1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/init.h>
93 #include <linux/io.h>
94 #include <linux/kernel.h>
95 #include <linux/sched/signal.h>
96 #include <linux/kmod.h>
97 #include <linux/list.h>
98 #include <linux/miscdevice.h>
99 #include <linux/module.h>
100 #include <linux/mutex.h>
101 #include <linux/net.h>
102 #include <linux/poll.h>
103 #include <linux/random.h>
104 #include <linux/skbuff.h>
105 #include <linux/smp.h>
106 #include <linux/socket.h>
107 #include <linux/stddef.h>
108 #include <linux/unistd.h>
109 #include <linux/wait.h>
110 #include <linux/workqueue.h>
111 #include <net/sock.h>
112 #include <net/af_vsock.h>
113
114 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
115 static void vsock_sk_destruct(struct sock *sk);
116 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117
118 /* Protocol family. */
119 struct proto vsock_proto = {
120 .name = "AF_VSOCK",
121 .owner = THIS_MODULE,
122 .obj_size = sizeof(struct vsock_sock),
123 #ifdef CONFIG_BPF_SYSCALL
124 .psock_update_sk_prot = vsock_bpf_update_proto,
125 #endif
126 };
127
128 /* The default peer timeout indicates how long we will wait for a peer response
129 * to a control message.
130 */
131 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
132
133 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
134 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
135 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
136
137 /* Transport used for host->guest communication */
138 static const struct vsock_transport *transport_h2g;
139 /* Transport used for guest->host communication */
140 static const struct vsock_transport *transport_g2h;
141 /* Transport used for DGRAM communication */
142 static const struct vsock_transport *transport_dgram;
143 /* Transport used for local communication */
144 static const struct vsock_transport *transport_local;
145 static DEFINE_MUTEX(vsock_register_mutex);
146
147 /**** UTILS ****/
148
149 /* Each bound VSocket is stored in the bind hash table and each connected
150 * VSocket is stored in the connected hash table.
151 *
152 * Unbound sockets are all put on the same list attached to the end of the hash
153 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
154 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
155 * represents the list that addr hashes to).
156 *
157 * Specifically, we initialize the vsock_bind_table array to a size of
158 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
159 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
160 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
161 * mods with VSOCK_HASH_SIZE to ensure this.
162 */
163 #define MAX_PORT_RETRIES 24
164
165 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
166 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
167 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
168
169 /* XXX This can probably be implemented in a better way. */
170 #define VSOCK_CONN_HASH(src, dst) \
171 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
172 #define vsock_connected_sockets(src, dst) \
173 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
174 #define vsock_connected_sockets_vsk(vsk) \
175 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
176
177 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
178 EXPORT_SYMBOL_GPL(vsock_bind_table);
179 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
180 EXPORT_SYMBOL_GPL(vsock_connected_table);
181 DEFINE_SPINLOCK(vsock_table_lock);
182 EXPORT_SYMBOL_GPL(vsock_table_lock);
183
184 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)185 static int vsock_auto_bind(struct vsock_sock *vsk)
186 {
187 struct sock *sk = sk_vsock(vsk);
188 struct sockaddr_vm local_addr;
189
190 if (vsock_addr_bound(&vsk->local_addr))
191 return 0;
192 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
193 return __vsock_bind(sk, &local_addr);
194 }
195
vsock_init_tables(void)196 static void vsock_init_tables(void)
197 {
198 int i;
199
200 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
201 INIT_LIST_HEAD(&vsock_bind_table[i]);
202
203 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
204 INIT_LIST_HEAD(&vsock_connected_table[i]);
205 }
206
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)207 static void __vsock_insert_bound(struct list_head *list,
208 struct vsock_sock *vsk)
209 {
210 sock_hold(&vsk->sk);
211 list_add(&vsk->bound_table, list);
212 }
213
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)214 static void __vsock_insert_connected(struct list_head *list,
215 struct vsock_sock *vsk)
216 {
217 sock_hold(&vsk->sk);
218 list_add(&vsk->connected_table, list);
219 }
220
__vsock_remove_bound(struct vsock_sock * vsk)221 static void __vsock_remove_bound(struct vsock_sock *vsk)
222 {
223 list_del_init(&vsk->bound_table);
224 sock_put(&vsk->sk);
225 }
226
__vsock_remove_connected(struct vsock_sock * vsk)227 static void __vsock_remove_connected(struct vsock_sock *vsk)
228 {
229 list_del_init(&vsk->connected_table);
230 sock_put(&vsk->sk);
231 }
232
__vsock_find_bound_socket(struct sockaddr_vm * addr)233 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
234 {
235 struct vsock_sock *vsk;
236
237 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
238 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
239 return sk_vsock(vsk);
240
241 if (addr->svm_port == vsk->local_addr.svm_port &&
242 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
243 addr->svm_cid == VMADDR_CID_ANY))
244 return sk_vsock(vsk);
245 }
246
247 return NULL;
248 }
249
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)250 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
251 struct sockaddr_vm *dst)
252 {
253 struct vsock_sock *vsk;
254
255 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
256 connected_table) {
257 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
258 dst->svm_port == vsk->local_addr.svm_port) {
259 return sk_vsock(vsk);
260 }
261 }
262
263 return NULL;
264 }
265
vsock_insert_unbound(struct vsock_sock * vsk)266 static void vsock_insert_unbound(struct vsock_sock *vsk)
267 {
268 spin_lock_bh(&vsock_table_lock);
269 __vsock_insert_bound(vsock_unbound_sockets, vsk);
270 spin_unlock_bh(&vsock_table_lock);
271 }
272
vsock_insert_connected(struct vsock_sock * vsk)273 void vsock_insert_connected(struct vsock_sock *vsk)
274 {
275 struct list_head *list = vsock_connected_sockets(
276 &vsk->remote_addr, &vsk->local_addr);
277
278 spin_lock_bh(&vsock_table_lock);
279 __vsock_insert_connected(list, vsk);
280 spin_unlock_bh(&vsock_table_lock);
281 }
282 EXPORT_SYMBOL_GPL(vsock_insert_connected);
283
vsock_remove_bound(struct vsock_sock * vsk)284 void vsock_remove_bound(struct vsock_sock *vsk)
285 {
286 spin_lock_bh(&vsock_table_lock);
287 if (__vsock_in_bound_table(vsk))
288 __vsock_remove_bound(vsk);
289 spin_unlock_bh(&vsock_table_lock);
290 }
291 EXPORT_SYMBOL_GPL(vsock_remove_bound);
292
vsock_remove_connected(struct vsock_sock * vsk)293 void vsock_remove_connected(struct vsock_sock *vsk)
294 {
295 spin_lock_bh(&vsock_table_lock);
296 if (__vsock_in_connected_table(vsk))
297 __vsock_remove_connected(vsk);
298 spin_unlock_bh(&vsock_table_lock);
299 }
300 EXPORT_SYMBOL_GPL(vsock_remove_connected);
301
vsock_find_bound_socket(struct sockaddr_vm * addr)302 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
303 {
304 struct sock *sk;
305
306 spin_lock_bh(&vsock_table_lock);
307 sk = __vsock_find_bound_socket(addr);
308 if (sk)
309 sock_hold(sk);
310
311 spin_unlock_bh(&vsock_table_lock);
312
313 return sk;
314 }
315 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
316
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)317 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
318 struct sockaddr_vm *dst)
319 {
320 struct sock *sk;
321
322 spin_lock_bh(&vsock_table_lock);
323 sk = __vsock_find_connected_socket(src, dst);
324 if (sk)
325 sock_hold(sk);
326
327 spin_unlock_bh(&vsock_table_lock);
328
329 return sk;
330 }
331 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
332
vsock_remove_sock(struct vsock_sock * vsk)333 void vsock_remove_sock(struct vsock_sock *vsk)
334 {
335 vsock_remove_bound(vsk);
336 vsock_remove_connected(vsk);
337 }
338 EXPORT_SYMBOL_GPL(vsock_remove_sock);
339
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))340 void vsock_for_each_connected_socket(struct vsock_transport *transport,
341 void (*fn)(struct sock *sk))
342 {
343 int i;
344
345 spin_lock_bh(&vsock_table_lock);
346
347 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
348 struct vsock_sock *vsk;
349 list_for_each_entry(vsk, &vsock_connected_table[i],
350 connected_table) {
351 if (vsk->transport != transport)
352 continue;
353
354 fn(sk_vsock(vsk));
355 }
356 }
357
358 spin_unlock_bh(&vsock_table_lock);
359 }
360 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
361
vsock_add_pending(struct sock * listener,struct sock * pending)362 void vsock_add_pending(struct sock *listener, struct sock *pending)
363 {
364 struct vsock_sock *vlistener;
365 struct vsock_sock *vpending;
366
367 vlistener = vsock_sk(listener);
368 vpending = vsock_sk(pending);
369
370 sock_hold(pending);
371 sock_hold(listener);
372 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
373 }
374 EXPORT_SYMBOL_GPL(vsock_add_pending);
375
vsock_remove_pending(struct sock * listener,struct sock * pending)376 void vsock_remove_pending(struct sock *listener, struct sock *pending)
377 {
378 struct vsock_sock *vpending = vsock_sk(pending);
379
380 list_del_init(&vpending->pending_links);
381 sock_put(listener);
382 sock_put(pending);
383 }
384 EXPORT_SYMBOL_GPL(vsock_remove_pending);
385
vsock_enqueue_accept(struct sock * listener,struct sock * connected)386 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
387 {
388 struct vsock_sock *vlistener;
389 struct vsock_sock *vconnected;
390
391 vlistener = vsock_sk(listener);
392 vconnected = vsock_sk(connected);
393
394 sock_hold(connected);
395 sock_hold(listener);
396 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
397 }
398 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
399
vsock_use_local_transport(unsigned int remote_cid)400 static bool vsock_use_local_transport(unsigned int remote_cid)
401 {
402 if (!transport_local)
403 return false;
404
405 if (remote_cid == VMADDR_CID_LOCAL)
406 return true;
407
408 if (transport_g2h) {
409 return remote_cid == transport_g2h->get_local_cid();
410 } else {
411 return remote_cid == VMADDR_CID_HOST;
412 }
413 }
414
vsock_deassign_transport(struct vsock_sock * vsk)415 static void vsock_deassign_transport(struct vsock_sock *vsk)
416 {
417 if (!vsk->transport)
418 return;
419
420 vsk->transport->destruct(vsk);
421 module_put(vsk->transport->module);
422 vsk->transport = NULL;
423 }
424
425 /* Assign a transport to a socket and call the .init transport callback.
426 *
427 * Note: for connection oriented socket this must be called when vsk->remote_addr
428 * is set (e.g. during the connect() or when a connection request on a listener
429 * socket is received).
430 * The vsk->remote_addr is used to decide which transport to use:
431 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
432 * g2h is not loaded, will use local transport;
433 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
434 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
435 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
436 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)437 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
438 {
439 const struct vsock_transport *new_transport;
440 struct sock *sk = sk_vsock(vsk);
441 unsigned int remote_cid = vsk->remote_addr.svm_cid;
442 __u8 remote_flags;
443 int ret;
444
445 /* If the packet is coming with the source and destination CIDs higher
446 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
447 * forwarded to the host should be established. Then the host will
448 * need to forward the packets to the guest.
449 *
450 * The flag is set on the (listen) receive path (psk is not NULL). On
451 * the connect path the flag can be set by the user space application.
452 */
453 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
454 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
455 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
456
457 remote_flags = vsk->remote_addr.svm_flags;
458
459 switch (sk->sk_type) {
460 case SOCK_DGRAM:
461 new_transport = transport_dgram;
462 break;
463 case SOCK_STREAM:
464 case SOCK_SEQPACKET:
465 if (vsock_use_local_transport(remote_cid))
466 new_transport = transport_local;
467 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
468 (remote_flags & VMADDR_FLAG_TO_HOST))
469 new_transport = transport_g2h;
470 else
471 new_transport = transport_h2g;
472 break;
473 default:
474 return -ESOCKTNOSUPPORT;
475 }
476
477 if (vsk->transport) {
478 if (vsk->transport == new_transport)
479 return 0;
480
481 /* transport->release() must be called with sock lock acquired.
482 * This path can only be taken during vsock_connect(), where we
483 * have already held the sock lock. In the other cases, this
484 * function is called on a new socket which is not assigned to
485 * any transport.
486 */
487 vsk->transport->release(vsk);
488 vsock_deassign_transport(vsk);
489 }
490
491 /* We increase the module refcnt to prevent the transport unloading
492 * while there are open sockets assigned to it.
493 */
494 if (!new_transport || !try_module_get(new_transport->module))
495 return -ENODEV;
496
497 if (sk->sk_type == SOCK_SEQPACKET) {
498 if (!new_transport->seqpacket_allow ||
499 !new_transport->seqpacket_allow(remote_cid)) {
500 module_put(new_transport->module);
501 return -ESOCKTNOSUPPORT;
502 }
503 }
504
505 ret = new_transport->init(vsk, psk);
506 if (ret) {
507 module_put(new_transport->module);
508 return ret;
509 }
510
511 vsk->transport = new_transport;
512
513 return 0;
514 }
515 EXPORT_SYMBOL_GPL(vsock_assign_transport);
516
vsock_find_cid(unsigned int cid)517 bool vsock_find_cid(unsigned int cid)
518 {
519 if (transport_g2h && cid == transport_g2h->get_local_cid())
520 return true;
521
522 if (transport_h2g && cid == VMADDR_CID_HOST)
523 return true;
524
525 if (transport_local && cid == VMADDR_CID_LOCAL)
526 return true;
527
528 return false;
529 }
530 EXPORT_SYMBOL_GPL(vsock_find_cid);
531
vsock_dequeue_accept(struct sock * listener)532 static struct sock *vsock_dequeue_accept(struct sock *listener)
533 {
534 struct vsock_sock *vlistener;
535 struct vsock_sock *vconnected;
536
537 vlistener = vsock_sk(listener);
538
539 if (list_empty(&vlistener->accept_queue))
540 return NULL;
541
542 vconnected = list_entry(vlistener->accept_queue.next,
543 struct vsock_sock, accept_queue);
544
545 list_del_init(&vconnected->accept_queue);
546 sock_put(listener);
547 /* The caller will need a reference on the connected socket so we let
548 * it call sock_put().
549 */
550
551 return sk_vsock(vconnected);
552 }
553
vsock_is_accept_queue_empty(struct sock * sk)554 static bool vsock_is_accept_queue_empty(struct sock *sk)
555 {
556 struct vsock_sock *vsk = vsock_sk(sk);
557 return list_empty(&vsk->accept_queue);
558 }
559
vsock_is_pending(struct sock * sk)560 static bool vsock_is_pending(struct sock *sk)
561 {
562 struct vsock_sock *vsk = vsock_sk(sk);
563 return !list_empty(&vsk->pending_links);
564 }
565
vsock_send_shutdown(struct sock * sk,int mode)566 static int vsock_send_shutdown(struct sock *sk, int mode)
567 {
568 struct vsock_sock *vsk = vsock_sk(sk);
569
570 if (!vsk->transport)
571 return -ENODEV;
572
573 return vsk->transport->shutdown(vsk, mode);
574 }
575
vsock_pending_work(struct work_struct * work)576 static void vsock_pending_work(struct work_struct *work)
577 {
578 struct sock *sk;
579 struct sock *listener;
580 struct vsock_sock *vsk;
581 bool cleanup;
582
583 vsk = container_of(work, struct vsock_sock, pending_work.work);
584 sk = sk_vsock(vsk);
585 listener = vsk->listener;
586 cleanup = true;
587
588 lock_sock(listener);
589 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
590
591 if (vsock_is_pending(sk)) {
592 vsock_remove_pending(listener, sk);
593
594 sk_acceptq_removed(listener);
595 } else if (!vsk->rejected) {
596 /* We are not on the pending list and accept() did not reject
597 * us, so we must have been accepted by our user process. We
598 * just need to drop our references to the sockets and be on
599 * our way.
600 */
601 cleanup = false;
602 goto out;
603 }
604
605 /* We need to remove ourself from the global connected sockets list so
606 * incoming packets can't find this socket, and to reduce the reference
607 * count.
608 */
609 vsock_remove_connected(vsk);
610
611 sk->sk_state = TCP_CLOSE;
612
613 out:
614 release_sock(sk);
615 release_sock(listener);
616 if (cleanup)
617 sock_put(sk);
618
619 sock_put(sk);
620 sock_put(listener);
621 }
622
623 /**** SOCKET OPERATIONS ****/
624
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)625 static int __vsock_bind_connectible(struct vsock_sock *vsk,
626 struct sockaddr_vm *addr)
627 {
628 static u32 port;
629 struct sockaddr_vm new_addr;
630
631 if (!port)
632 port = get_random_u32_above(LAST_RESERVED_PORT);
633
634 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
635
636 if (addr->svm_port == VMADDR_PORT_ANY) {
637 bool found = false;
638 unsigned int i;
639
640 for (i = 0; i < MAX_PORT_RETRIES; i++) {
641 if (port <= LAST_RESERVED_PORT)
642 port = LAST_RESERVED_PORT + 1;
643
644 new_addr.svm_port = port++;
645
646 if (!__vsock_find_bound_socket(&new_addr)) {
647 found = true;
648 break;
649 }
650 }
651
652 if (!found)
653 return -EADDRNOTAVAIL;
654 } else {
655 /* If port is in reserved range, ensure caller
656 * has necessary privileges.
657 */
658 if (addr->svm_port <= LAST_RESERVED_PORT &&
659 !capable(CAP_NET_BIND_SERVICE)) {
660 return -EACCES;
661 }
662
663 if (__vsock_find_bound_socket(&new_addr))
664 return -EADDRINUSE;
665 }
666
667 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
668
669 /* Remove connection oriented sockets from the unbound list and add them
670 * to the hash table for easy lookup by its address. The unbound list
671 * is simply an extra entry at the end of the hash table, a trick used
672 * by AF_UNIX.
673 */
674 __vsock_remove_bound(vsk);
675 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
676
677 return 0;
678 }
679
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)680 static int __vsock_bind_dgram(struct vsock_sock *vsk,
681 struct sockaddr_vm *addr)
682 {
683 return vsk->transport->dgram_bind(vsk, addr);
684 }
685
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)686 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
687 {
688 struct vsock_sock *vsk = vsock_sk(sk);
689 int retval;
690
691 /* First ensure this socket isn't already bound. */
692 if (vsock_addr_bound(&vsk->local_addr))
693 return -EINVAL;
694
695 /* Now bind to the provided address or select appropriate values if
696 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
697 * like AF_INET prevents binding to a non-local IP address (in most
698 * cases), we only allow binding to a local CID.
699 */
700 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
701 return -EADDRNOTAVAIL;
702
703 switch (sk->sk_socket->type) {
704 case SOCK_STREAM:
705 case SOCK_SEQPACKET:
706 spin_lock_bh(&vsock_table_lock);
707 retval = __vsock_bind_connectible(vsk, addr);
708 spin_unlock_bh(&vsock_table_lock);
709 break;
710
711 case SOCK_DGRAM:
712 retval = __vsock_bind_dgram(vsk, addr);
713 break;
714
715 default:
716 retval = -EINVAL;
717 break;
718 }
719
720 return retval;
721 }
722
723 static void vsock_connect_timeout(struct work_struct *work);
724
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)725 static struct sock *__vsock_create(struct net *net,
726 struct socket *sock,
727 struct sock *parent,
728 gfp_t priority,
729 unsigned short type,
730 int kern)
731 {
732 struct sock *sk;
733 struct vsock_sock *psk;
734 struct vsock_sock *vsk;
735
736 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
737 if (!sk)
738 return NULL;
739
740 sock_init_data(sock, sk);
741
742 /* sk->sk_type is normally set in sock_init_data, but only if sock is
743 * non-NULL. We make sure that our sockets always have a type by
744 * setting it here if needed.
745 */
746 if (!sock)
747 sk->sk_type = type;
748
749 vsk = vsock_sk(sk);
750 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
751 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
752
753 sk->sk_destruct = vsock_sk_destruct;
754 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
755 sock_reset_flag(sk, SOCK_DONE);
756
757 INIT_LIST_HEAD(&vsk->bound_table);
758 INIT_LIST_HEAD(&vsk->connected_table);
759 vsk->listener = NULL;
760 INIT_LIST_HEAD(&vsk->pending_links);
761 INIT_LIST_HEAD(&vsk->accept_queue);
762 vsk->rejected = false;
763 vsk->sent_request = false;
764 vsk->ignore_connecting_rst = false;
765 vsk->peer_shutdown = 0;
766 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
767 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
768
769 psk = parent ? vsock_sk(parent) : NULL;
770 if (parent) {
771 vsk->trusted = psk->trusted;
772 vsk->owner = get_cred(psk->owner);
773 vsk->connect_timeout = psk->connect_timeout;
774 vsk->buffer_size = psk->buffer_size;
775 vsk->buffer_min_size = psk->buffer_min_size;
776 vsk->buffer_max_size = psk->buffer_max_size;
777 security_sk_clone(parent, sk);
778 } else {
779 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
780 vsk->owner = get_current_cred();
781 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
782 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
783 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
784 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
785 }
786
787 return sk;
788 }
789
sock_type_connectible(u16 type)790 static bool sock_type_connectible(u16 type)
791 {
792 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
793 }
794
__vsock_release(struct sock * sk,int level)795 static void __vsock_release(struct sock *sk, int level)
796 {
797 if (sk) {
798 struct sock *pending;
799 struct vsock_sock *vsk;
800
801 vsk = vsock_sk(sk);
802 pending = NULL; /* Compiler warning. */
803
804 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
805 * version to avoid the warning "possible recursive locking
806 * detected". When "level" is 0, lock_sock_nested(sk, level)
807 * is the same as lock_sock(sk).
808 */
809 lock_sock_nested(sk, level);
810
811 if (vsk->transport)
812 vsk->transport->release(vsk);
813 else if (sock_type_connectible(sk->sk_type))
814 vsock_remove_sock(vsk);
815
816 sock_orphan(sk);
817 sk->sk_shutdown = SHUTDOWN_MASK;
818
819 skb_queue_purge(&sk->sk_receive_queue);
820
821 /* Clean up any sockets that never were accepted. */
822 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
823 __vsock_release(pending, SINGLE_DEPTH_NESTING);
824 sock_put(pending);
825 }
826
827 release_sock(sk);
828 sock_put(sk);
829 }
830 }
831
vsock_sk_destruct(struct sock * sk)832 static void vsock_sk_destruct(struct sock *sk)
833 {
834 struct vsock_sock *vsk = vsock_sk(sk);
835
836 vsock_deassign_transport(vsk);
837
838 /* When clearing these addresses, there's no need to set the family and
839 * possibly register the address family with the kernel.
840 */
841 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
842 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
843
844 put_cred(vsk->owner);
845 }
846
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)847 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
848 {
849 int err;
850
851 err = sock_queue_rcv_skb(sk, skb);
852 if (err)
853 kfree_skb(skb);
854
855 return err;
856 }
857
vsock_create_connected(struct sock * parent)858 struct sock *vsock_create_connected(struct sock *parent)
859 {
860 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
861 parent->sk_type, 0);
862 }
863 EXPORT_SYMBOL_GPL(vsock_create_connected);
864
vsock_stream_has_data(struct vsock_sock * vsk)865 s64 vsock_stream_has_data(struct vsock_sock *vsk)
866 {
867 return vsk->transport->stream_has_data(vsk);
868 }
869 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
870
vsock_connectible_has_data(struct vsock_sock * vsk)871 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
872 {
873 struct sock *sk = sk_vsock(vsk);
874
875 if (sk->sk_type == SOCK_SEQPACKET)
876 return vsk->transport->seqpacket_has_data(vsk);
877 else
878 return vsock_stream_has_data(vsk);
879 }
880 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
881
vsock_stream_has_space(struct vsock_sock * vsk)882 s64 vsock_stream_has_space(struct vsock_sock *vsk)
883 {
884 return vsk->transport->stream_has_space(vsk);
885 }
886 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
887
vsock_data_ready(struct sock * sk)888 void vsock_data_ready(struct sock *sk)
889 {
890 struct vsock_sock *vsk = vsock_sk(sk);
891
892 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
893 sock_flag(sk, SOCK_DONE))
894 sk->sk_data_ready(sk);
895 }
896 EXPORT_SYMBOL_GPL(vsock_data_ready);
897
vsock_release(struct socket * sock)898 static int vsock_release(struct socket *sock)
899 {
900 __vsock_release(sock->sk, 0);
901 sock->sk = NULL;
902 sock->state = SS_FREE;
903
904 return 0;
905 }
906
907 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)908 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
909 {
910 int err;
911 struct sock *sk;
912 struct sockaddr_vm *vm_addr;
913
914 sk = sock->sk;
915
916 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
917 return -EINVAL;
918
919 lock_sock(sk);
920 err = __vsock_bind(sk, vm_addr);
921 release_sock(sk);
922
923 return err;
924 }
925
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)926 static int vsock_getname(struct socket *sock,
927 struct sockaddr *addr, int peer)
928 {
929 int err;
930 struct sock *sk;
931 struct vsock_sock *vsk;
932 struct sockaddr_vm *vm_addr;
933
934 sk = sock->sk;
935 vsk = vsock_sk(sk);
936 err = 0;
937
938 lock_sock(sk);
939
940 if (peer) {
941 if (sock->state != SS_CONNECTED) {
942 err = -ENOTCONN;
943 goto out;
944 }
945 vm_addr = &vsk->remote_addr;
946 } else {
947 vm_addr = &vsk->local_addr;
948 }
949
950 if (!vm_addr) {
951 err = -EINVAL;
952 goto out;
953 }
954
955 /* sys_getsockname() and sys_getpeername() pass us a
956 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
957 * that macro is defined in socket.c instead of .h, so we hardcode its
958 * value here.
959 */
960 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
961 memcpy(addr, vm_addr, sizeof(*vm_addr));
962 err = sizeof(*vm_addr);
963
964 out:
965 release_sock(sk);
966 return err;
967 }
968
vsock_shutdown(struct socket * sock,int mode)969 static int vsock_shutdown(struct socket *sock, int mode)
970 {
971 int err;
972 struct sock *sk;
973
974 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
975 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
976 * here like the other address families do. Note also that the
977 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
978 * which is what we want.
979 */
980 mode++;
981
982 if ((mode & ~SHUTDOWN_MASK) || !mode)
983 return -EINVAL;
984
985 /* If this is a connection oriented socket and it is not connected then
986 * bail out immediately. If it is a DGRAM socket then we must first
987 * kick the socket so that it wakes up from any sleeping calls, for
988 * example recv(), and then afterwards return the error.
989 */
990
991 sk = sock->sk;
992
993 lock_sock(sk);
994 if (sock->state == SS_UNCONNECTED) {
995 err = -ENOTCONN;
996 if (sock_type_connectible(sk->sk_type))
997 goto out;
998 } else {
999 sock->state = SS_DISCONNECTING;
1000 err = 0;
1001 }
1002
1003 /* Receive and send shutdowns are treated alike. */
1004 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1005 if (mode) {
1006 sk->sk_shutdown |= mode;
1007 sk->sk_state_change(sk);
1008
1009 if (sock_type_connectible(sk->sk_type)) {
1010 sock_reset_flag(sk, SOCK_DONE);
1011 vsock_send_shutdown(sk, mode);
1012 }
1013 }
1014
1015 out:
1016 release_sock(sk);
1017 return err;
1018 }
1019
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1020 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1021 poll_table *wait)
1022 {
1023 struct sock *sk;
1024 __poll_t mask;
1025 struct vsock_sock *vsk;
1026
1027 sk = sock->sk;
1028 vsk = vsock_sk(sk);
1029
1030 poll_wait(file, sk_sleep(sk), wait);
1031 mask = 0;
1032
1033 if (sk->sk_err)
1034 /* Signify that there has been an error on this socket. */
1035 mask |= EPOLLERR;
1036
1037 /* INET sockets treat local write shutdown and peer write shutdown as a
1038 * case of EPOLLHUP set.
1039 */
1040 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1041 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1042 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1043 mask |= EPOLLHUP;
1044 }
1045
1046 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1047 vsk->peer_shutdown & SEND_SHUTDOWN) {
1048 mask |= EPOLLRDHUP;
1049 }
1050
1051 if (sock->type == SOCK_DGRAM) {
1052 /* For datagram sockets we can read if there is something in
1053 * the queue and write as long as the socket isn't shutdown for
1054 * sending.
1055 */
1056 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1057 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1058 mask |= EPOLLIN | EPOLLRDNORM;
1059 }
1060
1061 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1062 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1063
1064 } else if (sock_type_connectible(sk->sk_type)) {
1065 const struct vsock_transport *transport;
1066
1067 lock_sock(sk);
1068
1069 transport = vsk->transport;
1070
1071 /* Listening sockets that have connections in their accept
1072 * queue can be read.
1073 */
1074 if (sk->sk_state == TCP_LISTEN
1075 && !vsock_is_accept_queue_empty(sk))
1076 mask |= EPOLLIN | EPOLLRDNORM;
1077
1078 /* If there is something in the queue then we can read. */
1079 if (transport && transport->stream_is_active(vsk) &&
1080 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1081 bool data_ready_now = false;
1082 int target = sock_rcvlowat(sk, 0, INT_MAX);
1083 int ret = transport->notify_poll_in(
1084 vsk, target, &data_ready_now);
1085 if (ret < 0) {
1086 mask |= EPOLLERR;
1087 } else {
1088 if (data_ready_now)
1089 mask |= EPOLLIN | EPOLLRDNORM;
1090
1091 }
1092 }
1093
1094 /* Sockets whose connections have been closed, reset, or
1095 * terminated should also be considered read, and we check the
1096 * shutdown flag for that.
1097 */
1098 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1099 vsk->peer_shutdown & SEND_SHUTDOWN) {
1100 mask |= EPOLLIN | EPOLLRDNORM;
1101 }
1102
1103 /* Connected sockets that can produce data can be written. */
1104 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1105 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1106 bool space_avail_now = false;
1107 int ret = transport->notify_poll_out(
1108 vsk, 1, &space_avail_now);
1109 if (ret < 0) {
1110 mask |= EPOLLERR;
1111 } else {
1112 if (space_avail_now)
1113 /* Remove EPOLLWRBAND since INET
1114 * sockets are not setting it.
1115 */
1116 mask |= EPOLLOUT | EPOLLWRNORM;
1117
1118 }
1119 }
1120 }
1121
1122 /* Simulate INET socket poll behaviors, which sets
1123 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1124 * but local send is not shutdown.
1125 */
1126 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1127 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1128 mask |= EPOLLOUT | EPOLLWRNORM;
1129
1130 }
1131
1132 release_sock(sk);
1133 }
1134
1135 return mask;
1136 }
1137
vsock_read_skb(struct sock * sk,skb_read_actor_t read_actor)1138 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1139 {
1140 struct vsock_sock *vsk = vsock_sk(sk);
1141
1142 return vsk->transport->read_skb(vsk, read_actor);
1143 }
1144
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1145 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1146 size_t len)
1147 {
1148 int err;
1149 struct sock *sk;
1150 struct vsock_sock *vsk;
1151 struct sockaddr_vm *remote_addr;
1152 const struct vsock_transport *transport;
1153
1154 if (msg->msg_flags & MSG_OOB)
1155 return -EOPNOTSUPP;
1156
1157 /* For now, MSG_DONTWAIT is always assumed... */
1158 err = 0;
1159 sk = sock->sk;
1160 vsk = vsock_sk(sk);
1161
1162 lock_sock(sk);
1163
1164 transport = vsk->transport;
1165
1166 err = vsock_auto_bind(vsk);
1167 if (err)
1168 goto out;
1169
1170
1171 /* If the provided message contains an address, use that. Otherwise
1172 * fall back on the socket's remote handle (if it has been connected).
1173 */
1174 if (msg->msg_name &&
1175 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1176 &remote_addr) == 0) {
1177 /* Ensure this address is of the right type and is a valid
1178 * destination.
1179 */
1180
1181 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1182 remote_addr->svm_cid = transport->get_local_cid();
1183
1184 if (!vsock_addr_bound(remote_addr)) {
1185 err = -EINVAL;
1186 goto out;
1187 }
1188 } else if (sock->state == SS_CONNECTED) {
1189 remote_addr = &vsk->remote_addr;
1190
1191 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1192 remote_addr->svm_cid = transport->get_local_cid();
1193
1194 /* XXX Should connect() or this function ensure remote_addr is
1195 * bound?
1196 */
1197 if (!vsock_addr_bound(&vsk->remote_addr)) {
1198 err = -EINVAL;
1199 goto out;
1200 }
1201 } else {
1202 err = -EINVAL;
1203 goto out;
1204 }
1205
1206 if (!transport->dgram_allow(remote_addr->svm_cid,
1207 remote_addr->svm_port)) {
1208 err = -EINVAL;
1209 goto out;
1210 }
1211
1212 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1213
1214 out:
1215 release_sock(sk);
1216 return err;
1217 }
1218
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1219 static int vsock_dgram_connect(struct socket *sock,
1220 struct sockaddr *addr, int addr_len, int flags)
1221 {
1222 int err;
1223 struct sock *sk;
1224 struct vsock_sock *vsk;
1225 struct sockaddr_vm *remote_addr;
1226
1227 sk = sock->sk;
1228 vsk = vsock_sk(sk);
1229
1230 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1231 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1232 lock_sock(sk);
1233 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1234 VMADDR_PORT_ANY);
1235 sock->state = SS_UNCONNECTED;
1236 release_sock(sk);
1237 return 0;
1238 } else if (err != 0)
1239 return -EINVAL;
1240
1241 lock_sock(sk);
1242
1243 err = vsock_auto_bind(vsk);
1244 if (err)
1245 goto out;
1246
1247 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1248 remote_addr->svm_port)) {
1249 err = -EINVAL;
1250 goto out;
1251 }
1252
1253 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1254 sock->state = SS_CONNECTED;
1255
1256 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1257 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1258 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1259 *
1260 * This doesn't seem to be abnormal state for datagram sockets, as the
1261 * same approach can be see in other datagram socket types as well
1262 * (such as unix sockets).
1263 */
1264 sk->sk_state = TCP_ESTABLISHED;
1265
1266 out:
1267 release_sock(sk);
1268 return err;
1269 }
1270
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1271 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1272 size_t len, int flags)
1273 {
1274 #ifdef CONFIG_BPF_SYSCALL
1275 const struct proto *prot;
1276 #endif
1277 struct vsock_sock *vsk;
1278 struct sock *sk;
1279
1280 sk = sock->sk;
1281 vsk = vsock_sk(sk);
1282
1283 #ifdef CONFIG_BPF_SYSCALL
1284 prot = READ_ONCE(sk->sk_prot);
1285 if (prot != &vsock_proto)
1286 return prot->recvmsg(sk, msg, len, flags, NULL);
1287 #endif
1288
1289 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1290 }
1291 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1292
1293 static const struct proto_ops vsock_dgram_ops = {
1294 .family = PF_VSOCK,
1295 .owner = THIS_MODULE,
1296 .release = vsock_release,
1297 .bind = vsock_bind,
1298 .connect = vsock_dgram_connect,
1299 .socketpair = sock_no_socketpair,
1300 .accept = sock_no_accept,
1301 .getname = vsock_getname,
1302 .poll = vsock_poll,
1303 .ioctl = sock_no_ioctl,
1304 .listen = sock_no_listen,
1305 .shutdown = vsock_shutdown,
1306 .sendmsg = vsock_dgram_sendmsg,
1307 .recvmsg = vsock_dgram_recvmsg,
1308 .mmap = sock_no_mmap,
1309 .read_skb = vsock_read_skb,
1310 };
1311
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1312 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1313 {
1314 const struct vsock_transport *transport = vsk->transport;
1315
1316 if (!transport || !transport->cancel_pkt)
1317 return -EOPNOTSUPP;
1318
1319 return transport->cancel_pkt(vsk);
1320 }
1321
vsock_connect_timeout(struct work_struct * work)1322 static void vsock_connect_timeout(struct work_struct *work)
1323 {
1324 struct sock *sk;
1325 struct vsock_sock *vsk;
1326
1327 vsk = container_of(work, struct vsock_sock, connect_work.work);
1328 sk = sk_vsock(vsk);
1329
1330 lock_sock(sk);
1331 if (sk->sk_state == TCP_SYN_SENT &&
1332 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1333 sk->sk_state = TCP_CLOSE;
1334 sk->sk_socket->state = SS_UNCONNECTED;
1335 sk->sk_err = ETIMEDOUT;
1336 sk_error_report(sk);
1337 vsock_transport_cancel_pkt(vsk);
1338 }
1339 release_sock(sk);
1340
1341 sock_put(sk);
1342 }
1343
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1344 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1345 int addr_len, int flags)
1346 {
1347 int err;
1348 struct sock *sk;
1349 struct vsock_sock *vsk;
1350 const struct vsock_transport *transport;
1351 struct sockaddr_vm *remote_addr;
1352 long timeout;
1353 DEFINE_WAIT(wait);
1354
1355 err = 0;
1356 sk = sock->sk;
1357 vsk = vsock_sk(sk);
1358
1359 lock_sock(sk);
1360
1361 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1362 switch (sock->state) {
1363 case SS_CONNECTED:
1364 err = -EISCONN;
1365 goto out;
1366 case SS_DISCONNECTING:
1367 err = -EINVAL;
1368 goto out;
1369 case SS_CONNECTING:
1370 /* This continues on so we can move sock into the SS_CONNECTED
1371 * state once the connection has completed (at which point err
1372 * will be set to zero also). Otherwise, we will either wait
1373 * for the connection or return -EALREADY should this be a
1374 * non-blocking call.
1375 */
1376 err = -EALREADY;
1377 if (flags & O_NONBLOCK)
1378 goto out;
1379 break;
1380 default:
1381 if ((sk->sk_state == TCP_LISTEN) ||
1382 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1383 err = -EINVAL;
1384 goto out;
1385 }
1386
1387 /* Set the remote address that we are connecting to. */
1388 memcpy(&vsk->remote_addr, remote_addr,
1389 sizeof(vsk->remote_addr));
1390
1391 err = vsock_assign_transport(vsk, NULL);
1392 if (err)
1393 goto out;
1394
1395 transport = vsk->transport;
1396
1397 /* The hypervisor and well-known contexts do not have socket
1398 * endpoints.
1399 */
1400 if (!transport ||
1401 !transport->stream_allow(remote_addr->svm_cid,
1402 remote_addr->svm_port)) {
1403 err = -ENETUNREACH;
1404 goto out;
1405 }
1406
1407 err = vsock_auto_bind(vsk);
1408 if (err)
1409 goto out;
1410
1411 sk->sk_state = TCP_SYN_SENT;
1412
1413 err = transport->connect(vsk);
1414 if (err < 0)
1415 goto out;
1416
1417 /* Mark sock as connecting and set the error code to in
1418 * progress in case this is a non-blocking connect.
1419 */
1420 sock->state = SS_CONNECTING;
1421 err = -EINPROGRESS;
1422 }
1423
1424 /* The receive path will handle all communication until we are able to
1425 * enter the connected state. Here we wait for the connection to be
1426 * completed or a notification of an error.
1427 */
1428 timeout = vsk->connect_timeout;
1429 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1430
1431 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1432 if (flags & O_NONBLOCK) {
1433 /* If we're not going to block, we schedule a timeout
1434 * function to generate a timeout on the connection
1435 * attempt, in case the peer doesn't respond in a
1436 * timely manner. We hold on to the socket until the
1437 * timeout fires.
1438 */
1439 sock_hold(sk);
1440
1441 /* If the timeout function is already scheduled,
1442 * reschedule it, then ungrab the socket refcount to
1443 * keep it balanced.
1444 */
1445 if (mod_delayed_work(system_wq, &vsk->connect_work,
1446 timeout))
1447 sock_put(sk);
1448
1449 /* Skip ahead to preserve error code set above. */
1450 goto out_wait;
1451 }
1452
1453 release_sock(sk);
1454 timeout = schedule_timeout(timeout);
1455 lock_sock(sk);
1456
1457 if (signal_pending(current)) {
1458 err = sock_intr_errno(timeout);
1459 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1460 sock->state = SS_UNCONNECTED;
1461 vsock_transport_cancel_pkt(vsk);
1462 vsock_remove_connected(vsk);
1463 goto out_wait;
1464 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1465 err = -ETIMEDOUT;
1466 sk->sk_state = TCP_CLOSE;
1467 sock->state = SS_UNCONNECTED;
1468 vsock_transport_cancel_pkt(vsk);
1469 goto out_wait;
1470 }
1471
1472 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1473 }
1474
1475 if (sk->sk_err) {
1476 err = -sk->sk_err;
1477 sk->sk_state = TCP_CLOSE;
1478 sock->state = SS_UNCONNECTED;
1479 } else {
1480 err = 0;
1481 }
1482
1483 out_wait:
1484 finish_wait(sk_sleep(sk), &wait);
1485 out:
1486 release_sock(sk);
1487 return err;
1488 }
1489
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1490 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1491 bool kern)
1492 {
1493 struct sock *listener;
1494 int err;
1495 struct sock *connected;
1496 struct vsock_sock *vconnected;
1497 long timeout;
1498 DEFINE_WAIT(wait);
1499
1500 err = 0;
1501 listener = sock->sk;
1502
1503 lock_sock(listener);
1504
1505 if (!sock_type_connectible(sock->type)) {
1506 err = -EOPNOTSUPP;
1507 goto out;
1508 }
1509
1510 if (listener->sk_state != TCP_LISTEN) {
1511 err = -EINVAL;
1512 goto out;
1513 }
1514
1515 /* Wait for children sockets to appear; these are the new sockets
1516 * created upon connection establishment.
1517 */
1518 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1519 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1520
1521 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1522 listener->sk_err == 0) {
1523 release_sock(listener);
1524 timeout = schedule_timeout(timeout);
1525 finish_wait(sk_sleep(listener), &wait);
1526 lock_sock(listener);
1527
1528 if (signal_pending(current)) {
1529 err = sock_intr_errno(timeout);
1530 goto out;
1531 } else if (timeout == 0) {
1532 err = -EAGAIN;
1533 goto out;
1534 }
1535
1536 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1537 }
1538 finish_wait(sk_sleep(listener), &wait);
1539
1540 if (listener->sk_err)
1541 err = -listener->sk_err;
1542
1543 if (connected) {
1544 sk_acceptq_removed(listener);
1545
1546 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1547 vconnected = vsock_sk(connected);
1548
1549 /* If the listener socket has received an error, then we should
1550 * reject this socket and return. Note that we simply mark the
1551 * socket rejected, drop our reference, and let the cleanup
1552 * function handle the cleanup; the fact that we found it in
1553 * the listener's accept queue guarantees that the cleanup
1554 * function hasn't run yet.
1555 */
1556 if (err) {
1557 vconnected->rejected = true;
1558 } else {
1559 newsock->state = SS_CONNECTED;
1560 sock_graft(connected, newsock);
1561 }
1562
1563 release_sock(connected);
1564 sock_put(connected);
1565 }
1566
1567 out:
1568 release_sock(listener);
1569 return err;
1570 }
1571
vsock_listen(struct socket * sock,int backlog)1572 static int vsock_listen(struct socket *sock, int backlog)
1573 {
1574 int err;
1575 struct sock *sk;
1576 struct vsock_sock *vsk;
1577
1578 sk = sock->sk;
1579
1580 lock_sock(sk);
1581
1582 if (!sock_type_connectible(sk->sk_type)) {
1583 err = -EOPNOTSUPP;
1584 goto out;
1585 }
1586
1587 if (sock->state != SS_UNCONNECTED) {
1588 err = -EINVAL;
1589 goto out;
1590 }
1591
1592 vsk = vsock_sk(sk);
1593
1594 if (!vsock_addr_bound(&vsk->local_addr)) {
1595 err = -EINVAL;
1596 goto out;
1597 }
1598
1599 sk->sk_max_ack_backlog = backlog;
1600 sk->sk_state = TCP_LISTEN;
1601
1602 err = 0;
1603
1604 out:
1605 release_sock(sk);
1606 return err;
1607 }
1608
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1609 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1610 const struct vsock_transport *transport,
1611 u64 val)
1612 {
1613 if (val > vsk->buffer_max_size)
1614 val = vsk->buffer_max_size;
1615
1616 if (val < vsk->buffer_min_size)
1617 val = vsk->buffer_min_size;
1618
1619 if (val != vsk->buffer_size &&
1620 transport && transport->notify_buffer_size)
1621 transport->notify_buffer_size(vsk, &val);
1622
1623 vsk->buffer_size = val;
1624 }
1625
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1626 static int vsock_connectible_setsockopt(struct socket *sock,
1627 int level,
1628 int optname,
1629 sockptr_t optval,
1630 unsigned int optlen)
1631 {
1632 int err;
1633 struct sock *sk;
1634 struct vsock_sock *vsk;
1635 const struct vsock_transport *transport;
1636 u64 val;
1637
1638 if (level != AF_VSOCK)
1639 return -ENOPROTOOPT;
1640
1641 #define COPY_IN(_v) \
1642 do { \
1643 if (optlen < sizeof(_v)) { \
1644 err = -EINVAL; \
1645 goto exit; \
1646 } \
1647 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1648 err = -EFAULT; \
1649 goto exit; \
1650 } \
1651 } while (0)
1652
1653 err = 0;
1654 sk = sock->sk;
1655 vsk = vsock_sk(sk);
1656
1657 lock_sock(sk);
1658
1659 transport = vsk->transport;
1660
1661 switch (optname) {
1662 case SO_VM_SOCKETS_BUFFER_SIZE:
1663 COPY_IN(val);
1664 vsock_update_buffer_size(vsk, transport, val);
1665 break;
1666
1667 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1668 COPY_IN(val);
1669 vsk->buffer_max_size = val;
1670 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1671 break;
1672
1673 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1674 COPY_IN(val);
1675 vsk->buffer_min_size = val;
1676 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1677 break;
1678
1679 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1680 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1681 struct __kernel_sock_timeval tv;
1682
1683 err = sock_copy_user_timeval(&tv, optval, optlen,
1684 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1685 if (err)
1686 break;
1687 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1688 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1689 vsk->connect_timeout = tv.tv_sec * HZ +
1690 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1691 if (vsk->connect_timeout == 0)
1692 vsk->connect_timeout =
1693 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1694
1695 } else {
1696 err = -ERANGE;
1697 }
1698 break;
1699 }
1700
1701 default:
1702 err = -ENOPROTOOPT;
1703 break;
1704 }
1705
1706 #undef COPY_IN
1707
1708 exit:
1709 release_sock(sk);
1710 return err;
1711 }
1712
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1713 static int vsock_connectible_getsockopt(struct socket *sock,
1714 int level, int optname,
1715 char __user *optval,
1716 int __user *optlen)
1717 {
1718 struct sock *sk = sock->sk;
1719 struct vsock_sock *vsk = vsock_sk(sk);
1720
1721 union {
1722 u64 val64;
1723 struct old_timeval32 tm32;
1724 struct __kernel_old_timeval tm;
1725 struct __kernel_sock_timeval stm;
1726 } v;
1727
1728 int lv = sizeof(v.val64);
1729 int len;
1730
1731 if (level != AF_VSOCK)
1732 return -ENOPROTOOPT;
1733
1734 if (get_user(len, optlen))
1735 return -EFAULT;
1736
1737 memset(&v, 0, sizeof(v));
1738
1739 switch (optname) {
1740 case SO_VM_SOCKETS_BUFFER_SIZE:
1741 v.val64 = vsk->buffer_size;
1742 break;
1743
1744 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1745 v.val64 = vsk->buffer_max_size;
1746 break;
1747
1748 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1749 v.val64 = vsk->buffer_min_size;
1750 break;
1751
1752 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1753 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1754 lv = sock_get_timeout(vsk->connect_timeout, &v,
1755 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1756 break;
1757
1758 default:
1759 return -ENOPROTOOPT;
1760 }
1761
1762 if (len < lv)
1763 return -EINVAL;
1764 if (len > lv)
1765 len = lv;
1766 if (copy_to_user(optval, &v, len))
1767 return -EFAULT;
1768
1769 if (put_user(len, optlen))
1770 return -EFAULT;
1771
1772 return 0;
1773 }
1774
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1775 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1776 size_t len)
1777 {
1778 struct sock *sk;
1779 struct vsock_sock *vsk;
1780 const struct vsock_transport *transport;
1781 ssize_t total_written;
1782 long timeout;
1783 int err;
1784 struct vsock_transport_send_notify_data send_data;
1785 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1786
1787 sk = sock->sk;
1788 vsk = vsock_sk(sk);
1789 total_written = 0;
1790 err = 0;
1791
1792 if (msg->msg_flags & MSG_OOB)
1793 return -EOPNOTSUPP;
1794
1795 lock_sock(sk);
1796
1797 transport = vsk->transport;
1798
1799 /* Callers should not provide a destination with connection oriented
1800 * sockets.
1801 */
1802 if (msg->msg_namelen) {
1803 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1804 goto out;
1805 }
1806
1807 /* Send data only if both sides are not shutdown in the direction. */
1808 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1809 vsk->peer_shutdown & RCV_SHUTDOWN) {
1810 err = -EPIPE;
1811 goto out;
1812 }
1813
1814 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1815 !vsock_addr_bound(&vsk->local_addr)) {
1816 err = -ENOTCONN;
1817 goto out;
1818 }
1819
1820 if (!vsock_addr_bound(&vsk->remote_addr)) {
1821 err = -EDESTADDRREQ;
1822 goto out;
1823 }
1824
1825 /* Wait for room in the produce queue to enqueue our user's data. */
1826 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1827
1828 err = transport->notify_send_init(vsk, &send_data);
1829 if (err < 0)
1830 goto out;
1831
1832 while (total_written < len) {
1833 ssize_t written;
1834
1835 add_wait_queue(sk_sleep(sk), &wait);
1836 while (vsock_stream_has_space(vsk) == 0 &&
1837 sk->sk_err == 0 &&
1838 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1839 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1840
1841 /* Don't wait for non-blocking sockets. */
1842 if (timeout == 0) {
1843 err = -EAGAIN;
1844 remove_wait_queue(sk_sleep(sk), &wait);
1845 goto out_err;
1846 }
1847
1848 err = transport->notify_send_pre_block(vsk, &send_data);
1849 if (err < 0) {
1850 remove_wait_queue(sk_sleep(sk), &wait);
1851 goto out_err;
1852 }
1853
1854 release_sock(sk);
1855 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1856 lock_sock(sk);
1857 if (signal_pending(current)) {
1858 err = sock_intr_errno(timeout);
1859 remove_wait_queue(sk_sleep(sk), &wait);
1860 goto out_err;
1861 } else if (timeout == 0) {
1862 err = -EAGAIN;
1863 remove_wait_queue(sk_sleep(sk), &wait);
1864 goto out_err;
1865 }
1866 }
1867 remove_wait_queue(sk_sleep(sk), &wait);
1868
1869 /* These checks occur both as part of and after the loop
1870 * conditional since we need to check before and after
1871 * sleeping.
1872 */
1873 if (sk->sk_err) {
1874 err = -sk->sk_err;
1875 goto out_err;
1876 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1877 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1878 err = -EPIPE;
1879 goto out_err;
1880 }
1881
1882 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1883 if (err < 0)
1884 goto out_err;
1885
1886 /* Note that enqueue will only write as many bytes as are free
1887 * in the produce queue, so we don't need to ensure len is
1888 * smaller than the queue size. It is the caller's
1889 * responsibility to check how many bytes we were able to send.
1890 */
1891
1892 if (sk->sk_type == SOCK_SEQPACKET) {
1893 written = transport->seqpacket_enqueue(vsk,
1894 msg, len - total_written);
1895 } else {
1896 written = transport->stream_enqueue(vsk,
1897 msg, len - total_written);
1898 }
1899
1900 if (written < 0) {
1901 err = written;
1902 goto out_err;
1903 }
1904
1905 total_written += written;
1906
1907 err = transport->notify_send_post_enqueue(
1908 vsk, written, &send_data);
1909 if (err < 0)
1910 goto out_err;
1911
1912 }
1913
1914 out_err:
1915 if (total_written > 0) {
1916 /* Return number of written bytes only if:
1917 * 1) SOCK_STREAM socket.
1918 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1919 */
1920 if (sk->sk_type == SOCK_STREAM || total_written == len)
1921 err = total_written;
1922 }
1923 out:
1924 release_sock(sk);
1925 return err;
1926 }
1927
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)1928 static int vsock_connectible_wait_data(struct sock *sk,
1929 struct wait_queue_entry *wait,
1930 long timeout,
1931 struct vsock_transport_recv_notify_data *recv_data,
1932 size_t target)
1933 {
1934 const struct vsock_transport *transport;
1935 struct vsock_sock *vsk;
1936 s64 data;
1937 int err;
1938
1939 vsk = vsock_sk(sk);
1940 err = 0;
1941 transport = vsk->transport;
1942
1943 while (1) {
1944 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1945 data = vsock_connectible_has_data(vsk);
1946 if (data != 0)
1947 break;
1948
1949 if (sk->sk_err != 0 ||
1950 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1951 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1952 break;
1953 }
1954
1955 /* Don't wait for non-blocking sockets. */
1956 if (timeout == 0) {
1957 err = -EAGAIN;
1958 break;
1959 }
1960
1961 if (recv_data) {
1962 err = transport->notify_recv_pre_block(vsk, target, recv_data);
1963 if (err < 0)
1964 break;
1965 }
1966
1967 release_sock(sk);
1968 timeout = schedule_timeout(timeout);
1969 lock_sock(sk);
1970
1971 if (signal_pending(current)) {
1972 err = sock_intr_errno(timeout);
1973 break;
1974 } else if (timeout == 0) {
1975 err = -EAGAIN;
1976 break;
1977 }
1978 }
1979
1980 finish_wait(sk_sleep(sk), wait);
1981
1982 if (err)
1983 return err;
1984
1985 /* Internal transport error when checking for available
1986 * data. XXX This should be changed to a connection
1987 * reset in a later change.
1988 */
1989 if (data < 0)
1990 return -ENOMEM;
1991
1992 return data;
1993 }
1994
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)1995 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1996 size_t len, int flags)
1997 {
1998 struct vsock_transport_recv_notify_data recv_data;
1999 const struct vsock_transport *transport;
2000 struct vsock_sock *vsk;
2001 ssize_t copied;
2002 size_t target;
2003 long timeout;
2004 int err;
2005
2006 DEFINE_WAIT(wait);
2007
2008 vsk = vsock_sk(sk);
2009 transport = vsk->transport;
2010
2011 /* We must not copy less than target bytes into the user's buffer
2012 * before returning successfully, so we wait for the consume queue to
2013 * have that much data to consume before dequeueing. Note that this
2014 * makes it impossible to handle cases where target is greater than the
2015 * queue size.
2016 */
2017 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2018 if (target >= transport->stream_rcvhiwat(vsk)) {
2019 err = -ENOMEM;
2020 goto out;
2021 }
2022 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2023 copied = 0;
2024
2025 err = transport->notify_recv_init(vsk, target, &recv_data);
2026 if (err < 0)
2027 goto out;
2028
2029
2030 while (1) {
2031 ssize_t read;
2032
2033 err = vsock_connectible_wait_data(sk, &wait, timeout,
2034 &recv_data, target);
2035 if (err <= 0)
2036 break;
2037
2038 err = transport->notify_recv_pre_dequeue(vsk, target,
2039 &recv_data);
2040 if (err < 0)
2041 break;
2042
2043 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2044 if (read < 0) {
2045 err = read;
2046 break;
2047 }
2048
2049 copied += read;
2050
2051 err = transport->notify_recv_post_dequeue(vsk, target, read,
2052 !(flags & MSG_PEEK), &recv_data);
2053 if (err < 0)
2054 goto out;
2055
2056 if (read >= target || flags & MSG_PEEK)
2057 break;
2058
2059 target -= read;
2060 }
2061
2062 if (sk->sk_err)
2063 err = -sk->sk_err;
2064 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2065 err = 0;
2066
2067 if (copied > 0)
2068 err = copied;
2069
2070 out:
2071 return err;
2072 }
2073
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2074 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2075 size_t len, int flags)
2076 {
2077 const struct vsock_transport *transport;
2078 struct vsock_sock *vsk;
2079 ssize_t msg_len;
2080 long timeout;
2081 int err = 0;
2082 DEFINE_WAIT(wait);
2083
2084 vsk = vsock_sk(sk);
2085 transport = vsk->transport;
2086
2087 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2088
2089 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2090 if (err <= 0)
2091 goto out;
2092
2093 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2094
2095 if (msg_len < 0) {
2096 err = msg_len;
2097 goto out;
2098 }
2099
2100 if (sk->sk_err) {
2101 err = -sk->sk_err;
2102 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2103 err = 0;
2104 } else {
2105 /* User sets MSG_TRUNC, so return real length of
2106 * packet.
2107 */
2108 if (flags & MSG_TRUNC)
2109 err = msg_len;
2110 else
2111 err = len - msg_data_left(msg);
2112
2113 /* Always set MSG_TRUNC if real length of packet is
2114 * bigger than user's buffer.
2115 */
2116 if (msg_len > len)
2117 msg->msg_flags |= MSG_TRUNC;
2118 }
2119
2120 out:
2121 return err;
2122 }
2123
2124 int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2125 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2126 int flags)
2127 {
2128 struct sock *sk;
2129 struct vsock_sock *vsk;
2130 const struct vsock_transport *transport;
2131 #ifdef CONFIG_BPF_SYSCALL
2132 const struct proto *prot;
2133 #endif
2134 int err;
2135
2136 sk = sock->sk;
2137 vsk = vsock_sk(sk);
2138 err = 0;
2139
2140 lock_sock(sk);
2141
2142 transport = vsk->transport;
2143
2144 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2145 /* Recvmsg is supposed to return 0 if a peer performs an
2146 * orderly shutdown. Differentiate between that case and when a
2147 * peer has not connected or a local shutdown occurred with the
2148 * SOCK_DONE flag.
2149 */
2150 if (sock_flag(sk, SOCK_DONE))
2151 err = 0;
2152 else
2153 err = -ENOTCONN;
2154
2155 goto out;
2156 }
2157
2158 if (flags & MSG_OOB) {
2159 err = -EOPNOTSUPP;
2160 goto out;
2161 }
2162
2163 /* We don't check peer_shutdown flag here since peer may actually shut
2164 * down, but there can be data in the queue that a local socket can
2165 * receive.
2166 */
2167 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2168 err = 0;
2169 goto out;
2170 }
2171
2172 /* It is valid on Linux to pass in a zero-length receive buffer. This
2173 * is not an error. We may as well bail out now.
2174 */
2175 if (!len) {
2176 err = 0;
2177 goto out;
2178 }
2179
2180 #ifdef CONFIG_BPF_SYSCALL
2181 prot = READ_ONCE(sk->sk_prot);
2182 if (prot != &vsock_proto) {
2183 release_sock(sk);
2184 return prot->recvmsg(sk, msg, len, flags, NULL);
2185 }
2186 #endif
2187
2188 if (sk->sk_type == SOCK_STREAM)
2189 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2190 else
2191 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2192
2193 out:
2194 release_sock(sk);
2195 return err;
2196 }
2197 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2198
vsock_set_rcvlowat(struct sock * sk,int val)2199 static int vsock_set_rcvlowat(struct sock *sk, int val)
2200 {
2201 const struct vsock_transport *transport;
2202 struct vsock_sock *vsk;
2203
2204 vsk = vsock_sk(sk);
2205
2206 if (val > vsk->buffer_size)
2207 return -EINVAL;
2208
2209 transport = vsk->transport;
2210
2211 if (transport && transport->set_rcvlowat)
2212 return transport->set_rcvlowat(vsk, val);
2213
2214 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2215 return 0;
2216 }
2217
2218 static const struct proto_ops vsock_stream_ops = {
2219 .family = PF_VSOCK,
2220 .owner = THIS_MODULE,
2221 .release = vsock_release,
2222 .bind = vsock_bind,
2223 .connect = vsock_connect,
2224 .socketpair = sock_no_socketpair,
2225 .accept = vsock_accept,
2226 .getname = vsock_getname,
2227 .poll = vsock_poll,
2228 .ioctl = sock_no_ioctl,
2229 .listen = vsock_listen,
2230 .shutdown = vsock_shutdown,
2231 .setsockopt = vsock_connectible_setsockopt,
2232 .getsockopt = vsock_connectible_getsockopt,
2233 .sendmsg = vsock_connectible_sendmsg,
2234 .recvmsg = vsock_connectible_recvmsg,
2235 .mmap = sock_no_mmap,
2236 .set_rcvlowat = vsock_set_rcvlowat,
2237 .read_skb = vsock_read_skb,
2238 };
2239
2240 static const struct proto_ops vsock_seqpacket_ops = {
2241 .family = PF_VSOCK,
2242 .owner = THIS_MODULE,
2243 .release = vsock_release,
2244 .bind = vsock_bind,
2245 .connect = vsock_connect,
2246 .socketpair = sock_no_socketpair,
2247 .accept = vsock_accept,
2248 .getname = vsock_getname,
2249 .poll = vsock_poll,
2250 .ioctl = sock_no_ioctl,
2251 .listen = vsock_listen,
2252 .shutdown = vsock_shutdown,
2253 .setsockopt = vsock_connectible_setsockopt,
2254 .getsockopt = vsock_connectible_getsockopt,
2255 .sendmsg = vsock_connectible_sendmsg,
2256 .recvmsg = vsock_connectible_recvmsg,
2257 .mmap = sock_no_mmap,
2258 .read_skb = vsock_read_skb,
2259 };
2260
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2261 static int vsock_create(struct net *net, struct socket *sock,
2262 int protocol, int kern)
2263 {
2264 struct vsock_sock *vsk;
2265 struct sock *sk;
2266 int ret;
2267
2268 if (!sock)
2269 return -EINVAL;
2270
2271 if (protocol && protocol != PF_VSOCK)
2272 return -EPROTONOSUPPORT;
2273
2274 switch (sock->type) {
2275 case SOCK_DGRAM:
2276 sock->ops = &vsock_dgram_ops;
2277 break;
2278 case SOCK_STREAM:
2279 sock->ops = &vsock_stream_ops;
2280 break;
2281 case SOCK_SEQPACKET:
2282 sock->ops = &vsock_seqpacket_ops;
2283 break;
2284 default:
2285 return -ESOCKTNOSUPPORT;
2286 }
2287
2288 sock->state = SS_UNCONNECTED;
2289
2290 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2291 if (!sk)
2292 return -ENOMEM;
2293
2294 vsk = vsock_sk(sk);
2295
2296 if (sock->type == SOCK_DGRAM) {
2297 ret = vsock_assign_transport(vsk, NULL);
2298 if (ret < 0) {
2299 sock_put(sk);
2300 return ret;
2301 }
2302 }
2303
2304 vsock_insert_unbound(vsk);
2305
2306 return 0;
2307 }
2308
2309 static const struct net_proto_family vsock_family_ops = {
2310 .family = AF_VSOCK,
2311 .create = vsock_create,
2312 .owner = THIS_MODULE,
2313 };
2314
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2315 static long vsock_dev_do_ioctl(struct file *filp,
2316 unsigned int cmd, void __user *ptr)
2317 {
2318 u32 __user *p = ptr;
2319 u32 cid = VMADDR_CID_ANY;
2320 int retval = 0;
2321
2322 switch (cmd) {
2323 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2324 /* To be compatible with the VMCI behavior, we prioritize the
2325 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2326 */
2327 if (transport_g2h)
2328 cid = transport_g2h->get_local_cid();
2329 else if (transport_h2g)
2330 cid = transport_h2g->get_local_cid();
2331
2332 if (put_user(cid, p) != 0)
2333 retval = -EFAULT;
2334 break;
2335
2336 default:
2337 retval = -ENOIOCTLCMD;
2338 }
2339
2340 return retval;
2341 }
2342
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2343 static long vsock_dev_ioctl(struct file *filp,
2344 unsigned int cmd, unsigned long arg)
2345 {
2346 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2347 }
2348
2349 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2350 static long vsock_dev_compat_ioctl(struct file *filp,
2351 unsigned int cmd, unsigned long arg)
2352 {
2353 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2354 }
2355 #endif
2356
2357 static const struct file_operations vsock_device_ops = {
2358 .owner = THIS_MODULE,
2359 .unlocked_ioctl = vsock_dev_ioctl,
2360 #ifdef CONFIG_COMPAT
2361 .compat_ioctl = vsock_dev_compat_ioctl,
2362 #endif
2363 .open = nonseekable_open,
2364 };
2365
2366 static struct miscdevice vsock_device = {
2367 .name = "vsock",
2368 .fops = &vsock_device_ops,
2369 };
2370
vsock_init(void)2371 static int __init vsock_init(void)
2372 {
2373 int err = 0;
2374
2375 vsock_init_tables();
2376
2377 vsock_proto.owner = THIS_MODULE;
2378 vsock_device.minor = MISC_DYNAMIC_MINOR;
2379 err = misc_register(&vsock_device);
2380 if (err) {
2381 pr_err("Failed to register misc device\n");
2382 goto err_reset_transport;
2383 }
2384
2385 err = proto_register(&vsock_proto, 1); /* we want our slab */
2386 if (err) {
2387 pr_err("Cannot register vsock protocol\n");
2388 goto err_deregister_misc;
2389 }
2390
2391 err = sock_register(&vsock_family_ops);
2392 if (err) {
2393 pr_err("could not register af_vsock (%d) address family: %d\n",
2394 AF_VSOCK, err);
2395 goto err_unregister_proto;
2396 }
2397
2398 vsock_bpf_build_proto();
2399
2400 return 0;
2401
2402 err_unregister_proto:
2403 proto_unregister(&vsock_proto);
2404 err_deregister_misc:
2405 misc_deregister(&vsock_device);
2406 err_reset_transport:
2407 return err;
2408 }
2409
vsock_exit(void)2410 static void __exit vsock_exit(void)
2411 {
2412 misc_deregister(&vsock_device);
2413 sock_unregister(AF_VSOCK);
2414 proto_unregister(&vsock_proto);
2415 }
2416
vsock_core_get_transport(struct vsock_sock * vsk)2417 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2418 {
2419 return vsk->transport;
2420 }
2421 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2422
vsock_core_register(const struct vsock_transport * t,int features)2423 int vsock_core_register(const struct vsock_transport *t, int features)
2424 {
2425 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2426 int err = mutex_lock_interruptible(&vsock_register_mutex);
2427
2428 if (err)
2429 return err;
2430
2431 t_h2g = transport_h2g;
2432 t_g2h = transport_g2h;
2433 t_dgram = transport_dgram;
2434 t_local = transport_local;
2435
2436 if (features & VSOCK_TRANSPORT_F_H2G) {
2437 if (t_h2g) {
2438 err = -EBUSY;
2439 goto err_busy;
2440 }
2441 t_h2g = t;
2442 }
2443
2444 if (features & VSOCK_TRANSPORT_F_G2H) {
2445 if (t_g2h) {
2446 err = -EBUSY;
2447 goto err_busy;
2448 }
2449 t_g2h = t;
2450 }
2451
2452 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2453 if (t_dgram) {
2454 err = -EBUSY;
2455 goto err_busy;
2456 }
2457 t_dgram = t;
2458 }
2459
2460 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2461 if (t_local) {
2462 err = -EBUSY;
2463 goto err_busy;
2464 }
2465 t_local = t;
2466 }
2467
2468 transport_h2g = t_h2g;
2469 transport_g2h = t_g2h;
2470 transport_dgram = t_dgram;
2471 transport_local = t_local;
2472
2473 err_busy:
2474 mutex_unlock(&vsock_register_mutex);
2475 return err;
2476 }
2477 EXPORT_SYMBOL_GPL(vsock_core_register);
2478
vsock_core_unregister(const struct vsock_transport * t)2479 void vsock_core_unregister(const struct vsock_transport *t)
2480 {
2481 mutex_lock(&vsock_register_mutex);
2482
2483 if (transport_h2g == t)
2484 transport_h2g = NULL;
2485
2486 if (transport_g2h == t)
2487 transport_g2h = NULL;
2488
2489 if (transport_dgram == t)
2490 transport_dgram = NULL;
2491
2492 if (transport_local == t)
2493 transport_local = NULL;
2494
2495 mutex_unlock(&vsock_register_mutex);
2496 }
2497 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2498
2499 module_init(vsock_init);
2500 module_exit(vsock_exit);
2501
2502 MODULE_AUTHOR("VMware, Inc.");
2503 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2504 MODULE_VERSION("1.0.2.0-k");
2505 MODULE_LICENSE("GPL v2");
2506