1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries_lpar.c
4 * Copyright (C) 2001 Todd Inglett, IBM Corporation
5 *
6 * pSeries LPAR support.
7 */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <linux/pgtable.h>
25 #include <asm/processor.h>
26 #include <asm/mmu.h>
27 #include <asm/page.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43 #include <asm/dtl.h>
44
45 #include "pseries.h"
46
47 /* Flag bits for H_BULK_REMOVE */
48 #define HBR_REQUEST 0x4000000000000000UL
49 #define HBR_RESPONSE 0x8000000000000000UL
50 #define HBR_END 0xc000000000000000UL
51 #define HBR_AVPN 0x0200000000000000UL
52 #define HBR_ANDCOND 0x0100000000000000UL
53
54
55 /* in hvCall.S */
56 EXPORT_SYMBOL(plpar_hcall);
57 EXPORT_SYMBOL(plpar_hcall9);
58 EXPORT_SYMBOL(plpar_hcall_norets);
59
60 /*
61 * H_BLOCK_REMOVE supported block size for this page size in segment who's base
62 * page size is that page size.
63 *
64 * The first index is the segment base page size, the second one is the actual
65 * page size.
66 */
67 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
68
69 /*
70 * Due to the involved complexity, and that the current hypervisor is only
71 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
72 * buffer size to 8 size block.
73 */
74 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
75
76 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
77 static u8 dtl_mask = DTL_LOG_PREEMPT;
78 #else
79 static u8 dtl_mask;
80 #endif
81
alloc_dtl_buffers(unsigned long * time_limit)82 void alloc_dtl_buffers(unsigned long *time_limit)
83 {
84 int cpu;
85 struct paca_struct *pp;
86 struct dtl_entry *dtl;
87
88 for_each_possible_cpu(cpu) {
89 pp = paca_ptrs[cpu];
90 if (pp->dispatch_log)
91 continue;
92 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
93 if (!dtl) {
94 pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
95 cpu);
96 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
97 pr_warn("Stolen time statistics will be unreliable\n");
98 #endif
99 break;
100 }
101
102 pp->dtl_ridx = 0;
103 pp->dispatch_log = dtl;
104 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
105 pp->dtl_curr = dtl;
106
107 if (time_limit && time_after(jiffies, *time_limit)) {
108 cond_resched();
109 *time_limit = jiffies + HZ;
110 }
111 }
112 }
113
register_dtl_buffer(int cpu)114 void register_dtl_buffer(int cpu)
115 {
116 long ret;
117 struct paca_struct *pp;
118 struct dtl_entry *dtl;
119 int hwcpu = get_hard_smp_processor_id(cpu);
120
121 pp = paca_ptrs[cpu];
122 dtl = pp->dispatch_log;
123 if (dtl && dtl_mask) {
124 pp->dtl_ridx = 0;
125 pp->dtl_curr = dtl;
126 lppaca_of(cpu).dtl_idx = 0;
127
128 /* hypervisor reads buffer length from this field */
129 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
130 ret = register_dtl(hwcpu, __pa(dtl));
131 if (ret)
132 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
133 cpu, hwcpu, ret);
134
135 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
136 }
137 }
138
139 #ifdef CONFIG_PPC_SPLPAR
140 struct dtl_worker {
141 struct delayed_work work;
142 int cpu;
143 };
144
145 struct vcpu_dispatch_data {
146 int last_disp_cpu;
147
148 int total_disp;
149
150 int same_cpu_disp;
151 int same_chip_disp;
152 int diff_chip_disp;
153 int far_chip_disp;
154
155 int numa_home_disp;
156 int numa_remote_disp;
157 int numa_far_disp;
158 };
159
160 /*
161 * This represents the number of cpus in the hypervisor. Since there is no
162 * architected way to discover the number of processors in the host, we
163 * provision for dealing with NR_CPUS. This is currently 2048 by default, and
164 * is sufficient for our purposes. This will need to be tweaked if
165 * CONFIG_NR_CPUS is changed.
166 */
167 #define NR_CPUS_H NR_CPUS
168
169 DEFINE_RWLOCK(dtl_access_lock);
170 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
171 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
172 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
173 static enum cpuhp_state dtl_worker_state;
174 static DEFINE_MUTEX(dtl_enable_mutex);
175 static int vcpudispatch_stats_on __read_mostly;
176 static int vcpudispatch_stats_freq = 50;
177 static __be32 *vcpu_associativity, *pcpu_associativity;
178
179
free_dtl_buffers(unsigned long * time_limit)180 static void free_dtl_buffers(unsigned long *time_limit)
181 {
182 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
183 int cpu;
184 struct paca_struct *pp;
185
186 for_each_possible_cpu(cpu) {
187 pp = paca_ptrs[cpu];
188 if (!pp->dispatch_log)
189 continue;
190 kmem_cache_free(dtl_cache, pp->dispatch_log);
191 pp->dtl_ridx = 0;
192 pp->dispatch_log = 0;
193 pp->dispatch_log_end = 0;
194 pp->dtl_curr = 0;
195
196 if (time_limit && time_after(jiffies, *time_limit)) {
197 cond_resched();
198 *time_limit = jiffies + HZ;
199 }
200 }
201 #endif
202 }
203
init_cpu_associativity(void)204 static int init_cpu_associativity(void)
205 {
206 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
207 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
208 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
209 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
210
211 if (!vcpu_associativity || !pcpu_associativity) {
212 pr_err("error allocating memory for associativity information\n");
213 return -ENOMEM;
214 }
215
216 return 0;
217 }
218
destroy_cpu_associativity(void)219 static void destroy_cpu_associativity(void)
220 {
221 kfree(vcpu_associativity);
222 kfree(pcpu_associativity);
223 vcpu_associativity = pcpu_associativity = 0;
224 }
225
__get_cpu_associativity(int cpu,__be32 * cpu_assoc,int flag)226 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
227 {
228 __be32 *assoc;
229 int rc = 0;
230
231 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
232 if (!assoc[0]) {
233 rc = hcall_vphn(cpu, flag, &assoc[0]);
234 if (rc)
235 return NULL;
236 }
237
238 return assoc;
239 }
240
get_pcpu_associativity(int cpu)241 static __be32 *get_pcpu_associativity(int cpu)
242 {
243 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
244 }
245
get_vcpu_associativity(int cpu)246 static __be32 *get_vcpu_associativity(int cpu)
247 {
248 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
249 }
250
cpu_relative_dispatch_distance(int last_disp_cpu,int cur_disp_cpu)251 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
252 {
253 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
254
255 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
256 return -EINVAL;
257
258 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
259 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
260
261 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
262 return -EIO;
263
264 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
265 }
266
cpu_home_node_dispatch_distance(int disp_cpu)267 static int cpu_home_node_dispatch_distance(int disp_cpu)
268 {
269 __be32 *disp_cpu_assoc, *vcpu_assoc;
270 int vcpu_id = smp_processor_id();
271
272 if (disp_cpu >= NR_CPUS_H) {
273 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
274 disp_cpu, NR_CPUS_H);
275 return -EINVAL;
276 }
277
278 disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
279 vcpu_assoc = get_vcpu_associativity(vcpu_id);
280
281 if (!disp_cpu_assoc || !vcpu_assoc)
282 return -EIO;
283
284 return cpu_distance(disp_cpu_assoc, vcpu_assoc);
285 }
286
update_vcpu_disp_stat(int disp_cpu)287 static void update_vcpu_disp_stat(int disp_cpu)
288 {
289 struct vcpu_dispatch_data *disp;
290 int distance;
291
292 disp = this_cpu_ptr(&vcpu_disp_data);
293 if (disp->last_disp_cpu == -1) {
294 disp->last_disp_cpu = disp_cpu;
295 return;
296 }
297
298 disp->total_disp++;
299
300 if (disp->last_disp_cpu == disp_cpu ||
301 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
302 cpu_first_thread_sibling(disp_cpu)))
303 disp->same_cpu_disp++;
304 else {
305 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
306 disp_cpu);
307 if (distance < 0)
308 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
309 smp_processor_id());
310 else {
311 switch (distance) {
312 case 0:
313 disp->same_chip_disp++;
314 break;
315 case 1:
316 disp->diff_chip_disp++;
317 break;
318 case 2:
319 disp->far_chip_disp++;
320 break;
321 default:
322 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
323 smp_processor_id(),
324 disp->last_disp_cpu,
325 disp_cpu,
326 distance);
327 }
328 }
329 }
330
331 distance = cpu_home_node_dispatch_distance(disp_cpu);
332 if (distance < 0)
333 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
334 smp_processor_id());
335 else {
336 switch (distance) {
337 case 0:
338 disp->numa_home_disp++;
339 break;
340 case 1:
341 disp->numa_remote_disp++;
342 break;
343 case 2:
344 disp->numa_far_disp++;
345 break;
346 default:
347 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
348 smp_processor_id(),
349 disp_cpu,
350 distance);
351 }
352 }
353
354 disp->last_disp_cpu = disp_cpu;
355 }
356
process_dtl_buffer(struct work_struct * work)357 static void process_dtl_buffer(struct work_struct *work)
358 {
359 struct dtl_entry dtle;
360 u64 i = __this_cpu_read(dtl_entry_ridx);
361 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
362 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
363 struct lppaca *vpa = local_paca->lppaca_ptr;
364 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
365
366 if (!local_paca->dispatch_log)
367 return;
368
369 /* if we have been migrated away, we cancel ourself */
370 if (d->cpu != smp_processor_id()) {
371 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
372 smp_processor_id());
373 return;
374 }
375
376 if (i == be64_to_cpu(vpa->dtl_idx))
377 goto out;
378
379 while (i < be64_to_cpu(vpa->dtl_idx)) {
380 dtle = *dtl;
381 barrier();
382 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
383 /* buffer has overflowed */
384 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
385 d->cpu,
386 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
387 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
388 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
389 continue;
390 }
391 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
392 ++i;
393 ++dtl;
394 if (dtl == dtl_end)
395 dtl = local_paca->dispatch_log;
396 }
397
398 __this_cpu_write(dtl_entry_ridx, i);
399
400 out:
401 schedule_delayed_work_on(d->cpu, to_delayed_work(work),
402 HZ / vcpudispatch_stats_freq);
403 }
404
dtl_worker_online(unsigned int cpu)405 static int dtl_worker_online(unsigned int cpu)
406 {
407 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
408
409 memset(d, 0, sizeof(*d));
410 INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
411 d->cpu = cpu;
412
413 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
414 per_cpu(dtl_entry_ridx, cpu) = 0;
415 register_dtl_buffer(cpu);
416 #else
417 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
418 #endif
419
420 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
421 return 0;
422 }
423
dtl_worker_offline(unsigned int cpu)424 static int dtl_worker_offline(unsigned int cpu)
425 {
426 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
427
428 cancel_delayed_work_sync(&d->work);
429
430 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
431 unregister_dtl(get_hard_smp_processor_id(cpu));
432 #endif
433
434 return 0;
435 }
436
set_global_dtl_mask(u8 mask)437 static void set_global_dtl_mask(u8 mask)
438 {
439 int cpu;
440
441 dtl_mask = mask;
442 for_each_present_cpu(cpu)
443 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
444 }
445
reset_global_dtl_mask(void)446 static void reset_global_dtl_mask(void)
447 {
448 int cpu;
449
450 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
451 dtl_mask = DTL_LOG_PREEMPT;
452 #else
453 dtl_mask = 0;
454 #endif
455 for_each_present_cpu(cpu)
456 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
457 }
458
dtl_worker_enable(unsigned long * time_limit)459 static int dtl_worker_enable(unsigned long *time_limit)
460 {
461 int rc = 0, state;
462
463 if (!write_trylock(&dtl_access_lock)) {
464 rc = -EBUSY;
465 goto out;
466 }
467
468 set_global_dtl_mask(DTL_LOG_ALL);
469
470 /* Setup dtl buffers and register those */
471 alloc_dtl_buffers(time_limit);
472
473 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
474 dtl_worker_online, dtl_worker_offline);
475 if (state < 0) {
476 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
477 free_dtl_buffers(time_limit);
478 reset_global_dtl_mask();
479 write_unlock(&dtl_access_lock);
480 rc = -EINVAL;
481 goto out;
482 }
483 dtl_worker_state = state;
484
485 out:
486 return rc;
487 }
488
dtl_worker_disable(unsigned long * time_limit)489 static void dtl_worker_disable(unsigned long *time_limit)
490 {
491 cpuhp_remove_state(dtl_worker_state);
492 free_dtl_buffers(time_limit);
493 reset_global_dtl_mask();
494 write_unlock(&dtl_access_lock);
495 }
496
vcpudispatch_stats_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)497 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
498 size_t count, loff_t *ppos)
499 {
500 unsigned long time_limit = jiffies + HZ;
501 struct vcpu_dispatch_data *disp;
502 int rc, cmd, cpu;
503 char buf[16];
504
505 if (count > 15)
506 return -EINVAL;
507
508 if (copy_from_user(buf, p, count))
509 return -EFAULT;
510
511 buf[count] = 0;
512 rc = kstrtoint(buf, 0, &cmd);
513 if (rc || cmd < 0 || cmd > 1) {
514 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
515 return rc ? rc : -EINVAL;
516 }
517
518 mutex_lock(&dtl_enable_mutex);
519
520 if ((cmd == 0 && !vcpudispatch_stats_on) ||
521 (cmd == 1 && vcpudispatch_stats_on))
522 goto out;
523
524 if (cmd) {
525 rc = init_cpu_associativity();
526 if (rc)
527 goto out;
528
529 for_each_possible_cpu(cpu) {
530 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
531 memset(disp, 0, sizeof(*disp));
532 disp->last_disp_cpu = -1;
533 }
534
535 rc = dtl_worker_enable(&time_limit);
536 if (rc) {
537 destroy_cpu_associativity();
538 goto out;
539 }
540 } else {
541 dtl_worker_disable(&time_limit);
542 destroy_cpu_associativity();
543 }
544
545 vcpudispatch_stats_on = cmd;
546
547 out:
548 mutex_unlock(&dtl_enable_mutex);
549 if (rc)
550 return rc;
551 return count;
552 }
553
vcpudispatch_stats_display(struct seq_file * p,void * v)554 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
555 {
556 int cpu;
557 struct vcpu_dispatch_data *disp;
558
559 if (!vcpudispatch_stats_on) {
560 seq_puts(p, "off\n");
561 return 0;
562 }
563
564 for_each_online_cpu(cpu) {
565 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
566 seq_printf(p, "cpu%d", cpu);
567 seq_put_decimal_ull(p, " ", disp->total_disp);
568 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
569 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
570 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
571 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
572 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
573 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
574 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
575 seq_puts(p, "\n");
576 }
577
578 return 0;
579 }
580
vcpudispatch_stats_open(struct inode * inode,struct file * file)581 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
582 {
583 return single_open(file, vcpudispatch_stats_display, NULL);
584 }
585
586 static const struct proc_ops vcpudispatch_stats_proc_ops = {
587 .proc_open = vcpudispatch_stats_open,
588 .proc_read = seq_read,
589 .proc_write = vcpudispatch_stats_write,
590 .proc_lseek = seq_lseek,
591 .proc_release = single_release,
592 };
593
vcpudispatch_stats_freq_write(struct file * file,const char __user * p,size_t count,loff_t * ppos)594 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
595 const char __user *p, size_t count, loff_t *ppos)
596 {
597 int rc, freq;
598 char buf[16];
599
600 if (count > 15)
601 return -EINVAL;
602
603 if (copy_from_user(buf, p, count))
604 return -EFAULT;
605
606 buf[count] = 0;
607 rc = kstrtoint(buf, 0, &freq);
608 if (rc || freq < 1 || freq > HZ) {
609 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
610 HZ);
611 return rc ? rc : -EINVAL;
612 }
613
614 vcpudispatch_stats_freq = freq;
615
616 return count;
617 }
618
vcpudispatch_stats_freq_display(struct seq_file * p,void * v)619 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
620 {
621 seq_printf(p, "%d\n", vcpudispatch_stats_freq);
622 return 0;
623 }
624
vcpudispatch_stats_freq_open(struct inode * inode,struct file * file)625 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
626 {
627 return single_open(file, vcpudispatch_stats_freq_display, NULL);
628 }
629
630 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
631 .proc_open = vcpudispatch_stats_freq_open,
632 .proc_read = seq_read,
633 .proc_write = vcpudispatch_stats_freq_write,
634 .proc_lseek = seq_lseek,
635 .proc_release = single_release,
636 };
637
vcpudispatch_stats_procfs_init(void)638 static int __init vcpudispatch_stats_procfs_init(void)
639 {
640 /*
641 * Avoid smp_processor_id while preemptible. All CPUs should have
642 * the same value for lppaca_shared_proc.
643 */
644 preempt_disable();
645 if (!lppaca_shared_proc(get_lppaca())) {
646 preempt_enable();
647 return 0;
648 }
649 preempt_enable();
650
651 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
652 &vcpudispatch_stats_proc_ops))
653 pr_err("vcpudispatch_stats: error creating procfs file\n");
654 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
655 &vcpudispatch_stats_freq_proc_ops))
656 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
657
658 return 0;
659 }
660
661 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
662 #endif /* CONFIG_PPC_SPLPAR */
663
vpa_init(int cpu)664 void vpa_init(int cpu)
665 {
666 int hwcpu = get_hard_smp_processor_id(cpu);
667 unsigned long addr;
668 long ret;
669
670 /*
671 * The spec says it "may be problematic" if CPU x registers the VPA of
672 * CPU y. We should never do that, but wail if we ever do.
673 */
674 WARN_ON(cpu != smp_processor_id());
675
676 if (cpu_has_feature(CPU_FTR_ALTIVEC))
677 lppaca_of(cpu).vmxregs_in_use = 1;
678
679 if (cpu_has_feature(CPU_FTR_ARCH_207S))
680 lppaca_of(cpu).ebb_regs_in_use = 1;
681
682 addr = __pa(&lppaca_of(cpu));
683 ret = register_vpa(hwcpu, addr);
684
685 if (ret) {
686 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
687 "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
688 return;
689 }
690
691 #ifdef CONFIG_PPC_BOOK3S_64
692 /*
693 * PAPR says this feature is SLB-Buffer but firmware never
694 * reports that. All SPLPAR support SLB shadow buffer.
695 */
696 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
697 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
698 ret = register_slb_shadow(hwcpu, addr);
699 if (ret)
700 pr_err("WARNING: SLB shadow buffer registration for "
701 "cpu %d (hw %d) of area %lx failed with %ld\n",
702 cpu, hwcpu, addr, ret);
703 }
704 #endif /* CONFIG_PPC_BOOK3S_64 */
705
706 /*
707 * Register dispatch trace log, if one has been allocated.
708 */
709 register_dtl_buffer(cpu);
710 }
711
712 #ifdef CONFIG_PPC_BOOK3S_64
713
pSeries_lpar_hpte_insert(unsigned long hpte_group,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int apsize,int ssize)714 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
715 unsigned long vpn, unsigned long pa,
716 unsigned long rflags, unsigned long vflags,
717 int psize, int apsize, int ssize)
718 {
719 unsigned long lpar_rc;
720 unsigned long flags;
721 unsigned long slot;
722 unsigned long hpte_v, hpte_r;
723
724 if (!(vflags & HPTE_V_BOLTED))
725 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
726 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
727 hpte_group, vpn, pa, rflags, vflags, psize);
728
729 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
730 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
731
732 if (!(vflags & HPTE_V_BOLTED))
733 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
734
735 /* Now fill in the actual HPTE */
736 /* Set CEC cookie to 0 */
737 /* Zero page = 0 */
738 /* I-cache Invalidate = 0 */
739 /* I-cache synchronize = 0 */
740 /* Exact = 0 */
741 flags = 0;
742
743 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
744 flags |= H_COALESCE_CAND;
745
746 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
747 if (unlikely(lpar_rc == H_PTEG_FULL)) {
748 pr_devel("Hash table group is full\n");
749 return -1;
750 }
751
752 /*
753 * Since we try and ioremap PHBs we don't own, the pte insert
754 * will fail. However we must catch the failure in hash_page
755 * or we will loop forever, so return -2 in this case.
756 */
757 if (unlikely(lpar_rc != H_SUCCESS)) {
758 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
759 return -2;
760 }
761 if (!(vflags & HPTE_V_BOLTED))
762 pr_devel(" -> slot: %lu\n", slot & 7);
763
764 /* Because of iSeries, we have to pass down the secondary
765 * bucket bit here as well
766 */
767 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
768 }
769
770 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
771
pSeries_lpar_hpte_remove(unsigned long hpte_group)772 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
773 {
774 unsigned long slot_offset;
775 unsigned long lpar_rc;
776 int i;
777 unsigned long dummy1, dummy2;
778
779 /* pick a random slot to start at */
780 slot_offset = mftb() & 0x7;
781
782 for (i = 0; i < HPTES_PER_GROUP; i++) {
783
784 /* don't remove a bolted entry */
785 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
786 HPTE_V_BOLTED, &dummy1, &dummy2);
787 if (lpar_rc == H_SUCCESS)
788 return i;
789
790 /*
791 * The test for adjunct partition is performed before the
792 * ANDCOND test. H_RESOURCE may be returned, so we need to
793 * check for that as well.
794 */
795 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
796
797 slot_offset++;
798 slot_offset &= 0x7;
799 }
800
801 return -1;
802 }
803
manual_hpte_clear_all(void)804 static void manual_hpte_clear_all(void)
805 {
806 unsigned long size_bytes = 1UL << ppc64_pft_size;
807 unsigned long hpte_count = size_bytes >> 4;
808 struct {
809 unsigned long pteh;
810 unsigned long ptel;
811 } ptes[4];
812 long lpar_rc;
813 unsigned long i, j;
814
815 /* Read in batches of 4,
816 * invalidate only valid entries not in the VRMA
817 * hpte_count will be a multiple of 4
818 */
819 for (i = 0; i < hpte_count; i += 4) {
820 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
821 if (lpar_rc != H_SUCCESS) {
822 pr_info("Failed to read hash page table at %ld err %ld\n",
823 i, lpar_rc);
824 continue;
825 }
826 for (j = 0; j < 4; j++){
827 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
828 HPTE_V_VRMA_MASK)
829 continue;
830 if (ptes[j].pteh & HPTE_V_VALID)
831 plpar_pte_remove_raw(0, i + j, 0,
832 &(ptes[j].pteh), &(ptes[j].ptel));
833 }
834 }
835 }
836
hcall_hpte_clear_all(void)837 static int hcall_hpte_clear_all(void)
838 {
839 int rc;
840
841 do {
842 rc = plpar_hcall_norets(H_CLEAR_HPT);
843 } while (rc == H_CONTINUE);
844
845 return rc;
846 }
847
pseries_hpte_clear_all(void)848 static void pseries_hpte_clear_all(void)
849 {
850 int rc;
851
852 rc = hcall_hpte_clear_all();
853 if (rc != H_SUCCESS)
854 manual_hpte_clear_all();
855
856 #ifdef __LITTLE_ENDIAN__
857 /*
858 * Reset exceptions to big endian.
859 *
860 * FIXME this is a hack for kexec, we need to reset the exception
861 * endian before starting the new kernel and this is a convenient place
862 * to do it.
863 *
864 * This is also called on boot when a fadump happens. In that case we
865 * must not change the exception endian mode.
866 */
867 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
868 pseries_big_endian_exceptions();
869 #endif
870 }
871
872 /*
873 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
874 * the low 3 bits of flags happen to line up. So no transform is needed.
875 * We can probably optimize here and assume the high bits of newpp are
876 * already zero. For now I am paranoid.
877 */
pSeries_lpar_hpte_updatepp(unsigned long slot,unsigned long newpp,unsigned long vpn,int psize,int apsize,int ssize,unsigned long inv_flags)878 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
879 unsigned long newpp,
880 unsigned long vpn,
881 int psize, int apsize,
882 int ssize, unsigned long inv_flags)
883 {
884 unsigned long lpar_rc;
885 unsigned long flags;
886 unsigned long want_v;
887
888 want_v = hpte_encode_avpn(vpn, psize, ssize);
889
890 flags = (newpp & 7) | H_AVPN;
891 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
892 /* Move pp0 into bit 8 (IBM 55) */
893 flags |= (newpp & HPTE_R_PP0) >> 55;
894
895 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
896 want_v, slot, flags, psize);
897
898 lpar_rc = plpar_pte_protect(flags, slot, want_v);
899
900 if (lpar_rc == H_NOT_FOUND) {
901 pr_devel("not found !\n");
902 return -1;
903 }
904
905 pr_devel("ok\n");
906
907 BUG_ON(lpar_rc != H_SUCCESS);
908
909 return 0;
910 }
911
__pSeries_lpar_hpte_find(unsigned long want_v,unsigned long hpte_group)912 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
913 {
914 long lpar_rc;
915 unsigned long i, j;
916 struct {
917 unsigned long pteh;
918 unsigned long ptel;
919 } ptes[4];
920
921 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
922
923 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
924 if (lpar_rc != H_SUCCESS) {
925 pr_info("Failed to read hash page table at %ld err %ld\n",
926 hpte_group, lpar_rc);
927 continue;
928 }
929
930 for (j = 0; j < 4; j++) {
931 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
932 (ptes[j].pteh & HPTE_V_VALID))
933 return i + j;
934 }
935 }
936
937 return -1;
938 }
939
pSeries_lpar_hpte_find(unsigned long vpn,int psize,int ssize)940 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
941 {
942 long slot;
943 unsigned long hash;
944 unsigned long want_v;
945 unsigned long hpte_group;
946
947 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
948 want_v = hpte_encode_avpn(vpn, psize, ssize);
949
950 /*
951 * We try to keep bolted entries always in primary hash
952 * But in some case we can find them in secondary too.
953 */
954 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
955 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
956 if (slot < 0) {
957 /* Try in secondary */
958 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
959 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
960 if (slot < 0)
961 return -1;
962 }
963 return hpte_group + slot;
964 }
965
pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,unsigned long ea,int psize,int ssize)966 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
967 unsigned long ea,
968 int psize, int ssize)
969 {
970 unsigned long vpn;
971 unsigned long lpar_rc, slot, vsid, flags;
972
973 vsid = get_kernel_vsid(ea, ssize);
974 vpn = hpt_vpn(ea, vsid, ssize);
975
976 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
977 BUG_ON(slot == -1);
978
979 flags = newpp & 7;
980 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
981 /* Move pp0 into bit 8 (IBM 55) */
982 flags |= (newpp & HPTE_R_PP0) >> 55;
983
984 lpar_rc = plpar_pte_protect(flags, slot, 0);
985
986 BUG_ON(lpar_rc != H_SUCCESS);
987 }
988
pSeries_lpar_hpte_invalidate(unsigned long slot,unsigned long vpn,int psize,int apsize,int ssize,int local)989 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
990 int psize, int apsize,
991 int ssize, int local)
992 {
993 unsigned long want_v;
994 unsigned long lpar_rc;
995 unsigned long dummy1, dummy2;
996
997 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
998 slot, vpn, psize, local);
999
1000 want_v = hpte_encode_avpn(vpn, psize, ssize);
1001 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1002 if (lpar_rc == H_NOT_FOUND)
1003 return;
1004
1005 BUG_ON(lpar_rc != H_SUCCESS);
1006 }
1007
1008
1009 /*
1010 * As defined in the PAPR's section 14.5.4.1.8
1011 * The control mask doesn't include the returned reference and change bit from
1012 * the processed PTE.
1013 */
1014 #define HBLKR_AVPN 0x0100000000000000UL
1015 #define HBLKR_CTRL_MASK 0xf800000000000000UL
1016 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
1017 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
1018 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
1019
1020 /*
1021 * Returned true if we are supporting this block size for the specified segment
1022 * base page size and actual page size.
1023 *
1024 * Currently, we only support 8 size block.
1025 */
is_supported_hlbkrm(int bpsize,int psize)1026 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1027 {
1028 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1029 }
1030
1031 /**
1032 * H_BLOCK_REMOVE caller.
1033 * @idx should point to the latest @param entry set with a PTEX.
1034 * If PTE cannot be processed because another CPUs has already locked that
1035 * group, those entries are put back in @param starting at index 1.
1036 * If entries has to be retried and @retry_busy is set to true, these entries
1037 * are retried until success. If @retry_busy is set to false, the returned
1038 * is the number of entries yet to process.
1039 */
call_block_remove(unsigned long idx,unsigned long * param,bool retry_busy)1040 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1041 bool retry_busy)
1042 {
1043 unsigned long i, rc, new_idx;
1044 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1045
1046 if (idx < 2) {
1047 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1048 return 0;
1049 }
1050 again:
1051 new_idx = 0;
1052 if (idx > PLPAR_HCALL9_BUFSIZE) {
1053 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1054 idx = PLPAR_HCALL9_BUFSIZE;
1055 } else if (idx < PLPAR_HCALL9_BUFSIZE)
1056 param[idx] = HBR_END;
1057
1058 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1059 param[0], /* AVA */
1060 param[1], param[2], param[3], param[4], /* TS0-7 */
1061 param[5], param[6], param[7], param[8]);
1062 if (rc == H_SUCCESS)
1063 return 0;
1064
1065 BUG_ON(rc != H_PARTIAL);
1066
1067 /* Check that the unprocessed entries were 'not found' or 'busy' */
1068 for (i = 0; i < idx-1; i++) {
1069 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1070
1071 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1072 param[++new_idx] = param[i+1];
1073 continue;
1074 }
1075
1076 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1077 && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1078 }
1079
1080 /*
1081 * If there were entries found busy, retry these entries if requested,
1082 * of if all the entries have to be retried.
1083 */
1084 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1085 idx = new_idx + 1;
1086 goto again;
1087 }
1088
1089 return new_idx;
1090 }
1091
1092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1093 /*
1094 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1095 * to make sure that we avoid bouncing the hypervisor tlbie lock.
1096 */
1097 #define PPC64_HUGE_HPTE_BATCH 12
1098
hugepage_block_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1099 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1100 int count, int psize, int ssize)
1101 {
1102 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1103 unsigned long shift, current_vpgb, vpgb;
1104 int i, pix = 0;
1105
1106 shift = mmu_psize_defs[psize].shift;
1107
1108 for (i = 0; i < count; i++) {
1109 /*
1110 * Shifting 3 bits more on the right to get a
1111 * 8 pages aligned virtual addresse.
1112 */
1113 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1114 if (!pix || vpgb != current_vpgb) {
1115 /*
1116 * Need to start a new 8 pages block, flush
1117 * the current one if needed.
1118 */
1119 if (pix)
1120 (void)call_block_remove(pix, param, true);
1121 current_vpgb = vpgb;
1122 param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1123 pix = 1;
1124 }
1125
1126 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1127 if (pix == PLPAR_HCALL9_BUFSIZE) {
1128 pix = call_block_remove(pix, param, false);
1129 /*
1130 * pix = 0 means that all the entries were
1131 * removed, we can start a new block.
1132 * Otherwise, this means that there are entries
1133 * to retry, and pix points to latest one, so
1134 * we should increment it and try to continue
1135 * the same block.
1136 */
1137 if (pix)
1138 pix++;
1139 }
1140 }
1141 if (pix)
1142 (void)call_block_remove(pix, param, true);
1143 }
1144
hugepage_bulk_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1145 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1146 int count, int psize, int ssize)
1147 {
1148 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1149 int i = 0, pix = 0, rc;
1150
1151 for (i = 0; i < count; i++) {
1152
1153 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1154 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1155 ssize, 0);
1156 } else {
1157 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1158 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1159 pix += 2;
1160 if (pix == 8) {
1161 rc = plpar_hcall9(H_BULK_REMOVE, param,
1162 param[0], param[1], param[2],
1163 param[3], param[4], param[5],
1164 param[6], param[7]);
1165 BUG_ON(rc != H_SUCCESS);
1166 pix = 0;
1167 }
1168 }
1169 }
1170 if (pix) {
1171 param[pix] = HBR_END;
1172 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1173 param[2], param[3], param[4], param[5],
1174 param[6], param[7]);
1175 BUG_ON(rc != H_SUCCESS);
1176 }
1177 }
1178
__pSeries_lpar_hugepage_invalidate(unsigned long * slot,unsigned long * vpn,int count,int psize,int ssize)1179 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1180 unsigned long *vpn,
1181 int count, int psize,
1182 int ssize)
1183 {
1184 unsigned long flags = 0;
1185 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1186
1187 if (lock_tlbie)
1188 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1189
1190 /* Assuming THP size is 16M */
1191 if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1192 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1193 else
1194 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1195
1196 if (lock_tlbie)
1197 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1198 }
1199
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1200 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1201 unsigned long addr,
1202 unsigned char *hpte_slot_array,
1203 int psize, int ssize, int local)
1204 {
1205 int i, index = 0;
1206 unsigned long s_addr = addr;
1207 unsigned int max_hpte_count, valid;
1208 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1209 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1210 unsigned long shift, hidx, vpn = 0, hash, slot;
1211
1212 shift = mmu_psize_defs[psize].shift;
1213 max_hpte_count = 1U << (PMD_SHIFT - shift);
1214
1215 for (i = 0; i < max_hpte_count; i++) {
1216 valid = hpte_valid(hpte_slot_array, i);
1217 if (!valid)
1218 continue;
1219 hidx = hpte_hash_index(hpte_slot_array, i);
1220
1221 /* get the vpn */
1222 addr = s_addr + (i * (1ul << shift));
1223 vpn = hpt_vpn(addr, vsid, ssize);
1224 hash = hpt_hash(vpn, shift, ssize);
1225 if (hidx & _PTEIDX_SECONDARY)
1226 hash = ~hash;
1227
1228 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1229 slot += hidx & _PTEIDX_GROUP_IX;
1230
1231 slot_array[index] = slot;
1232 vpn_array[index] = vpn;
1233 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1234 /*
1235 * Now do a bluk invalidate
1236 */
1237 __pSeries_lpar_hugepage_invalidate(slot_array,
1238 vpn_array,
1239 PPC64_HUGE_HPTE_BATCH,
1240 psize, ssize);
1241 index = 0;
1242 } else
1243 index++;
1244 }
1245 if (index)
1246 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1247 index, psize, ssize);
1248 }
1249 #else
pSeries_lpar_hugepage_invalidate(unsigned long vsid,unsigned long addr,unsigned char * hpte_slot_array,int psize,int ssize,int local)1250 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1251 unsigned long addr,
1252 unsigned char *hpte_slot_array,
1253 int psize, int ssize, int local)
1254 {
1255 WARN(1, "%s called without THP support\n", __func__);
1256 }
1257 #endif
1258
pSeries_lpar_hpte_removebolted(unsigned long ea,int psize,int ssize)1259 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1260 int psize, int ssize)
1261 {
1262 unsigned long vpn;
1263 unsigned long slot, vsid;
1264
1265 vsid = get_kernel_vsid(ea, ssize);
1266 vpn = hpt_vpn(ea, vsid, ssize);
1267
1268 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1269 if (slot == -1)
1270 return -ENOENT;
1271
1272 /*
1273 * lpar doesn't use the passed actual page size
1274 */
1275 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1276 return 0;
1277 }
1278
1279
compute_slot(real_pte_t pte,unsigned long vpn,unsigned long index,unsigned long shift,int ssize)1280 static inline unsigned long compute_slot(real_pte_t pte,
1281 unsigned long vpn,
1282 unsigned long index,
1283 unsigned long shift,
1284 int ssize)
1285 {
1286 unsigned long slot, hash, hidx;
1287
1288 hash = hpt_hash(vpn, shift, ssize);
1289 hidx = __rpte_to_hidx(pte, index);
1290 if (hidx & _PTEIDX_SECONDARY)
1291 hash = ~hash;
1292 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1293 slot += hidx & _PTEIDX_GROUP_IX;
1294 return slot;
1295 }
1296
1297 /**
1298 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1299 * "all within the same naturally aligned 8 page virtual address block".
1300 */
do_block_remove(unsigned long number,struct ppc64_tlb_batch * batch,unsigned long * param)1301 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1302 unsigned long *param)
1303 {
1304 unsigned long vpn;
1305 unsigned long i, pix = 0;
1306 unsigned long index, shift, slot, current_vpgb, vpgb;
1307 real_pte_t pte;
1308 int psize, ssize;
1309
1310 psize = batch->psize;
1311 ssize = batch->ssize;
1312
1313 for (i = 0; i < number; i++) {
1314 vpn = batch->vpn[i];
1315 pte = batch->pte[i];
1316 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1317 /*
1318 * Shifting 3 bits more on the right to get a
1319 * 8 pages aligned virtual addresse.
1320 */
1321 vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1322 if (!pix || vpgb != current_vpgb) {
1323 /*
1324 * Need to start a new 8 pages block, flush
1325 * the current one if needed.
1326 */
1327 if (pix)
1328 (void)call_block_remove(pix, param,
1329 true);
1330 current_vpgb = vpgb;
1331 param[0] = hpte_encode_avpn(vpn, psize,
1332 ssize);
1333 pix = 1;
1334 }
1335
1336 slot = compute_slot(pte, vpn, index, shift, ssize);
1337 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1338
1339 if (pix == PLPAR_HCALL9_BUFSIZE) {
1340 pix = call_block_remove(pix, param, false);
1341 /*
1342 * pix = 0 means that all the entries were
1343 * removed, we can start a new block.
1344 * Otherwise, this means that there are entries
1345 * to retry, and pix points to latest one, so
1346 * we should increment it and try to continue
1347 * the same block.
1348 */
1349 if (pix)
1350 pix++;
1351 }
1352 } pte_iterate_hashed_end();
1353 }
1354
1355 if (pix)
1356 (void)call_block_remove(pix, param, true);
1357 }
1358
1359 /*
1360 * TLB Block Invalidate Characteristics
1361 *
1362 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1363 * is able to process for each couple segment base page size, actual page size.
1364 *
1365 * The ibm,get-system-parameter properties is returning a buffer with the
1366 * following layout:
1367 *
1368 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1369 * -----------------
1370 * TLB Block Invalidate Specifiers:
1371 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1372 * [ 1 byte Number of page sizes (N) that are supported for the specified
1373 * TLB invalidate block size ]
1374 * [ 1 byte Encoded segment base page size and actual page size
1375 * MSB=0 means 4k segment base page size and actual page size
1376 * MSB=1 the penc value in mmu_psize_def ]
1377 * ...
1378 * -----------------
1379 * Next TLB Block Invalidate Specifiers...
1380 * -----------------
1381 * [ 0 ]
1382 */
set_hblkrm_bloc_size(int bpsize,int psize,unsigned int block_size)1383 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1384 unsigned int block_size)
1385 {
1386 if (block_size > hblkrm_size[bpsize][psize])
1387 hblkrm_size[bpsize][psize] = block_size;
1388 }
1389
1390 /*
1391 * Decode the Encoded segment base page size and actual page size.
1392 * PAPR specifies:
1393 * - bit 7 is the L bit
1394 * - bits 0-5 are the penc value
1395 * If the L bit is 0, this means 4K segment base page size and actual page size
1396 * otherwise the penc value should be read.
1397 */
1398 #define HBLKRM_L_MASK 0x80
1399 #define HBLKRM_PENC_MASK 0x3f
check_lp_set_hblkrm(unsigned int lp,unsigned int block_size)1400 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1401 unsigned int block_size)
1402 {
1403 unsigned int bpsize, psize;
1404
1405 /* First, check the L bit, if not set, this means 4K */
1406 if ((lp & HBLKRM_L_MASK) == 0) {
1407 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1408 return;
1409 }
1410
1411 lp &= HBLKRM_PENC_MASK;
1412 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1413 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1414
1415 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1416 if (def->penc[psize] == lp) {
1417 set_hblkrm_bloc_size(bpsize, psize, block_size);
1418 return;
1419 }
1420 }
1421 }
1422 }
1423
1424 #define SPLPAR_TLB_BIC_TOKEN 50
1425
1426 /*
1427 * The size of the TLB Block Invalidate Characteristics is variable. But at the
1428 * maximum it will be the number of possible page sizes *2 + 10 bytes.
1429 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1430 * (128 bytes) for the buffer to get plenty of space.
1431 */
1432 #define SPLPAR_TLB_BIC_MAXLENGTH 128
1433
pseries_lpar_read_hblkrm_characteristics(void)1434 void __init pseries_lpar_read_hblkrm_characteristics(void)
1435 {
1436 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1437 int call_status, len, idx, bpsize;
1438
1439 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1440 return;
1441
1442 spin_lock(&rtas_data_buf_lock);
1443 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1444 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1445 NULL,
1446 SPLPAR_TLB_BIC_TOKEN,
1447 __pa(rtas_data_buf),
1448 RTAS_DATA_BUF_SIZE);
1449 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1450 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1451 spin_unlock(&rtas_data_buf_lock);
1452
1453 if (call_status != 0) {
1454 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1455 __FILE__, __func__, call_status);
1456 return;
1457 }
1458
1459 /*
1460 * The first two (2) bytes of the data in the buffer are the length of
1461 * the returned data, not counting these first two (2) bytes.
1462 */
1463 len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1464 if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1465 pr_warn("%s too large returned buffer %d", __func__, len);
1466 return;
1467 }
1468
1469 idx = 2;
1470 while (idx < len) {
1471 u8 block_shift = local_buffer[idx++];
1472 u32 block_size;
1473 unsigned int npsize;
1474
1475 if (!block_shift)
1476 break;
1477
1478 block_size = 1 << block_shift;
1479
1480 for (npsize = local_buffer[idx++];
1481 npsize > 0 && idx < len; npsize--)
1482 check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1483 block_size);
1484 }
1485
1486 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1487 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1488 if (hblkrm_size[bpsize][idx])
1489 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1490 bpsize, idx, hblkrm_size[bpsize][idx]);
1491 }
1492
1493 /*
1494 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1495 * lock.
1496 */
pSeries_lpar_flush_hash_range(unsigned long number,int local)1497 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1498 {
1499 unsigned long vpn;
1500 unsigned long i, pix, rc;
1501 unsigned long flags = 0;
1502 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1503 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1504 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1505 unsigned long index, shift, slot;
1506 real_pte_t pte;
1507 int psize, ssize;
1508
1509 if (lock_tlbie)
1510 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1511
1512 if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1513 do_block_remove(number, batch, param);
1514 goto out;
1515 }
1516
1517 psize = batch->psize;
1518 ssize = batch->ssize;
1519 pix = 0;
1520 for (i = 0; i < number; i++) {
1521 vpn = batch->vpn[i];
1522 pte = batch->pte[i];
1523 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1524 slot = compute_slot(pte, vpn, index, shift, ssize);
1525 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1526 /*
1527 * lpar doesn't use the passed actual page size
1528 */
1529 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1530 0, ssize, local);
1531 } else {
1532 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1533 param[pix+1] = hpte_encode_avpn(vpn, psize,
1534 ssize);
1535 pix += 2;
1536 if (pix == 8) {
1537 rc = plpar_hcall9(H_BULK_REMOVE, param,
1538 param[0], param[1], param[2],
1539 param[3], param[4], param[5],
1540 param[6], param[7]);
1541 BUG_ON(rc != H_SUCCESS);
1542 pix = 0;
1543 }
1544 }
1545 } pte_iterate_hashed_end();
1546 }
1547 if (pix) {
1548 param[pix] = HBR_END;
1549 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1550 param[2], param[3], param[4], param[5],
1551 param[6], param[7]);
1552 BUG_ON(rc != H_SUCCESS);
1553 }
1554
1555 out:
1556 if (lock_tlbie)
1557 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1558 }
1559
disable_bulk_remove(char * str)1560 static int __init disable_bulk_remove(char *str)
1561 {
1562 if (strcmp(str, "off") == 0 &&
1563 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1564 pr_info("Disabling BULK_REMOVE firmware feature");
1565 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1566 }
1567 return 1;
1568 }
1569
1570 __setup("bulk_remove=", disable_bulk_remove);
1571
1572 #define HPT_RESIZE_TIMEOUT 10000 /* ms */
1573
1574 struct hpt_resize_state {
1575 unsigned long shift;
1576 int commit_rc;
1577 };
1578
pseries_lpar_resize_hpt_commit(void * data)1579 static int pseries_lpar_resize_hpt_commit(void *data)
1580 {
1581 struct hpt_resize_state *state = data;
1582
1583 state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1584 if (state->commit_rc != H_SUCCESS)
1585 return -EIO;
1586
1587 /* Hypervisor has transitioned the HTAB, update our globals */
1588 ppc64_pft_size = state->shift;
1589 htab_size_bytes = 1UL << ppc64_pft_size;
1590 htab_hash_mask = (htab_size_bytes >> 7) - 1;
1591
1592 return 0;
1593 }
1594
1595 /*
1596 * Must be called in process context. The caller must hold the
1597 * cpus_lock.
1598 */
pseries_lpar_resize_hpt(unsigned long shift)1599 static int pseries_lpar_resize_hpt(unsigned long shift)
1600 {
1601 struct hpt_resize_state state = {
1602 .shift = shift,
1603 .commit_rc = H_FUNCTION,
1604 };
1605 unsigned int delay, total_delay = 0;
1606 int rc;
1607 ktime_t t0, t1, t2;
1608
1609 might_sleep();
1610
1611 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1612 return -ENODEV;
1613
1614 pr_info("Attempting to resize HPT to shift %lu\n", shift);
1615
1616 t0 = ktime_get();
1617
1618 rc = plpar_resize_hpt_prepare(0, shift);
1619 while (H_IS_LONG_BUSY(rc)) {
1620 delay = get_longbusy_msecs(rc);
1621 total_delay += delay;
1622 if (total_delay > HPT_RESIZE_TIMEOUT) {
1623 /* prepare with shift==0 cancels an in-progress resize */
1624 rc = plpar_resize_hpt_prepare(0, 0);
1625 if (rc != H_SUCCESS)
1626 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1627 rc);
1628 return -ETIMEDOUT;
1629 }
1630 msleep(delay);
1631 rc = plpar_resize_hpt_prepare(0, shift);
1632 };
1633
1634 switch (rc) {
1635 case H_SUCCESS:
1636 /* Continue on */
1637 break;
1638
1639 case H_PARAMETER:
1640 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1641 return -EINVAL;
1642 case H_RESOURCE:
1643 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1644 return -EPERM;
1645 default:
1646 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1647 return -EIO;
1648 }
1649
1650 t1 = ktime_get();
1651
1652 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1653 &state, NULL);
1654
1655 t2 = ktime_get();
1656
1657 if (rc != 0) {
1658 switch (state.commit_rc) {
1659 case H_PTEG_FULL:
1660 return -ENOSPC;
1661
1662 default:
1663 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1664 state.commit_rc);
1665 return -EIO;
1666 };
1667 }
1668
1669 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1670 shift, (long long) ktime_ms_delta(t1, t0),
1671 (long long) ktime_ms_delta(t2, t1));
1672
1673 return 0;
1674 }
1675
pseries_lpar_register_process_table(unsigned long base,unsigned long page_size,unsigned long table_size)1676 static int pseries_lpar_register_process_table(unsigned long base,
1677 unsigned long page_size, unsigned long table_size)
1678 {
1679 long rc;
1680 unsigned long flags = 0;
1681
1682 if (table_size)
1683 flags |= PROC_TABLE_NEW;
1684 if (radix_enabled()) {
1685 flags |= PROC_TABLE_RADIX;
1686 if (mmu_has_feature(MMU_FTR_GTSE))
1687 flags |= PROC_TABLE_GTSE;
1688 } else
1689 flags |= PROC_TABLE_HPT_SLB;
1690 for (;;) {
1691 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1692 page_size, table_size);
1693 if (!H_IS_LONG_BUSY(rc))
1694 break;
1695 mdelay(get_longbusy_msecs(rc));
1696 }
1697 if (rc != H_SUCCESS) {
1698 pr_err("Failed to register process table (rc=%ld)\n", rc);
1699 BUG();
1700 }
1701 return rc;
1702 }
1703
hpte_init_pseries(void)1704 void __init hpte_init_pseries(void)
1705 {
1706 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
1707 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
1708 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1709 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
1710 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
1711 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
1712 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
1713 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
1714 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1715
1716 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1717 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1718
1719 /*
1720 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1721 * to inform the hypervisor that we wish to use the HPT.
1722 */
1723 if (cpu_has_feature(CPU_FTR_ARCH_300))
1724 pseries_lpar_register_process_table(0, 0, 0);
1725 }
1726
1727 #ifdef CONFIG_PPC_RADIX_MMU
radix_init_pseries(void)1728 void radix_init_pseries(void)
1729 {
1730 pr_info("Using radix MMU under hypervisor\n");
1731
1732 pseries_lpar_register_process_table(__pa(process_tb),
1733 0, PRTB_SIZE_SHIFT - 12);
1734 }
1735 #endif
1736
1737 #ifdef CONFIG_PPC_SMLPAR
1738 #define CMO_FREE_HINT_DEFAULT 1
1739 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1740
cmo_free_hint(char * str)1741 static int __init cmo_free_hint(char *str)
1742 {
1743 char *parm;
1744 parm = strstrip(str);
1745
1746 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1747 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1748 cmo_free_hint_flag = 0;
1749 return 1;
1750 }
1751
1752 cmo_free_hint_flag = 1;
1753 pr_info("%s: CMO free page hinting is active.\n", __func__);
1754
1755 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1756 return 1;
1757
1758 return 0;
1759 }
1760
1761 __setup("cmo_free_hint=", cmo_free_hint);
1762
pSeries_set_page_state(struct page * page,int order,unsigned long state)1763 static void pSeries_set_page_state(struct page *page, int order,
1764 unsigned long state)
1765 {
1766 int i, j;
1767 unsigned long cmo_page_sz, addr;
1768
1769 cmo_page_sz = cmo_get_page_size();
1770 addr = __pa((unsigned long)page_address(page));
1771
1772 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1773 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1774 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1775 }
1776 }
1777
arch_free_page(struct page * page,int order)1778 void arch_free_page(struct page *page, int order)
1779 {
1780 if (radix_enabled())
1781 return;
1782 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1783 return;
1784
1785 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1786 }
1787 EXPORT_SYMBOL(arch_free_page);
1788
1789 #endif /* CONFIG_PPC_SMLPAR */
1790 #endif /* CONFIG_PPC_BOOK3S_64 */
1791
1792 #ifdef CONFIG_TRACEPOINTS
1793 #ifdef CONFIG_JUMP_LABEL
1794 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1795
hcall_tracepoint_regfunc(void)1796 int hcall_tracepoint_regfunc(void)
1797 {
1798 static_key_slow_inc(&hcall_tracepoint_key);
1799 return 0;
1800 }
1801
hcall_tracepoint_unregfunc(void)1802 void hcall_tracepoint_unregfunc(void)
1803 {
1804 static_key_slow_dec(&hcall_tracepoint_key);
1805 }
1806 #else
1807 /*
1808 * We optimise our hcall path by placing hcall_tracepoint_refcount
1809 * directly in the TOC so we can check if the hcall tracepoints are
1810 * enabled via a single load.
1811 */
1812
1813 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1814 extern long hcall_tracepoint_refcount;
1815
hcall_tracepoint_regfunc(void)1816 int hcall_tracepoint_regfunc(void)
1817 {
1818 hcall_tracepoint_refcount++;
1819 return 0;
1820 }
1821
hcall_tracepoint_unregfunc(void)1822 void hcall_tracepoint_unregfunc(void)
1823 {
1824 hcall_tracepoint_refcount--;
1825 }
1826 #endif
1827
1828 /*
1829 * Since the tracing code might execute hcalls we need to guard against
1830 * recursion. One example of this are spinlocks calling H_YIELD on
1831 * shared processor partitions.
1832 */
1833 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1834
1835
__trace_hcall_entry(unsigned long opcode,unsigned long * args)1836 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1837 {
1838 unsigned long flags;
1839 unsigned int *depth;
1840
1841 /*
1842 * We cannot call tracepoints inside RCU idle regions which
1843 * means we must not trace H_CEDE.
1844 */
1845 if (opcode == H_CEDE)
1846 return;
1847
1848 local_irq_save(flags);
1849
1850 depth = this_cpu_ptr(&hcall_trace_depth);
1851
1852 if (*depth)
1853 goto out;
1854
1855 (*depth)++;
1856 preempt_disable();
1857 trace_hcall_entry(opcode, args);
1858 (*depth)--;
1859
1860 out:
1861 local_irq_restore(flags);
1862 }
1863
__trace_hcall_exit(long opcode,long retval,unsigned long * retbuf)1864 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1865 {
1866 unsigned long flags;
1867 unsigned int *depth;
1868
1869 if (opcode == H_CEDE)
1870 return;
1871
1872 local_irq_save(flags);
1873
1874 depth = this_cpu_ptr(&hcall_trace_depth);
1875
1876 if (*depth)
1877 goto out;
1878
1879 (*depth)++;
1880 trace_hcall_exit(opcode, retval, retbuf);
1881 preempt_enable();
1882 (*depth)--;
1883
1884 out:
1885 local_irq_restore(flags);
1886 }
1887 #endif
1888
1889 /**
1890 * h_get_mpp
1891 * H_GET_MPP hcall returns info in 7 parms
1892 */
h_get_mpp(struct hvcall_mpp_data * mpp_data)1893 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1894 {
1895 int rc;
1896 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1897
1898 rc = plpar_hcall9(H_GET_MPP, retbuf);
1899
1900 mpp_data->entitled_mem = retbuf[0];
1901 mpp_data->mapped_mem = retbuf[1];
1902
1903 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1904 mpp_data->pool_num = retbuf[2] & 0xffff;
1905
1906 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1907 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1908 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1909
1910 mpp_data->pool_size = retbuf[4];
1911 mpp_data->loan_request = retbuf[5];
1912 mpp_data->backing_mem = retbuf[6];
1913
1914 return rc;
1915 }
1916 EXPORT_SYMBOL(h_get_mpp);
1917
h_get_mpp_x(struct hvcall_mpp_x_data * mpp_x_data)1918 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1919 {
1920 int rc;
1921 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1922
1923 rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1924
1925 mpp_x_data->coalesced_bytes = retbuf[0];
1926 mpp_x_data->pool_coalesced_bytes = retbuf[1];
1927 mpp_x_data->pool_purr_cycles = retbuf[2];
1928 mpp_x_data->pool_spurr_cycles = retbuf[3];
1929
1930 return rc;
1931 }
1932
vsid_unscramble(unsigned long vsid,int ssize)1933 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1934 {
1935 unsigned long protovsid;
1936 unsigned long va_bits = VA_BITS;
1937 unsigned long modinv, vsid_modulus;
1938 unsigned long max_mod_inv, tmp_modinv;
1939
1940 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1941 va_bits = 65;
1942
1943 if (ssize == MMU_SEGSIZE_256M) {
1944 modinv = VSID_MULINV_256M;
1945 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1946 } else {
1947 modinv = VSID_MULINV_1T;
1948 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1949 }
1950
1951 /*
1952 * vsid outside our range.
1953 */
1954 if (vsid >= vsid_modulus)
1955 return 0;
1956
1957 /*
1958 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1959 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1960 * protovsid = (vsid * modinv) % vsid_modulus
1961 */
1962
1963 /* Check if (vsid * modinv) overflow (63 bits) */
1964 max_mod_inv = 0x7fffffffffffffffull / vsid;
1965 if (modinv < max_mod_inv)
1966 return (vsid * modinv) % vsid_modulus;
1967
1968 tmp_modinv = modinv/max_mod_inv;
1969 modinv %= max_mod_inv;
1970
1971 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1972 protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1973
1974 return protovsid;
1975 }
1976
reserve_vrma_context_id(void)1977 static int __init reserve_vrma_context_id(void)
1978 {
1979 unsigned long protovsid;
1980
1981 /*
1982 * Reserve context ids which map to reserved virtual addresses. For now
1983 * we only reserve the context id which maps to the VRMA VSID. We ignore
1984 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1985 * enable adjunct support via the "ibm,client-architecture-support"
1986 * interface.
1987 */
1988 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1989 hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1990 return 0;
1991 }
1992 machine_device_initcall(pseries, reserve_vrma_context_id);
1993
1994 #ifdef CONFIG_DEBUG_FS
1995 /* debugfs file interface for vpa data */
vpa_file_read(struct file * filp,char __user * buf,size_t len,loff_t * pos)1996 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1997 loff_t *pos)
1998 {
1999 int cpu = (long)filp->private_data;
2000 struct lppaca *lppaca = &lppaca_of(cpu);
2001
2002 return simple_read_from_buffer(buf, len, pos, lppaca,
2003 sizeof(struct lppaca));
2004 }
2005
2006 static const struct file_operations vpa_fops = {
2007 .open = simple_open,
2008 .read = vpa_file_read,
2009 .llseek = default_llseek,
2010 };
2011
vpa_debugfs_init(void)2012 static int __init vpa_debugfs_init(void)
2013 {
2014 char name[16];
2015 long i;
2016 struct dentry *vpa_dir;
2017
2018 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2019 return 0;
2020
2021 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
2022
2023 /* set up the per-cpu vpa file*/
2024 for_each_possible_cpu(i) {
2025 sprintf(name, "cpu-%ld", i);
2026 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2027 }
2028
2029 return 0;
2030 }
2031 machine_arch_initcall(pseries, vpa_debugfs_init);
2032 #endif /* CONFIG_DEBUG_FS */
2033