1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2016 MediaTek Inc.
4 * Author: Andrew-CT Chen <andrew-ct.chen@mediatek.com>
5 */
6 #include <linux/clk.h>
7 #include <linux/debugfs.h>
8 #include <linux/firmware.h>
9 #include <linux/interrupt.h>
10 #include <linux/iommu.h>
11 #include <linux/module.h>
12 #include <linux/of_address.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_platform.h>
15 #include <linux/of_reserved_mem.h>
16 #include <linux/sched.h>
17 #include <linux/sizes.h>
18 #include <linux/dma-mapping.h>
19
20 #include "mtk_vpu.h"
21
22 /**
23 * VPU (video processor unit) is a tiny processor controlling video hardware
24 * related to video codec, scaling and color format converting.
25 * VPU interfaces with other blocks by share memory and interrupt.
26 **/
27
28 #define INIT_TIMEOUT_MS 2000U
29 #define IPI_TIMEOUT_MS 2000U
30 #define VPU_FW_VER_LEN 16
31
32 /* maximum program/data TCM (Tightly-Coupled Memory) size */
33 #define VPU_PTCM_SIZE (96 * SZ_1K)
34 #define VPU_DTCM_SIZE (32 * SZ_1K)
35 /* the offset to get data tcm address */
36 #define VPU_DTCM_OFFSET 0x18000UL
37 /* daynamic allocated maximum extended memory size */
38 #define VPU_EXT_P_SIZE SZ_1M
39 #define VPU_EXT_D_SIZE SZ_4M
40 /* maximum binary firmware size */
41 #define VPU_P_FW_SIZE (VPU_PTCM_SIZE + VPU_EXT_P_SIZE)
42 #define VPU_D_FW_SIZE (VPU_DTCM_SIZE + VPU_EXT_D_SIZE)
43 /* the size of share buffer between Host and VPU */
44 #define SHARE_BUF_SIZE 48
45
46 /* binary firmware name */
47 #define VPU_P_FW "vpu_p.bin"
48 #define VPU_D_FW "vpu_d.bin"
49 #define VPU_P_FW_NEW "mediatek/mt8173/vpu_p.bin"
50 #define VPU_D_FW_NEW "mediatek/mt8173/vpu_d.bin"
51
52 #define VPU_RESET 0x0
53 #define VPU_TCM_CFG 0x0008
54 #define VPU_PMEM_EXT0_ADDR 0x000C
55 #define VPU_PMEM_EXT1_ADDR 0x0010
56 #define VPU_TO_HOST 0x001C
57 #define VPU_DMEM_EXT0_ADDR 0x0014
58 #define VPU_DMEM_EXT1_ADDR 0x0018
59 #define HOST_TO_VPU 0x0024
60 #define VPU_PC_REG 0x0060
61 #define VPU_WDT_REG 0x0084
62
63 /* vpu inter-processor communication interrupt */
64 #define VPU_IPC_INT BIT(8)
65
66 /**
67 * enum vpu_fw_type - VPU firmware type
68 *
69 * @P_FW: program firmware
70 * @D_FW: data firmware
71 *
72 */
73 enum vpu_fw_type {
74 P_FW,
75 D_FW,
76 };
77
78 /**
79 * struct vpu_mem - VPU extended program/data memory information
80 *
81 * @va: the kernel virtual memory address of VPU extended memory
82 * @pa: the physical memory address of VPU extended memory
83 *
84 */
85 struct vpu_mem {
86 void *va;
87 dma_addr_t pa;
88 };
89
90 /**
91 * struct vpu_regs - VPU TCM and configuration registers
92 *
93 * @tcm: the register for VPU Tightly-Coupled Memory
94 * @cfg: the register for VPU configuration
95 * @irq: the irq number for VPU interrupt
96 */
97 struct vpu_regs {
98 void __iomem *tcm;
99 void __iomem *cfg;
100 int irq;
101 };
102
103 /**
104 * struct vpu_wdt_handler - VPU watchdog reset handler
105 *
106 * @reset_func: reset handler
107 * @priv: private data
108 */
109 struct vpu_wdt_handler {
110 void (*reset_func)(void *);
111 void *priv;
112 };
113
114 /**
115 * struct vpu_wdt - VPU watchdog workqueue
116 *
117 * @handler: VPU watchdog reset handler
118 * @ws: workstruct for VPU watchdog
119 * @wq: workqueue for VPU watchdog
120 */
121 struct vpu_wdt {
122 struct vpu_wdt_handler handler[VPU_RST_MAX];
123 struct work_struct ws;
124 struct workqueue_struct *wq;
125 };
126
127 /**
128 * struct vpu_run - VPU initialization status
129 *
130 * @signaled: the signal of vpu initialization completed
131 * @fw_ver: VPU firmware version
132 * @dec_capability: decoder capability which is not used for now and
133 * the value is reserved for future use
134 * @enc_capability: encoder capability which is not used for now and
135 * the value is reserved for future use
136 * @wq: wait queue for VPU initialization status
137 */
138 struct vpu_run {
139 u32 signaled;
140 char fw_ver[VPU_FW_VER_LEN];
141 unsigned int dec_capability;
142 unsigned int enc_capability;
143 wait_queue_head_t wq;
144 };
145
146 /**
147 * struct vpu_ipi_desc - VPU IPI descriptor
148 *
149 * @handler: IPI handler
150 * @name: the name of IPI handler
151 * @priv: the private data of IPI handler
152 */
153 struct vpu_ipi_desc {
154 ipi_handler_t handler;
155 const char *name;
156 void *priv;
157 };
158
159 /**
160 * struct share_obj - DTCM (Data Tightly-Coupled Memory) buffer shared with
161 * AP and VPU
162 *
163 * @id: IPI id
164 * @len: share buffer length
165 * @share_buf: share buffer data
166 */
167 struct share_obj {
168 s32 id;
169 u32 len;
170 unsigned char share_buf[SHARE_BUF_SIZE];
171 };
172
173 /**
174 * struct mtk_vpu - vpu driver data
175 * @extmem: VPU extended memory information
176 * @reg: VPU TCM and configuration registers
177 * @run: VPU initialization status
178 * @wdt: VPU watchdog workqueue
179 * @ipi_desc: VPU IPI descriptor
180 * @recv_buf: VPU DTCM share buffer for receiving. The
181 * receive buffer is only accessed in interrupt context.
182 * @send_buf: VPU DTCM share buffer for sending
183 * @dev: VPU struct device
184 * @clk: VPU clock on/off
185 * @fw_loaded: indicate VPU firmware loaded
186 * @enable_4GB: VPU 4GB mode on/off
187 * @vpu_mutex: protect mtk_vpu (except recv_buf) and ensure only
188 * one client to use VPU service at a time. For example,
189 * suppose a client is using VPU to decode VP8.
190 * If the other client wants to encode VP8,
191 * it has to wait until VP8 decode completes.
192 * @wdt_refcnt: WDT reference count to make sure the watchdog can be
193 * disabled if no other client is using VPU service
194 * @ack_wq: The wait queue for each codec and mdp. When sleeping
195 * processes wake up, they will check the condition
196 * "ipi_id_ack" to run the corresponding action or
197 * go back to sleep.
198 * @ipi_id_ack: The ACKs for registered IPI function sending
199 * interrupt to VPU
200 *
201 */
202 struct mtk_vpu {
203 struct vpu_mem extmem[2];
204 struct vpu_regs reg;
205 struct vpu_run run;
206 struct vpu_wdt wdt;
207 struct vpu_ipi_desc ipi_desc[IPI_MAX];
208 struct share_obj __iomem *recv_buf;
209 struct share_obj __iomem *send_buf;
210 struct device *dev;
211 struct clk *clk;
212 bool fw_loaded;
213 bool enable_4GB;
214 struct mutex vpu_mutex; /* for protecting vpu data data structure */
215 u32 wdt_refcnt;
216 wait_queue_head_t ack_wq;
217 bool ipi_id_ack[IPI_MAX];
218 };
219
vpu_cfg_writel(struct mtk_vpu * vpu,u32 val,u32 offset)220 static inline void vpu_cfg_writel(struct mtk_vpu *vpu, u32 val, u32 offset)
221 {
222 writel(val, vpu->reg.cfg + offset);
223 }
224
vpu_cfg_readl(struct mtk_vpu * vpu,u32 offset)225 static inline u32 vpu_cfg_readl(struct mtk_vpu *vpu, u32 offset)
226 {
227 return readl(vpu->reg.cfg + offset);
228 }
229
vpu_running(struct mtk_vpu * vpu)230 static inline bool vpu_running(struct mtk_vpu *vpu)
231 {
232 return vpu_cfg_readl(vpu, VPU_RESET) & BIT(0);
233 }
234
vpu_clock_disable(struct mtk_vpu * vpu)235 static void vpu_clock_disable(struct mtk_vpu *vpu)
236 {
237 /* Disable VPU watchdog */
238 mutex_lock(&vpu->vpu_mutex);
239 if (!--vpu->wdt_refcnt)
240 vpu_cfg_writel(vpu,
241 vpu_cfg_readl(vpu, VPU_WDT_REG) & ~(1L << 31),
242 VPU_WDT_REG);
243 mutex_unlock(&vpu->vpu_mutex);
244
245 clk_disable(vpu->clk);
246 }
247
vpu_clock_enable(struct mtk_vpu * vpu)248 static int vpu_clock_enable(struct mtk_vpu *vpu)
249 {
250 int ret;
251
252 ret = clk_enable(vpu->clk);
253 if (ret)
254 return ret;
255 /* Enable VPU watchdog */
256 mutex_lock(&vpu->vpu_mutex);
257 if (!vpu->wdt_refcnt++)
258 vpu_cfg_writel(vpu,
259 vpu_cfg_readl(vpu, VPU_WDT_REG) | (1L << 31),
260 VPU_WDT_REG);
261 mutex_unlock(&vpu->vpu_mutex);
262
263 return ret;
264 }
265
vpu_ipi_register(struct platform_device * pdev,enum ipi_id id,ipi_handler_t handler,const char * name,void * priv)266 int vpu_ipi_register(struct platform_device *pdev,
267 enum ipi_id id, ipi_handler_t handler,
268 const char *name, void *priv)
269 {
270 struct mtk_vpu *vpu = platform_get_drvdata(pdev);
271 struct vpu_ipi_desc *ipi_desc;
272
273 if (!vpu) {
274 dev_err(&pdev->dev, "vpu device in not ready\n");
275 return -EPROBE_DEFER;
276 }
277
278 if (id < IPI_MAX && handler) {
279 ipi_desc = vpu->ipi_desc;
280 ipi_desc[id].name = name;
281 ipi_desc[id].handler = handler;
282 ipi_desc[id].priv = priv;
283 return 0;
284 }
285
286 dev_err(&pdev->dev, "register vpu ipi id %d with invalid arguments\n",
287 id);
288 return -EINVAL;
289 }
290 EXPORT_SYMBOL_GPL(vpu_ipi_register);
291
vpu_ipi_send(struct platform_device * pdev,enum ipi_id id,void * buf,unsigned int len)292 int vpu_ipi_send(struct platform_device *pdev,
293 enum ipi_id id, void *buf,
294 unsigned int len)
295 {
296 struct mtk_vpu *vpu = platform_get_drvdata(pdev);
297 struct share_obj __iomem *send_obj = vpu->send_buf;
298 unsigned long timeout;
299 int ret = 0;
300
301 if (id <= IPI_VPU_INIT || id >= IPI_MAX ||
302 len > sizeof(send_obj->share_buf) || !buf) {
303 dev_err(vpu->dev, "failed to send ipi message\n");
304 return -EINVAL;
305 }
306
307 ret = vpu_clock_enable(vpu);
308 if (ret) {
309 dev_err(vpu->dev, "failed to enable vpu clock\n");
310 return ret;
311 }
312 if (!vpu_running(vpu)) {
313 dev_err(vpu->dev, "vpu_ipi_send: VPU is not running\n");
314 ret = -EINVAL;
315 goto clock_disable;
316 }
317
318 mutex_lock(&vpu->vpu_mutex);
319
320 /* Wait until VPU receives the last command */
321 timeout = jiffies + msecs_to_jiffies(IPI_TIMEOUT_MS);
322 do {
323 if (time_after(jiffies, timeout)) {
324 dev_err(vpu->dev, "vpu_ipi_send: IPI timeout!\n");
325 ret = -EIO;
326 goto mut_unlock;
327 }
328 } while (vpu_cfg_readl(vpu, HOST_TO_VPU));
329
330 memcpy_toio(send_obj->share_buf, buf, len);
331 writel(len, &send_obj->len);
332 writel(id, &send_obj->id);
333
334 vpu->ipi_id_ack[id] = false;
335 /* send the command to VPU */
336 vpu_cfg_writel(vpu, 0x1, HOST_TO_VPU);
337
338 mutex_unlock(&vpu->vpu_mutex);
339
340 /* wait for VPU's ACK */
341 timeout = msecs_to_jiffies(IPI_TIMEOUT_MS);
342 ret = wait_event_timeout(vpu->ack_wq, vpu->ipi_id_ack[id], timeout);
343 vpu->ipi_id_ack[id] = false;
344 if (ret == 0) {
345 dev_err(vpu->dev, "vpu ipi %d ack time out !", id);
346 ret = -EIO;
347 goto clock_disable;
348 }
349 vpu_clock_disable(vpu);
350
351 return 0;
352
353 mut_unlock:
354 mutex_unlock(&vpu->vpu_mutex);
355 clock_disable:
356 vpu_clock_disable(vpu);
357
358 return ret;
359 }
360 EXPORT_SYMBOL_GPL(vpu_ipi_send);
361
vpu_wdt_reset_func(struct work_struct * ws)362 static void vpu_wdt_reset_func(struct work_struct *ws)
363 {
364 struct vpu_wdt *wdt = container_of(ws, struct vpu_wdt, ws);
365 struct mtk_vpu *vpu = container_of(wdt, struct mtk_vpu, wdt);
366 struct vpu_wdt_handler *handler = wdt->handler;
367 int index, ret;
368
369 dev_info(vpu->dev, "vpu reset\n");
370 ret = vpu_clock_enable(vpu);
371 if (ret) {
372 dev_err(vpu->dev, "[VPU] wdt enables clock failed %d\n", ret);
373 return;
374 }
375 mutex_lock(&vpu->vpu_mutex);
376 vpu_cfg_writel(vpu, 0x0, VPU_RESET);
377 vpu->fw_loaded = false;
378 mutex_unlock(&vpu->vpu_mutex);
379 vpu_clock_disable(vpu);
380
381 for (index = 0; index < VPU_RST_MAX; index++) {
382 if (handler[index].reset_func) {
383 handler[index].reset_func(handler[index].priv);
384 dev_dbg(vpu->dev, "wdt handler func %d\n", index);
385 }
386 }
387 }
388
vpu_wdt_reg_handler(struct platform_device * pdev,void wdt_reset (void *),void * priv,enum rst_id id)389 int vpu_wdt_reg_handler(struct platform_device *pdev,
390 void wdt_reset(void *),
391 void *priv, enum rst_id id)
392 {
393 struct mtk_vpu *vpu = platform_get_drvdata(pdev);
394 struct vpu_wdt_handler *handler;
395
396 if (!vpu) {
397 dev_err(&pdev->dev, "vpu device in not ready\n");
398 return -EPROBE_DEFER;
399 }
400
401 handler = vpu->wdt.handler;
402
403 if (id < VPU_RST_MAX && wdt_reset) {
404 dev_dbg(vpu->dev, "wdt register id %d\n", id);
405 mutex_lock(&vpu->vpu_mutex);
406 handler[id].reset_func = wdt_reset;
407 handler[id].priv = priv;
408 mutex_unlock(&vpu->vpu_mutex);
409 return 0;
410 }
411
412 dev_err(vpu->dev, "register vpu wdt handler failed\n");
413 return -EINVAL;
414 }
415 EXPORT_SYMBOL_GPL(vpu_wdt_reg_handler);
416
vpu_get_vdec_hw_capa(struct platform_device * pdev)417 unsigned int vpu_get_vdec_hw_capa(struct platform_device *pdev)
418 {
419 struct mtk_vpu *vpu = platform_get_drvdata(pdev);
420
421 return vpu->run.dec_capability;
422 }
423 EXPORT_SYMBOL_GPL(vpu_get_vdec_hw_capa);
424
vpu_get_venc_hw_capa(struct platform_device * pdev)425 unsigned int vpu_get_venc_hw_capa(struct platform_device *pdev)
426 {
427 struct mtk_vpu *vpu = platform_get_drvdata(pdev);
428
429 return vpu->run.enc_capability;
430 }
431 EXPORT_SYMBOL_GPL(vpu_get_venc_hw_capa);
432
vpu_mapping_dm_addr(struct platform_device * pdev,u32 dtcm_dmem_addr)433 void *vpu_mapping_dm_addr(struct platform_device *pdev,
434 u32 dtcm_dmem_addr)
435 {
436 struct mtk_vpu *vpu = platform_get_drvdata(pdev);
437
438 if (!dtcm_dmem_addr ||
439 (dtcm_dmem_addr > (VPU_DTCM_SIZE + VPU_EXT_D_SIZE))) {
440 dev_err(vpu->dev, "invalid virtual data memory address\n");
441 return ERR_PTR(-EINVAL);
442 }
443
444 if (dtcm_dmem_addr < VPU_DTCM_SIZE)
445 return (__force void *)(dtcm_dmem_addr + vpu->reg.tcm +
446 VPU_DTCM_OFFSET);
447
448 return vpu->extmem[D_FW].va + (dtcm_dmem_addr - VPU_DTCM_SIZE);
449 }
450 EXPORT_SYMBOL_GPL(vpu_mapping_dm_addr);
451
vpu_get_plat_device(struct platform_device * pdev)452 struct platform_device *vpu_get_plat_device(struct platform_device *pdev)
453 {
454 struct device *dev = &pdev->dev;
455 struct device_node *vpu_node;
456 struct platform_device *vpu_pdev;
457
458 vpu_node = of_parse_phandle(dev->of_node, "mediatek,vpu", 0);
459 if (!vpu_node) {
460 dev_err(dev, "can't get vpu node\n");
461 return NULL;
462 }
463
464 vpu_pdev = of_find_device_by_node(vpu_node);
465 of_node_put(vpu_node);
466 if (WARN_ON(!vpu_pdev)) {
467 dev_err(dev, "vpu pdev failed\n");
468 return NULL;
469 }
470
471 return vpu_pdev;
472 }
473 EXPORT_SYMBOL_GPL(vpu_get_plat_device);
474
475 /* load vpu program/data memory */
load_requested_vpu(struct mtk_vpu * vpu,u8 fw_type)476 static int load_requested_vpu(struct mtk_vpu *vpu,
477 u8 fw_type)
478 {
479 size_t tcm_size = fw_type ? VPU_DTCM_SIZE : VPU_PTCM_SIZE;
480 size_t fw_size = fw_type ? VPU_D_FW_SIZE : VPU_P_FW_SIZE;
481 char *fw_name = fw_type ? VPU_D_FW : VPU_P_FW;
482 char *fw_new_name = fw_type ? VPU_D_FW_NEW : VPU_P_FW_NEW;
483 const struct firmware *vpu_fw;
484 size_t dl_size = 0;
485 size_t extra_fw_size = 0;
486 void *dest;
487 int ret;
488
489 ret = request_firmware(&vpu_fw, fw_new_name, vpu->dev);
490 if (ret < 0) {
491 dev_info(vpu->dev, "Failed to load %s, %d, retry\n",
492 fw_new_name, ret);
493
494 ret = request_firmware(&vpu_fw, fw_name, vpu->dev);
495 if (ret < 0) {
496 dev_err(vpu->dev, "Failed to load %s, %d\n", fw_name,
497 ret);
498 return ret;
499 }
500 }
501 dl_size = vpu_fw->size;
502 if (dl_size > fw_size) {
503 dev_err(vpu->dev, "fw %s size %zu is abnormal\n", fw_name,
504 dl_size);
505 release_firmware(vpu_fw);
506 return -EFBIG;
507 }
508 dev_dbg(vpu->dev, "Downloaded fw %s size: %zu.\n",
509 fw_name,
510 dl_size);
511 /* reset VPU */
512 vpu_cfg_writel(vpu, 0x0, VPU_RESET);
513
514 /* handle extended firmware size */
515 if (dl_size > tcm_size) {
516 dev_dbg(vpu->dev, "fw size %zu > limited fw size %zu\n",
517 dl_size, tcm_size);
518 extra_fw_size = dl_size - tcm_size;
519 dev_dbg(vpu->dev, "extra_fw_size %zu\n", extra_fw_size);
520 dl_size = tcm_size;
521 }
522 dest = (__force void *)vpu->reg.tcm;
523 if (fw_type == D_FW)
524 dest += VPU_DTCM_OFFSET;
525 memcpy(dest, vpu_fw->data, dl_size);
526 /* download to extended memory if need */
527 if (extra_fw_size > 0) {
528 dest = vpu->extmem[fw_type].va;
529 dev_dbg(vpu->dev, "download extended memory type %x\n",
530 fw_type);
531 memcpy(dest, vpu_fw->data + tcm_size, extra_fw_size);
532 }
533
534 release_firmware(vpu_fw);
535
536 return 0;
537 }
538
vpu_load_firmware(struct platform_device * pdev)539 int vpu_load_firmware(struct platform_device *pdev)
540 {
541 struct mtk_vpu *vpu;
542 struct device *dev = &pdev->dev;
543 struct vpu_run *run;
544 int ret;
545
546 if (!pdev) {
547 dev_err(dev, "VPU platform device is invalid\n");
548 return -EINVAL;
549 }
550
551 vpu = platform_get_drvdata(pdev);
552 run = &vpu->run;
553
554 mutex_lock(&vpu->vpu_mutex);
555 if (vpu->fw_loaded) {
556 mutex_unlock(&vpu->vpu_mutex);
557 return 0;
558 }
559 mutex_unlock(&vpu->vpu_mutex);
560
561 ret = vpu_clock_enable(vpu);
562 if (ret) {
563 dev_err(dev, "enable clock failed %d\n", ret);
564 return ret;
565 }
566
567 mutex_lock(&vpu->vpu_mutex);
568
569 run->signaled = false;
570 dev_dbg(vpu->dev, "firmware request\n");
571 /* Downloading program firmware to device*/
572 ret = load_requested_vpu(vpu, P_FW);
573 if (ret < 0) {
574 dev_err(dev, "Failed to request %s, %d\n", VPU_P_FW, ret);
575 goto OUT_LOAD_FW;
576 }
577
578 /* Downloading data firmware to device */
579 ret = load_requested_vpu(vpu, D_FW);
580 if (ret < 0) {
581 dev_err(dev, "Failed to request %s, %d\n", VPU_D_FW, ret);
582 goto OUT_LOAD_FW;
583 }
584
585 vpu->fw_loaded = true;
586 /* boot up vpu */
587 vpu_cfg_writel(vpu, 0x1, VPU_RESET);
588
589 ret = wait_event_interruptible_timeout(run->wq,
590 run->signaled,
591 msecs_to_jiffies(INIT_TIMEOUT_MS)
592 );
593 if (ret == 0) {
594 ret = -ETIME;
595 dev_err(dev, "wait vpu initialization timeout!\n");
596 goto OUT_LOAD_FW;
597 } else if (-ERESTARTSYS == ret) {
598 dev_err(dev, "wait vpu interrupted by a signal!\n");
599 goto OUT_LOAD_FW;
600 }
601
602 ret = 0;
603 dev_info(dev, "vpu is ready. Fw version %s\n", run->fw_ver);
604
605 OUT_LOAD_FW:
606 mutex_unlock(&vpu->vpu_mutex);
607 vpu_clock_disable(vpu);
608
609 return ret;
610 }
611 EXPORT_SYMBOL_GPL(vpu_load_firmware);
612
vpu_init_ipi_handler(const void * data,unsigned int len,void * priv)613 static void vpu_init_ipi_handler(const void *data, unsigned int len, void *priv)
614 {
615 struct mtk_vpu *vpu = priv;
616 const struct vpu_run *run = data;
617
618 vpu->run.signaled = run->signaled;
619 strscpy(vpu->run.fw_ver, run->fw_ver, sizeof(vpu->run.fw_ver));
620 vpu->run.dec_capability = run->dec_capability;
621 vpu->run.enc_capability = run->enc_capability;
622 wake_up_interruptible(&vpu->run.wq);
623 }
624
625 #ifdef CONFIG_DEBUG_FS
vpu_debug_read(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)626 static ssize_t vpu_debug_read(struct file *file, char __user *user_buf,
627 size_t count, loff_t *ppos)
628 {
629 char buf[256];
630 unsigned int len;
631 unsigned int running, pc, vpu_to_host, host_to_vpu, wdt;
632 int ret;
633 struct device *dev = file->private_data;
634 struct mtk_vpu *vpu = dev_get_drvdata(dev);
635
636 ret = vpu_clock_enable(vpu);
637 if (ret) {
638 dev_err(vpu->dev, "[VPU] enable clock failed %d\n", ret);
639 return 0;
640 }
641
642 /* vpu register status */
643 running = vpu_running(vpu);
644 pc = vpu_cfg_readl(vpu, VPU_PC_REG);
645 wdt = vpu_cfg_readl(vpu, VPU_WDT_REG);
646 host_to_vpu = vpu_cfg_readl(vpu, HOST_TO_VPU);
647 vpu_to_host = vpu_cfg_readl(vpu, VPU_TO_HOST);
648 vpu_clock_disable(vpu);
649
650 if (running) {
651 len = snprintf(buf, sizeof(buf), "VPU is running\n\n"
652 "FW Version: %s\n"
653 "PC: 0x%x\n"
654 "WDT: 0x%x\n"
655 "Host to VPU: 0x%x\n"
656 "VPU to Host: 0x%x\n",
657 vpu->run.fw_ver, pc, wdt,
658 host_to_vpu, vpu_to_host);
659 } else {
660 len = snprintf(buf, sizeof(buf), "VPU not running\n");
661 }
662
663 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
664 }
665
666 static const struct file_operations vpu_debug_fops = {
667 .open = simple_open,
668 .read = vpu_debug_read,
669 };
670 #endif /* CONFIG_DEBUG_FS */
671
vpu_free_ext_mem(struct mtk_vpu * vpu,u8 fw_type)672 static void vpu_free_ext_mem(struct mtk_vpu *vpu, u8 fw_type)
673 {
674 struct device *dev = vpu->dev;
675 size_t fw_ext_size = fw_type ? VPU_EXT_D_SIZE : VPU_EXT_P_SIZE;
676
677 dma_free_coherent(dev, fw_ext_size, vpu->extmem[fw_type].va,
678 vpu->extmem[fw_type].pa);
679 }
680
vpu_alloc_ext_mem(struct mtk_vpu * vpu,u32 fw_type)681 static int vpu_alloc_ext_mem(struct mtk_vpu *vpu, u32 fw_type)
682 {
683 struct device *dev = vpu->dev;
684 size_t fw_ext_size = fw_type ? VPU_EXT_D_SIZE : VPU_EXT_P_SIZE;
685 u32 vpu_ext_mem0 = fw_type ? VPU_DMEM_EXT0_ADDR : VPU_PMEM_EXT0_ADDR;
686 u32 vpu_ext_mem1 = fw_type ? VPU_DMEM_EXT1_ADDR : VPU_PMEM_EXT1_ADDR;
687 u32 offset_4gb = vpu->enable_4GB ? 0x40000000 : 0;
688
689 vpu->extmem[fw_type].va = dma_alloc_coherent(dev,
690 fw_ext_size,
691 &vpu->extmem[fw_type].pa,
692 GFP_KERNEL);
693 if (!vpu->extmem[fw_type].va) {
694 dev_err(dev, "Failed to allocate the extended program memory\n");
695 return -ENOMEM;
696 }
697
698 /* Disable extend0. Enable extend1 */
699 vpu_cfg_writel(vpu, 0x1, vpu_ext_mem0);
700 vpu_cfg_writel(vpu, (vpu->extmem[fw_type].pa & 0xFFFFF000) + offset_4gb,
701 vpu_ext_mem1);
702
703 dev_info(dev, "%s extend memory phy=0x%llx virt=0x%p\n",
704 fw_type ? "Data" : "Program",
705 (unsigned long long)vpu->extmem[fw_type].pa,
706 vpu->extmem[fw_type].va);
707
708 return 0;
709 }
710
vpu_ipi_handler(struct mtk_vpu * vpu)711 static void vpu_ipi_handler(struct mtk_vpu *vpu)
712 {
713 struct share_obj __iomem *rcv_obj = vpu->recv_buf;
714 struct vpu_ipi_desc *ipi_desc = vpu->ipi_desc;
715 unsigned char data[SHARE_BUF_SIZE];
716 s32 id = readl(&rcv_obj->id);
717
718 memcpy_fromio(data, rcv_obj->share_buf, sizeof(data));
719 if (id < IPI_MAX && ipi_desc[id].handler) {
720 ipi_desc[id].handler(data, readl(&rcv_obj->len),
721 ipi_desc[id].priv);
722 if (id > IPI_VPU_INIT) {
723 vpu->ipi_id_ack[id] = true;
724 wake_up(&vpu->ack_wq);
725 }
726 } else {
727 dev_err(vpu->dev, "No such ipi id = %d\n", id);
728 }
729 }
730
vpu_ipi_init(struct mtk_vpu * vpu)731 static int vpu_ipi_init(struct mtk_vpu *vpu)
732 {
733 /* Disable VPU to host interrupt */
734 vpu_cfg_writel(vpu, 0x0, VPU_TO_HOST);
735
736 /* shared buffer initialization */
737 vpu->recv_buf = vpu->reg.tcm + VPU_DTCM_OFFSET;
738 vpu->send_buf = vpu->recv_buf + 1;
739 memset_io(vpu->recv_buf, 0, sizeof(struct share_obj));
740 memset_io(vpu->send_buf, 0, sizeof(struct share_obj));
741
742 return 0;
743 }
744
vpu_irq_handler(int irq,void * priv)745 static irqreturn_t vpu_irq_handler(int irq, void *priv)
746 {
747 struct mtk_vpu *vpu = priv;
748 u32 vpu_to_host;
749 int ret;
750
751 /*
752 * Clock should have been enabled already.
753 * Enable again in case vpu_ipi_send times out
754 * and has disabled the clock.
755 */
756 ret = clk_enable(vpu->clk);
757 if (ret) {
758 dev_err(vpu->dev, "[VPU] enable clock failed %d\n", ret);
759 return IRQ_NONE;
760 }
761 vpu_to_host = vpu_cfg_readl(vpu, VPU_TO_HOST);
762 if (vpu_to_host & VPU_IPC_INT) {
763 vpu_ipi_handler(vpu);
764 } else {
765 dev_err(vpu->dev, "vpu watchdog timeout! 0x%x", vpu_to_host);
766 queue_work(vpu->wdt.wq, &vpu->wdt.ws);
767 }
768
769 /* VPU won't send another interrupt until we set VPU_TO_HOST to 0. */
770 vpu_cfg_writel(vpu, 0x0, VPU_TO_HOST);
771 clk_disable(vpu->clk);
772
773 return IRQ_HANDLED;
774 }
775
776 #ifdef CONFIG_DEBUG_FS
777 static struct dentry *vpu_debugfs;
778 #endif
mtk_vpu_probe(struct platform_device * pdev)779 static int mtk_vpu_probe(struct platform_device *pdev)
780 {
781 struct mtk_vpu *vpu;
782 struct device *dev;
783 struct resource *res;
784 int ret = 0;
785
786 dev_dbg(&pdev->dev, "initialization\n");
787
788 dev = &pdev->dev;
789 vpu = devm_kzalloc(dev, sizeof(*vpu), GFP_KERNEL);
790 if (!vpu)
791 return -ENOMEM;
792
793 vpu->dev = &pdev->dev;
794 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "tcm");
795 vpu->reg.tcm = devm_ioremap_resource(dev, res);
796 if (IS_ERR((__force void *)vpu->reg.tcm))
797 return PTR_ERR((__force void *)vpu->reg.tcm);
798
799 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cfg_reg");
800 vpu->reg.cfg = devm_ioremap_resource(dev, res);
801 if (IS_ERR((__force void *)vpu->reg.cfg))
802 return PTR_ERR((__force void *)vpu->reg.cfg);
803
804 /* Get VPU clock */
805 vpu->clk = devm_clk_get(dev, "main");
806 if (IS_ERR(vpu->clk)) {
807 dev_err(dev, "get vpu clock failed\n");
808 return PTR_ERR(vpu->clk);
809 }
810
811 platform_set_drvdata(pdev, vpu);
812
813 ret = clk_prepare(vpu->clk);
814 if (ret) {
815 dev_err(dev, "prepare vpu clock failed\n");
816 return ret;
817 }
818
819 /* VPU watchdog */
820 vpu->wdt.wq = create_singlethread_workqueue("vpu_wdt");
821 if (!vpu->wdt.wq) {
822 dev_err(dev, "initialize wdt workqueue failed\n");
823 return -ENOMEM;
824 }
825 INIT_WORK(&vpu->wdt.ws, vpu_wdt_reset_func);
826 mutex_init(&vpu->vpu_mutex);
827
828 ret = vpu_clock_enable(vpu);
829 if (ret) {
830 dev_err(dev, "enable vpu clock failed\n");
831 goto workqueue_destroy;
832 }
833
834 dev_dbg(dev, "vpu ipi init\n");
835 ret = vpu_ipi_init(vpu);
836 if (ret) {
837 dev_err(dev, "Failed to init ipi\n");
838 goto disable_vpu_clk;
839 }
840
841 /* register vpu initialization IPI */
842 ret = vpu_ipi_register(pdev, IPI_VPU_INIT, vpu_init_ipi_handler,
843 "vpu_init", vpu);
844 if (ret) {
845 dev_err(dev, "Failed to register IPI_VPU_INIT\n");
846 goto vpu_mutex_destroy;
847 }
848
849 #ifdef CONFIG_DEBUG_FS
850 vpu_debugfs = debugfs_create_file("mtk_vpu", S_IRUGO, NULL, (void *)dev,
851 &vpu_debug_fops);
852 #endif
853
854 /* Set PTCM to 96K and DTCM to 32K */
855 vpu_cfg_writel(vpu, 0x2, VPU_TCM_CFG);
856
857 vpu->enable_4GB = !!(totalram_pages() > (SZ_2G >> PAGE_SHIFT));
858 dev_info(dev, "4GB mode %u\n", vpu->enable_4GB);
859
860 if (vpu->enable_4GB) {
861 ret = of_reserved_mem_device_init(dev);
862 if (ret)
863 dev_info(dev, "init reserved memory failed\n");
864 /* continue to use dynamic allocation if failed */
865 }
866
867 ret = vpu_alloc_ext_mem(vpu, D_FW);
868 if (ret) {
869 dev_err(dev, "Allocate DM failed\n");
870 goto remove_debugfs;
871 }
872
873 ret = vpu_alloc_ext_mem(vpu, P_FW);
874 if (ret) {
875 dev_err(dev, "Allocate PM failed\n");
876 goto free_d_mem;
877 }
878
879 init_waitqueue_head(&vpu->run.wq);
880 init_waitqueue_head(&vpu->ack_wq);
881
882 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
883 if (!res) {
884 dev_err(dev, "get IRQ resource failed.\n");
885 ret = -ENXIO;
886 goto free_p_mem;
887 }
888 vpu->reg.irq = platform_get_irq(pdev, 0);
889 ret = devm_request_irq(dev, vpu->reg.irq, vpu_irq_handler, 0,
890 pdev->name, vpu);
891 if (ret) {
892 dev_err(dev, "failed to request irq\n");
893 goto free_p_mem;
894 }
895
896 vpu_clock_disable(vpu);
897 dev_dbg(dev, "initialization completed\n");
898
899 return 0;
900
901 free_p_mem:
902 vpu_free_ext_mem(vpu, P_FW);
903 free_d_mem:
904 vpu_free_ext_mem(vpu, D_FW);
905 remove_debugfs:
906 of_reserved_mem_device_release(dev);
907 #ifdef CONFIG_DEBUG_FS
908 debugfs_remove(vpu_debugfs);
909 #endif
910 memset(vpu->ipi_desc, 0, sizeof(struct vpu_ipi_desc) * IPI_MAX);
911 vpu_mutex_destroy:
912 mutex_destroy(&vpu->vpu_mutex);
913 disable_vpu_clk:
914 vpu_clock_disable(vpu);
915 workqueue_destroy:
916 destroy_workqueue(vpu->wdt.wq);
917
918 return ret;
919 }
920
921 static const struct of_device_id mtk_vpu_match[] = {
922 {
923 .compatible = "mediatek,mt8173-vpu",
924 },
925 {},
926 };
927 MODULE_DEVICE_TABLE(of, mtk_vpu_match);
928
mtk_vpu_remove(struct platform_device * pdev)929 static int mtk_vpu_remove(struct platform_device *pdev)
930 {
931 struct mtk_vpu *vpu = platform_get_drvdata(pdev);
932
933 #ifdef CONFIG_DEBUG_FS
934 debugfs_remove(vpu_debugfs);
935 #endif
936 if (vpu->wdt.wq) {
937 flush_workqueue(vpu->wdt.wq);
938 destroy_workqueue(vpu->wdt.wq);
939 }
940 vpu_free_ext_mem(vpu, P_FW);
941 vpu_free_ext_mem(vpu, D_FW);
942 mutex_destroy(&vpu->vpu_mutex);
943 clk_unprepare(vpu->clk);
944
945 return 0;
946 }
947
948 static struct platform_driver mtk_vpu_driver = {
949 .probe = mtk_vpu_probe,
950 .remove = mtk_vpu_remove,
951 .driver = {
952 .name = "mtk_vpu",
953 .of_match_table = mtk_vpu_match,
954 },
955 };
956
957 module_platform_driver(mtk_vpu_driver);
958
959 MODULE_LICENSE("GPL v2");
960 MODULE_DESCRIPTION("Mediatek Video Processor Unit driver");
961