1 /*
2 * VMware vSockets Driver
3 *
4 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 */
15
16 /* Implementation notes:
17 *
18 * - There are two kinds of sockets: those created by user action (such as
19 * calling socket(2)) and those created by incoming connection request packets.
20 *
21 * - There are two "global" tables, one for bound sockets (sockets that have
22 * specified an address that they are responsible for) and one for connected
23 * sockets (sockets that have established a connection with another socket).
24 * These tables are "global" in that all sockets on the system are placed
25 * within them. - Note, though, that the bound table contains an extra entry
26 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
27 * that list. The bound table is used solely for lookup of sockets when packets
28 * are received and that's not necessary for SOCK_DGRAM sockets since we create
29 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
30 * sockets out of the bound hash buckets will reduce the chance of collisions
31 * when looking for SOCK_STREAM sockets and prevents us from having to check the
32 * socket type in the hash table lookups.
33 *
34 * - Sockets created by user action will either be "client" sockets that
35 * initiate a connection or "server" sockets that listen for connections; we do
36 * not support simultaneous connects (two "client" sockets connecting).
37 *
38 * - "Server" sockets are referred to as listener sockets throughout this
39 * implementation because they are in the TCP_LISTEN state. When a
40 * connection request is received (the second kind of socket mentioned above),
41 * we create a new socket and refer to it as a pending socket. These pending
42 * sockets are placed on the pending connection list of the listener socket.
43 * When future packets are received for the address the listener socket is
44 * bound to, we check if the source of the packet is from one that has an
45 * existing pending connection. If it does, we process the packet for the
46 * pending socket. When that socket reaches the connected state, it is removed
47 * from the listener socket's pending list and enqueued in the listener
48 * socket's accept queue. Callers of accept(2) will accept connected sockets
49 * from the listener socket's accept queue. If the socket cannot be accepted
50 * for some reason then it is marked rejected. Once the connection is
51 * accepted, it is owned by the user process and the responsibility for cleanup
52 * falls with that user process.
53 *
54 * - It is possible that these pending sockets will never reach the connected
55 * state; in fact, we may never receive another packet after the connection
56 * request. Because of this, we must schedule a cleanup function to run in the
57 * future, after some amount of time passes where a connection should have been
58 * established. This function ensures that the socket is off all lists so it
59 * cannot be retrieved, then drops all references to the socket so it is cleaned
60 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
61 * function will also cleanup rejected sockets, those that reach the connected
62 * state but leave it before they have been accepted.
63 *
64 * - Lock ordering for pending or accept queue sockets is:
65 *
66 * lock_sock(listener);
67 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
68 *
69 * Using explicit nested locking keeps lockdep happy since normally only one
70 * lock of a given class may be taken at a time.
71 *
72 * - Sockets created by user action will be cleaned up when the user process
73 * calls close(2), causing our release implementation to be called. Our release
74 * implementation will perform some cleanup then drop the last reference so our
75 * sk_destruct implementation is invoked. Our sk_destruct implementation will
76 * perform additional cleanup that's common for both types of sockets.
77 *
78 * - A socket's reference count is what ensures that the structure won't be
79 * freed. Each entry in a list (such as the "global" bound and connected tables
80 * and the listener socket's pending list and connected queue) ensures a
81 * reference. When we defer work until process context and pass a socket as our
82 * argument, we must ensure the reference count is increased to ensure the
83 * socket isn't freed before the function is run; the deferred function will
84 * then drop the reference.
85 *
86 * - sk->sk_state uses the TCP state constants because they are widely used by
87 * other address families and exposed to userspace tools like ss(8):
88 *
89 * TCP_CLOSE - unconnected
90 * TCP_SYN_SENT - connecting
91 * TCP_ESTABLISHED - connected
92 * TCP_CLOSING - disconnecting
93 * TCP_LISTEN - listening
94 */
95
96 #include <linux/types.h>
97 #include <linux/bitops.h>
98 #include <linux/cred.h>
99 #include <linux/init.h>
100 #include <linux/io.h>
101 #include <linux/kernel.h>
102 #include <linux/sched/signal.h>
103 #include <linux/kmod.h>
104 #include <linux/list.h>
105 #include <linux/miscdevice.h>
106 #include <linux/module.h>
107 #include <linux/mutex.h>
108 #include <linux/net.h>
109 #include <linux/poll.h>
110 #include <linux/skbuff.h>
111 #include <linux/smp.h>
112 #include <linux/socket.h>
113 #include <linux/stddef.h>
114 #include <linux/unistd.h>
115 #include <linux/wait.h>
116 #include <linux/workqueue.h>
117 #include <net/sock.h>
118 #include <net/af_vsock.h>
119
120 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
121 static void vsock_sk_destruct(struct sock *sk);
122 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
123
124 /* Protocol family. */
125 static struct proto vsock_proto = {
126 .name = "AF_VSOCK",
127 .owner = THIS_MODULE,
128 .obj_size = sizeof(struct vsock_sock),
129 };
130
131 /* The default peer timeout indicates how long we will wait for a peer response
132 * to a control message.
133 */
134 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
135
136 static const struct vsock_transport *transport;
137 static DEFINE_MUTEX(vsock_register_mutex);
138
139 /**** EXPORTS ****/
140
141 /* Get the ID of the local context. This is transport dependent. */
142
vm_sockets_get_local_cid(void)143 int vm_sockets_get_local_cid(void)
144 {
145 return transport->get_local_cid();
146 }
147 EXPORT_SYMBOL_GPL(vm_sockets_get_local_cid);
148
149 /**** UTILS ****/
150
151 /* Each bound VSocket is stored in the bind hash table and each connected
152 * VSocket is stored in the connected hash table.
153 *
154 * Unbound sockets are all put on the same list attached to the end of the hash
155 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157 * represents the list that addr hashes to).
158 *
159 * Specifically, we initialize the vsock_bind_table array to a size of
160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
163 * mods with VSOCK_HASH_SIZE to ensure this.
164 */
165 #define MAX_PORT_RETRIES 24
166
167 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
168 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
170
171 /* XXX This can probably be implemented in a better way. */
172 #define VSOCK_CONN_HASH(src, dst) \
173 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
174 #define vsock_connected_sockets(src, dst) \
175 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176 #define vsock_connected_sockets_vsk(vsk) \
177 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
178
179 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180 EXPORT_SYMBOL_GPL(vsock_bind_table);
181 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182 EXPORT_SYMBOL_GPL(vsock_connected_table);
183 DEFINE_SPINLOCK(vsock_table_lock);
184 EXPORT_SYMBOL_GPL(vsock_table_lock);
185
186 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)187 static int vsock_auto_bind(struct vsock_sock *vsk)
188 {
189 struct sock *sk = sk_vsock(vsk);
190 struct sockaddr_vm local_addr;
191
192 if (vsock_addr_bound(&vsk->local_addr))
193 return 0;
194 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195 return __vsock_bind(sk, &local_addr);
196 }
197
vsock_init_tables(void)198 static int __init vsock_init_tables(void)
199 {
200 int i;
201
202 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203 INIT_LIST_HEAD(&vsock_bind_table[i]);
204
205 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206 INIT_LIST_HEAD(&vsock_connected_table[i]);
207 return 0;
208 }
209
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)210 static void __vsock_insert_bound(struct list_head *list,
211 struct vsock_sock *vsk)
212 {
213 sock_hold(&vsk->sk);
214 list_add(&vsk->bound_table, list);
215 }
216
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)217 static void __vsock_insert_connected(struct list_head *list,
218 struct vsock_sock *vsk)
219 {
220 sock_hold(&vsk->sk);
221 list_add(&vsk->connected_table, list);
222 }
223
__vsock_remove_bound(struct vsock_sock * vsk)224 static void __vsock_remove_bound(struct vsock_sock *vsk)
225 {
226 list_del_init(&vsk->bound_table);
227 sock_put(&vsk->sk);
228 }
229
__vsock_remove_connected(struct vsock_sock * vsk)230 static void __vsock_remove_connected(struct vsock_sock *vsk)
231 {
232 list_del_init(&vsk->connected_table);
233 sock_put(&vsk->sk);
234 }
235
__vsock_find_bound_socket(struct sockaddr_vm * addr)236 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
237 {
238 struct vsock_sock *vsk;
239
240 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table)
241 if (addr->svm_port == vsk->local_addr.svm_port)
242 return sk_vsock(vsk);
243
244 return NULL;
245 }
246
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
248 struct sockaddr_vm *dst)
249 {
250 struct vsock_sock *vsk;
251
252 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253 connected_table) {
254 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
255 dst->svm_port == vsk->local_addr.svm_port) {
256 return sk_vsock(vsk);
257 }
258 }
259
260 return NULL;
261 }
262
vsock_insert_unbound(struct vsock_sock * vsk)263 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 {
265 spin_lock_bh(&vsock_table_lock);
266 __vsock_insert_bound(vsock_unbound_sockets, vsk);
267 spin_unlock_bh(&vsock_table_lock);
268 }
269
vsock_insert_connected(struct vsock_sock * vsk)270 void vsock_insert_connected(struct vsock_sock *vsk)
271 {
272 struct list_head *list = vsock_connected_sockets(
273 &vsk->remote_addr, &vsk->local_addr);
274
275 spin_lock_bh(&vsock_table_lock);
276 __vsock_insert_connected(list, vsk);
277 spin_unlock_bh(&vsock_table_lock);
278 }
279 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280
vsock_remove_bound(struct vsock_sock * vsk)281 void vsock_remove_bound(struct vsock_sock *vsk)
282 {
283 spin_lock_bh(&vsock_table_lock);
284 __vsock_remove_bound(vsk);
285 spin_unlock_bh(&vsock_table_lock);
286 }
287 EXPORT_SYMBOL_GPL(vsock_remove_bound);
288
vsock_remove_connected(struct vsock_sock * vsk)289 void vsock_remove_connected(struct vsock_sock *vsk)
290 {
291 spin_lock_bh(&vsock_table_lock);
292 __vsock_remove_connected(vsk);
293 spin_unlock_bh(&vsock_table_lock);
294 }
295 EXPORT_SYMBOL_GPL(vsock_remove_connected);
296
vsock_find_bound_socket(struct sockaddr_vm * addr)297 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
298 {
299 struct sock *sk;
300
301 spin_lock_bh(&vsock_table_lock);
302 sk = __vsock_find_bound_socket(addr);
303 if (sk)
304 sock_hold(sk);
305
306 spin_unlock_bh(&vsock_table_lock);
307
308 return sk;
309 }
310 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
311
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)312 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
313 struct sockaddr_vm *dst)
314 {
315 struct sock *sk;
316
317 spin_lock_bh(&vsock_table_lock);
318 sk = __vsock_find_connected_socket(src, dst);
319 if (sk)
320 sock_hold(sk);
321
322 spin_unlock_bh(&vsock_table_lock);
323
324 return sk;
325 }
326 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
327
vsock_in_bound_table(struct vsock_sock * vsk)328 static bool vsock_in_bound_table(struct vsock_sock *vsk)
329 {
330 bool ret;
331
332 spin_lock_bh(&vsock_table_lock);
333 ret = __vsock_in_bound_table(vsk);
334 spin_unlock_bh(&vsock_table_lock);
335
336 return ret;
337 }
338
vsock_in_connected_table(struct vsock_sock * vsk)339 static bool vsock_in_connected_table(struct vsock_sock *vsk)
340 {
341 bool ret;
342
343 spin_lock_bh(&vsock_table_lock);
344 ret = __vsock_in_connected_table(vsk);
345 spin_unlock_bh(&vsock_table_lock);
346
347 return ret;
348 }
349
vsock_remove_sock(struct vsock_sock * vsk)350 void vsock_remove_sock(struct vsock_sock *vsk)
351 {
352 if (vsock_in_bound_table(vsk))
353 vsock_remove_bound(vsk);
354
355 if (vsock_in_connected_table(vsk))
356 vsock_remove_connected(vsk);
357 }
358 EXPORT_SYMBOL_GPL(vsock_remove_sock);
359
vsock_for_each_connected_socket(void (* fn)(struct sock * sk))360 void vsock_for_each_connected_socket(void (*fn)(struct sock *sk))
361 {
362 int i;
363
364 spin_lock_bh(&vsock_table_lock);
365
366 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
367 struct vsock_sock *vsk;
368 list_for_each_entry(vsk, &vsock_connected_table[i],
369 connected_table)
370 fn(sk_vsock(vsk));
371 }
372
373 spin_unlock_bh(&vsock_table_lock);
374 }
375 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
376
vsock_add_pending(struct sock * listener,struct sock * pending)377 void vsock_add_pending(struct sock *listener, struct sock *pending)
378 {
379 struct vsock_sock *vlistener;
380 struct vsock_sock *vpending;
381
382 vlistener = vsock_sk(listener);
383 vpending = vsock_sk(pending);
384
385 sock_hold(pending);
386 sock_hold(listener);
387 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
388 }
389 EXPORT_SYMBOL_GPL(vsock_add_pending);
390
vsock_remove_pending(struct sock * listener,struct sock * pending)391 void vsock_remove_pending(struct sock *listener, struct sock *pending)
392 {
393 struct vsock_sock *vpending = vsock_sk(pending);
394
395 list_del_init(&vpending->pending_links);
396 sock_put(listener);
397 sock_put(pending);
398 }
399 EXPORT_SYMBOL_GPL(vsock_remove_pending);
400
vsock_enqueue_accept(struct sock * listener,struct sock * connected)401 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
402 {
403 struct vsock_sock *vlistener;
404 struct vsock_sock *vconnected;
405
406 vlistener = vsock_sk(listener);
407 vconnected = vsock_sk(connected);
408
409 sock_hold(connected);
410 sock_hold(listener);
411 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
412 }
413 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
414
vsock_dequeue_accept(struct sock * listener)415 static struct sock *vsock_dequeue_accept(struct sock *listener)
416 {
417 struct vsock_sock *vlistener;
418 struct vsock_sock *vconnected;
419
420 vlistener = vsock_sk(listener);
421
422 if (list_empty(&vlistener->accept_queue))
423 return NULL;
424
425 vconnected = list_entry(vlistener->accept_queue.next,
426 struct vsock_sock, accept_queue);
427
428 list_del_init(&vconnected->accept_queue);
429 sock_put(listener);
430 /* The caller will need a reference on the connected socket so we let
431 * it call sock_put().
432 */
433
434 return sk_vsock(vconnected);
435 }
436
vsock_is_accept_queue_empty(struct sock * sk)437 static bool vsock_is_accept_queue_empty(struct sock *sk)
438 {
439 struct vsock_sock *vsk = vsock_sk(sk);
440 return list_empty(&vsk->accept_queue);
441 }
442
vsock_is_pending(struct sock * sk)443 static bool vsock_is_pending(struct sock *sk)
444 {
445 struct vsock_sock *vsk = vsock_sk(sk);
446 return !list_empty(&vsk->pending_links);
447 }
448
vsock_send_shutdown(struct sock * sk,int mode)449 static int vsock_send_shutdown(struct sock *sk, int mode)
450 {
451 return transport->shutdown(vsock_sk(sk), mode);
452 }
453
vsock_pending_work(struct work_struct * work)454 static void vsock_pending_work(struct work_struct *work)
455 {
456 struct sock *sk;
457 struct sock *listener;
458 struct vsock_sock *vsk;
459 bool cleanup;
460
461 vsk = container_of(work, struct vsock_sock, pending_work.work);
462 sk = sk_vsock(vsk);
463 listener = vsk->listener;
464 cleanup = true;
465
466 lock_sock(listener);
467 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
468
469 if (vsock_is_pending(sk)) {
470 vsock_remove_pending(listener, sk);
471
472 listener->sk_ack_backlog--;
473 } else if (!vsk->rejected) {
474 /* We are not on the pending list and accept() did not reject
475 * us, so we must have been accepted by our user process. We
476 * just need to drop our references to the sockets and be on
477 * our way.
478 */
479 cleanup = false;
480 goto out;
481 }
482
483 /* We need to remove ourself from the global connected sockets list so
484 * incoming packets can't find this socket, and to reduce the reference
485 * count.
486 */
487 if (vsock_in_connected_table(vsk))
488 vsock_remove_connected(vsk);
489
490 sk->sk_state = TCP_CLOSE;
491
492 out:
493 release_sock(sk);
494 release_sock(listener);
495 if (cleanup)
496 sock_put(sk);
497
498 sock_put(sk);
499 sock_put(listener);
500 }
501
502 /**** SOCKET OPERATIONS ****/
503
__vsock_bind_stream(struct vsock_sock * vsk,struct sockaddr_vm * addr)504 static int __vsock_bind_stream(struct vsock_sock *vsk,
505 struct sockaddr_vm *addr)
506 {
507 static u32 port = LAST_RESERVED_PORT + 1;
508 struct sockaddr_vm new_addr;
509
510 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
511
512 if (addr->svm_port == VMADDR_PORT_ANY) {
513 bool found = false;
514 unsigned int i;
515
516 for (i = 0; i < MAX_PORT_RETRIES; i++) {
517 if (port <= LAST_RESERVED_PORT)
518 port = LAST_RESERVED_PORT + 1;
519
520 new_addr.svm_port = port++;
521
522 if (!__vsock_find_bound_socket(&new_addr)) {
523 found = true;
524 break;
525 }
526 }
527
528 if (!found)
529 return -EADDRNOTAVAIL;
530 } else {
531 /* If port is in reserved range, ensure caller
532 * has necessary privileges.
533 */
534 if (addr->svm_port <= LAST_RESERVED_PORT &&
535 !capable(CAP_NET_BIND_SERVICE)) {
536 return -EACCES;
537 }
538
539 if (__vsock_find_bound_socket(&new_addr))
540 return -EADDRINUSE;
541 }
542
543 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
544
545 /* Remove stream sockets from the unbound list and add them to the hash
546 * table for easy lookup by its address. The unbound list is simply an
547 * extra entry at the end of the hash table, a trick used by AF_UNIX.
548 */
549 __vsock_remove_bound(vsk);
550 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
551
552 return 0;
553 }
554
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)555 static int __vsock_bind_dgram(struct vsock_sock *vsk,
556 struct sockaddr_vm *addr)
557 {
558 return transport->dgram_bind(vsk, addr);
559 }
560
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)561 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
562 {
563 struct vsock_sock *vsk = vsock_sk(sk);
564 u32 cid;
565 int retval;
566
567 /* First ensure this socket isn't already bound. */
568 if (vsock_addr_bound(&vsk->local_addr))
569 return -EINVAL;
570
571 /* Now bind to the provided address or select appropriate values if
572 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
573 * like AF_INET prevents binding to a non-local IP address (in most
574 * cases), we only allow binding to the local CID.
575 */
576 cid = transport->get_local_cid();
577 if (addr->svm_cid != cid && addr->svm_cid != VMADDR_CID_ANY)
578 return -EADDRNOTAVAIL;
579
580 switch (sk->sk_socket->type) {
581 case SOCK_STREAM:
582 spin_lock_bh(&vsock_table_lock);
583 retval = __vsock_bind_stream(vsk, addr);
584 spin_unlock_bh(&vsock_table_lock);
585 break;
586
587 case SOCK_DGRAM:
588 retval = __vsock_bind_dgram(vsk, addr);
589 break;
590
591 default:
592 retval = -EINVAL;
593 break;
594 }
595
596 return retval;
597 }
598
599 static void vsock_connect_timeout(struct work_struct *work);
600
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)601 struct sock *__vsock_create(struct net *net,
602 struct socket *sock,
603 struct sock *parent,
604 gfp_t priority,
605 unsigned short type,
606 int kern)
607 {
608 struct sock *sk;
609 struct vsock_sock *psk;
610 struct vsock_sock *vsk;
611
612 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
613 if (!sk)
614 return NULL;
615
616 sock_init_data(sock, sk);
617
618 /* sk->sk_type is normally set in sock_init_data, but only if sock is
619 * non-NULL. We make sure that our sockets always have a type by
620 * setting it here if needed.
621 */
622 if (!sock)
623 sk->sk_type = type;
624
625 vsk = vsock_sk(sk);
626 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
627 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
628
629 sk->sk_destruct = vsock_sk_destruct;
630 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
631 sock_reset_flag(sk, SOCK_DONE);
632
633 INIT_LIST_HEAD(&vsk->bound_table);
634 INIT_LIST_HEAD(&vsk->connected_table);
635 vsk->listener = NULL;
636 INIT_LIST_HEAD(&vsk->pending_links);
637 INIT_LIST_HEAD(&vsk->accept_queue);
638 vsk->rejected = false;
639 vsk->sent_request = false;
640 vsk->ignore_connecting_rst = false;
641 vsk->peer_shutdown = 0;
642 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
643 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
644
645 psk = parent ? vsock_sk(parent) : NULL;
646 if (parent) {
647 vsk->trusted = psk->trusted;
648 vsk->owner = get_cred(psk->owner);
649 vsk->connect_timeout = psk->connect_timeout;
650 } else {
651 vsk->trusted = capable(CAP_NET_ADMIN);
652 vsk->owner = get_current_cred();
653 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
654 }
655
656 if (transport->init(vsk, psk) < 0) {
657 sk_free(sk);
658 return NULL;
659 }
660
661 if (sock)
662 vsock_insert_unbound(vsk);
663
664 return sk;
665 }
666 EXPORT_SYMBOL_GPL(__vsock_create);
667
__vsock_release(struct sock * sk)668 static void __vsock_release(struct sock *sk)
669 {
670 if (sk) {
671 struct sk_buff *skb;
672 struct sock *pending;
673 struct vsock_sock *vsk;
674
675 vsk = vsock_sk(sk);
676 pending = NULL; /* Compiler warning. */
677
678 transport->release(vsk);
679
680 lock_sock(sk);
681 sock_orphan(sk);
682 sk->sk_shutdown = SHUTDOWN_MASK;
683
684 while ((skb = skb_dequeue(&sk->sk_receive_queue)))
685 kfree_skb(skb);
686
687 /* Clean up any sockets that never were accepted. */
688 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
689 __vsock_release(pending);
690 sock_put(pending);
691 }
692
693 release_sock(sk);
694 sock_put(sk);
695 }
696 }
697
vsock_sk_destruct(struct sock * sk)698 static void vsock_sk_destruct(struct sock *sk)
699 {
700 struct vsock_sock *vsk = vsock_sk(sk);
701
702 transport->destruct(vsk);
703
704 /* When clearing these addresses, there's no need to set the family and
705 * possibly register the address family with the kernel.
706 */
707 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
708 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
709
710 put_cred(vsk->owner);
711 }
712
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)713 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
714 {
715 int err;
716
717 err = sock_queue_rcv_skb(sk, skb);
718 if (err)
719 kfree_skb(skb);
720
721 return err;
722 }
723
vsock_stream_has_data(struct vsock_sock * vsk)724 s64 vsock_stream_has_data(struct vsock_sock *vsk)
725 {
726 return transport->stream_has_data(vsk);
727 }
728 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
729
vsock_stream_has_space(struct vsock_sock * vsk)730 s64 vsock_stream_has_space(struct vsock_sock *vsk)
731 {
732 return transport->stream_has_space(vsk);
733 }
734 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
735
vsock_release(struct socket * sock)736 static int vsock_release(struct socket *sock)
737 {
738 __vsock_release(sock->sk);
739 sock->sk = NULL;
740 sock->state = SS_FREE;
741
742 return 0;
743 }
744
745 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)746 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
747 {
748 int err;
749 struct sock *sk;
750 struct sockaddr_vm *vm_addr;
751
752 sk = sock->sk;
753
754 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
755 return -EINVAL;
756
757 lock_sock(sk);
758 err = __vsock_bind(sk, vm_addr);
759 release_sock(sk);
760
761 return err;
762 }
763
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)764 static int vsock_getname(struct socket *sock,
765 struct sockaddr *addr, int peer)
766 {
767 int err;
768 struct sock *sk;
769 struct vsock_sock *vsk;
770 struct sockaddr_vm *vm_addr;
771
772 sk = sock->sk;
773 vsk = vsock_sk(sk);
774 err = 0;
775
776 lock_sock(sk);
777
778 if (peer) {
779 if (sock->state != SS_CONNECTED) {
780 err = -ENOTCONN;
781 goto out;
782 }
783 vm_addr = &vsk->remote_addr;
784 } else {
785 vm_addr = &vsk->local_addr;
786 }
787
788 if (!vm_addr) {
789 err = -EINVAL;
790 goto out;
791 }
792
793 /* sys_getsockname() and sys_getpeername() pass us a
794 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
795 * that macro is defined in socket.c instead of .h, so we hardcode its
796 * value here.
797 */
798 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
799 memcpy(addr, vm_addr, sizeof(*vm_addr));
800 err = sizeof(*vm_addr);
801
802 out:
803 release_sock(sk);
804 return err;
805 }
806
vsock_shutdown(struct socket * sock,int mode)807 static int vsock_shutdown(struct socket *sock, int mode)
808 {
809 int err;
810 struct sock *sk;
811
812 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
813 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
814 * here like the other address families do. Note also that the
815 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
816 * which is what we want.
817 */
818 mode++;
819
820 if ((mode & ~SHUTDOWN_MASK) || !mode)
821 return -EINVAL;
822
823 /* If this is a STREAM socket and it is not connected then bail out
824 * immediately. If it is a DGRAM socket then we must first kick the
825 * socket so that it wakes up from any sleeping calls, for example
826 * recv(), and then afterwards return the error.
827 */
828
829 sk = sock->sk;
830 if (sock->state == SS_UNCONNECTED) {
831 err = -ENOTCONN;
832 if (sk->sk_type == SOCK_STREAM)
833 return err;
834 } else {
835 sock->state = SS_DISCONNECTING;
836 err = 0;
837 }
838
839 /* Receive and send shutdowns are treated alike. */
840 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
841 if (mode) {
842 lock_sock(sk);
843 sk->sk_shutdown |= mode;
844 sk->sk_state_change(sk);
845 release_sock(sk);
846
847 if (sk->sk_type == SOCK_STREAM) {
848 sock_reset_flag(sk, SOCK_DONE);
849 vsock_send_shutdown(sk, mode);
850 }
851 }
852
853 return err;
854 }
855
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)856 static __poll_t vsock_poll(struct file *file, struct socket *sock,
857 poll_table *wait)
858 {
859 struct sock *sk;
860 __poll_t mask;
861 struct vsock_sock *vsk;
862
863 sk = sock->sk;
864 vsk = vsock_sk(sk);
865
866 poll_wait(file, sk_sleep(sk), wait);
867 mask = 0;
868
869 if (sk->sk_err)
870 /* Signify that there has been an error on this socket. */
871 mask |= EPOLLERR;
872
873 /* INET sockets treat local write shutdown and peer write shutdown as a
874 * case of EPOLLHUP set.
875 */
876 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
877 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
878 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
879 mask |= EPOLLHUP;
880 }
881
882 if (sk->sk_shutdown & RCV_SHUTDOWN ||
883 vsk->peer_shutdown & SEND_SHUTDOWN) {
884 mask |= EPOLLRDHUP;
885 }
886
887 if (sock->type == SOCK_DGRAM) {
888 /* For datagram sockets we can read if there is something in
889 * the queue and write as long as the socket isn't shutdown for
890 * sending.
891 */
892 if (!skb_queue_empty(&sk->sk_receive_queue) ||
893 (sk->sk_shutdown & RCV_SHUTDOWN)) {
894 mask |= EPOLLIN | EPOLLRDNORM;
895 }
896
897 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
898 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
899
900 } else if (sock->type == SOCK_STREAM) {
901 lock_sock(sk);
902
903 /* Listening sockets that have connections in their accept
904 * queue can be read.
905 */
906 if (sk->sk_state == TCP_LISTEN
907 && !vsock_is_accept_queue_empty(sk))
908 mask |= EPOLLIN | EPOLLRDNORM;
909
910 /* If there is something in the queue then we can read. */
911 if (transport->stream_is_active(vsk) &&
912 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
913 bool data_ready_now = false;
914 int ret = transport->notify_poll_in(
915 vsk, 1, &data_ready_now);
916 if (ret < 0) {
917 mask |= EPOLLERR;
918 } else {
919 if (data_ready_now)
920 mask |= EPOLLIN | EPOLLRDNORM;
921
922 }
923 }
924
925 /* Sockets whose connections have been closed, reset, or
926 * terminated should also be considered read, and we check the
927 * shutdown flag for that.
928 */
929 if (sk->sk_shutdown & RCV_SHUTDOWN ||
930 vsk->peer_shutdown & SEND_SHUTDOWN) {
931 mask |= EPOLLIN | EPOLLRDNORM;
932 }
933
934 /* Connected sockets that can produce data can be written. */
935 if (sk->sk_state == TCP_ESTABLISHED) {
936 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
937 bool space_avail_now = false;
938 int ret = transport->notify_poll_out(
939 vsk, 1, &space_avail_now);
940 if (ret < 0) {
941 mask |= EPOLLERR;
942 } else {
943 if (space_avail_now)
944 /* Remove EPOLLWRBAND since INET
945 * sockets are not setting it.
946 */
947 mask |= EPOLLOUT | EPOLLWRNORM;
948
949 }
950 }
951 }
952
953 /* Simulate INET socket poll behaviors, which sets
954 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
955 * but local send is not shutdown.
956 */
957 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
958 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
959 mask |= EPOLLOUT | EPOLLWRNORM;
960
961 }
962
963 release_sock(sk);
964 }
965
966 return mask;
967 }
968
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)969 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
970 size_t len)
971 {
972 int err;
973 struct sock *sk;
974 struct vsock_sock *vsk;
975 struct sockaddr_vm *remote_addr;
976
977 if (msg->msg_flags & MSG_OOB)
978 return -EOPNOTSUPP;
979
980 /* For now, MSG_DONTWAIT is always assumed... */
981 err = 0;
982 sk = sock->sk;
983 vsk = vsock_sk(sk);
984
985 lock_sock(sk);
986
987 err = vsock_auto_bind(vsk);
988 if (err)
989 goto out;
990
991
992 /* If the provided message contains an address, use that. Otherwise
993 * fall back on the socket's remote handle (if it has been connected).
994 */
995 if (msg->msg_name &&
996 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
997 &remote_addr) == 0) {
998 /* Ensure this address is of the right type and is a valid
999 * destination.
1000 */
1001
1002 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1003 remote_addr->svm_cid = transport->get_local_cid();
1004
1005 if (!vsock_addr_bound(remote_addr)) {
1006 err = -EINVAL;
1007 goto out;
1008 }
1009 } else if (sock->state == SS_CONNECTED) {
1010 remote_addr = &vsk->remote_addr;
1011
1012 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1013 remote_addr->svm_cid = transport->get_local_cid();
1014
1015 /* XXX Should connect() or this function ensure remote_addr is
1016 * bound?
1017 */
1018 if (!vsock_addr_bound(&vsk->remote_addr)) {
1019 err = -EINVAL;
1020 goto out;
1021 }
1022 } else {
1023 err = -EINVAL;
1024 goto out;
1025 }
1026
1027 if (!transport->dgram_allow(remote_addr->svm_cid,
1028 remote_addr->svm_port)) {
1029 err = -EINVAL;
1030 goto out;
1031 }
1032
1033 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1034
1035 out:
1036 release_sock(sk);
1037 return err;
1038 }
1039
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1040 static int vsock_dgram_connect(struct socket *sock,
1041 struct sockaddr *addr, int addr_len, int flags)
1042 {
1043 int err;
1044 struct sock *sk;
1045 struct vsock_sock *vsk;
1046 struct sockaddr_vm *remote_addr;
1047
1048 sk = sock->sk;
1049 vsk = vsock_sk(sk);
1050
1051 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1052 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1053 lock_sock(sk);
1054 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1055 VMADDR_PORT_ANY);
1056 sock->state = SS_UNCONNECTED;
1057 release_sock(sk);
1058 return 0;
1059 } else if (err != 0)
1060 return -EINVAL;
1061
1062 lock_sock(sk);
1063
1064 err = vsock_auto_bind(vsk);
1065 if (err)
1066 goto out;
1067
1068 if (!transport->dgram_allow(remote_addr->svm_cid,
1069 remote_addr->svm_port)) {
1070 err = -EINVAL;
1071 goto out;
1072 }
1073
1074 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1075 sock->state = SS_CONNECTED;
1076
1077 out:
1078 release_sock(sk);
1079 return err;
1080 }
1081
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1082 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1083 size_t len, int flags)
1084 {
1085 return transport->dgram_dequeue(vsock_sk(sock->sk), msg, len, flags);
1086 }
1087
1088 static const struct proto_ops vsock_dgram_ops = {
1089 .family = PF_VSOCK,
1090 .owner = THIS_MODULE,
1091 .release = vsock_release,
1092 .bind = vsock_bind,
1093 .connect = vsock_dgram_connect,
1094 .socketpair = sock_no_socketpair,
1095 .accept = sock_no_accept,
1096 .getname = vsock_getname,
1097 .poll = vsock_poll,
1098 .ioctl = sock_no_ioctl,
1099 .listen = sock_no_listen,
1100 .shutdown = vsock_shutdown,
1101 .setsockopt = sock_no_setsockopt,
1102 .getsockopt = sock_no_getsockopt,
1103 .sendmsg = vsock_dgram_sendmsg,
1104 .recvmsg = vsock_dgram_recvmsg,
1105 .mmap = sock_no_mmap,
1106 .sendpage = sock_no_sendpage,
1107 };
1108
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1109 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1110 {
1111 if (!transport->cancel_pkt)
1112 return -EOPNOTSUPP;
1113
1114 return transport->cancel_pkt(vsk);
1115 }
1116
vsock_connect_timeout(struct work_struct * work)1117 static void vsock_connect_timeout(struct work_struct *work)
1118 {
1119 struct sock *sk;
1120 struct vsock_sock *vsk;
1121 int cancel = 0;
1122
1123 vsk = container_of(work, struct vsock_sock, connect_work.work);
1124 sk = sk_vsock(vsk);
1125
1126 lock_sock(sk);
1127 if (sk->sk_state == TCP_SYN_SENT &&
1128 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1129 sk->sk_state = TCP_CLOSE;
1130 sk->sk_err = ETIMEDOUT;
1131 sk->sk_error_report(sk);
1132 cancel = 1;
1133 }
1134 release_sock(sk);
1135 if (cancel)
1136 vsock_transport_cancel_pkt(vsk);
1137
1138 sock_put(sk);
1139 }
1140
vsock_stream_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1141 static int vsock_stream_connect(struct socket *sock, struct sockaddr *addr,
1142 int addr_len, int flags)
1143 {
1144 int err;
1145 struct sock *sk;
1146 struct vsock_sock *vsk;
1147 struct sockaddr_vm *remote_addr;
1148 long timeout;
1149 DEFINE_WAIT(wait);
1150
1151 err = 0;
1152 sk = sock->sk;
1153 vsk = vsock_sk(sk);
1154
1155 lock_sock(sk);
1156
1157 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1158 switch (sock->state) {
1159 case SS_CONNECTED:
1160 err = -EISCONN;
1161 goto out;
1162 case SS_DISCONNECTING:
1163 err = -EINVAL;
1164 goto out;
1165 case SS_CONNECTING:
1166 /* This continues on so we can move sock into the SS_CONNECTED
1167 * state once the connection has completed (at which point err
1168 * will be set to zero also). Otherwise, we will either wait
1169 * for the connection or return -EALREADY should this be a
1170 * non-blocking call.
1171 */
1172 err = -EALREADY;
1173 break;
1174 default:
1175 if ((sk->sk_state == TCP_LISTEN) ||
1176 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1177 err = -EINVAL;
1178 goto out;
1179 }
1180
1181 /* The hypervisor and well-known contexts do not have socket
1182 * endpoints.
1183 */
1184 if (!transport->stream_allow(remote_addr->svm_cid,
1185 remote_addr->svm_port)) {
1186 err = -ENETUNREACH;
1187 goto out;
1188 }
1189
1190 /* Set the remote address that we are connecting to. */
1191 memcpy(&vsk->remote_addr, remote_addr,
1192 sizeof(vsk->remote_addr));
1193
1194 err = vsock_auto_bind(vsk);
1195 if (err)
1196 goto out;
1197
1198 sk->sk_state = TCP_SYN_SENT;
1199
1200 err = transport->connect(vsk);
1201 if (err < 0)
1202 goto out;
1203
1204 /* Mark sock as connecting and set the error code to in
1205 * progress in case this is a non-blocking connect.
1206 */
1207 sock->state = SS_CONNECTING;
1208 err = -EINPROGRESS;
1209 }
1210
1211 /* The receive path will handle all communication until we are able to
1212 * enter the connected state. Here we wait for the connection to be
1213 * completed or a notification of an error.
1214 */
1215 timeout = vsk->connect_timeout;
1216 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1217
1218 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1219 if (flags & O_NONBLOCK) {
1220 /* If we're not going to block, we schedule a timeout
1221 * function to generate a timeout on the connection
1222 * attempt, in case the peer doesn't respond in a
1223 * timely manner. We hold on to the socket until the
1224 * timeout fires.
1225 */
1226 sock_hold(sk);
1227 schedule_delayed_work(&vsk->connect_work, timeout);
1228
1229 /* Skip ahead to preserve error code set above. */
1230 goto out_wait;
1231 }
1232
1233 release_sock(sk);
1234 timeout = schedule_timeout(timeout);
1235 lock_sock(sk);
1236
1237 if (signal_pending(current)) {
1238 err = sock_intr_errno(timeout);
1239 sk->sk_state = TCP_CLOSE;
1240 sock->state = SS_UNCONNECTED;
1241 vsock_transport_cancel_pkt(vsk);
1242 goto out_wait;
1243 } else if (timeout == 0) {
1244 err = -ETIMEDOUT;
1245 sk->sk_state = TCP_CLOSE;
1246 sock->state = SS_UNCONNECTED;
1247 vsock_transport_cancel_pkt(vsk);
1248 goto out_wait;
1249 }
1250
1251 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1252 }
1253
1254 if (sk->sk_err) {
1255 err = -sk->sk_err;
1256 sk->sk_state = TCP_CLOSE;
1257 sock->state = SS_UNCONNECTED;
1258 } else {
1259 err = 0;
1260 }
1261
1262 out_wait:
1263 finish_wait(sk_sleep(sk), &wait);
1264 out:
1265 release_sock(sk);
1266 return err;
1267 }
1268
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1269 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1270 bool kern)
1271 {
1272 struct sock *listener;
1273 int err;
1274 struct sock *connected;
1275 struct vsock_sock *vconnected;
1276 long timeout;
1277 DEFINE_WAIT(wait);
1278
1279 err = 0;
1280 listener = sock->sk;
1281
1282 lock_sock(listener);
1283
1284 if (sock->type != SOCK_STREAM) {
1285 err = -EOPNOTSUPP;
1286 goto out;
1287 }
1288
1289 if (listener->sk_state != TCP_LISTEN) {
1290 err = -EINVAL;
1291 goto out;
1292 }
1293
1294 /* Wait for children sockets to appear; these are the new sockets
1295 * created upon connection establishment.
1296 */
1297 timeout = sock_sndtimeo(listener, flags & O_NONBLOCK);
1298 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1299
1300 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1301 listener->sk_err == 0) {
1302 release_sock(listener);
1303 timeout = schedule_timeout(timeout);
1304 finish_wait(sk_sleep(listener), &wait);
1305 lock_sock(listener);
1306
1307 if (signal_pending(current)) {
1308 err = sock_intr_errno(timeout);
1309 goto out;
1310 } else if (timeout == 0) {
1311 err = -EAGAIN;
1312 goto out;
1313 }
1314
1315 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1316 }
1317 finish_wait(sk_sleep(listener), &wait);
1318
1319 if (listener->sk_err)
1320 err = -listener->sk_err;
1321
1322 if (connected) {
1323 listener->sk_ack_backlog--;
1324
1325 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1326 vconnected = vsock_sk(connected);
1327
1328 /* If the listener socket has received an error, then we should
1329 * reject this socket and return. Note that we simply mark the
1330 * socket rejected, drop our reference, and let the cleanup
1331 * function handle the cleanup; the fact that we found it in
1332 * the listener's accept queue guarantees that the cleanup
1333 * function hasn't run yet.
1334 */
1335 if (err) {
1336 vconnected->rejected = true;
1337 } else {
1338 newsock->state = SS_CONNECTED;
1339 sock_graft(connected, newsock);
1340 }
1341
1342 release_sock(connected);
1343 sock_put(connected);
1344 }
1345
1346 out:
1347 release_sock(listener);
1348 return err;
1349 }
1350
vsock_listen(struct socket * sock,int backlog)1351 static int vsock_listen(struct socket *sock, int backlog)
1352 {
1353 int err;
1354 struct sock *sk;
1355 struct vsock_sock *vsk;
1356
1357 sk = sock->sk;
1358
1359 lock_sock(sk);
1360
1361 if (sock->type != SOCK_STREAM) {
1362 err = -EOPNOTSUPP;
1363 goto out;
1364 }
1365
1366 if (sock->state != SS_UNCONNECTED) {
1367 err = -EINVAL;
1368 goto out;
1369 }
1370
1371 vsk = vsock_sk(sk);
1372
1373 if (!vsock_addr_bound(&vsk->local_addr)) {
1374 err = -EINVAL;
1375 goto out;
1376 }
1377
1378 sk->sk_max_ack_backlog = backlog;
1379 sk->sk_state = TCP_LISTEN;
1380
1381 err = 0;
1382
1383 out:
1384 release_sock(sk);
1385 return err;
1386 }
1387
vsock_stream_setsockopt(struct socket * sock,int level,int optname,char __user * optval,unsigned int optlen)1388 static int vsock_stream_setsockopt(struct socket *sock,
1389 int level,
1390 int optname,
1391 char __user *optval,
1392 unsigned int optlen)
1393 {
1394 int err;
1395 struct sock *sk;
1396 struct vsock_sock *vsk;
1397 u64 val;
1398
1399 if (level != AF_VSOCK)
1400 return -ENOPROTOOPT;
1401
1402 #define COPY_IN(_v) \
1403 do { \
1404 if (optlen < sizeof(_v)) { \
1405 err = -EINVAL; \
1406 goto exit; \
1407 } \
1408 if (copy_from_user(&_v, optval, sizeof(_v)) != 0) { \
1409 err = -EFAULT; \
1410 goto exit; \
1411 } \
1412 } while (0)
1413
1414 err = 0;
1415 sk = sock->sk;
1416 vsk = vsock_sk(sk);
1417
1418 lock_sock(sk);
1419
1420 switch (optname) {
1421 case SO_VM_SOCKETS_BUFFER_SIZE:
1422 COPY_IN(val);
1423 transport->set_buffer_size(vsk, val);
1424 break;
1425
1426 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1427 COPY_IN(val);
1428 transport->set_max_buffer_size(vsk, val);
1429 break;
1430
1431 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1432 COPY_IN(val);
1433 transport->set_min_buffer_size(vsk, val);
1434 break;
1435
1436 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1437 struct timeval tv;
1438 COPY_IN(tv);
1439 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1440 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1441 vsk->connect_timeout = tv.tv_sec * HZ +
1442 DIV_ROUND_UP(tv.tv_usec, (1000000 / HZ));
1443 if (vsk->connect_timeout == 0)
1444 vsk->connect_timeout =
1445 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1446
1447 } else {
1448 err = -ERANGE;
1449 }
1450 break;
1451 }
1452
1453 default:
1454 err = -ENOPROTOOPT;
1455 break;
1456 }
1457
1458 #undef COPY_IN
1459
1460 exit:
1461 release_sock(sk);
1462 return err;
1463 }
1464
vsock_stream_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1465 static int vsock_stream_getsockopt(struct socket *sock,
1466 int level, int optname,
1467 char __user *optval,
1468 int __user *optlen)
1469 {
1470 int err;
1471 int len;
1472 struct sock *sk;
1473 struct vsock_sock *vsk;
1474 u64 val;
1475
1476 if (level != AF_VSOCK)
1477 return -ENOPROTOOPT;
1478
1479 err = get_user(len, optlen);
1480 if (err != 0)
1481 return err;
1482
1483 #define COPY_OUT(_v) \
1484 do { \
1485 if (len < sizeof(_v)) \
1486 return -EINVAL; \
1487 \
1488 len = sizeof(_v); \
1489 if (copy_to_user(optval, &_v, len) != 0) \
1490 return -EFAULT; \
1491 \
1492 } while (0)
1493
1494 err = 0;
1495 sk = sock->sk;
1496 vsk = vsock_sk(sk);
1497
1498 switch (optname) {
1499 case SO_VM_SOCKETS_BUFFER_SIZE:
1500 val = transport->get_buffer_size(vsk);
1501 COPY_OUT(val);
1502 break;
1503
1504 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1505 val = transport->get_max_buffer_size(vsk);
1506 COPY_OUT(val);
1507 break;
1508
1509 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1510 val = transport->get_min_buffer_size(vsk);
1511 COPY_OUT(val);
1512 break;
1513
1514 case SO_VM_SOCKETS_CONNECT_TIMEOUT: {
1515 struct timeval tv;
1516 tv.tv_sec = vsk->connect_timeout / HZ;
1517 tv.tv_usec =
1518 (vsk->connect_timeout -
1519 tv.tv_sec * HZ) * (1000000 / HZ);
1520 COPY_OUT(tv);
1521 break;
1522 }
1523 default:
1524 return -ENOPROTOOPT;
1525 }
1526
1527 err = put_user(len, optlen);
1528 if (err != 0)
1529 return -EFAULT;
1530
1531 #undef COPY_OUT
1532
1533 return 0;
1534 }
1535
vsock_stream_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1536 static int vsock_stream_sendmsg(struct socket *sock, struct msghdr *msg,
1537 size_t len)
1538 {
1539 struct sock *sk;
1540 struct vsock_sock *vsk;
1541 ssize_t total_written;
1542 long timeout;
1543 int err;
1544 struct vsock_transport_send_notify_data send_data;
1545 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1546
1547 sk = sock->sk;
1548 vsk = vsock_sk(sk);
1549 total_written = 0;
1550 err = 0;
1551
1552 if (msg->msg_flags & MSG_OOB)
1553 return -EOPNOTSUPP;
1554
1555 lock_sock(sk);
1556
1557 /* Callers should not provide a destination with stream sockets. */
1558 if (msg->msg_namelen) {
1559 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1560 goto out;
1561 }
1562
1563 /* Send data only if both sides are not shutdown in the direction. */
1564 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1565 vsk->peer_shutdown & RCV_SHUTDOWN) {
1566 err = -EPIPE;
1567 goto out;
1568 }
1569
1570 if (sk->sk_state != TCP_ESTABLISHED ||
1571 !vsock_addr_bound(&vsk->local_addr)) {
1572 err = -ENOTCONN;
1573 goto out;
1574 }
1575
1576 if (!vsock_addr_bound(&vsk->remote_addr)) {
1577 err = -EDESTADDRREQ;
1578 goto out;
1579 }
1580
1581 /* Wait for room in the produce queue to enqueue our user's data. */
1582 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1583
1584 err = transport->notify_send_init(vsk, &send_data);
1585 if (err < 0)
1586 goto out;
1587
1588 while (total_written < len) {
1589 ssize_t written;
1590
1591 add_wait_queue(sk_sleep(sk), &wait);
1592 while (vsock_stream_has_space(vsk) == 0 &&
1593 sk->sk_err == 0 &&
1594 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1595 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1596
1597 /* Don't wait for non-blocking sockets. */
1598 if (timeout == 0) {
1599 err = -EAGAIN;
1600 remove_wait_queue(sk_sleep(sk), &wait);
1601 goto out_err;
1602 }
1603
1604 err = transport->notify_send_pre_block(vsk, &send_data);
1605 if (err < 0) {
1606 remove_wait_queue(sk_sleep(sk), &wait);
1607 goto out_err;
1608 }
1609
1610 release_sock(sk);
1611 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1612 lock_sock(sk);
1613 if (signal_pending(current)) {
1614 err = sock_intr_errno(timeout);
1615 remove_wait_queue(sk_sleep(sk), &wait);
1616 goto out_err;
1617 } else if (timeout == 0) {
1618 err = -EAGAIN;
1619 remove_wait_queue(sk_sleep(sk), &wait);
1620 goto out_err;
1621 }
1622 }
1623 remove_wait_queue(sk_sleep(sk), &wait);
1624
1625 /* These checks occur both as part of and after the loop
1626 * conditional since we need to check before and after
1627 * sleeping.
1628 */
1629 if (sk->sk_err) {
1630 err = -sk->sk_err;
1631 goto out_err;
1632 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1633 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1634 err = -EPIPE;
1635 goto out_err;
1636 }
1637
1638 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1639 if (err < 0)
1640 goto out_err;
1641
1642 /* Note that enqueue will only write as many bytes as are free
1643 * in the produce queue, so we don't need to ensure len is
1644 * smaller than the queue size. It is the caller's
1645 * responsibility to check how many bytes we were able to send.
1646 */
1647
1648 written = transport->stream_enqueue(
1649 vsk, msg,
1650 len - total_written);
1651 if (written < 0) {
1652 err = -ENOMEM;
1653 goto out_err;
1654 }
1655
1656 total_written += written;
1657
1658 err = transport->notify_send_post_enqueue(
1659 vsk, written, &send_data);
1660 if (err < 0)
1661 goto out_err;
1662
1663 }
1664
1665 out_err:
1666 if (total_written > 0)
1667 err = total_written;
1668 out:
1669 release_sock(sk);
1670 return err;
1671 }
1672
1673
1674 static int
vsock_stream_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1675 vsock_stream_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
1676 int flags)
1677 {
1678 struct sock *sk;
1679 struct vsock_sock *vsk;
1680 int err;
1681 size_t target;
1682 ssize_t copied;
1683 long timeout;
1684 struct vsock_transport_recv_notify_data recv_data;
1685
1686 DEFINE_WAIT(wait);
1687
1688 sk = sock->sk;
1689 vsk = vsock_sk(sk);
1690 err = 0;
1691
1692 lock_sock(sk);
1693
1694 if (sk->sk_state != TCP_ESTABLISHED) {
1695 /* Recvmsg is supposed to return 0 if a peer performs an
1696 * orderly shutdown. Differentiate between that case and when a
1697 * peer has not connected or a local shutdown occured with the
1698 * SOCK_DONE flag.
1699 */
1700 if (sock_flag(sk, SOCK_DONE))
1701 err = 0;
1702 else
1703 err = -ENOTCONN;
1704
1705 goto out;
1706 }
1707
1708 if (flags & MSG_OOB) {
1709 err = -EOPNOTSUPP;
1710 goto out;
1711 }
1712
1713 /* We don't check peer_shutdown flag here since peer may actually shut
1714 * down, but there can be data in the queue that a local socket can
1715 * receive.
1716 */
1717 if (sk->sk_shutdown & RCV_SHUTDOWN) {
1718 err = 0;
1719 goto out;
1720 }
1721
1722 /* It is valid on Linux to pass in a zero-length receive buffer. This
1723 * is not an error. We may as well bail out now.
1724 */
1725 if (!len) {
1726 err = 0;
1727 goto out;
1728 }
1729
1730 /* We must not copy less than target bytes into the user's buffer
1731 * before returning successfully, so we wait for the consume queue to
1732 * have that much data to consume before dequeueing. Note that this
1733 * makes it impossible to handle cases where target is greater than the
1734 * queue size.
1735 */
1736 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1737 if (target >= transport->stream_rcvhiwat(vsk)) {
1738 err = -ENOMEM;
1739 goto out;
1740 }
1741 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1742 copied = 0;
1743
1744 err = transport->notify_recv_init(vsk, target, &recv_data);
1745 if (err < 0)
1746 goto out;
1747
1748
1749 while (1) {
1750 s64 ready;
1751
1752 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1753 ready = vsock_stream_has_data(vsk);
1754
1755 if (ready == 0) {
1756 if (sk->sk_err != 0 ||
1757 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1758 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1759 finish_wait(sk_sleep(sk), &wait);
1760 break;
1761 }
1762 /* Don't wait for non-blocking sockets. */
1763 if (timeout == 0) {
1764 err = -EAGAIN;
1765 finish_wait(sk_sleep(sk), &wait);
1766 break;
1767 }
1768
1769 err = transport->notify_recv_pre_block(
1770 vsk, target, &recv_data);
1771 if (err < 0) {
1772 finish_wait(sk_sleep(sk), &wait);
1773 break;
1774 }
1775 release_sock(sk);
1776 timeout = schedule_timeout(timeout);
1777 lock_sock(sk);
1778
1779 if (signal_pending(current)) {
1780 err = sock_intr_errno(timeout);
1781 finish_wait(sk_sleep(sk), &wait);
1782 break;
1783 } else if (timeout == 0) {
1784 err = -EAGAIN;
1785 finish_wait(sk_sleep(sk), &wait);
1786 break;
1787 }
1788 } else {
1789 ssize_t read;
1790
1791 finish_wait(sk_sleep(sk), &wait);
1792
1793 if (ready < 0) {
1794 /* Invalid queue pair content. XXX This should
1795 * be changed to a connection reset in a later
1796 * change.
1797 */
1798
1799 err = -ENOMEM;
1800 goto out;
1801 }
1802
1803 err = transport->notify_recv_pre_dequeue(
1804 vsk, target, &recv_data);
1805 if (err < 0)
1806 break;
1807
1808 read = transport->stream_dequeue(
1809 vsk, msg,
1810 len - copied, flags);
1811 if (read < 0) {
1812 err = -ENOMEM;
1813 break;
1814 }
1815
1816 copied += read;
1817
1818 err = transport->notify_recv_post_dequeue(
1819 vsk, target, read,
1820 !(flags & MSG_PEEK), &recv_data);
1821 if (err < 0)
1822 goto out;
1823
1824 if (read >= target || flags & MSG_PEEK)
1825 break;
1826
1827 target -= read;
1828 }
1829 }
1830
1831 if (sk->sk_err)
1832 err = -sk->sk_err;
1833 else if (sk->sk_shutdown & RCV_SHUTDOWN)
1834 err = 0;
1835
1836 if (copied > 0)
1837 err = copied;
1838
1839 out:
1840 release_sock(sk);
1841 return err;
1842 }
1843
1844 static const struct proto_ops vsock_stream_ops = {
1845 .family = PF_VSOCK,
1846 .owner = THIS_MODULE,
1847 .release = vsock_release,
1848 .bind = vsock_bind,
1849 .connect = vsock_stream_connect,
1850 .socketpair = sock_no_socketpair,
1851 .accept = vsock_accept,
1852 .getname = vsock_getname,
1853 .poll = vsock_poll,
1854 .ioctl = sock_no_ioctl,
1855 .listen = vsock_listen,
1856 .shutdown = vsock_shutdown,
1857 .setsockopt = vsock_stream_setsockopt,
1858 .getsockopt = vsock_stream_getsockopt,
1859 .sendmsg = vsock_stream_sendmsg,
1860 .recvmsg = vsock_stream_recvmsg,
1861 .mmap = sock_no_mmap,
1862 .sendpage = sock_no_sendpage,
1863 };
1864
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)1865 static int vsock_create(struct net *net, struct socket *sock,
1866 int protocol, int kern)
1867 {
1868 if (!sock)
1869 return -EINVAL;
1870
1871 if (protocol && protocol != PF_VSOCK)
1872 return -EPROTONOSUPPORT;
1873
1874 switch (sock->type) {
1875 case SOCK_DGRAM:
1876 sock->ops = &vsock_dgram_ops;
1877 break;
1878 case SOCK_STREAM:
1879 sock->ops = &vsock_stream_ops;
1880 break;
1881 default:
1882 return -ESOCKTNOSUPPORT;
1883 }
1884
1885 sock->state = SS_UNCONNECTED;
1886
1887 return __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern) ? 0 : -ENOMEM;
1888 }
1889
1890 static const struct net_proto_family vsock_family_ops = {
1891 .family = AF_VSOCK,
1892 .create = vsock_create,
1893 .owner = THIS_MODULE,
1894 };
1895
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)1896 static long vsock_dev_do_ioctl(struct file *filp,
1897 unsigned int cmd, void __user *ptr)
1898 {
1899 u32 __user *p = ptr;
1900 int retval = 0;
1901
1902 switch (cmd) {
1903 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
1904 if (put_user(transport->get_local_cid(), p) != 0)
1905 retval = -EFAULT;
1906 break;
1907
1908 default:
1909 pr_err("Unknown ioctl %d\n", cmd);
1910 retval = -EINVAL;
1911 }
1912
1913 return retval;
1914 }
1915
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1916 static long vsock_dev_ioctl(struct file *filp,
1917 unsigned int cmd, unsigned long arg)
1918 {
1919 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
1920 }
1921
1922 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1923 static long vsock_dev_compat_ioctl(struct file *filp,
1924 unsigned int cmd, unsigned long arg)
1925 {
1926 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
1927 }
1928 #endif
1929
1930 static const struct file_operations vsock_device_ops = {
1931 .owner = THIS_MODULE,
1932 .unlocked_ioctl = vsock_dev_ioctl,
1933 #ifdef CONFIG_COMPAT
1934 .compat_ioctl = vsock_dev_compat_ioctl,
1935 #endif
1936 .open = nonseekable_open,
1937 };
1938
1939 static struct miscdevice vsock_device = {
1940 .name = "vsock",
1941 .fops = &vsock_device_ops,
1942 };
1943
__vsock_core_init(const struct vsock_transport * t,struct module * owner)1944 int __vsock_core_init(const struct vsock_transport *t, struct module *owner)
1945 {
1946 int err = mutex_lock_interruptible(&vsock_register_mutex);
1947
1948 if (err)
1949 return err;
1950
1951 if (transport) {
1952 err = -EBUSY;
1953 goto err_busy;
1954 }
1955
1956 /* Transport must be the owner of the protocol so that it can't
1957 * unload while there are open sockets.
1958 */
1959 vsock_proto.owner = owner;
1960 transport = t;
1961
1962 vsock_device.minor = MISC_DYNAMIC_MINOR;
1963 err = misc_register(&vsock_device);
1964 if (err) {
1965 pr_err("Failed to register misc device\n");
1966 goto err_reset_transport;
1967 }
1968
1969 err = proto_register(&vsock_proto, 1); /* we want our slab */
1970 if (err) {
1971 pr_err("Cannot register vsock protocol\n");
1972 goto err_deregister_misc;
1973 }
1974
1975 err = sock_register(&vsock_family_ops);
1976 if (err) {
1977 pr_err("could not register af_vsock (%d) address family: %d\n",
1978 AF_VSOCK, err);
1979 goto err_unregister_proto;
1980 }
1981
1982 mutex_unlock(&vsock_register_mutex);
1983 return 0;
1984
1985 err_unregister_proto:
1986 proto_unregister(&vsock_proto);
1987 err_deregister_misc:
1988 misc_deregister(&vsock_device);
1989 err_reset_transport:
1990 transport = NULL;
1991 err_busy:
1992 mutex_unlock(&vsock_register_mutex);
1993 return err;
1994 }
1995 EXPORT_SYMBOL_GPL(__vsock_core_init);
1996
vsock_core_exit(void)1997 void vsock_core_exit(void)
1998 {
1999 mutex_lock(&vsock_register_mutex);
2000
2001 misc_deregister(&vsock_device);
2002 sock_unregister(AF_VSOCK);
2003 proto_unregister(&vsock_proto);
2004
2005 /* We do not want the assignment below re-ordered. */
2006 mb();
2007 transport = NULL;
2008
2009 mutex_unlock(&vsock_register_mutex);
2010 }
2011 EXPORT_SYMBOL_GPL(vsock_core_exit);
2012
vsock_core_get_transport(void)2013 const struct vsock_transport *vsock_core_get_transport(void)
2014 {
2015 /* vsock_register_mutex not taken since only the transport uses this
2016 * function and only while registered.
2017 */
2018 return transport;
2019 }
2020 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2021
vsock_exit(void)2022 static void __exit vsock_exit(void)
2023 {
2024 /* Do nothing. This function makes this module removable. */
2025 }
2026
2027 module_init(vsock_init_tables);
2028 module_exit(vsock_exit);
2029
2030 MODULE_AUTHOR("VMware, Inc.");
2031 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2032 MODULE_VERSION("1.0.2.0-k");
2033 MODULE_LICENSE("GPL v2");
2034