763 	u64 *val64;
1764 	enum vxge_hw_status status = VXGE_HW_OK;
1765 	int i;
1766 	u32 offset = 0x0;
1767 	val64 = (u64 *) port_stats;
1768 
1769 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1770 			hldev->func_id);
1771 	if (status != VXGE_HW_OK)
1772 		goto exit;
1773 
1774 	for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1775 		status = vxge_hw_mrpcim_stats_access(hldev,
1776 					VXGE_HW_STATS_OP_READ,
1777 					VXGE_HW_STATS_LOC_AGGR,
1778 					((offset + (608 * port)) >> 3), val64);
1779 		if (status != VXGE_HW_OK)
1780 			goto exit;
1781 
1782 		offset += 8;
1783 		val64++;
1784 	}
1785 
1786 exit:
1787 	return status;
1788 }
1789 
1790 /*
1791  * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1792  * Get the XMAC Statistics
1793  */
1794 enum vxge_hw_status
vxge_hw_device_xmac_stats_get(struct __vxge_hw_device * hldev,struct vxge_hw_xmac_stats * xmac_stats)1795 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1796 			      struct vxge_hw_xmac_stats *xmac_stats)
1797 {
1798 	enum vxge_hw_status status = VXGE_HW_OK;
1799 	u32 i;
1800 
1801 	status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1802 					0, &xmac_stats->aggr_stats[0]);
1803 	if (status != VXGE_HW_OK)
1804 		goto exit;
1805 
1806 	status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1807 				1, &xmac_stats->aggr_stats[1]);
1808 	if (status != VXGE_HW_OK)
1809 		goto exit;
1810 
1811 	for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1812 
1813 		status = vxge_hw_device_xmac_port_stats_get(hldev,
1814 					i, &xmac_stats->port_stats[i]);
1815 		if (status != VXGE_HW_OK)
1816 			goto exit;
1817 	}
1818 
1819 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1820 
1821 		if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1822 			continue;
1823 
1824 		status = __vxge_hw_vpath_xmac_tx_stats_get(
1825 					&hldev->virtual_paths[i],
1826 					&xmac_stats->vpath_tx_stats[i]);
1827 		if (status != VXGE_HW_OK)
1828 			goto exit;
1829 
1830 		status = __vxge_hw_vpath_xmac_rx_stats_get(
1831 					&hldev->virtual_paths[i],
1832 					&xmac_stats->vpath_rx_stats[i]);
1833 		if (status != VXGE_HW_OK)
1834 			goto exit;
1835 	}
1836 exit:
1837 	return status;
1838 }
1839 
1840 /*
1841  * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1842  * This routine is used to dynamically change the debug output
1843  */
vxge_hw_device_debug_set(struct __vxge_hw_device * hldev,enum vxge_debug_level level,u32 mask)1844 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1845 			      enum vxge_debug_level level, u32 mask)
1846 {
1847 	if (hldev == NULL)
1848 		return;
1849 
1850 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1851 	defined(VXGE_DEBUG_ERR_MASK)
1852 	hldev->debug_module_mask = mask;
1853 	hldev->debug_level = level;
1854 #endif
1855 
1856 #if defined(VXGE_DEBUG_ERR_MASK)
1857 	hldev->level_err = level & VXGE_ERR;
1858 #endif
1859 
1860 #if defined(VXGE_DEBUG_TRACE_MASK)
1861 	hldev->level_trace = level & VXGE_TRACE;
1862 #endif
1863 }
1864 
1865 /*
1866  * vxge_hw_device_error_level_get - Get the error level
1867  * This routine returns the current error level set
1868  */
vxge_hw_device_error_level_get(struct __vxge_hw_device * hldev)1869 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1870 {
1871 #if defined(VXGE_DEBUG_ERR_MASK)
1872 	if (hldev == NULL)
1873 		return VXGE_ERR;
1874 	else
1875 		return hldev->level_err;
1876 #else
1877 	return 0;
1878 #endif
1879 }
1880 
1881 /*
1882  * vxge_hw_device_trace_level_get - Get the trace level
1883  * This routine returns the current trace level set
1884  */
vxge_hw_device_trace_level_get(struct __vxge_hw_device * hldev)1885 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1886 {
1887 #if defined(VXGE_DEBUG_TRACE_MASK)
1888 	if (hldev == NULL)
1889 		return VXGE_TRACE;
1890 	else
1891 		return hldev->level_trace;
1892 #else
1893 	return 0;
1894 #endif
1895 }
1896 
1897 /*
1898  * vxge_hw_getpause_data -Pause frame frame generation and reception.
1899  * Returns the Pause frame generation and reception capability of the NIC.
1900  */
vxge_hw_device_getpause_data(struct __vxge_hw_device * hldev,u32 port,u32 * tx,u32 * rx)1901 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1902 						 u32 port, u32 *tx, u32 *rx)
1903 {
1904 	u64 val64;
1905 	enum vxge_hw_status status = VXGE_HW_OK;
1906 
1907 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1908 		status = VXGE_HW_ERR_INVALID_DEVICE;
1909 		goto exit;
1910 	}
1911 
1912 	if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1913 		status = VXGE_HW_ERR_INVALID_PORT;
1914 		goto exit;
1915 	}
1916 
1917 	if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1918 		status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
1919 		goto exit;
1920 	}
1921 
1922 	val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1923 	if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1924 		*tx = 1;
1925 	if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1926 		*rx = 1;
1927 exit:
1928 	return status;
1929 }
1930 
1931 /*
1932  * vxge_hw_device_setpause_data -  set/reset pause frame generation.
1933  * It can be used to set or reset Pause frame generation or reception
1934  * support of the NIC.
1935  */
vxge_hw_device_setpause_data(struct __vxge_hw_device * hldev,u32 port,u32 tx,u32 rx)1936 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1937 						 u32 port, u32 tx, u32 rx)
1938 {
1939 	u64 val64;
1940 	enum vxge_hw_status status = VXGE_HW_OK;
1941 
1942 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1943 		status = VXGE_HW_ERR_INVALID_DEVICE;
1944 		goto exit;
1945 	}
1946 
1947 	if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1948 		status = VXGE_HW_ERR_INVALID_PORT;
1949 		goto exit;
1950 	}
1951 
1952 	status = __vxge_hw_device_is_privilaged(hldev->host_type,
1953 			hldev->func_id);
1954 	if (status != VXGE_HW_OK)
1955 		goto exit;
1956 
1957 	val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1958 	if (tx)
1959 		val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1960 	else
1961 		val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1962 	if (rx)
1963 		val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1964 	else
1965 		val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1966 
1967 	writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1968 exit:
1969 	return status;
1970 }
1971 
vxge_hw_device_link_width_get(struct __vxge_hw_device * hldev)1972 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1973 {
1974 	struct pci_dev *dev = hldev->pdev;
1975 	u16 lnk;
1976 
1977 	pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1978 	return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1979 }
1980 
1981 /*
1982  * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1983  * This function returns the index of memory block
1984  */
1985 static inline u32
__vxge_hw_ring_block_memblock_idx(u8 * block)1986 __vxge_hw_ring_block_memblock_idx(u8 *block)
1987 {
1988 	return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1989 }
1990 
1991 /*
1992  * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1993  * This function sets index to a memory block
1994  */
1995 static inline void
__vxge_hw_ring_block_memblock_idx_set(u8 * block,u32 memblock_idx)1996 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1997 {
1998 	*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
1999 }
2000 
2001 /*
2002  * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2003  * in RxD block
2004  * Sets the next block pointer in RxD block
2005  */
2006 static inline void
__vxge_hw_ring_block_next_pointer_set(u8 * block,dma_addr_t dma_next)2007 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2008 {
2009 	*((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2010 }
2011 
2012 /*
2013  * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2014  *             first block
2015  * Returns the dma address of the first RxD block
2016  */
__vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring * ring)2017 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2018 {
2019 	struct vxge_hw_mempool_dma *dma_object;
2020 
2021 	dma_object = ring->mempool->memblocks_dma_arr;
2022 	vxge_assert(dma_object != NULL);
2023 
2024 	return dma_object->addr;
2025 }
2026 
2027 /*
2028  * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2029  * This function returns the dma address of a given item
2030  */
__vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool * mempoolh,void * item)2031 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2032 					       void *item)
2033 {
2034 	u32 memblock_idx;
2035 	void *memblock;
2036 	struct vxge_hw_mempool_dma *memblock_dma_object;
2037 	ptrdiff_t dma_item_offset;
2038 
2039 	/* get owner memblock index */
2040 	memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2041 
2042 	/* get owner memblock by memblock index */
2043 	memblock = mempoolh->memblocks_arr[memblock_idx];
2044 
2045 	/* get memblock DMA object by memblock index */
2046 	memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2047 
2048 	/* calculate offset in the memblock of this item */
2049 	dma_item_offset = (u8 *)item - (u8 *)memblock;
2050 
2051 	return memblock_dma_object->addr + dma_item_offset;
2052 }
2053 
2054 /*
2055  * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2056  * This function returns the dma address of a given item
2057  */
__vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool * mempoolh,struct __vxge_hw_ring * ring,u32 from,u32 to)2058 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2059 					 struct __vxge_hw_ring *ring, u32 from,
2060 					 u32 to)
2061 {
2062 	u8 *to_item , *from_item;
2063 	dma_addr_t to_dma;
2064 
2065 	/* get "from" RxD block */
2066 	from_item = mempoolh->items_arr[from];
2067 	vxge_assert(from_item);
2068 
2069 	/* get "to" RxD block */
2070 	to_item = mempoolh->items_arr[to];
2071 	vxge_assert(to_item);
2072 
2073 	/* return address of the beginning of previous RxD block */
2074 	to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2075 
2076 	/* set next pointer for this RxD block to point on
2077 	 * previous item's DMA start address */
2078 	__vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2079 }
2080 
2081 /*
2082  * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2083  * block callback
2084  * This function is callback passed to __vxge_hw_mempool_create to create memory
2085  * pool for RxD block
2086  */
2087 static void
__vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool * mempoolh,u32 memblock_index,struct vxge_hw_mempool_dma * dma_object,u32 index,u32 is_last)2088 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2089 				  u32 memblock_index,
2090 				  struct vxge_hw_mempool_dma *dma_object,
2091 				  u32 index, u32 is_last)
2092 {
2093 	u32 i;
2094 	void *item = mempoolh->items_arr[index];
2095 	struct __vxge_hw_ring *ring =
2096 		(struct __vxge_hw_ring *)mempoolh->userdata;
2097 
2098 	/* format rxds array */
2099 	for (i = 0; i < ring->rxds_per_block; i++) {
2100 		void *rxdblock_priv;
2101 		void *uld_priv;
2102 		struct vxge_hw_ring_rxd_1 *rxdp;
2103 
2104 		u32 reserve_index = ring->channel.reserve_ptr -
2105 				(index * ring->rxds_per_block + i + 1);
2106 		u32 memblock_item_idx;
2107 
2108 		ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2109 						i * ring->rxd_size;
2110 
2111 		/* Note: memblock_item_idx is index of the item within
2112 		 *       the memblock. For instance, in case of three RxD-blocks
2113 		 *       per memblock this value can be 0, 1 or 2. */
2114 		rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2115 					memblock_index, item,
2116 					&memblock_item_idx);
2117 
2118 		rxdp = ring->channel.reserve_arr[reserve_index];
2119 
2120 		uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2121 
2122 		/* pre-format Host_Control */
2123 		rxdp->host_control = (u64)(size_t)uld_priv;
2124 	}
2125 
2126 	__vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2127 
2128 	if (is_last) {
2129 		/* link last one with first one */
2130 		__vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2131 	}
2132 
2133 	if (index > 0) {
2134 		/* link this RxD block with previous one */
2135 		__vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2136 	}
2137 }
2138 
2139 /*
2140  * __vxge_hw_ring_replenish - Initial replenish of RxDs
2141  * This function replenishes the RxDs from reserve array to work array
2142  */
2143 static enum vxge_hw_status
vxge_hw_ring_replenish(struct __vxge_hw_ring * ring)2144 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2145 {
2146 	void *rxd;
2147 	struct __vxge_hw_channel *channel;
2148 	enum vxge_hw_status status = VXGE_HW_OK;
2149 
2150 	channel = &ring->channel;
2151 
2152 	while (vxge_hw_channel_dtr_count(channel) > 0) {
2153 
2154 		status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2155 
2156 		vxge_assert(status == VXGE_HW_OK);
2157 
2158 		if (ring->rxd_init) {
2159 			status = ring->rxd_init(rxd, channel->userdata);
2160 			if (status != VXGE_HW_OK) {
2161 				vxge_hw_ring_rxd_free(ring, rxd);
2162 				goto exit;
2163 			}
2164 		}
2165 
2166 		vxge_hw_ring_rxd_post(ring, rxd);
2167 	}
2168 	status = VXGE_HW_OK;
2169 exit:
2170 	return status;
2171 }
2172 
2173 /*
2174  * __vxge_hw_channel_allocate - Allocate memory for channel
2175  * This function allocates required memory for the channel and various arrays
2176  * in the channel
2177  */
2178 static struct __vxge_hw_channel *
__vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle * vph,enum __vxge_hw_channel_type type,u32 length,u32 per_dtr_space,void * userdata)2179 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2180 			   enum __vxge_hw_channel_type type,
2181 			   u32 length, u32 per_dtr_space,
2182 			   void *userdata)
2183 {
2184 	struct __vxge_hw_channel *channel;
2185 	struct __vxge_hw_device *hldev;
2186 	int size = 0;
2187 	u32 vp_id;
2188 
2189 	hldev = vph->vpath->hldev;
2190 	vp_id = vph->vpath->vp_id;
2191 
2192 	switch (type) {
2193 	case VXGE_HW_CHANNEL_TYPE_FIFO:
2194 		size = sizeof(struct __vxge_hw_fifo);
2195 		break;
2196 	case VXGE_HW_CHANNEL_TYPE_RING:
2197 		size = sizeof(struct __vxge_hw_ring);
2198 		break;
2199 	default:
2200 		break;
2201 	}
2202 
2203 	channel = kzalloc(size, GFP_KERNEL);
2204 	if (channel == NULL)
2205 		goto exit0;
2206 	INIT_LIST_HEAD(&channel->item);
2207 
2208 	channel->common_reg = hldev->common_reg;
2209 	channel->first_vp_id = hldev->first_vp_id;
2210 	channel->type = type;
2211 	channel->devh = hldev;
2212 	channel->vph = vph;
2213 	channel->userdata = userdata;
2214 	channel->per_dtr_space = per_dtr_space;
2215 	channel->length = length;
2216 	channel->vp_id = vp_id;
2217 
2218 	channel->work_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2219 	if (channel->work_arr == NULL)
2220 		goto exit1;
2221 
2222 	channel->free_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2223 	if (channel->free_arr == NULL)
2224 		goto exit1;
2225 	channel->free_ptr = length;
2226 
2227 	channel->reserve_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2228 	if (channel->reserve_arr == NULL)
2229 		goto exit1;
2230 	channel->reserve_ptr = length;
2231 	channel->reserve_top = 0;
2232 
2233 	channel->orig_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2234 	if (channel->orig_arr == NULL)
2235 		goto exit1;
2236 
2237 	return channel;
2238 exit1:
2239 	__vxge_hw_channel_free(channel);
2240 
2241 exit0:
2242 	return NULL;
2243 }
2244 
2245 /*
2246  * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2247  * Adds a block to block pool
2248  */
vxge_hw_blockpool_block_add(struct __vxge_hw_device * devh,void * block_addr,u32 length,struct pci_dev * dma_h,struct pci_dev * acc_handle)2249 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2250 					void *block_addr,
2251 					u32 length,
2252 					struct pci_dev *dma_h,
2253 					struct pci_dev *acc_handle)
2254 {
2255 	struct __vxge_hw_blockpool *blockpool;
2256 	struct __vxge_hw_blockpool_entry *entry = NULL;
2257 	dma_addr_t dma_addr;
2258 
2259 	blockpool = &devh->block_pool;
2260 
2261 	if (block_addr == NULL) {
2262 		blockpool->req_out--;
2263 		goto exit;
2264 	}
2265 
2266 	dma_addr = pci_map_single(devh->pdev, block_addr, length,
2267 				PCI_DMA_BIDIRECTIONAL);
2268 
2269 	if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2270 		vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2271 		blockpool->req_out--;
2272 		goto exit;
2273 	}
2274 
2275 	if (!list_empty(&blockpool->free_entry_list))
2276 		entry = (struct __vxge_hw_blockpool_entry *)
2277 			list_first_entry(&blockpool->free_entry_list,
2278 				struct __vxge_hw_blockpool_entry,
2279 				item);
2280 
2281 	if (entry == NULL)
2282 		entry =	vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2283 	else
2284 		list_del(&entry->item);
2285 
2286 	if (entry) {
2287 		entry->length = length;
2288 		entry->memblock = block_addr;
2289 		entry->dma_addr = dma_addr;
2290 		entry->acc_handle = acc_handle;
2291 		entry->dma_handle = dma_h;
2292 		list_add(&entry->item, &blockpool->free_block_list);
2293 		blockpool->pool_size++;
2294 	}
2295 
2296 	blockpool->req_out--;
2297 
2298 exit:
2299 	return;
2300 }
2301 
2302 static inline void
vxge_os_dma_malloc_async(struct pci_dev * pdev,void * devh,unsigned long size)2303 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2304 {
2305 	gfp_t flags;
2306 	void *vaddr;
2307 
2308 	if (in_interrupt())
2309 		flags = GFP_ATOMIC | GFP_DMA;
2310 	else
2311 		flags = GFP_KERNEL | GFP_DMA;
2312 
2313 	vaddr = kmalloc((size), flags);
2314 
2315 	vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2316 }
2317 
2318 /*
2319  * __vxge_hw_blockpool_blocks_add - Request additional blocks
2320  */
2321 static
__vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool * blockpool)2322 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2323 {
2324 	u32 nreq = 0, i;
2325 
2326 	if ((blockpool->pool_size  +  blockpool->req_out) <
2327 		VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2328 		nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2329 		blockpool->req_out += nreq;
2330 	}
2331 
2332 	for (i = 0; i < nreq; i++)
2333 		vxge_os_dma_malloc_async(
2334 			(blockpool->hldev)->pdev,
2335 			blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2336 }
2337 
2338 /*
2339  * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2340  * Allocates a block of memory of given size, either from block pool
2341  * or by calling vxge_os_dma_malloc()
2342  */
__vxge_hw_blockpool_malloc(struct __vxge_hw_device * devh,u32 size,struct vxge_hw_mempool_dma * dma_object)2343 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2344 					struct vxge_hw_mempool_dma *dma_object)
2345 {
2346 	struct __vxge_hw_blockpool_entry *entry = NULL;
2347 	struct __vxge_hw_blockpool  *blockpool;
2348 	void *memblock = NULL;
2349 
2350 	blockpool = &devh->block_pool;
2351 
2352 	if (size != blockpool->block_size) {
2353 
2354 		memblock = vxge_os_dma_malloc(devh->pdev, size,
2355 						&dma_object->handle,
2356 						&dma_object->acc_handle);
2357 
2358 		if (!memblock)
2359 			goto exit;
2360 
2361 		dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2362 					PCI_DMA_BIDIRECTIONAL);
2363 
2364 		if (unlikely(pci_dma_mapping_error(devh->pdev,
2365 				dma_object->addr))) {
2366 			vxge_os_dma_free(devh->pdev, memblock,
2367 				&dma_object->acc_handle);
2368 			goto exit;
2369 		}
2370 
2371 	} else {
2372 
2373 		if (!list_empty(&blockpool->free_block_list))
2374 			entry = (struct __vxge_hw_blockpool_entry *)
2375 				list_first_entry(&blockpool->free_block_list,
2376 					struct __vxge_hw_blockpool_entry,
2377 					item);
2378 
2379 		if (entry != NULL) {
2380 			list_del(&entry->item);
2381 			dma_object->addr = entry->dma_addr;
2382 			dma_object->handle = entry->dma_handle;
2383 			dma_object->acc_handle = entry->acc_handle;
2384 			memblock = entry->memblock;
2385 
2386 			list_add(&entry->item,
2387 				&blockpool->free_entry_list);
2388 			blockpool->pool_size--;
2389 		}
2390 
2391 		if (memblock != NULL)
2392 			__vxge_hw_blockpool_blocks_add(blockpool);
2393 	}
2394 exit:
2395 	return memblock;
2396 }
2397 
2398 /*
2399  * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2400  */
2401 static void
__vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool * blockpool)2402 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2403 {
2404 	struct list_head *p, *n;
2405 
2406 	list_for_each_safe(p, n, &blockpool->free_block_list) {
2407 
2408 		if (blockpool->pool_size < blockpool->pool_max)
2409 			break;
2410 
2411 		pci_unmap_single(
2412 			(blockpool->hldev)->pdev,
2413 			((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2414 			((struct __vxge_hw_blockpool_entry *)p)->length,
2415 			PCI_DMA_BIDIRECTIONAL);
2416 
2417 		vxge_os_dma_free(
2418 			(blockpool->hldev)->pdev,
2419 			((struct __vxge_hw_blockpool_entry *)p)->memblock,
2420 			&((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2421 
2422 		list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2423 
2424 		list_add(p, &blockpool->free_entry_list);
2425 
2426 		blockpool->pool_size--;
2427 
2428 	}
2429 }
2430 
2431 /*
2432  * __vxge_hw_blockpool_free - Frees the memory allcoated with
2433  *				__vxge_hw_blockpool_malloc
2434  */
__vxge_hw_blockpool_free(struct __vxge_hw_device * devh,void * memblock,u32 size,struct vxge_hw_mempool_dma * dma_object)2435 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2436 				     void *memblock, u32 size,
2437 				     struct vxge_hw_mempool_dma *dma_object)
2438 {
2439 	struct __vxge_hw_blockpool_entry *entry = NULL;
2440 	struct __vxge_hw_blockpool  *blockpool;
2441 	enum vxge_hw_status status = VXGE_HW_OK;
2442 
2443 	blockpool = &devh->block_pool;
2444 
2445 	if (size != blockpool->block_size) {
2446 		pci_unmap_single(devh->pdev, dma_object->addr, size,
2447 			PCI_DMA_BIDIRECTIONAL);
2448 		vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2449 	} else {
2450 
2451 		if (!list_empty(&blockpool->free_entry_list))
2452 			entry = (struct __vxge_hw_blockpool_entry *)
2453 				list_first_entry(&blockpool->free_entry_list,
2454 					struct __vxge_hw_blockpool_entry,
2455 					item);
2456 
2457 		if (entry == NULL)
2458 			entry =	vmalloc(sizeof(
2459 					struct __vxge_hw_blockpool_entry));
2460 		else
2461 			list_del(&entry->item);
2462 
2463 		if (entry != NULL) {
2464 			entry->length = size;
2465 			entry->memblock = memblock;
2466 			entry->dma_addr = dma_object->addr;
2467 			entry->acc_handle = dma_object->acc_handle;
2468 			entry->dma_handle = dma_object->handle;
2469 			list_add(&entry->item,
2470 					&blockpool->free_block_list);
2471 			blockpool->pool_size++;
2472 			status = VXGE_HW_OK;
2473 		} else
2474 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2475 
2476 		if (status == VXGE_HW_OK)
2477 			__vxge_hw_blockpool_blocks_remove(blockpool);
2478 	}
2479 }
2480 
2481 /*
2482  * vxge_hw_mempool_destroy
2483  */
__vxge_hw_mempool_destroy(struct vxge_hw_mempool * mempool)2484 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2485 {
2486 	u32 i, j;
2487 	struct __vxge_hw_device *devh = mempool->devh;
2488 
2489 	for (i = 0; i < mempool->memblocks_allocated; i++) {
2490 		struct vxge_hw_mempool_dma *dma_object;
2491 
2492 		vxge_assert(mempool->memblocks_arr[i]);
2493 		vxge_assert(mempool->memblocks_dma_arr + i);
2494 
2495 		dma_object = mempool->memblocks_dma_arr + i;
2496 
2497 		for (j = 0; j < mempool->items_per_memblock; j++) {
2498 			u32 index = i * mempool->items_per_memblock + j;
2499 
2500 			/* to skip last partially filled(if any) memblock */
2501 			if (index >= mempool->items_current)
2502 				break;
2503 		}
2504 
2505 		vfree(mempool->memblocks_priv_arr[i]);
2506 
2507 		__vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2508 				mempool->memblock_size, dma_object);
2509 	}
2510 
2511 	vfree(mempool->items_arr);
2512 	vfree(mempool->memblocks_dma_arr);
2513 	vfree(mempool->memblocks_priv_arr);
2514 	vfree(mempool->memblocks_arr);
2515 	vfree(mempool);
2516 }
2517 
2518 /*
2519  * __vxge_hw_mempool_grow
2520  * Will resize mempool up to %num_allocate value.
2521  */
2522 static enum vxge_hw_status
__vxge_hw_mempool_grow(struct vxge_hw_mempool * mempool,u32 num_allocate,u32 * num_allocated)2523 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2524 		       u32 *num_allocated)
2525 {
2526 	u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2527 	u32 n_items = mempool->items_per_memblock;
2528 	u32 start_block_idx = mempool->memblocks_allocated;
2529 	u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2530 	enum vxge_hw_status status = VXGE_HW_OK;
2531 
2532 	*num_allocated = 0;
2533 
2534 	if (end_block_idx > mempool->memblocks_max) {
2535 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2536 		goto exit;
2537 	}
2538 
2539 	for (i = start_block_idx; i < end_block_idx; i++) {
2540 		u32 j;
2541 		u32 is_last = ((end_block_idx - 1) == i);
2542 		struct vxge_hw_mempool_dma *dma_object =
2543 			mempool->memblocks_dma_arr + i;
2544 		void *the_memblock;
2545 
2546 		/* allocate memblock's private part. Each DMA memblock
2547 		 * has a space allocated for item's private usage upon
2548 		 * mempool's user request. Each time mempool grows, it will
2549 		 * allocate new memblock and its private part at once.
2550 		 * This helps to minimize memory usage a lot. */
2551 		mempool->memblocks_priv_arr[i] =
2552 			vzalloc(array_size(mempool->items_priv_size, n_items));
2553 		if (mempool->memblocks_priv_arr[i] == NULL) {
2554 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2555 			goto exit;
2556 		}
2557 
2558 		/* allocate DMA-capable memblock */
2559 		mempool->memblocks_arr[i] =
2560 			__vxge_hw_blockpool_malloc(mempool->devh,
2561 				mempool->memblock_size, dma_object);
2562 		if (mempool->memblocks_arr[i] == NULL) {
2563 			vfree(mempool->memblocks_priv_arr[i]);
2564 			status = VXGE_HW_ERR_OUT_OF_MEMORY;
2565 			goto exit;
2566 		}
2567 
2568 		(*num_allocated)++;
2569 		mempool->memblocks_allocated++;
2570 
2571 		memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2572 
2573 		the_memblock = mempool->memblocks_arr[i];
2574 
2575 		/* fill the items hash array */
2576 		for (j = 0; j < n_items; j++) {
2577 			u32 index = i * n_items + j;
2578 
2579 			if (first_time && index >= mempool->items_initial)
2580 				break;
2581 
2582 			mempool->items_arr[index] =
2583 				((char *)the_memblock + j*mempool->item_size);
2584 
2585 			/* let caller to do more job on each item */
2586 			if (mempool->item_func_alloc != NULL)
2587 				mempool->item_func_alloc(mempool, i,
2588 					dma_object, index, is_last);
2589 
2590 			mempool->items_current = index + 1;
2591 		}
2592 
2593 		if (first_time && mempool->items_current ==
2594 					mempool->items_initial)
2595 			break;
2596 	}
2597 exit:
2598 	return status;
2599 }
2600 
2601 /*
2602  * vxge_hw_mempool_create
2603  * This function will create memory pool object. Pool may grow but will
2604  * never shrink. Pool consists of number of dynamically allocated blocks
2605  * with size enough to hold %items_initial number of items. Memory is
2606  * DMA-able but client must map/unmap before interoperating with the device.
2607  */
2608 static struct vxge_hw_mempool *
__vxge_hw_mempool_create(struct __vxge_hw_device * devh,u32 memblock_size,u32 item_size,u32 items_priv_size,u32 items_initial,u32 items_max,const struct vxge_hw_mempool_cbs * mp_callback,void * userdata)2609 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2610 			 u32 memblock_size,
2611 			 u32 item_size,
2612 			 u32 items_priv_size,
2613 			 u32 items_initial,
2614 			 u32 items_max,
2615 			 const struct vxge_hw_mempool_cbs *mp_callback,
2616 			 void *userdata)
2617 {
2618 	enum vxge_hw_status status = VXGE_HW_OK;
2619 	u32 memblocks_to_allocate;
2620 	struct vxge_hw_mempool *mempool = NULL;
2621 	u32 allocated;
2622 
2623 	if (memblock_size < item_size) {
2624 		status = VXGE_HW_FAIL;
2625 		goto exit;
2626 	}
2627 
2628 	mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2629 	if (mempool == NULL) {
2630 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2631 		goto exit;
2632 	}
2633 
2634 	mempool->devh			= devh;
2635 	mempool->memblock_size		= memblock_size;
2636 	mempool->items_max		= items_max;
2637 	mempool->items_initial		= items_initial;
2638 	mempool->item_size		= item_size;
2639 	mempool->items_priv_size	= items_priv_size;
2640 	mempool->item_func_alloc	= mp_callback->item_func_alloc;
2641 	mempool->userdata		= userdata;
2642 
2643 	mempool->memblocks_allocated = 0;
2644 
2645 	mempool->items_per_memblock = memblock_size / item_size;
2646 
2647 	mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2648 					mempool->items_per_memblock;
2649 
2650 	/* allocate array of memblocks */
2651 	mempool->memblocks_arr =
2652 		vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2653 	if (mempool->memblocks_arr == NULL) {
2654 		__vxge_hw_mempool_destroy(mempool);
2655 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2656 		mempool = NULL;
2657 		goto exit;
2658 	}
2659 
2660 	/* allocate array of private parts of items per memblocks */
2661 	mempool->memblocks_priv_arr =
2662 		vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2663 	if (mempool->memblocks_priv_arr == NULL) {
2664 		__vxge_hw_mempool_destroy(mempool);
2665 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2666 		mempool = NULL;
2667 		goto exit;
2668 	}
2669 
2670 	/* allocate array of memblocks DMA objects */
2671 	mempool->memblocks_dma_arr =
2672 		vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma),
2673 				   mempool->memblocks_max));
2674 	if (mempool->memblocks_dma_arr == NULL) {
2675 		__vxge_hw_mempool_destroy(mempool);
2676 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2677 		mempool = NULL;
2678 		goto exit;
2679 	}
2680 
2681 	/* allocate hash array of items */
2682 	mempool->items_arr = vzalloc(array_size(sizeof(void *),
2683 						mempool->items_max));
2684 	if (mempool->items_arr == NULL) {
2685 		__vxge_hw_mempool_destroy(mempool);
2686 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2687 		mempool = NULL;
2688 		goto exit;
2689 	}
2690 
2691 	/* calculate initial number of memblocks */
2692 	memblocks_to_allocate = (mempool->items_initial +
2693 				 mempool->items_per_memblock - 1) /
2694 						mempool->items_per_memblock;
2695 
2696 	/* pre-allocate the mempool */
2697 	status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2698 					&allocated);
2699 	if (status != VXGE_HW_OK) {
2700 		__vxge_hw_mempool_destroy(mempool);
2701 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2702 		mempool = NULL;
2703 		goto exit;
2704 	}
2705 
2706 exit:
2707 	return mempool;
2708 }
2709 
2710 /*
2711  * __vxge_hw_ring_abort - Returns the RxD
2712  * This function terminates the RxDs of ring
2713  */
__vxge_hw_ring_abort(struct __vxge_hw_ring * ring)2714 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2715 {
2716 	void *rxdh;
2717 	struct __vxge_hw_channel *channel;
2718 
2719 	channel = &ring->channel;
2720 
2721 	for (;;) {
2722 		vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2723 
2724 		if (rxdh == NULL)
2725 			break;
2726 
2727 		vxge_hw_channel_dtr_complete(channel);
2728 
2729 		if (ring->rxd_term)
2730 			ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2731 				channel->userdata);
2732 
2733 		vxge_hw_channel_dtr_free(channel, rxdh);
2734 	}
2735 
2736 	return VXGE_HW_OK;
2737 }
2738 
2739 /*
2740  * __vxge_hw_ring_reset - Resets the ring
2741  * This function resets the ring during vpath reset operation
2742  */
__vxge_hw_ring_reset(struct __vxge_hw_ring * ring)2743 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2744 {
2745 	enum vxge_hw_status status = VXGE_HW_OK;
2746 	struct __vxge_hw_channel *channel;
2747 
2748 	channel = &ring->channel;
2749 
2750 	__vxge_hw_ring_abort(ring);
2751 
2752 	status = __vxge_hw_channel_reset(channel);
2753 
2754 	if (status != VXGE_HW_OK)
2755 		goto exit;
2756 
2757 	if (ring->rxd_init) {
2758 		status = vxge_hw_ring_replenish(ring);
2759 		if (status != VXGE_HW_OK)
2760 			goto exit;
2761 	}
2762 exit:
2763 	return status;
2764 }
2765 
2766 /*
2767  * __vxge_hw_ring_delete - Removes the ring
2768  * This function freeup the memory pool and removes the ring
2769  */
2770 static enum vxge_hw_status
__vxge_hw_ring_delete(struct __vxge_hw_vpath_handle * vp)2771 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2772 {
2773 	struct __vxge_hw_ring *ring = vp->vpath->ringh;
2774 
2775 	__vxge_hw_ring_abort(ring);
2776 
2777 	if (ring->mempool)
2778 		__vxge_hw_mempool_destroy(ring->mempool);
2779 
2780 	vp->vpath->ringh = NULL;
2781 	__vxge_hw_channel_free(&ring->channel);
2782 
2783 	return VXGE_HW_OK;
2784 }
2785 
2786 /*
2787  * __vxge_hw_ring_create - Create a Ring
2788  * This function creates Ring and initializes it.
2789  */
2790 static enum vxge_hw_status
__vxge_hw_ring_create(struct __vxge_hw_vpath_handle * vp,struct vxge_hw_ring_attr * attr)2791 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2792 		      struct vxge_hw_ring_attr *attr)
2793 {
2794 	enum vxge_hw_status status = VXGE_HW_OK;
2795 	struct __vxge_hw_ring *ring;
2796 	u32 ring_length;
2797 	struct vxge_hw_ring_config *config;
2798 	struct __vxge_hw_device *hldev;
2799 	u32 vp_id;
2800 	static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2801 		.item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2802 	};
2803 
2804 	if ((vp == NULL) || (attr == NULL)) {
2805 		status = VXGE_HW_FAIL;
2806 		goto exit;
2807 	}
2808 
2809 	hldev = vp->vpath->hldev;
2810 	vp_id = vp->vpath->vp_id;
2811 
2812 	config = &hldev->config.vp_config[vp_id].ring;
2813 
2814 	ring_length = config->ring_blocks *
2815 			vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2816 
2817 	ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2818 						VXGE_HW_CHANNEL_TYPE_RING,
2819 						ring_length,
2820 						attr->per_rxd_space,
2821 						attr->userdata);
2822 	if (ring == NULL) {
2823 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
2824 		goto exit;
2825 	}
2826 
2827 	vp->vpath->ringh = ring;
2828 	ring->vp_id = vp_id;
2829 	ring->vp_reg = vp->vpath->vp_reg;
2830 	ring->common_reg = hldev->common_reg;
2831 	ring->stats = &vp->vpath->sw_stats->ring_stats;
2832 	ring->config = config;
2833 	ring->callback = attr->callback;
2834 	ring->rxd_init = attr->rxd_init;
2835 	ring->rxd_term = attr->rxd_term;
2836 	ring->buffer_mode = config->buffer_mode;
2837 	ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2838 	ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2839 	ring->rxds_limit = config->rxds_limit;
2840 
2841 	ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2842 	ring->rxd_priv_size =
2843 		sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2844 	ring->per_rxd_space = attr->per_rxd_space;
2845 
2846 	ring->rxd_priv_size =
2847 		((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2848 		VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2849 
2850 	/* how many RxDs can fit into one block. Depends on configured
2851 	 * buffer_mode. */
2852 	ring->rxds_per_block =
2853 		vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2854 
2855 	/* calculate actual RxD block private size */
2856 	ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2857 	ring->mempool = __vxge_hw_mempool_create(hldev,
2858 				VXGE_HW_BLOCK_SIZE,
2859 				VXGE_HW_BLOCK_SIZE,
2860 				ring->rxdblock_priv_size,
2861 				ring->config->ring_blocks,
2862 				ring->config->ring_blocks,
2863 				&ring_mp_callback,
2864 				ring);
2865 	if (ring->mempool == NULL) {
2866 		__vxge_hw_ring_delete(vp);
2867 		return VXGE_HW_ERR_OUT_OF_MEMORY;
2868 	}
2869 
2870 	status = __vxge_hw_channel_initialize(&ring->channel);
2871 	if (status != VXGE_HW_OK) {
2872 		__vxge_hw_ring_delete(vp);
2873 		goto exit;
2874 	}
2875 
2876 	/* Note:
2877 	 * Specifying rxd_init callback means two things:
2878 	 * 1) rxds need to be initialized by driver at channel-open time;
2879 	 * 2) rxds need to be posted at channel-open time
2880 	 *    (that's what the initial_replenish() below does)
2881 	 * Currently we don't have a case when the 1) is done without the 2).
2882 	 */
2883 	if (ring->rxd_init) {
2884 		status = vxge_hw_ring_replenish(ring);
2885 		if (status != VXGE_HW_OK) {
2886 			__vxge_hw_ring_delete(vp);
2887 			goto exit;
2888 		}
2889 	}
2890 
2891 	/* initial replenish will increment the counter in its post() routine,
2892 	 * we have to reset it */
2893 	ring->stats->common_stats.usage_cnt = 0;
2894 exit:
2895 	return status;
2896 }
2897 
2898 /*
2899  * vxge_hw_device_config_default_get - Initialize device config with defaults.
2900  * Initialize Titan device config with default values.
2901  */
2902 enum vxge_hw_status
vxge_hw_device_config_default_get(struct vxge_hw_device_config * device_config)2903 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2904 {
2905 	u32 i;
2906 
2907 	device_config->dma_blockpool_initial =
2908 					VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2909 	device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2910 	device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2911 	device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2912 	device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2913 	device_config->device_poll_millis =  VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2914 	device_config->rts_mac_en =  VXGE_HW_RTS_MAC_DEFAULT;
2915 
2916 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2917 		device_config->vp_config[i].vp_id = i;
2918 
2919 		device_config->vp_config[i].min_bandwidth =
2920 				VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2921 
2922 		device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2923 
2924 		device_config->vp_config[i].ring.ring_blocks =
2925 				VXGE_HW_DEF_RING_BLOCKS;
2926 
2927 		device_config->vp_config[i].ring.buffer_mode =
2928 				VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2929 
2930 		device_config->vp_config[i].ring.scatter_mode =
2931 				VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2932 
2933 		device_config->vp_config[i].ring.rxds_limit =
2934 				VXGE_HW_DEF_RING_RXDS_LIMIT;
2935 
2936 		device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2937 
2938 		device_config->vp_config[i].fifo.fifo_blocks =
2939 				VXGE_HW_MIN_FIFO_BLOCKS;
2940 
2941 		device_config->vp_config[i].fifo.max_frags =
2942 				VXGE_HW_MAX_FIFO_FRAGS;
2943 
2944 		device_config->vp_config[i].fifo.memblock_size =
2945 				VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2946 
2947 		device_config->vp_config[i].fifo.alignment_size =
2948 				VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2949 
2950 		device_config->vp_config[i].fifo.intr =
2951 				VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2952 
2953 		device_config->vp_config[i].fifo.no_snoop_bits =
2954 				VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2955 		device_config->vp_config[i].tti.intr_enable =
2956 				VXGE_HW_TIM_INTR_DEFAULT;
2957 
2958 		device_config->vp_config[i].tti.btimer_val =
2959 				VXGE_HW_USE_FLASH_DEFAULT;
2960 
2961 		device_config->vp_config[i].tti.timer_ac_en =
2962 				VXGE_HW_USE_FLASH_DEFAULT;
2963 
2964 		device_config->vp_config[i].tti.timer_ci_en =
2965 				VXGE_HW_USE_FLASH_DEFAULT;
2966 
2967 		device_config->vp_config[i].tti.timer_ri_en =
2968 				VXGE_HW_USE_FLASH_DEFAULT;
2969 
2970 		device_config->vp_config[i].tti.rtimer_val =
2971 				VXGE_HW_USE_FLASH_DEFAULT;
2972 
2973 		device_config->vp_config[i].tti.util_sel =
2974 				VXGE_HW_USE_FLASH_DEFAULT;
2975 
2976 		device_config->vp_config[i].tti.ltimer_val =
2977 				VXGE_HW_USE_FLASH_DEFAULT;
2978 
2979 		device_config->vp_config[i].tti.urange_a =
2980 				VXGE_HW_USE_FLASH_DEFAULT;
2981 
2982 		device_config->vp_config[i].tti.uec_a =
2983 				VXGE_HW_USE_FLASH_DEFAULT;
2984 
2985 		device_config->vp_config[i].tti.urange_b =
2986 				VXGE_HW_USE_FLASH_DEFAULT;
2987 
2988 		device_config->vp_config[i].tti.uec_b =
2989 				VXGE_HW_USE_FLASH_DEFAULT;
2990 
2991 		device_config->vp_config[i].tti.urange_c =
2992 				VXGE_HW_USE_FLASH_DEFAULT;
2993 
2994 		device_config->vp_config[i].tti.uec_c =
2995 				VXGE_HW_USE_FLASH_DEFAULT;
2996 
2997 		device_config->vp_config[i].tti.uec_d =
2998 				VXGE_HW_USE_FLASH_DEFAULT;
2999 
3000 		device_config->vp_config[i].rti.intr_enable =
3001 				VXGE_HW_TIM_INTR_DEFAULT;
3002 
3003 		device_config->vp_config[i].rti.btimer_val =
3004 				VXGE_HW_USE_FLASH_DEFAULT;
3005 
3006 		device_config->vp_config[i].rti.timer_ac_en =
3007 				VXGE_HW_USE_FLASH_DEFAULT;
3008 
3009 		device_config->vp_config[i].rti.timer_ci_en =
3010 				VXGE_HW_USE_FLASH_DEFAULT;
3011 
3012 		device_config->vp_config[i].rti.timer_ri_en =
3013 				VXGE_HW_USE_FLASH_DEFAULT;
3014 
3015 		device_config->vp_config[i].rti.rtimer_val =
3016 				VXGE_HW_USE_FLASH_DEFAULT;
3017 
3018 		device_config->vp_config[i].rti.util_sel =
3019 				VXGE_HW_USE_FLASH_DEFAULT;
3020 
3021 		device_config->vp_config[i].rti.ltimer_val =
3022 				VXGE_HW_USE_FLASH_DEFAULT;
3023 
3024 		device_config->vp_config[i].rti.urange_a =
3025 				VXGE_HW_USE_FLASH_DEFAULT;
3026 
3027 		device_config->vp_config[i].rti.uec_a =
3028 				VXGE_HW_USE_FLASH_DEFAULT;
3029 
3030 		device_config->vp_config[i].rti.urange_b =
3031 				VXGE_HW_USE_FLASH_DEFAULT;
3032 
3033 		device_config->vp_config[i].rti.uec_b =
3034 				VXGE_HW_USE_FLASH_DEFAULT;
3035 
3036 		device_config->vp_config[i].rti.urange_c =
3037 				VXGE_HW_USE_FLASH_DEFAULT;
3038 
3039 		device_config->vp_config[i].rti.uec_c =
3040 				VXGE_HW_USE_FLASH_DEFAULT;
3041 
3042 		device_config->vp_config[i].rti.uec_d =
3043 				VXGE_HW_USE_FLASH_DEFAULT;
3044 
3045 		device_config->vp_config[i].mtu =
3046 				VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3047 
3048 		device_config->vp_config[i].rpa_strip_vlan_tag =
3049 			VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3050 	}
3051 
3052 	return VXGE_HW_OK;
3053 }
3054 
3055 /*
3056  * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3057  * Set the swapper bits appropriately for the vpath.
3058  */
3059 static enum vxge_hw_status
__vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem * vpath_reg)3060 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3061 {
3062 #ifndef __BIG_ENDIAN
3063 	u64 val64;
3064 
3065 	val64 = readq(&vpath_reg->vpath_general_cfg1);
3066 	wmb();
3067 	val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3068 	writeq(val64, &vpath_reg->vpath_general_cfg1);
3069 	wmb();
3070 #endif
3071 	return VXGE_HW_OK;
3072 }
3073 
3074 /*
3075  * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3076  * Set the swapper bits appropriately for the vpath.
3077  */
3078 static enum vxge_hw_status
__vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem * legacy_reg,struct vxge_hw_vpath_reg __iomem * vpath_reg)3079 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3080 			   struct vxge_hw_vpath_reg __iomem *vpath_reg)
3081 {
3082 	u64 val64;
3083 
3084 	val64 = readq(&legacy_reg->pifm_wr_swap_en);
3085 
3086 	if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3087 		val64 = readq(&vpath_reg->kdfcctl_cfg0);
3088 		wmb();
3089 
3090 		val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0	|
3091 			VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1	|
3092 			VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3093 
3094 		writeq(val64, &vpath_reg->kdfcctl_cfg0);
3095 		wmb();
3096 	}
3097 
3098 	return VXGE_HW_OK;
3099 }
3100 
3101 /*
3102  * vxge_hw_mgmt_reg_read - Read Titan register.
3103  */
3104 enum vxge_hw_status
vxge_hw_mgmt_reg_read(struct __vxge_hw_device * hldev,enum vxge_hw_mgmt_reg_type type,u32 index,u32 offset,u64 * value)3105 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3106 		      enum vxge_hw_mgmt_reg_type type,
3107 		      u32 index, u32 offset, u64 *value)
3108 {
3109 	enum vxge_hw_status status = VXGE_HW_OK;
3110 
3111 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3112 		status = VXGE_HW_ERR_INVALID_DEVICE;
3113 		goto exit;
3114 	}
3115 
3116 	switch (type) {
3117 	case vxge_hw_mgmt_reg_type_legacy:
3118 		if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3119 			status = VXGE_HW_ERR_INVALID_OFFSET;
3120 			break;
3121 		}
3122 		*value = readq((void __iomem *)hldev->legacy_reg + offset);
3123 		break;
3124 	case vxge_hw_mgmt_reg_type_toc:
3125 		if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3126 			status = VXGE_HW_ERR_INVALID_OFFSET;
3127 			break;
3128 		}
3129 		*value = readq((void __iomem *)hldev->toc_reg + offset);
3130 		break;
3131 	case vxge_hw_mgmt_reg_type_common:
3132 		if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3133 			status = VXGE_HW_ERR_INVALID_OFFSET;
3134 			break;
3135 		}
3136 		*value = readq((void __iomem *)hldev->common_reg + offset);
3137 		break;
3138 	case vxge_hw_mgmt_reg_type_mrpcim:
3139 		if (!(hldev->access_rights &
3140 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3141 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3142 			break;
3143 		}
3144 		if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3145 			status = VXGE_HW_ERR_INVALID_OFFSET;
3146 			break;
3147 		}
3148 		*value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3149 		break;
3150 	case vxge_hw_mgmt_reg_type_srpcim:
3151 		if (!(hldev->access_rights &
3152 			VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3153 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3154 			break;
3155 		}
3156 		if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3157 			status = VXGE_HW_ERR_INVALID_INDEX;
3158 			break;
3159 		}
3160 		if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3161 			status = VXGE_HW_ERR_INVALID_OFFSET;
3162 			break;
3163 		}
3164 		*value = readq((void __iomem *)hldev->srpcim_reg[index] +
3165 				offset);
3166 		break;
3167 	case vxge_hw_mgmt_reg_type_vpmgmt:
3168 		if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3169 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3170 			status = VXGE_HW_ERR_INVALID_INDEX;
3171 			break;
3172 		}
3173 		if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3174 			status = VXGE_HW_ERR_INVALID_OFFSET;
3175 			break;
3176 		}
3177 		*value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3178 				offset);
3179 		break;
3180 	case vxge_hw_mgmt_reg_type_vpath:
3181 		if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3182 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3183 			status = VXGE_HW_ERR_INVALID_INDEX;
3184 			break;
3185 		}
3186 		if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3187 			status = VXGE_HW_ERR_INVALID_INDEX;
3188 			break;
3189 		}
3190 		if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3191 			status = VXGE_HW_ERR_INVALID_OFFSET;
3192 			break;
3193 		}
3194 		*value = readq((void __iomem *)hldev->vpath_reg[index] +
3195 				offset);
3196 		break;
3197 	default:
3198 		status = VXGE_HW_ERR_INVALID_TYPE;
3199 		break;
3200 	}
3201 
3202 exit:
3203 	return status;
3204 }
3205 
3206 /*
3207  * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3208  */
3209 enum vxge_hw_status
vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device * hldev,u64 vpath_mask)3210 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3211 {
3212 	struct vxge_hw_vpmgmt_reg       __iomem *vpmgmt_reg;
3213 	int i = 0, j = 0;
3214 
3215 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3216 		if (!((vpath_mask) & vxge_mBIT(i)))
3217 			continue;
3218 		vpmgmt_reg = hldev->vpmgmt_reg[i];
3219 		for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3220 			if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3221 			& VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3222 				return VXGE_HW_FAIL;
3223 		}
3224 	}
3225 	return VXGE_HW_OK;
3226 }
3227 /*
3228  * vxge_hw_mgmt_reg_Write - Write Titan register.
3229  */
3230 enum vxge_hw_status
vxge_hw_mgmt_reg_write(struct __vxge_hw_device * hldev,enum vxge_hw_mgmt_reg_type type,u32 index,u32 offset,u64 value)3231 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3232 		      enum vxge_hw_mgmt_reg_type type,
3233 		      u32 index, u32 offset, u64 value)
3234 {
3235 	enum vxge_hw_status status = VXGE_HW_OK;
3236 
3237 	if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3238 		status = VXGE_HW_ERR_INVALID_DEVICE;
3239 		goto exit;
3240 	}
3241 
3242 	switch (type) {
3243 	case vxge_hw_mgmt_reg_type_legacy:
3244 		if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3245 			status = VXGE_HW_ERR_INVALID_OFFSET;
3246 			break;
3247 		}
3248 		writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3249 		break;
3250 	case vxge_hw_mgmt_reg_type_toc:
3251 		if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3252 			status = VXGE_HW_ERR_INVALID_OFFSET;
3253 			break;
3254 		}
3255 		writeq(value, (void __iomem *)hldev->toc_reg + offset);
3256 		break;
3257 	case vxge_hw_mgmt_reg_type_common:
3258 		if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3259 			status = VXGE_HW_ERR_INVALID_OFFSET;
3260 			break;
3261 		}
3262 		writeq(value, (void __iomem *)hldev->common_reg + offset);
3263 		break;
3264 	case vxge_hw_mgmt_reg_type_mrpcim:
3265 		if (!(hldev->access_rights &
3266 			VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3267 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3268 			break;
3269 		}
3270 		if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3271 			status = VXGE_HW_ERR_INVALID_OFFSET;
3272 			break;
3273 		}
3274 		writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3275 		break;
3276 	case vxge_hw_mgmt_reg_type_srpcim:
3277 		if (!(hldev->access_rights &
3278 			VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3279 			status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3280 			break;
3281 		}
3282 		if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3283 			status = VXGE_HW_ERR_INVALID_INDEX;
3284 			break;
3285 		}
3286 		if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3287 			status = VXGE_HW_ERR_INVALID_OFFSET;
3288 			break;
3289 		}
3290 		writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3291 			offset);
3292 
3293 		break;
3294 	case vxge_hw_mgmt_reg_type_vpmgmt:
3295 		if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3296 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3297 			status = VXGE_HW_ERR_INVALID_INDEX;
3298 			break;
3299 		}
3300 		if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3301 			status = VXGE_HW_ERR_INVALID_OFFSET;
3302 			break;
3303 		}
3304 		writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3305 			offset);
3306 		break;
3307 	case vxge_hw_mgmt_reg_type_vpath:
3308 		if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3309 			(!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3310 			status = VXGE_HW_ERR_INVALID_INDEX;
3311 			break;
3312 		}
3313 		if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3314 			status = VXGE_HW_ERR_INVALID_OFFSET;
3315 			break;
3316 		}
3317 		writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3318 			offset);
3319 		break;
3320 	default:
3321 		status = VXGE_HW_ERR_INVALID_TYPE;
3322 		break;
3323 	}
3324 exit:
3325 	return status;
3326 }
3327 
3328 /*
3329  * __vxge_hw_fifo_abort - Returns the TxD
3330  * This function terminates the TxDs of fifo
3331  */
__vxge_hw_fifo_abort(struct __vxge_hw_fifo * fifo)3332 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3333 {
3334 	void *txdlh;
3335 
3336 	for (;;) {
3337 		vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3338 
3339 		if (txdlh == NULL)
3340 			break;
3341 
3342 		vxge_hw_channel_dtr_complete(&fifo->channel);
3343 
3344 		if (fifo->txdl_term) {
3345 			fifo->txdl_term(txdlh,
3346 			VXGE_HW_TXDL_STATE_POSTED,
3347 			fifo->channel.userdata);
3348 		}
3349 
3350 		vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3351 	}
3352 
3353 	return VXGE_HW_OK;
3354 }
3355 
3356 /*
3357  * __vxge_hw_fifo_reset - Resets the fifo
3358  * This function resets the fifo during vpath reset operation
3359  */
__vxge_hw_fifo_reset(struct __vxge_hw_fifo * fifo)3360 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3361 {
3362 	enum vxge_hw_status status = VXGE_HW_OK;
3363 
3364 	__vxge_hw_fifo_abort(fifo);
3365 	status = __vxge_hw_channel_reset(&fifo->channel);
3366 
3367 	return status;
3368 }
3369 
3370 /*
3371  * __vxge_hw_fifo_delete - Removes the FIFO
3372  * This function freeup the memory pool and removes the FIFO
3373  */
3374 static enum vxge_hw_status
__vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle * vp)3375 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3376 {
3377 	struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3378 
3379 	__vxge_hw_fifo_abort(fifo);
3380 
3381 	if (fifo->mempool)
3382 		__vxge_hw_mempool_destroy(fifo->mempool);
3383 
3384 	vp->vpath->fifoh = NULL;
3385 
3386 	__vxge_hw_channel_free(&fifo->channel);
3387 
3388 	return VXGE_HW_OK;
3389 }
3390 
3391 /*
3392  * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3393  * list callback
3394  * This function is callback passed to __vxge_hw_mempool_create to create memory
3395  * pool for TxD list
3396  */
3397 static void
__vxge_hw_fifo_mempool_item_alloc(struct vxge_hw_mempool * mempoolh,u32 memblock_index,struct vxge_hw_mempool_dma * dma_object,u32 index,u32 is_last)3398 __vxge_hw_fifo_mempool_item_alloc(
3399 	struct vxge_hw_mempool *mempoolh,
3400 	u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3401 	u32 index, u32 is_last)
3402 {
3403 	u32 memblock_item_idx;
3404 	struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3405 	struct vxge_hw_fifo_txd *txdp =
3406 		(struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3407 	struct __vxge_hw_fifo *fifo =
3408 			(struct __vxge_hw_fifo *)mempoolh->userdata;
3409 	void *memblock = mempoolh->memblocks_arr[memblock_index];
3410 
3411 	vxge_assert(txdp);
3412 
3413 	txdp->host_control = (u64) (size_t)
3414 	__vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3415 					&memblock_item_idx);
3416 
3417 	txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3418 
3419 	vxge_assert(txdl_priv);
3420 
3421 	fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3422 
3423 	/* pre-format HW's TxDL's private */
3424 	txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3425 	txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3426 	txdl_priv->dma_handle = dma_object->handle;
3427 	txdl_priv->memblock   = memblock;
3428 	txdl_priv->first_txdp = txdp;
3429 	txdl_priv->next_txdl_priv = NULL;
3430 	txdl_priv->alloc_frags = 0;
3431 }
3432 
3433 /*
3434  * __vxge_hw_fifo_create - Create a FIFO
3435  * This function creates FIFO and initializes it.
3436  */
3437 static enum vxge_hw_status
__vxge_hw_fifo_create(struct __vxge_hw_vpath_handle * vp,struct vxge_hw_fifo_attr * attr)3438 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3439 		      struct vxge_hw_fifo_attr *attr)
3440 {
3441 	enum vxge_hw_status status = VXGE_HW_OK;
3442 	struct __vxge_hw_fifo *fifo;
3443 	struct vxge_hw_fifo_config *config;
3444 	u32 txdl_size, txdl_per_memblock;
3445 	struct vxge_hw_mempool_cbs fifo_mp_callback;
3446 	struct __vxge_hw_virtualpath *vpath;
3447 
3448 	if ((vp == NULL) || (attr == NULL)) {
3449 		status = VXGE_HW_ERR_INVALID_HANDLE;
3450 		goto exit;
3451 	}
3452 	vpath = vp->vpath;
3453 	config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3454 
3455 	txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3456 
3457 	txdl_per_memblock = config->memblock_size / txdl_size;
3458 
3459 	fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3460 					VXGE_HW_CHANNEL_TYPE_FIFO,
3461 					config->fifo_blocks * txdl_per_memblock,
3462 					attr->per_txdl_space, attr->userdata);
3463 
3464 	if (fifo == NULL) {
3465 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
3466 		goto exit;
3467 	}
3468 
3469 	vpath->fifoh = fifo;
3470 	fifo->nofl_db = vpath->nofl_db;
3471 
3472 	fifo->vp_id = vpath->vp_id;
3473 	fifo->vp_reg = vpath->vp_reg;
3474 	fifo->stats = &vpath->sw_stats->fifo_stats;
3475 
3476 	fifo->config = config;
3477 
3478 	/* apply "interrupts per txdl" attribute */
3479 	fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3480 	fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3481 	fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3482 
3483 	if (fifo->config->intr)
3484 		fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3485 
3486 	fifo->no_snoop_bits = config->no_snoop_bits;
3487 
3488 	/*
3489 	 * FIFO memory management strategy:
3490 	 *
3491 	 * TxDL split into three independent parts:
3492 	 *	- set of TxD's
3493 	 *	- TxD HW private part
3494 	 *	- driver private part
3495 	 *
3496 	 * Adaptative memory allocation used. i.e. Memory allocated on
3497 	 * demand with the size which will fit into one memory block.
3498 	 * One memory block may contain more than one TxDL.
3499 	 *
3500 	 * During "reserve" operations more memory can be allocated on demand
3501 	 * for example due to FIFO full condition.
3502 	 *
3503 	 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3504 	 * routine which will essentially stop the channel and free resources.
3505 	 */
3506 
3507 	/* TxDL common private size == TxDL private  +  driver private */
3508 	fifo->priv_size =
3509 		sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3510 	fifo->priv_size = ((fifo->priv_size  +  VXGE_CACHE_LINE_SIZE - 1) /
3511 			VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3512 
3513 	fifo->per_txdl_space = attr->per_txdl_space;
3514 
3515 	/* recompute txdl size to be cacheline aligned */
3516 	fifo->txdl_size = txdl_size;
3517 	fifo->txdl_per_memblock = txdl_per_memblock;
3518 
3519 	fifo->txdl_term = attr->txdl_term;
3520 	fifo->callback = attr->callback;
3521 
3522 	if (fifo->txdl_per_memblock == 0) {
3523 		__vxge_hw_fifo_delete(vp);
3524 		status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3525 		goto exit;
3526 	}
3527 
3528 	fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3529 
3530 	fifo->mempool =
3531 		__vxge_hw_mempool_create(vpath->hldev,
3532 			fifo->config->memblock_size,
3533 			fifo->txdl_size,
3534 			fifo->priv_size,
3535 			(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3536 			(fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3537 			&fifo_mp_callback,
3538 			fifo);
3539 
3540 	if (fifo->mempool == NULL) {
3541 		__vxge_hw_fifo_delete(vp);
3542 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
3543 		goto exit;
3544 	}
3545 
3546 	status = __vxge_hw_channel_initialize(&fifo->channel);
3547 	if (status != VXGE_HW_OK) {
3548 		__vxge_hw_fifo_delete(vp);
3549 		goto exit;
3550 	}
3551 
3552 	vxge_assert(fifo->channel.reserve_ptr);
3553 exit:
3554 	return status;
3555 }
3556 
3557 /*
3558  * __vxge_hw_vpath_pci_read - Read the content of given address
3559  *                          in pci config space.
3560  * Read from the vpath pci config space.
3561  */
3562 static enum vxge_hw_status
__vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath * vpath,u32 phy_func_0,u32 offset,u32 * val)3563 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3564 			 u32 phy_func_0, u32 offset, u32 *val)
3565 {
3566 	u64 val64;
3567 	enum vxge_hw_status status = VXGE_HW_OK;
3568 	struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3569 
3570 	val64 =	VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3571 
3572 	if (phy_func_0)
3573 		val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3574 
3575 	writeq(val64, &vp_reg->pci_config_access_cfg1);
3576 	wmb();
3577 	writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3578 			&vp_reg->pci_config_access_cfg2);
3579 	wmb();
3580 
3581 	status = __vxge_hw_device_register_poll(
3582 			&vp_reg->pci_config_access_cfg2,
3583 			VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3584 
3585 	if (status != VXGE_HW_OK)
3586 		goto exit;
3587 
3588 	val64 = readq(&vp_reg->pci_config_access_status);
3589 
3590 	if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3591 		status = VXGE_HW_FAIL;
3592 		*val = 0;
3593 	} else
3594 		*val = (u32)vxge_bVALn(val64, 32, 32);
3595 exit:
3596 	return status;
3597 }
3598 
3599 /**
3600  * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3601  * @hldev: HW device.
3602  * @on_off: TRUE if flickering to be on, FALSE to be off
3603  *
3604  * Flicker the link LED.
3605  */
3606 enum vxge_hw_status
vxge_hw_device_flick_link_led(struct __vxge_hw_device * hldev,u64 on_off)3607 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3608 {
3609 	struct __vxge_hw_virtualpath *vpath;
3610 	u64 data0, data1 = 0, steer_ctrl = 0;
3611 	enum vxge_hw_status status;
3612 
3613 	if (hldev == NULL) {
3614 		status = VXGE_HW_ERR_INVALID_DEVICE;
3615 		goto exit;
3616 	}
3617 
3618 	vpath = &hldev->virtual_paths[hldev->first_vp_id];
3619 
3620 	data0 = on_off;
3621 	status = vxge_hw_vpath_fw_api(vpath,
3622 			VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3623 			VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3624 			0, &data0, &data1, &steer_ctrl);
3625 exit:
3626 	return status;
3627 }
3628 
3629 /*
3630  * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3631  */
3632 enum vxge_hw_status
__vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle * vp,u32 action,u32 rts_table,u32 offset,u64 * data0,u64 * data1)3633 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3634 			      u32 action, u32 rts_table, u32 offset,
3635 			      u64 *data0, u64 *data1)
3636 {
3637 	enum vxge_hw_status status;
3638 	u64 steer_ctrl = 0;
3639 
3640 	if (vp == NULL) {
3641 		status = VXGE_HW_ERR_INVALID_HANDLE;
3642 		goto exit;
3643 	}
3644 
3645 	if ((rts_table ==
3646 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3647 	    (rts_table ==
3648 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3649 	    (rts_table ==
3650 	     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3651 	    (rts_table ==
3652 	     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3653 		steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3654 	}
3655 
3656 	status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3657 				      data0, data1, &steer_ctrl);
3658 	if (status != VXGE_HW_OK)
3659 		goto exit;
3660 
3661 	if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3662 	    (rts_table !=
3663 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3664 		*data1 = 0;
3665 exit:
3666 	return status;
3667 }
3668 
3669 /*
3670  * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3671  */
3672 enum vxge_hw_status
__vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle * vp,u32 action,u32 rts_table,u32 offset,u64 steer_data0,u64 steer_data1)3673 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3674 			      u32 rts_table, u32 offset, u64 steer_data0,
3675 			      u64 steer_data1)
3676 {
3677 	u64 data0, data1 = 0, steer_ctrl = 0;
3678 	enum vxge_hw_status status;
3679 
3680 	if (vp == NULL) {
3681 		status = VXGE_HW_ERR_INVALID_HANDLE;
3682 		goto exit;
3683 	}
3684 
3685 	data0 = steer_data0;
3686 
3687 	if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3688 	    (rts_table ==
3689 	     VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3690 		data1 = steer_data1;
3691 
3692 	status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3693 				      &data0, &data1, &steer_ctrl);
3694 exit:
3695 	return status;
3696 }
3697 
3698 /*
3699  * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3700  */
vxge_hw_vpath_rts_rth_set(struct __vxge_hw_vpath_handle * vp,enum vxge_hw_rth_algoritms algorithm,struct vxge_hw_rth_hash_types * hash_type,u16 bucket_size)3701 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3702 			struct __vxge_hw_vpath_handle *vp,
3703 			enum vxge_hw_rth_algoritms algorithm,
3704 			struct vxge_hw_rth_hash_types *hash_type,
3705 			u16 bucket_size)
3706 {
3707 	u64 data0, data1;
3708 	enum vxge_hw_status status = VXGE_HW_OK;
3709 
3710 	if (vp == NULL) {
3711 		status = VXGE_HW_ERR_INVALID_HANDLE;
3712 		goto exit;
3713 	}
3714 
3715 	status = __vxge_hw_vpath_rts_table_get(vp,
3716 		     VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3717 		     VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3718 			0, &data0, &data1);
3719 	if (status != VXGE_HW_OK)
3720 		goto exit;
3721 
3722 	data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3723 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3724 
3725 	data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3726 	VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3727 	VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3728 
3729 	if (hash_type->hash_type_tcpipv4_en)
3730 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3731 
3732 	if (hash_type->hash_type_ipv4_en)
3733 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3734 
3735 	if (hash_type->hash_type_tcpipv6_en)
3736 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3737 
3738 	if (hash_type->hash_type_ipv6_en)
3739 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3740 
3741 	if (hash_type->hash_type_tcpipv6ex_en)
3742 		data0 |=
3743 		VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3744 
3745 	if (hash_type->hash_type_ipv6ex_en)
3746 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3747 
3748 	if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3749 		data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3750 	else
3751 		data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3752 
3753 	status = __vxge_hw_vpath_rts_table_set(vp,
3754 		VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3755 		VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3756 		0, data0, 0);
3757 exit:
3758 	return status;
3759 }
3760 
3761 static void
vxge_hw_rts_rth_data0_data1_get(u32 j,u64 * data0,u64 * data1,u16 flag,u8 * itable)3762 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3763 				u16 flag, u8 *itable)
3764 {
3765 	switch (flag) {
3766 	case 1:
3767 		*data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3768 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3769 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3770 			itable[j]);
3771 		/* fall through */
3772 	case 2:
3773 		*data0 |=
3774 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3775 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3776 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3777 			itable[j]);
3778 		/* fall through */
3779 	case 3:
3780 		*data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3781 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3782 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3783 			itable[j]);
3784 		/* fall through */
3785 	case 4:
3786 		*data1 |=
3787 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3788 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3789 			VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3790 			itable[j]);
3791 	default:
3792 		return;
3793 	}
3794 }
3795 /*
3796  * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3797  */
vxge_hw_vpath_rts_rth_itable_set(struct __vxge_hw_vpath_handle ** vpath_handles,u32 vpath_count,u8 * mtable,u8 * itable,u32 itable_size)3798 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3799 			struct __vxge_hw_vpath_handle **vpath_handles,
3800 			u32 vpath_count,
3801 			u8 *mtable,
3802 			u8 *itable,
3803 			u32 itable_size)
3804 {
3805 	u32 i, j, action, rts_table;
3806 	u64 data0;
3807 	u64 data1;
3808 	u32 max_entries;
3809 	enum vxge_hw_status status = VXGE_HW_OK;
3810 	struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3811 
3812 	if (vp == NULL) {
3813 		status = VXGE_HW_ERR_INVALID_HANDLE;
3814 		goto exit;
3815 	}
3816 
3817 	max_entries = (((u32)1) << itable_size);
3818 
3819 	if (vp->vpath->hldev->config.rth_it_type
3820 				== VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3821 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3822 		rts_table =
3823 			VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3824 
3825 		for (j = 0; j < max_entries; j++) {
3826 
3827 			data1 = 0;
3828 
3829 			data0 =
3830 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3831 				itable[j]);
3832 
3833 			status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3834 				action, rts_table, j, data0, data1);
3835 
3836 			if (status != VXGE_HW_OK)
3837 				goto exit;
3838 		}
3839 
3840 		for (j = 0; j < max_entries; j++) {
3841 
3842 			data1 = 0;
3843 
3844 			data0 =
3845 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3846 			VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3847 				itable[j]);
3848 
3849 			status = __vxge_hw_vpath_rts_table_set(
3850 				vpath_handles[mtable[itable[j]]], action,
3851 				rts_table, j, data0, data1);
3852 
3853 			if (status != VXGE_HW_OK)
3854 				goto exit;
3855 		}
3856 	} else {
3857 		action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3858 		rts_table =
3859 			VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3860 		for (i = 0; i < vpath_count; i++) {
3861 
3862 			for (j = 0; j < max_entries;) {
3863 
3864 				data0 = 0;
3865 				data1 = 0;
3866 
3867 				while (j < max_entries) {
3868 					if (mtable[itable[j]] != i) {
3869 						j++;
3870 						continue;
3871 					}
3872 					vxge_hw_rts_rth_data0_data1_get(j,
3873 						&data0, &data1, 1, itable);
3874 					j++;
3875 					break;
3876 				}
3877 
3878 				while (j < max_entries) {
3879 					if (mtable[itable[j]] != i) {
3880 						j++;
3881 						continue;
3882 					}
3883 					vxge_hw_rts_rth_data0_data1_get(j,
3884 						&data0, &data1, 2, itable);
3885 					j++;
3886 					break;
3887 				}
3888 
3889 				while (j < max_entries) {
3890 					if (mtable[itable[j]] != i) {
3891 						j++;
3892 						continue;
3893 					}
3894 					vxge_hw_rts_rth_data0_data1_get(j,
3895 						&data0, &data1, 3, itable);
3896 					j++;
3897 					break;
3898 				}
3899 
3900 				while (j < max_entries) {
3901 					if (mtable[itable[j]] != i) {
3902 						j++;
3903 						continue;
3904 					}
3905 					vxge_hw_rts_rth_data0_data1_get(j,
3906 						&data0, &data1, 4, itable);
3907 					j++;
3908 					break;
3909 				}
3910 
3911 				if (data0 != 0) {
3912 					status = __vxge_hw_vpath_rts_table_set(
3913 							vpath_handles[i],
3914 							action, rts_table,
3915 							0, data0, data1);
3916 
3917 					if (status != VXGE_HW_OK)
3918 						goto exit;
3919 				}
3920 			}
3921 		}
3922 	}
3923 exit:
3924 	return status;
3925 }
3926 
3927 /**
3928  * vxge_hw_vpath_check_leak - Check for memory leak
3929  * @ringh: Handle to the ring object used for receive
3930  *
3931  * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3932  * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3933  * Returns: VXGE_HW_FAIL, if leak has occurred.
3934  *
3935  */
3936 enum vxge_hw_status
vxge_hw_vpath_check_leak(struct __vxge_hw_ring * ring)3937 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3938 {
3939 	enum vxge_hw_status status = VXGE_HW_OK;
3940 	u64 rxd_new_count, rxd_spat;
3941 
3942 	if (ring == NULL)
3943 		return status;
3944 
3945 	rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3946 	rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3947 	rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3948 
3949 	if (rxd_new_count >= rxd_spat)
3950 		status = VXGE_HW_FAIL;
3951 
3952 	return status;
3953 }
3954 
3955 /*
3956  * __vxge_hw_vpath_mgmt_read
3957  * This routine reads the vpath_mgmt registers
3958  */
3959 static enum vxge_hw_status
__vxge_hw_vpath_mgmt_read(struct __vxge_hw_device * hldev,struct __vxge_hw_virtualpath * vpath)3960 __vxge_hw_vpath_mgmt_read(
3961 	struct __vxge_hw_device *hldev,
3962 	struct __vxge_hw_virtualpath *vpath)
3963 {
3964 	u32 i, mtu = 0, max_pyld = 0;
3965 	u64 val64;
3966 
3967 	for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3968 
3969 		val64 = readq(&vpath->vpmgmt_reg->
3970 				rxmac_cfg0_port_vpmgmt_clone[i]);
3971 		max_pyld =
3972 			(u32)
3973 			VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3974 			(val64);
3975 		if (mtu < max_pyld)
3976 			mtu = max_pyld;
3977 	}
3978 
3979 	vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3980 
3981 	val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3982 
3983 	for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3984 		if (val64 & vxge_mBIT(i))
3985 			vpath->vsport_number = i;
3986 	}
3987 
3988 	val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3989 
3990 	if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3991 		VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3992 	else
3993 		VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3994 
3995 	return VXGE_HW_OK;
3996 }
3997 
3998 /*
3999  * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4000  * This routine checks the vpath_rst_in_prog register to see if
4001  * adapter completed the reset process for the vpath
4002  */
4003 static enum vxge_hw_status
__vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath * vpath)4004 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4005 {
4006 	enum vxge_hw_status status;
4007 
4008 	status = __vxge_hw_device_register_poll(
4009 			&vpath->hldev->common_reg->vpath_rst_in_prog,
4010 			VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4011 				1 << (16 - vpath->vp_id)),
4012 			vpath->hldev->config.device_poll_millis);
4013 
4014 	return status;
4015 }
4016 
4017 /*
4018  * __vxge_hw_vpath_reset
4019  * This routine resets the vpath on the device
4020  */
4021 static enum vxge_hw_status
__vxge_hw_vpath_reset(struct __vxge_hw_device * hldev,u32 vp_id)4022 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4023 {
4024 	u64 val64;
4025 
4026 	val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4027 
4028 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4029 				&hldev->common_reg->cmn_rsthdlr_cfg0);
4030 
4031 	return VXGE_HW_OK;
4032 }
4033 
4034 /*
4035  * __vxge_hw_vpath_sw_reset
4036  * This routine resets the vpath structures
4037  */
4038 static enum vxge_hw_status
__vxge_hw_vpath_sw_reset(struct __vxge_hw_device * hldev,u32 vp_id)4039 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4040 {
4041 	enum vxge_hw_status status = VXGE_HW_OK;
4042 	struct __vxge_hw_virtualpath *vpath;
4043 
4044 	vpath = &hldev->virtual_paths[vp_id];
4045 
4046 	if (vpath->ringh) {
4047 		status = __vxge_hw_ring_reset(vpath->ringh);
4048 		if (status != VXGE_HW_OK)
4049 			goto exit;
4050 	}
4051 
4052 	if (vpath->fifoh)
4053 		status = __vxge_hw_fifo_reset(vpath->fifoh);
4054 exit:
4055 	return status;
4056 }
4057 
4058 /*
4059  * __vxge_hw_vpath_prc_configure
4060  * This routine configures the prc registers of virtual path using the config
4061  * passed
4062  */
4063 static void
__vxge_hw_vpath_prc_configure(struct __vxge_hw_device * hldev,u32 vp_id)4064 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4065 {
4066 	u64 val64;
4067 	struct __vxge_hw_virtualpath *vpath;
4068 	struct vxge_hw_vp_config *vp_config;
4069 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4070 
4071 	vpath = &hldev->virtual_paths[vp_id];
4072 	vp_reg = vpath->vp_reg;
4073 	vp_config = vpath->vp_config;
4074 
4075 	if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4076 		return;
4077 
4078 	val64 = readq(&vp_reg->prc_cfg1);
4079 	val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4080 	writeq(val64, &vp_reg->prc_cfg1);
4081 
4082 	val64 = readq(&vpath->vp_reg->prc_cfg6);
4083 	val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4084 	writeq(val64, &vpath->vp_reg->prc_cfg6);
4085 
4086 	val64 = readq(&vp_reg->prc_cfg7);
4087 
4088 	if (vpath->vp_config->ring.scatter_mode !=
4089 		VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4090 
4091 		val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4092 
4093 		switch (vpath->vp_config->ring.scatter_mode) {
4094 		case VXGE_HW_RING_SCATTER_MODE_A:
4095 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4096 					VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4097 			break;
4098 		case VXGE_HW_RING_SCATTER_MODE_B:
4099 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4100 					VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4101 			break;
4102 		case VXGE_HW_RING_SCATTER_MODE_C:
4103 			val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4104 					VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4105 			break;
4106 		}
4107 	}
4108 
4109 	writeq(val64, &vp_reg->prc_cfg7);
4110 
4111 	writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4112 				__vxge_hw_ring_first_block_address_get(
4113 					vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4114 
4115 	val64 = readq(&vp_reg->prc_cfg4);
4116 	val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4117 	val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4118 
4119 	val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4120 			VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4121 
4122 	if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4123 		val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4124 	else
4125 		val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4126 
4127 	writeq(val64, &vp_reg->prc_cfg4);
4128 }
4129 
4130 /*
4131  * __vxge_hw_vpath_kdfc_configure
4132  * This routine configures the kdfc registers of virtual path using the
4133  * config passed
4134  */
4135 static enum vxge_hw_status
__vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device * hldev,u32 vp_id)4136 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4137 {
4138 	u64 val64;
4139 	u64 vpath_stride;
4140 	enum vxge_hw_status status = VXGE_HW_OK;
4141 	struct __vxge_hw_virtualpath *vpath;
4142 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4143 
4144 	vpath = &hldev->virtual_paths[vp_id];
4145 	vp_reg = vpath->vp_reg;
4146 	status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4147 
4148 	if (status != VXGE_HW_OK)
4149 		goto exit;
4150 
4151 	val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4152 
4153 	vpath->max_kdfc_db =
4154 		(u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4155 			val64+1)/2;
4156 
4157 	if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4158 
4159 		vpath->max_nofl_db = vpath->max_kdfc_db;
4160 
4161 		if (vpath->max_nofl_db <
4162 			((vpath->vp_config->fifo.memblock_size /
4163 			(vpath->vp_config->fifo.max_frags *
4164 			sizeof(struct vxge_hw_fifo_txd))) *
4165 			vpath->vp_config->fifo.fifo_blocks)) {
4166 
4167 			return VXGE_HW_BADCFG_FIFO_BLOCKS;
4168 		}
4169 		val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4170 				(vpath->max_nofl_db*2)-1);
4171 	}
4172 
4173 	writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4174 
4175 	writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4176 		&vp_reg->kdfc_fifo_trpl_ctrl);
4177 
4178 	val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4179 
4180 	val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4181 		   VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4182 
4183 	val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4184 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4185 #ifndef __BIG_ENDIAN
4186 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4187 #endif
4188 		 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4189 
4190 	writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4191 	writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4192 	wmb();
4193 	vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4194 
4195 	vpath->nofl_db =
4196 		(struct __vxge_hw_non_offload_db_wrapper __iomem *)
4197 		(hldev->kdfc + (vp_id *
4198 		VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4199 					vpath_stride)));
4200 exit:
4201 	return status;
4202 }
4203 
4204 /*
4205  * __vxge_hw_vpath_mac_configure
4206  * This routine configures the mac of virtual path using the config passed
4207  */
4208 static enum vxge_hw_status
__vxge_hw_vpath_mac_configure(struct __vxge_hw_device * hldev,u32 vp_id)4209 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4210 {
4211 	u64 val64;
4212 	struct __vxge_hw_virtualpath *vpath;
4213 	struct vxge_hw_vp_config *vp_config;
4214 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4215 
4216 	vpath = &hldev->virtual_paths[vp_id];
4217 	vp_reg = vpath->vp_reg;
4218 	vp_config = vpath->vp_config;
4219 
4220 	writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4221 			vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4222 
4223 	if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4224 
4225 		val64 = readq(&vp_reg->xmac_rpa_vcfg);
4226 
4227 		if (vp_config->rpa_strip_vlan_tag !=
4228 			VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4229 			if (vp_config->rpa_strip_vlan_tag)
4230 				val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4231 			else
4232 				val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4233 		}
4234 
4235 		writeq(val64, &vp_reg->xmac_rpa_vcfg);
4236 		val64 = readq(&vp_reg->rxmac_vcfg0);
4237 
4238 		if (vp_config->mtu !=
4239 				VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4240 			val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4241 			if ((vp_config->mtu  +
4242 				VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4243 				val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4244 					vp_config->mtu  +
4245 					VXGE_HW_MAC_HEADER_MAX_SIZE);
4246 			else
4247 				val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4248 					vpath->max_mtu);
4249 		}
4250 
4251 		writeq(val64, &vp_reg->rxmac_vcfg0);
4252 
4253 		val64 = readq(&vp_reg->rxmac_vcfg1);
4254 
4255 		val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4256 			VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4257 
4258 		if (hldev->config.rth_it_type ==
4259 				VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4260 			val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4261 				0x2) |
4262 				VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4263 		}
4264 
4265 		writeq(val64, &vp_reg->rxmac_vcfg1);
4266 	}
4267 	return VXGE_HW_OK;
4268 }
4269 
4270 /*
4271  * __vxge_hw_vpath_tim_configure
4272  * This routine configures the tim registers of virtual path using the config
4273  * passed
4274  */
4275 static enum vxge_hw_status
__vxge_hw_vpath_tim_configure(struct __vxge_hw_device * hldev,u32 vp_id)4276 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4277 {
4278 	u64 val64;
4279 	struct __vxge_hw_virtualpath *vpath;
4280 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4281 	struct vxge_hw_vp_config *config;
4282 
4283 	vpath = &hldev->virtual_paths[vp_id];
4284 	vp_reg = vpath->vp_reg;
4285 	config = vpath->vp_config;
4286 
4287 	writeq(0, &vp_reg->tim_dest_addr);
4288 	writeq(0, &vp_reg->tim_vpath_map);
4289 	writeq(0, &vp_reg->tim_bitmap);
4290 	writeq(0, &vp_reg->tim_remap);
4291 
4292 	if (config->ring.enable == VXGE_HW_RING_ENABLE)
4293 		writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4294 			(vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4295 			VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4296 
4297 	val64 = readq(&vp_reg->tim_pci_cfg);
4298 	val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4299 	writeq(val64, &vp_reg->tim_pci_cfg);
4300 
4301 	if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4302 
4303 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4304 
4305 		if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4306 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4307 				0x3ffffff);
4308 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4309 					config->tti.btimer_val);
4310 		}
4311 
4312 		val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4313 
4314 		if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4315 			if (config->tti.timer_ac_en)
4316 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4317 			else
4318 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4319 		}
4320 
4321 		if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4322 			if (config->tti.timer_ci_en)
4323 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4324 			else
4325 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4326 		}
4327 
4328 		if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4329 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4330 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4331 					config->tti.urange_a);
4332 		}
4333 
4334 		if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4335 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4336 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4337 					config->tti.urange_b);
4338 		}
4339 
4340 		if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4341 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4342 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4343 					config->tti.urange_c);
4344 		}
4345 
4346 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4347 		vpath->tim_tti_cfg1_saved = val64;
4348 
4349 		val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4350 
4351 		if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4352 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4353 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4354 						config->tti.uec_a);
4355 		}
4356 
4357 		if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4358 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4359 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4360 						config->tti.uec_b);
4361 		}
4362 
4363 		if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4364 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4365 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4366 						config->tti.uec_c);
4367 		}
4368 
4369 		if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4370 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4371 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4372 						config->tti.uec_d);
4373 		}
4374 
4375 		writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4376 		val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4377 
4378 		if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4379 			if (config->tti.timer_ri_en)
4380 				val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4381 			else
4382 				val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4383 		}
4384 
4385 		if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4386 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4387 					0x3ffffff);
4388 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4389 					config->tti.rtimer_val);
4390 		}
4391 
4392 		if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4393 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4394 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4395 		}
4396 
4397 		if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4398 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4399 					0x3ffffff);
4400 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4401 					config->tti.ltimer_val);
4402 		}
4403 
4404 		writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4405 		vpath->tim_tti_cfg3_saved = val64;
4406 	}
4407 
4408 	if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4409 
4410 		val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4411 
4412 		if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4413 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4414 					0x3ffffff);
4415 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4416 					config->rti.btimer_val);
4417 		}
4418 
4419 		val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4420 
4421 		if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4422 			if (config->rti.timer_ac_en)
4423 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4424 			else
4425 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4426 		}
4427 
4428 		if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4429 			if (config->rti.timer_ci_en)
4430 				val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4431 			else
4432 				val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4433 		}
4434 
4435 		if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4436 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4437 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4438 					config->rti.urange_a);
4439 		}
4440 
4441 		if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4442 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4443 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4444 					config->rti.urange_b);
4445 		}
4446 
4447 		if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4448 			val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4449 			val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4450 					config->rti.urange_c);
4451 		}
4452 
4453 		writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4454 		vpath->tim_rti_cfg1_saved = val64;
4455 
4456 		val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4457 
4458 		if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4459 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4460 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4461 						config->rti.uec_a);
4462 		}
4463 
4464 		if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4465 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4466 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4467 						config->rti.uec_b);
4468 		}
4469 
4470 		if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4471 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4472 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4473 						config->rti.uec_c);
4474 		}
4475 
4476 		if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4477 			val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4478 			val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4479 						config->rti.uec_d);
4480 		}
4481 
4482 		writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4483 		val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4484 
4485 		if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4486 			if (config->rti.timer_ri_en)
4487 				val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4488 			else
4489 				val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4490 		}
4491 
4492 		if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4493 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4494 					0x3ffffff);
4495 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4496 					config->rti.rtimer_val);
4497 		}
4498 
4499 		if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4500 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4501 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4502 		}
4503 
4504 		if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4505 			val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4506 					0x3ffffff);
4507 			val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4508 					config->rti.ltimer_val);
4509 		}
4510 
4511 		writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4512 		vpath->tim_rti_cfg3_saved = val64;
4513 	}
4514 
4515 	val64 = 0;
4516 	writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4517 	writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4518 	writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4519 	writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4520 	writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4521 	writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4522 
4523 	val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4524 	val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4525 	val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4526 	writeq(val64, &vp_reg->tim_wrkld_clc);
4527 
4528 	return VXGE_HW_OK;
4529 }
4530 
4531 /*
4532  * __vxge_hw_vpath_initialize
4533  * This routine is the final phase of init which initializes the
4534  * registers of the vpath using the configuration passed.
4535  */
4536 static enum vxge_hw_status
__vxge_hw_vpath_initialize(struct __vxge_hw_device * hldev,u32 vp_id)4537 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4538 {
4539 	u64 val64;
4540 	u32 val32;
4541 	enum vxge_hw_status status = VXGE_HW_OK;
4542 	struct __vxge_hw_virtualpath *vpath;
4543 	struct vxge_hw_vpath_reg __iomem *vp_reg;
4544 
4545 	vpath = &hldev->virtual_paths[vp_id];
4546 
4547 	if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4548 		status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4549 		goto exit;
4550 	}
4551 	vp_reg = vpath->vp_reg;
4552 
4553 	status =  __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4554 	if (status != VXGE_HW_OK)
4555 		goto exit;
4556 
4557 	status =  __vxge_hw_vpath_mac_configure(hldev, vp_id);
4558 	if (status != VXGE_HW_OK)
4559 		goto exit;
4560 
4561 	status =  __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4562 	if (status != VXGE_HW_OK)
4563 		goto exit;
4564 
4565 	status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4566 	if (status != VXGE_HW_OK)
4567 		goto exit;
4568 
4569 	val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4570 
4571 	/* Get MRRS value from device control */
4572 	status  = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4573 	if (status == VXGE_HW_OK) {
4574 		val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4575 		val64 &=
4576 		    ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4577 		val64 |=
4578 		    VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4579 
4580 		val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4581 	}
4582 
4583 	val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4584 	val64 |=
4585 	    VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4586 		    VXGE_HW_MAX_PAYLOAD_SIZE_512);
4587 
4588 	val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4589 	writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4590 
4591 exit:
4592 	return status;
4593 }
4594 
4595 /*
4596  * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4597  * This routine closes all channels it opened and freeup memory
4598  */
__vxge_hw_vp_terminate(struct __vxge_hw_device * hldev,u32 vp_id)4599 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4600 {
4601 	struct __vxge_hw_virtualpath *vpath;
4602 
4603 	vpath = &hldev->virtual_paths[vp_id];
4604 
4605 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4606 		goto exit;
4607 
4608 	VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4609 		vpath->hldev->tim_int_mask1, vpath->vp_id);
4610 	hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4611 
4612 	/* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4613 	 * work after the interface is brought down.
4614 	 */
4615 	spin_lock(&vpath->lock);
4616 	vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4617 	spin_unlock(&vpath->lock);
4618 
4619 	vpath->vpmgmt_reg = NULL;
4620 	vpath->nofl_db = NULL;
4621 	vpath->max_mtu = 0;
4622 	vpath->vsport_number = 0;
4623 	vpath->max_kdfc_db = 0;
4624 	vpath->max_nofl_db = 0;
4625 	vpath->ringh = NULL;
4626 	vpath->fifoh = NULL;
4627 	memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4628 	vpath->stats_block = NULL;
4629 	vpath->hw_stats = NULL;
4630 	vpath->hw_stats_sav = NULL;
4631 	vpath->sw_stats = NULL;
4632 
4633 exit:
4634 	return;
4635 }
4636 
4637 /*
4638  * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4639  * This routine is the initial phase of init which resets the vpath and
4640  * initializes the software support structures.
4641  */
4642 static enum vxge_hw_status
__vxge_hw_vp_initialize(struct __vxge_hw_device * hldev,u32 vp_id,struct vxge_hw_vp_config * config)4643 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4644 			struct vxge_hw_vp_config *config)
4645 {
4646 	struct __vxge_hw_virtualpath *vpath;
4647 	enum vxge_hw_status status = VXGE_HW_OK;
4648 
4649 	if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4650 		status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4651 		goto exit;
4652 	}
4653 
4654 	vpath = &hldev->virtual_paths[vp_id];
4655 
4656 	spin_lock_init(&vpath->lock);
4657 	vpath->vp_id = vp_id;
4658 	vpath->vp_open = VXGE_HW_VP_OPEN;
4659 	vpath->hldev = hldev;
4660 	vpath->vp_config = config;
4661 	vpath->vp_reg = hldev->vpath_reg[vp_id];
4662 	vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4663 
4664 	__vxge_hw_vpath_reset(hldev, vp_id);
4665 
4666 	status = __vxge_hw_vpath_reset_check(vpath);
4667 	if (status != VXGE_HW_OK) {
4668 		memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4669 		goto exit;
4670 	}
4671 
4672 	status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4673 	if (status != VXGE_HW_OK) {
4674 		memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4675 		goto exit;
4676 	}
4677 
4678 	INIT_LIST_HEAD(&vpath->vpath_handles);
4679 
4680 	vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4681 
4682 	VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4683 		hldev->tim_int_mask1, vp_id);
4684 
4685 	status = __vxge_hw_vpath_initialize(hldev, vp_id);
4686 	if (status != VXGE_HW_OK)
4687 		__vxge_hw_vp_terminate(hldev, vp_id);
4688 exit:
4689 	return status;
4690 }
4691 
4692 /*
4693  * vxge_hw_vpath_mtu_set - Set MTU.
4694  * Set new MTU value. Example, to use jumbo frames:
4695  * vxge_hw_vpath_mtu_set(my_device, 9600);
4696  */
4697 enum vxge_hw_status
vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle * vp,u32 new_mtu)4698 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4699 {
4700 	u64 val64;
4701 	enum vxge_hw_status status = VXGE_HW_OK;
4702 	struct __vxge_hw_virtualpath *vpath;
4703 
4704 	if (vp == NULL) {
4705 		status = VXGE_HW_ERR_INVALID_HANDLE;
4706 		goto exit;
4707 	}
4708 	vpath = vp->vpath;
4709 
4710 	new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4711 
4712 	if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4713 		status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4714 
4715 	val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4716 
4717 	val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4718 	val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4719 
4720 	writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4721 
4722 	vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4723 
4724 exit:
4725 	return status;
4726 }
4727 
4728 /*
4729  * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4730  * Enable the DMA vpath statistics. The function is to be called to re-enable
4731  * the adapter to update stats into the host memory
4732  */
4733 static enum vxge_hw_status
vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle * vp)4734 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4735 {
4736 	enum vxge_hw_status status = VXGE_HW_OK;
4737 	struct __vxge_hw_virtualpath *vpath;
4738 
4739 	vpath = vp->vpath;
4740 
4741 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4742 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4743 		goto exit;
4744 	}
4745 
4746 	memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4747 			sizeof(struct vxge_hw_vpath_stats_hw_info));
4748 
4749 	status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4750 exit:
4751 	return status;
4752 }
4753 
4754 /*
4755  * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4756  * This function allocates a block from block pool or from the system
4757  */
4758 static struct __vxge_hw_blockpool_entry *
__vxge_hw_blockpool_block_allocate(struct __vxge_hw_device * devh,u32 size)4759 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4760 {
4761 	struct __vxge_hw_blockpool_entry *entry = NULL;
4762 	struct __vxge_hw_blockpool  *blockpool;
4763 
4764 	blockpool = &devh->block_pool;
4765 
4766 	if (size == blockpool->block_size) {
4767 
4768 		if (!list_empty(&blockpool->free_block_list))
4769 			entry = (struct __vxge_hw_blockpool_entry *)
4770 				list_first_entry(&blockpool->free_block_list,
4771 					struct __vxge_hw_blockpool_entry,
4772 					item);
4773 
4774 		if (entry != NULL) {
4775 			list_del(&entry->item);
4776 			blockpool->pool_size--;
4777 		}
4778 	}
4779 
4780 	if (entry != NULL)
4781 		__vxge_hw_blockpool_blocks_add(blockpool);
4782 
4783 	return entry;
4784 }
4785 
4786 /*
4787  * vxge_hw_vpath_open - Open a virtual path on a given adapter
4788  * This function is used to open access to virtual path of an
4789  * adapter for offload, GRO operations. This function returns
4790  * synchronously.
4791  */
4792 enum vxge_hw_status
vxge_hw_vpath_open(struct __vxge_hw_device * hldev,struct vxge_hw_vpath_attr * attr,struct __vxge_hw_vpath_handle ** vpath_handle)4793 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4794 		   struct vxge_hw_vpath_attr *attr,
4795 		   struct __vxge_hw_vpath_handle **vpath_handle)
4796 {
4797 	struct __vxge_hw_virtualpath *vpath;
4798 	struct __vxge_hw_vpath_handle *vp;
4799 	enum vxge_hw_status status;
4800 
4801 	vpath = &hldev->virtual_paths[attr->vp_id];
4802 
4803 	if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4804 		status = VXGE_HW_ERR_INVALID_STATE;
4805 		goto vpath_open_exit1;
4806 	}
4807 
4808 	status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4809 			&hldev->config.vp_config[attr->vp_id]);
4810 	if (status != VXGE_HW_OK)
4811 		goto vpath_open_exit1;
4812 
4813 	vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4814 	if (vp == NULL) {
4815 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
4816 		goto vpath_open_exit2;
4817 	}
4818 
4819 	vp->vpath = vpath;
4820 
4821 	if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4822 		status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4823 		if (status != VXGE_HW_OK)
4824 			goto vpath_open_exit6;
4825 	}
4826 
4827 	if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4828 		status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4829 		if (status != VXGE_HW_OK)
4830 			goto vpath_open_exit7;
4831 
4832 		__vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4833 	}
4834 
4835 	vpath->fifoh->tx_intr_num =
4836 		(attr->vp_id * VXGE_HW_MAX_INTR_PER_VP)  +
4837 			VXGE_HW_VPATH_INTR_TX;
4838 
4839 	vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4840 				VXGE_HW_BLOCK_SIZE);
4841 	if (vpath->stats_block == NULL) {
4842 		status = VXGE_HW_ERR_OUT_OF_MEMORY;
4843 		goto vpath_open_exit8;
4844 	}
4845 
4846 	vpath->hw_stats = vpath->stats_block->memblock;
4847 	memset(vpath->hw_stats, 0,
4848 		sizeof(struct vxge_hw_vpath_stats_hw_info));
4849 
4850 	hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4851 						vpath->hw_stats;
4852 
4853 	vpath->hw_stats_sav =
4854 		&hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4855 	memset(vpath->hw_stats_sav, 0,
4856 			sizeof(struct vxge_hw_vpath_stats_hw_info));
4857 
4858 	writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4859 
4860 	status = vxge_hw_vpath_stats_enable(vp);
4861 	if (status != VXGE_HW_OK)
4862 		goto vpath_open_exit8;
4863 
4864 	list_add(&vp->item, &vpath->vpath_handles);
4865 
4866 	hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4867 
4868 	*vpath_handle = vp;
4869 
4870 	attr->fifo_attr.userdata = vpath->fifoh;
4871 	attr->ring_attr.userdata = vpath->ringh;
4872 
4873 	return VXGE_HW_OK;
4874 
4875 vpath_open_exit8:
4876 	if (vpath->ringh != NULL)
4877 		__vxge_hw_ring_delete(vp);
4878 vpath_open_exit7:
4879 	if (vpath->fifoh != NULL)
4880 		__vxge_hw_fifo_delete(vp);
4881 vpath_open_exit6:
4882 	vfree(vp);
4883 vpath_open_exit2:
4884 	__vxge_hw_vp_terminate(hldev, attr->vp_id);
4885 vpath_open_exit1:
4886 
4887 	return status;
4888 }
4889 
4890 /**
4891  * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4892  * (vpath) open
4893  * @vp: Handle got from previous vpath open
4894  *
4895  * This function is used to close access to virtual path opened
4896  * earlier.
4897  */
vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle * vp)4898 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4899 {
4900 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
4901 	struct __vxge_hw_ring *ring = vpath->ringh;
4902 	struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4903 	u64 new_count, val64, val164;
4904 
4905 	if (vdev->titan1) {
4906 		new_count = readq(&vpath->vp_reg->rxdmem_size);
4907 		new_count &= 0x1fff;
4908 	} else
4909 		new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4910 
4911 	val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4912 
4913 	writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4914 		&vpath->vp_reg->prc_rxd_doorbell);
4915 	readl(&vpath->vp_reg->prc_rxd_doorbell);
4916 
4917 	val164 /= 2;
4918 	val64 = readq(&vpath->vp_reg->prc_cfg6);
4919 	val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4920 	val64 &= 0x1ff;
4921 
4922 	/*
4923 	 * Each RxD is of 4 qwords
4924 	 */
4925 	new_count -= (val64 + 1);
4926 	val64 = min(val164, new_count) / 4;
4927 
4928 	ring->rxds_limit = min(ring->rxds_limit, val64);
4929 	if (ring->rxds_limit < 4)
4930 		ring->rxds_limit = 4;
4931 }
4932 
4933 /*
4934  * __vxge_hw_blockpool_block_free - Frees a block from block pool
4935  * @devh: Hal device
4936  * @entry: Entry of block to be freed
4937  *
4938  * This function frees a block from block pool
4939  */
4940 static void
__vxge_hw_blockpool_block_free(struct __vxge_hw_device * devh,struct __vxge_hw_blockpool_entry * entry)4941 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4942 			       struct __vxge_hw_blockpool_entry *entry)
4943 {
4944 	struct __vxge_hw_blockpool  *blockpool;
4945 
4946 	blockpool = &devh->block_pool;
4947 
4948 	if (entry->length == blockpool->block_size) {
4949 		list_add(&entry->item, &blockpool->free_block_list);
4950 		blockpool->pool_size++;
4951 	}
4952 
4953 	__vxge_hw_blockpool_blocks_remove(blockpool);
4954 }
4955 
4956 /*
4957  * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4958  * This function is used to close access to virtual path opened
4959  * earlier.
4960  */
vxge_hw_vpath_close(struct __vxge_hw_vpath_handle * vp)4961 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4962 {
4963 	struct __vxge_hw_virtualpath *vpath = NULL;
4964 	struct __vxge_hw_device *devh = NULL;
4965 	u32 vp_id = vp->vpath->vp_id;
4966 	u32 is_empty = TRUE;
4967 	enum vxge_hw_status status = VXGE_HW_OK;
4968 
4969 	vpath = vp->vpath;
4970 	devh = vpath->hldev;
4971 
4972 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4973 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4974 		goto vpath_close_exit;
4975 	}
4976 
4977 	list_del(&vp->item);
4978 
4979 	if (!list_empty(&vpath->vpath_handles)) {
4980 		list_add(&vp->item, &vpath->vpath_handles);
4981 		is_empty = FALSE;
4982 	}
4983 
4984 	if (!is_empty) {
4985 		status = VXGE_HW_FAIL;
4986 		goto vpath_close_exit;
4987 	}
4988 
4989 	devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4990 
4991 	if (vpath->ringh != NULL)
4992 		__vxge_hw_ring_delete(vp);
4993 
4994 	if (vpath->fifoh != NULL)
4995 		__vxge_hw_fifo_delete(vp);
4996 
4997 	if (vpath->stats_block != NULL)
4998 		__vxge_hw_blockpool_block_free(devh, vpath->stats_block);
4999 
5000 	vfree(vp);
5001 
5002 	__vxge_hw_vp_terminate(devh, vp_id);
5003 
5004 vpath_close_exit:
5005 	return status;
5006 }
5007 
5008 /*
5009  * vxge_hw_vpath_reset - Resets vpath
5010  * This function is used to request a reset of vpath
5011  */
vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle * vp)5012 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5013 {
5014 	enum vxge_hw_status status;
5015 	u32 vp_id;
5016 	struct __vxge_hw_virtualpath *vpath = vp->vpath;
5017 
5018 	vp_id = vpath->vp_id;
5019 
5020 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5021 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5022 		goto exit;
5023 	}
5024 
5025 	status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5026 	if (status == VXGE_HW_OK)
5027 		vpath->sw_stats->soft_reset_cnt++;
5028 exit:
5029 	return status;
5030 }
5031 
5032 /*
5033  * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5034  * This function poll's for the vpath reset completion and re initializes
5035  * the vpath.
5036  */
5037 enum vxge_hw_status
vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle * vp)5038 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5039 {
5040 	struct __vxge_hw_virtualpath *vpath = NULL;
5041 	enum vxge_hw_status status;
5042 	struct __vxge_hw_device *hldev;
5043 	u32 vp_id;
5044 
5045 	vp_id = vp->vpath->vp_id;
5046 	vpath = vp->vpath;
5047 	hldev = vpath->hldev;
5048 
5049 	if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5050 		status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5051 		goto exit;
5052 	}
5053 
5054 	status = __vxge_hw_vpath_reset_check(vpath);
5055 	if (status != VXGE_HW_OK)
5056 		goto exit;
5057 
5058 	status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5059 	if (status != VXGE_HW_OK)
5060 		goto exit;
5061 
5062 	status = __vxge_hw_vpath_initialize(hldev, vp_id);
5063 	if (status != VXGE_HW_OK)
5064 		goto exit;
5065 
5066 	if (vpath->ringh != NULL)
5067 		__vxge_hw_vpath_prc_configure(hldev, vp_id);
5068 
5069 	memset(vpath->hw_stats, 0,
5070 		sizeof(struct vxge_hw_vpath_stats_hw_info));
5071 
5072 	memset(vpath->hw_stats_sav, 0,
5073 		sizeof(struct vxge_hw_vpath_stats_hw_info));
5074 
5075 	writeq(vpath->stats_block->dma_addr,
5076 		&vpath->vp_reg->stats_cfg);
5077 
5078 	status = vxge_hw_vpath_stats_enable(vp);
5079 
5080 exit:
5081 	return status;
5082 }
5083 
5084 /*
5085  * vxge_hw_vpath_enable - Enable vpath.
5086  * This routine clears the vpath reset thereby enabling a vpath
5087  * to start forwarding frames and generating interrupts.
5088  */
5089 void
vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle * vp)5090 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5091 {
5092 	struct __vxge_hw_device *hldev;
5093 	u64 val64;
5094 
5095 	hldev = vp->vpath->hldev;
5096 
5097 	val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5098 		1 << (16 - vp->vpath->vp_id));
5099 
5100 	__vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5101 		&hldev->common_reg->cmn_rsthdlr_cfg1);
5102 }
5103