1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4 * Author:Mark Yao <mark.yao@rock-chips.com>
5 */
6
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/log2.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_blend.h>
24 #include <drm/drm_crtc.h>
25 #include <drm/drm_flip_work.h>
26 #include <drm/drm_fourcc.h>
27 #include <drm/drm_framebuffer.h>
28 #include <drm/drm_gem_atomic_helper.h>
29 #include <drm/drm_gem_framebuffer_helper.h>
30 #include <drm/drm_probe_helper.h>
31 #include <drm/drm_self_refresh_helper.h>
32 #include <drm/drm_vblank.h>
33
34 #ifdef CONFIG_DRM_ANALOGIX_DP
35 #include <drm/bridge/analogix_dp.h>
36 #endif
37
38 #include "rockchip_drm_drv.h"
39 #include "rockchip_drm_gem.h"
40 #include "rockchip_drm_fb.h"
41 #include "rockchip_drm_vop.h"
42 #include "rockchip_rgb.h"
43
44 #define VOP_WIN_SET(vop, win, name, v) \
45 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET(vop, win, name, v) \
47 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
48 #define VOP_SCL_SET_EXT(vop, win, name, v) \
49 vop_reg_set(vop, &win->phy->scl->ext->name, \
50 win->base, ~0, v, #name)
51
52 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
53 do { \
54 if (win_yuv2yuv && win_yuv2yuv->name.mask) \
55 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
56 } while (0)
57
58 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
59 do { \
60 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
61 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
62 } while (0)
63
64 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
65 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
66
67 #define VOP_REG_SET(vop, group, name, v) \
68 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
69
70 #define VOP_HAS_REG(vop, group, name) \
71 (!!(vop->data->group->name.mask))
72
73 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
74 do { \
75 int i, reg = 0, mask = 0; \
76 for (i = 0; i < vop->data->intr->nintrs; i++) { \
77 if (vop->data->intr->intrs[i] & type) { \
78 reg |= (v) << i; \
79 mask |= 1 << i; \
80 } \
81 } \
82 VOP_INTR_SET_MASK(vop, name, mask, reg); \
83 } while (0)
84 #define VOP_INTR_GET_TYPE(vop, name, type) \
85 vop_get_intr_type(vop, &vop->data->intr->name, type)
86
87 #define VOP_WIN_GET(vop, win, name) \
88 vop_read_reg(vop, win->base, &win->phy->name)
89
90 #define VOP_WIN_HAS_REG(win, name) \
91 (!!(win->phy->name.mask))
92
93 #define VOP_WIN_GET_YRGBADDR(vop, win) \
94 vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
95
96 #define VOP_WIN_TO_INDEX(vop_win) \
97 ((vop_win) - (vop_win)->vop->win)
98
99 #define VOP_AFBC_SET(vop, name, v) \
100 do { \
101 if ((vop)->data->afbc) \
102 vop_reg_set((vop), &(vop)->data->afbc->name, \
103 0, ~0, v, #name); \
104 } while (0)
105
106 #define to_vop(x) container_of(x, struct vop, crtc)
107 #define to_vop_win(x) container_of(x, struct vop_win, base)
108
109 #define AFBC_FMT_RGB565 0x0
110 #define AFBC_FMT_U8U8U8U8 0x5
111 #define AFBC_FMT_U8U8U8 0x4
112
113 #define AFBC_TILE_16x16 BIT(4)
114
115 /*
116 * The coefficients of the following matrix are all fixed points.
117 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
118 * They are all represented in two's complement.
119 */
120 static const uint32_t bt601_yuv2rgb[] = {
121 0x4A8, 0x0, 0x662,
122 0x4A8, 0x1E6F, 0x1CBF,
123 0x4A8, 0x812, 0x0,
124 0x321168, 0x0877CF, 0x2EB127
125 };
126
127 enum vop_pending {
128 VOP_PENDING_FB_UNREF,
129 };
130
131 struct vop_win {
132 struct drm_plane base;
133 const struct vop_win_data *data;
134 const struct vop_win_yuv2yuv_data *yuv2yuv_data;
135 struct vop *vop;
136 };
137
138 struct rockchip_rgb;
139 struct vop {
140 struct drm_crtc crtc;
141 struct device *dev;
142 struct drm_device *drm_dev;
143 bool is_enabled;
144
145 struct completion dsp_hold_completion;
146 unsigned int win_enabled;
147
148 /* protected by dev->event_lock */
149 struct drm_pending_vblank_event *event;
150
151 struct drm_flip_work fb_unref_work;
152 unsigned long pending;
153
154 struct completion line_flag_completion;
155
156 const struct vop_data *data;
157
158 uint32_t *regsbak;
159 void __iomem *regs;
160 void __iomem *lut_regs;
161
162 /* physical map length of vop register */
163 uint32_t len;
164
165 /* one time only one process allowed to config the register */
166 spinlock_t reg_lock;
167 /* lock vop irq reg */
168 spinlock_t irq_lock;
169 /* protects crtc enable/disable */
170 struct mutex vop_lock;
171
172 unsigned int irq;
173
174 /* vop AHP clk */
175 struct clk *hclk;
176 /* vop dclk */
177 struct clk *dclk;
178 /* vop share memory frequency */
179 struct clk *aclk;
180
181 /* vop dclk reset */
182 struct reset_control *dclk_rst;
183
184 /* optional internal rgb encoder */
185 struct rockchip_rgb *rgb;
186
187 struct vop_win win[];
188 };
189
vop_readl(struct vop * vop,uint32_t offset)190 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
191 {
192 return readl(vop->regs + offset);
193 }
194
vop_read_reg(struct vop * vop,uint32_t base,const struct vop_reg * reg)195 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
196 const struct vop_reg *reg)
197 {
198 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
199 }
200
vop_reg_set(struct vop * vop,const struct vop_reg * reg,uint32_t _offset,uint32_t _mask,uint32_t v,const char * reg_name)201 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
202 uint32_t _offset, uint32_t _mask, uint32_t v,
203 const char *reg_name)
204 {
205 int offset, mask, shift;
206
207 if (!reg || !reg->mask) {
208 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
209 return;
210 }
211
212 offset = reg->offset + _offset;
213 mask = reg->mask & _mask;
214 shift = reg->shift;
215
216 if (reg->write_mask) {
217 v = ((v << shift) & 0xffff) | (mask << (shift + 16));
218 } else {
219 uint32_t cached_val = vop->regsbak[offset >> 2];
220
221 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
222 vop->regsbak[offset >> 2] = v;
223 }
224
225 if (reg->relaxed)
226 writel_relaxed(v, vop->regs + offset);
227 else
228 writel(v, vop->regs + offset);
229 }
230
vop_get_intr_type(struct vop * vop,const struct vop_reg * reg,int type)231 static inline uint32_t vop_get_intr_type(struct vop *vop,
232 const struct vop_reg *reg, int type)
233 {
234 uint32_t i, ret = 0;
235 uint32_t regs = vop_read_reg(vop, 0, reg);
236
237 for (i = 0; i < vop->data->intr->nintrs; i++) {
238 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
239 ret |= vop->data->intr->intrs[i];
240 }
241
242 return ret;
243 }
244
vop_cfg_done(struct vop * vop)245 static inline void vop_cfg_done(struct vop *vop)
246 {
247 VOP_REG_SET(vop, common, cfg_done, 1);
248 }
249
has_rb_swapped(uint32_t format)250 static bool has_rb_swapped(uint32_t format)
251 {
252 switch (format) {
253 case DRM_FORMAT_XBGR8888:
254 case DRM_FORMAT_ABGR8888:
255 case DRM_FORMAT_BGR888:
256 case DRM_FORMAT_BGR565:
257 return true;
258 default:
259 return false;
260 }
261 }
262
has_uv_swapped(uint32_t format)263 static bool has_uv_swapped(uint32_t format)
264 {
265 switch (format) {
266 case DRM_FORMAT_NV21:
267 case DRM_FORMAT_NV61:
268 case DRM_FORMAT_NV42:
269 return true;
270 default:
271 return false;
272 }
273 }
274
vop_convert_format(uint32_t format)275 static enum vop_data_format vop_convert_format(uint32_t format)
276 {
277 switch (format) {
278 case DRM_FORMAT_XRGB8888:
279 case DRM_FORMAT_ARGB8888:
280 case DRM_FORMAT_XBGR8888:
281 case DRM_FORMAT_ABGR8888:
282 return VOP_FMT_ARGB8888;
283 case DRM_FORMAT_RGB888:
284 case DRM_FORMAT_BGR888:
285 return VOP_FMT_RGB888;
286 case DRM_FORMAT_RGB565:
287 case DRM_FORMAT_BGR565:
288 return VOP_FMT_RGB565;
289 case DRM_FORMAT_NV12:
290 case DRM_FORMAT_NV21:
291 return VOP_FMT_YUV420SP;
292 case DRM_FORMAT_NV16:
293 case DRM_FORMAT_NV61:
294 return VOP_FMT_YUV422SP;
295 case DRM_FORMAT_NV24:
296 case DRM_FORMAT_NV42:
297 return VOP_FMT_YUV444SP;
298 default:
299 DRM_ERROR("unsupported format[%08x]\n", format);
300 return -EINVAL;
301 }
302 }
303
vop_convert_afbc_format(uint32_t format)304 static int vop_convert_afbc_format(uint32_t format)
305 {
306 switch (format) {
307 case DRM_FORMAT_XRGB8888:
308 case DRM_FORMAT_ARGB8888:
309 case DRM_FORMAT_XBGR8888:
310 case DRM_FORMAT_ABGR8888:
311 return AFBC_FMT_U8U8U8U8;
312 case DRM_FORMAT_RGB888:
313 case DRM_FORMAT_BGR888:
314 return AFBC_FMT_U8U8U8;
315 case DRM_FORMAT_RGB565:
316 case DRM_FORMAT_BGR565:
317 return AFBC_FMT_RGB565;
318 default:
319 DRM_DEBUG_KMS("unsupported AFBC format[%08x]\n", format);
320 return -EINVAL;
321 }
322 }
323
scl_vop_cal_scale(enum scale_mode mode,uint32_t src,uint32_t dst,bool is_horizontal,int vsu_mode,int * vskiplines)324 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
325 uint32_t dst, bool is_horizontal,
326 int vsu_mode, int *vskiplines)
327 {
328 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
329
330 if (vskiplines)
331 *vskiplines = 0;
332
333 if (is_horizontal) {
334 if (mode == SCALE_UP)
335 val = GET_SCL_FT_BIC(src, dst);
336 else if (mode == SCALE_DOWN)
337 val = GET_SCL_FT_BILI_DN(src, dst);
338 } else {
339 if (mode == SCALE_UP) {
340 if (vsu_mode == SCALE_UP_BIL)
341 val = GET_SCL_FT_BILI_UP(src, dst);
342 else
343 val = GET_SCL_FT_BIC(src, dst);
344 } else if (mode == SCALE_DOWN) {
345 if (vskiplines) {
346 *vskiplines = scl_get_vskiplines(src, dst);
347 val = scl_get_bili_dn_vskip(src, dst,
348 *vskiplines);
349 } else {
350 val = GET_SCL_FT_BILI_DN(src, dst);
351 }
352 }
353 }
354
355 return val;
356 }
357
scl_vop_cal_scl_fac(struct vop * vop,const struct vop_win_data * win,uint32_t src_w,uint32_t src_h,uint32_t dst_w,uint32_t dst_h,const struct drm_format_info * info)358 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
359 uint32_t src_w, uint32_t src_h, uint32_t dst_w,
360 uint32_t dst_h, const struct drm_format_info *info)
361 {
362 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
363 uint16_t cbcr_hor_scl_mode = SCALE_NONE;
364 uint16_t cbcr_ver_scl_mode = SCALE_NONE;
365 bool is_yuv = false;
366 uint16_t cbcr_src_w = src_w / info->hsub;
367 uint16_t cbcr_src_h = src_h / info->vsub;
368 uint16_t vsu_mode;
369 uint16_t lb_mode;
370 uint32_t val;
371 int vskiplines;
372
373 if (info->is_yuv)
374 is_yuv = true;
375
376 if (dst_w > 3840) {
377 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
378 return;
379 }
380
381 if (!win->phy->scl->ext) {
382 VOP_SCL_SET(vop, win, scale_yrgb_x,
383 scl_cal_scale2(src_w, dst_w));
384 VOP_SCL_SET(vop, win, scale_yrgb_y,
385 scl_cal_scale2(src_h, dst_h));
386 if (is_yuv) {
387 VOP_SCL_SET(vop, win, scale_cbcr_x,
388 scl_cal_scale2(cbcr_src_w, dst_w));
389 VOP_SCL_SET(vop, win, scale_cbcr_y,
390 scl_cal_scale2(cbcr_src_h, dst_h));
391 }
392 return;
393 }
394
395 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
396 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
397
398 if (is_yuv) {
399 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
400 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
401 if (cbcr_hor_scl_mode == SCALE_DOWN)
402 lb_mode = scl_vop_cal_lb_mode(dst_w, true);
403 else
404 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
405 } else {
406 if (yrgb_hor_scl_mode == SCALE_DOWN)
407 lb_mode = scl_vop_cal_lb_mode(dst_w, false);
408 else
409 lb_mode = scl_vop_cal_lb_mode(src_w, false);
410 }
411
412 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
413 if (lb_mode == LB_RGB_3840X2) {
414 if (yrgb_ver_scl_mode != SCALE_NONE) {
415 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
416 return;
417 }
418 if (cbcr_ver_scl_mode != SCALE_NONE) {
419 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
420 return;
421 }
422 vsu_mode = SCALE_UP_BIL;
423 } else if (lb_mode == LB_RGB_2560X4) {
424 vsu_mode = SCALE_UP_BIL;
425 } else {
426 vsu_mode = SCALE_UP_BIC;
427 }
428
429 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
430 true, 0, NULL);
431 VOP_SCL_SET(vop, win, scale_yrgb_x, val);
432 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
433 false, vsu_mode, &vskiplines);
434 VOP_SCL_SET(vop, win, scale_yrgb_y, val);
435
436 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
437 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
438
439 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
440 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
441 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
442 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
443 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
444 if (is_yuv) {
445 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
446 dst_w, true, 0, NULL);
447 VOP_SCL_SET(vop, win, scale_cbcr_x, val);
448 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
449 dst_h, false, vsu_mode, &vskiplines);
450 VOP_SCL_SET(vop, win, scale_cbcr_y, val);
451
452 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
453 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
454 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
455 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
456 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
457 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
458 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
459 }
460 }
461
vop_dsp_hold_valid_irq_enable(struct vop * vop)462 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
463 {
464 unsigned long flags;
465
466 if (WARN_ON(!vop->is_enabled))
467 return;
468
469 spin_lock_irqsave(&vop->irq_lock, flags);
470
471 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
472 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
473
474 spin_unlock_irqrestore(&vop->irq_lock, flags);
475 }
476
vop_dsp_hold_valid_irq_disable(struct vop * vop)477 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
478 {
479 unsigned long flags;
480
481 if (WARN_ON(!vop->is_enabled))
482 return;
483
484 spin_lock_irqsave(&vop->irq_lock, flags);
485
486 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
487
488 spin_unlock_irqrestore(&vop->irq_lock, flags);
489 }
490
491 /*
492 * (1) each frame starts at the start of the Vsync pulse which is signaled by
493 * the "FRAME_SYNC" interrupt.
494 * (2) the active data region of each frame ends at dsp_vact_end
495 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
496 * to get "LINE_FLAG" interrupt at the end of the active on screen data.
497 *
498 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
499 * Interrupts
500 * LINE_FLAG -------------------------------+
501 * FRAME_SYNC ----+ |
502 * | |
503 * v v
504 * | Vsync | Vbp | Vactive | Vfp |
505 * ^ ^ ^ ^
506 * | | | |
507 * | | | |
508 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END
509 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END
510 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END
511 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END
512 */
vop_line_flag_irq_is_enabled(struct vop * vop)513 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
514 {
515 uint32_t line_flag_irq;
516 unsigned long flags;
517
518 spin_lock_irqsave(&vop->irq_lock, flags);
519
520 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
521
522 spin_unlock_irqrestore(&vop->irq_lock, flags);
523
524 return !!line_flag_irq;
525 }
526
vop_line_flag_irq_enable(struct vop * vop)527 static void vop_line_flag_irq_enable(struct vop *vop)
528 {
529 unsigned long flags;
530
531 if (WARN_ON(!vop->is_enabled))
532 return;
533
534 spin_lock_irqsave(&vop->irq_lock, flags);
535
536 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
537 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
538
539 spin_unlock_irqrestore(&vop->irq_lock, flags);
540 }
541
vop_line_flag_irq_disable(struct vop * vop)542 static void vop_line_flag_irq_disable(struct vop *vop)
543 {
544 unsigned long flags;
545
546 if (WARN_ON(!vop->is_enabled))
547 return;
548
549 spin_lock_irqsave(&vop->irq_lock, flags);
550
551 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
552
553 spin_unlock_irqrestore(&vop->irq_lock, flags);
554 }
555
vop_core_clks_enable(struct vop * vop)556 static int vop_core_clks_enable(struct vop *vop)
557 {
558 int ret;
559
560 ret = clk_enable(vop->hclk);
561 if (ret < 0)
562 return ret;
563
564 ret = clk_enable(vop->aclk);
565 if (ret < 0)
566 goto err_disable_hclk;
567
568 return 0;
569
570 err_disable_hclk:
571 clk_disable(vop->hclk);
572 return ret;
573 }
574
vop_core_clks_disable(struct vop * vop)575 static void vop_core_clks_disable(struct vop *vop)
576 {
577 clk_disable(vop->aclk);
578 clk_disable(vop->hclk);
579 }
580
vop_win_disable(struct vop * vop,const struct vop_win * vop_win)581 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
582 {
583 const struct vop_win_data *win = vop_win->data;
584
585 if (win->phy->scl && win->phy->scl->ext) {
586 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
587 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
588 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
589 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
590 }
591
592 VOP_WIN_SET(vop, win, enable, 0);
593 vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
594 }
595
vop_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)596 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
597 {
598 struct vop *vop = to_vop(crtc);
599 int ret, i;
600
601 ret = pm_runtime_resume_and_get(vop->dev);
602 if (ret < 0) {
603 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
604 return ret;
605 }
606
607 ret = vop_core_clks_enable(vop);
608 if (WARN_ON(ret < 0))
609 goto err_put_pm_runtime;
610
611 ret = clk_enable(vop->dclk);
612 if (WARN_ON(ret < 0))
613 goto err_disable_core;
614
615 /*
616 * Slave iommu shares power, irq and clock with vop. It was associated
617 * automatically with this master device via common driver code.
618 * Now that we have enabled the clock we attach it to the shared drm
619 * mapping.
620 */
621 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
622 if (ret) {
623 DRM_DEV_ERROR(vop->dev,
624 "failed to attach dma mapping, %d\n", ret);
625 goto err_disable_dclk;
626 }
627
628 spin_lock(&vop->reg_lock);
629 for (i = 0; i < vop->len; i += 4)
630 writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
631
632 /*
633 * We need to make sure that all windows are disabled before we
634 * enable the crtc. Otherwise we might try to scan from a destroyed
635 * buffer later.
636 *
637 * In the case of enable-after-PSR, we don't need to worry about this
638 * case since the buffer is guaranteed to be valid and disabling the
639 * window will result in screen glitches on PSR exit.
640 */
641 if (!old_state || !old_state->self_refresh_active) {
642 for (i = 0; i < vop->data->win_size; i++) {
643 struct vop_win *vop_win = &vop->win[i];
644
645 vop_win_disable(vop, vop_win);
646 }
647 }
648
649 if (vop->data->afbc) {
650 struct rockchip_crtc_state *s;
651 /*
652 * Disable AFBC and forget there was a vop window with AFBC
653 */
654 VOP_AFBC_SET(vop, enable, 0);
655 s = to_rockchip_crtc_state(crtc->state);
656 s->enable_afbc = false;
657 }
658
659 vop_cfg_done(vop);
660
661 spin_unlock(&vop->reg_lock);
662
663 /*
664 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
665 */
666 vop->is_enabled = true;
667
668 spin_lock(&vop->reg_lock);
669
670 VOP_REG_SET(vop, common, standby, 1);
671
672 spin_unlock(&vop->reg_lock);
673
674 drm_crtc_vblank_on(crtc);
675
676 return 0;
677
678 err_disable_dclk:
679 clk_disable(vop->dclk);
680 err_disable_core:
681 vop_core_clks_disable(vop);
682 err_put_pm_runtime:
683 pm_runtime_put_sync(vop->dev);
684 return ret;
685 }
686
rockchip_drm_set_win_enabled(struct drm_crtc * crtc,bool enabled)687 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
688 {
689 struct vop *vop = to_vop(crtc);
690 int i;
691
692 spin_lock(&vop->reg_lock);
693
694 for (i = 0; i < vop->data->win_size; i++) {
695 struct vop_win *vop_win = &vop->win[i];
696 const struct vop_win_data *win = vop_win->data;
697
698 VOP_WIN_SET(vop, win, enable,
699 enabled && (vop->win_enabled & BIT(i)));
700 }
701 vop_cfg_done(vop);
702
703 spin_unlock(&vop->reg_lock);
704 }
705
vop_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)706 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
707 struct drm_atomic_state *state)
708 {
709 struct vop *vop = to_vop(crtc);
710
711 WARN_ON(vop->event);
712
713 if (crtc->state->self_refresh_active)
714 rockchip_drm_set_win_enabled(crtc, false);
715
716 if (crtc->state->self_refresh_active)
717 goto out;
718
719 mutex_lock(&vop->vop_lock);
720
721 drm_crtc_vblank_off(crtc);
722
723 /*
724 * Vop standby will take effect at end of current frame,
725 * if dsp hold valid irq happen, it means standby complete.
726 *
727 * we must wait standby complete when we want to disable aclk,
728 * if not, memory bus maybe dead.
729 */
730 reinit_completion(&vop->dsp_hold_completion);
731 vop_dsp_hold_valid_irq_enable(vop);
732
733 spin_lock(&vop->reg_lock);
734
735 VOP_REG_SET(vop, common, standby, 1);
736
737 spin_unlock(&vop->reg_lock);
738
739 if (!wait_for_completion_timeout(&vop->dsp_hold_completion,
740 msecs_to_jiffies(200)))
741 WARN(1, "%s: timed out waiting for DSP hold", crtc->name);
742
743 vop_dsp_hold_valid_irq_disable(vop);
744
745 vop->is_enabled = false;
746
747 /*
748 * vop standby complete, so iommu detach is safe.
749 */
750 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
751
752 clk_disable(vop->dclk);
753 vop_core_clks_disable(vop);
754 pm_runtime_put(vop->dev);
755
756 mutex_unlock(&vop->vop_lock);
757
758 out:
759 if (crtc->state->event && !crtc->state->active) {
760 spin_lock_irq(&crtc->dev->event_lock);
761 drm_crtc_send_vblank_event(crtc, crtc->state->event);
762 spin_unlock_irq(&crtc->dev->event_lock);
763
764 crtc->state->event = NULL;
765 }
766 }
767
vop_plane_destroy(struct drm_plane * plane)768 static void vop_plane_destroy(struct drm_plane *plane)
769 {
770 drm_plane_cleanup(plane);
771 }
772
rockchip_afbc(u64 modifier)773 static inline bool rockchip_afbc(u64 modifier)
774 {
775 return modifier == ROCKCHIP_AFBC_MOD;
776 }
777
rockchip_mod_supported(struct drm_plane * plane,u32 format,u64 modifier)778 static bool rockchip_mod_supported(struct drm_plane *plane,
779 u32 format, u64 modifier)
780 {
781 if (modifier == DRM_FORMAT_MOD_LINEAR)
782 return true;
783
784 if (!rockchip_afbc(modifier)) {
785 DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
786
787 return false;
788 }
789
790 return vop_convert_afbc_format(format) >= 0;
791 }
792
vop_plane_atomic_check(struct drm_plane * plane,struct drm_atomic_state * state)793 static int vop_plane_atomic_check(struct drm_plane *plane,
794 struct drm_atomic_state *state)
795 {
796 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
797 plane);
798 struct drm_crtc *crtc = new_plane_state->crtc;
799 struct drm_crtc_state *crtc_state;
800 struct drm_framebuffer *fb = new_plane_state->fb;
801 struct vop_win *vop_win = to_vop_win(plane);
802 const struct vop_win_data *win = vop_win->data;
803 int ret;
804 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
805 DRM_PLANE_NO_SCALING;
806 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
807 DRM_PLANE_NO_SCALING;
808
809 if (!crtc || WARN_ON(!fb))
810 return 0;
811
812 crtc_state = drm_atomic_get_existing_crtc_state(state,
813 crtc);
814 if (WARN_ON(!crtc_state))
815 return -EINVAL;
816
817 ret = drm_atomic_helper_check_plane_state(new_plane_state, crtc_state,
818 min_scale, max_scale,
819 true, true);
820 if (ret)
821 return ret;
822
823 if (!new_plane_state->visible)
824 return 0;
825
826 ret = vop_convert_format(fb->format->format);
827 if (ret < 0)
828 return ret;
829
830 /*
831 * Src.x1 can be odd when do clip, but yuv plane start point
832 * need align with 2 pixel.
833 */
834 if (fb->format->is_yuv && ((new_plane_state->src.x1 >> 16) % 2)) {
835 DRM_DEBUG_KMS("Invalid Source: Yuv format not support odd xpos\n");
836 return -EINVAL;
837 }
838
839 if (fb->format->is_yuv && new_plane_state->rotation & DRM_MODE_REFLECT_Y) {
840 DRM_DEBUG_KMS("Invalid Source: Yuv format does not support this rotation\n");
841 return -EINVAL;
842 }
843
844 if (rockchip_afbc(fb->modifier)) {
845 struct vop *vop = to_vop(crtc);
846
847 if (!vop->data->afbc) {
848 DRM_DEBUG_KMS("vop does not support AFBC\n");
849 return -EINVAL;
850 }
851
852 ret = vop_convert_afbc_format(fb->format->format);
853 if (ret < 0)
854 return ret;
855
856 if (new_plane_state->src.x1 || new_plane_state->src.y1) {
857 DRM_DEBUG_KMS("AFBC does not support offset display, " \
858 "xpos=%d, ypos=%d, offset=%d\n",
859 new_plane_state->src.x1, new_plane_state->src.y1,
860 fb->offsets[0]);
861 return -EINVAL;
862 }
863
864 if (new_plane_state->rotation && new_plane_state->rotation != DRM_MODE_ROTATE_0) {
865 DRM_DEBUG_KMS("No rotation support in AFBC, rotation=%d\n",
866 new_plane_state->rotation);
867 return -EINVAL;
868 }
869 }
870
871 return 0;
872 }
873
vop_plane_atomic_disable(struct drm_plane * plane,struct drm_atomic_state * state)874 static void vop_plane_atomic_disable(struct drm_plane *plane,
875 struct drm_atomic_state *state)
876 {
877 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
878 plane);
879 struct vop_win *vop_win = to_vop_win(plane);
880 struct vop *vop = to_vop(old_state->crtc);
881
882 if (!old_state->crtc)
883 return;
884
885 spin_lock(&vop->reg_lock);
886
887 vop_win_disable(vop, vop_win);
888
889 spin_unlock(&vop->reg_lock);
890 }
891
vop_plane_atomic_update(struct drm_plane * plane,struct drm_atomic_state * state)892 static void vop_plane_atomic_update(struct drm_plane *plane,
893 struct drm_atomic_state *state)
894 {
895 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
896 plane);
897 struct drm_crtc *crtc = new_state->crtc;
898 struct vop_win *vop_win = to_vop_win(plane);
899 const struct vop_win_data *win = vop_win->data;
900 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
901 struct vop *vop = to_vop(new_state->crtc);
902 struct drm_framebuffer *fb = new_state->fb;
903 unsigned int actual_w, actual_h;
904 unsigned int dsp_stx, dsp_sty;
905 uint32_t act_info, dsp_info, dsp_st;
906 struct drm_rect *src = &new_state->src;
907 struct drm_rect *dest = &new_state->dst;
908 struct drm_gem_object *obj, *uv_obj;
909 struct rockchip_gem_object *rk_obj, *rk_uv_obj;
910 unsigned long offset;
911 dma_addr_t dma_addr;
912 uint32_t val;
913 bool rb_swap, uv_swap;
914 int win_index = VOP_WIN_TO_INDEX(vop_win);
915 int format;
916 int is_yuv = fb->format->is_yuv;
917 int i;
918
919 /*
920 * can't update plane when vop is disabled.
921 */
922 if (WARN_ON(!crtc))
923 return;
924
925 if (WARN_ON(!vop->is_enabled))
926 return;
927
928 if (!new_state->visible) {
929 vop_plane_atomic_disable(plane, state);
930 return;
931 }
932
933 obj = fb->obj[0];
934 rk_obj = to_rockchip_obj(obj);
935
936 actual_w = drm_rect_width(src) >> 16;
937 actual_h = drm_rect_height(src) >> 16;
938 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
939
940 dsp_info = (drm_rect_height(dest) - 1) << 16;
941 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
942
943 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
944 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
945 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
946
947 offset = (src->x1 >> 16) * fb->format->cpp[0];
948 offset += (src->y1 >> 16) * fb->pitches[0];
949 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
950
951 /*
952 * For y-mirroring we need to move address
953 * to the beginning of the last line.
954 */
955 if (new_state->rotation & DRM_MODE_REFLECT_Y)
956 dma_addr += (actual_h - 1) * fb->pitches[0];
957
958 format = vop_convert_format(fb->format->format);
959
960 spin_lock(&vop->reg_lock);
961
962 if (rockchip_afbc(fb->modifier)) {
963 int afbc_format = vop_convert_afbc_format(fb->format->format);
964
965 VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
966 VOP_AFBC_SET(vop, hreg_block_split, 0);
967 VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
968 VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
969 VOP_AFBC_SET(vop, pic_size, act_info);
970 }
971
972 VOP_WIN_SET(vop, win, format, format);
973 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
974 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
975 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
976 VOP_WIN_SET(vop, win, y_mir_en,
977 (new_state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
978 VOP_WIN_SET(vop, win, x_mir_en,
979 (new_state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
980
981 if (is_yuv) {
982 int hsub = fb->format->hsub;
983 int vsub = fb->format->vsub;
984 int bpp = fb->format->cpp[1];
985
986 uv_obj = fb->obj[1];
987 rk_uv_obj = to_rockchip_obj(uv_obj);
988
989 offset = (src->x1 >> 16) * bpp / hsub;
990 offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
991
992 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
993 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
994 VOP_WIN_SET(vop, win, uv_mst, dma_addr);
995
996 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
997 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
998 win_yuv2yuv,
999 y2r_coefficients[i],
1000 bt601_yuv2rgb[i]);
1001 }
1002
1003 uv_swap = has_uv_swapped(fb->format->format);
1004 VOP_WIN_SET(vop, win, uv_swap, uv_swap);
1005 }
1006
1007 if (win->phy->scl)
1008 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
1009 drm_rect_width(dest), drm_rect_height(dest),
1010 fb->format);
1011
1012 VOP_WIN_SET(vop, win, act_info, act_info);
1013 VOP_WIN_SET(vop, win, dsp_info, dsp_info);
1014 VOP_WIN_SET(vop, win, dsp_st, dsp_st);
1015
1016 rb_swap = has_rb_swapped(fb->format->format);
1017 VOP_WIN_SET(vop, win, rb_swap, rb_swap);
1018
1019 /*
1020 * Blending win0 with the background color doesn't seem to work
1021 * correctly. We only get the background color, no matter the contents
1022 * of the win0 framebuffer. However, blending pre-multiplied color
1023 * with the default opaque black default background color is a no-op,
1024 * so we can just disable blending to get the correct result.
1025 */
1026 if (fb->format->has_alpha && win_index > 0) {
1027 VOP_WIN_SET(vop, win, dst_alpha_ctl,
1028 DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1029 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1030 SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1031 SRC_BLEND_M0(ALPHA_PER_PIX) |
1032 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1033 SRC_FACTOR_M0(ALPHA_ONE);
1034 VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1035
1036 VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1037 VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1038 VOP_WIN_SET(vop, win, alpha_en, 1);
1039 } else {
1040 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1041 VOP_WIN_SET(vop, win, alpha_en, 0);
1042 }
1043
1044 VOP_WIN_SET(vop, win, enable, 1);
1045 vop->win_enabled |= BIT(win_index);
1046 spin_unlock(&vop->reg_lock);
1047 }
1048
vop_plane_atomic_async_check(struct drm_plane * plane,struct drm_atomic_state * state)1049 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1050 struct drm_atomic_state *state)
1051 {
1052 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1053 plane);
1054 struct vop_win *vop_win = to_vop_win(plane);
1055 const struct vop_win_data *win = vop_win->data;
1056 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1057 DRM_PLANE_NO_SCALING;
1058 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1059 DRM_PLANE_NO_SCALING;
1060 struct drm_crtc_state *crtc_state;
1061
1062 if (plane != new_plane_state->crtc->cursor)
1063 return -EINVAL;
1064
1065 if (!plane->state)
1066 return -EINVAL;
1067
1068 if (!plane->state->fb)
1069 return -EINVAL;
1070
1071 if (state)
1072 crtc_state = drm_atomic_get_existing_crtc_state(state,
1073 new_plane_state->crtc);
1074 else /* Special case for asynchronous cursor updates. */
1075 crtc_state = plane->crtc->state;
1076
1077 return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1078 min_scale, max_scale,
1079 true, true);
1080 }
1081
vop_plane_atomic_async_update(struct drm_plane * plane,struct drm_atomic_state * state)1082 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1083 struct drm_atomic_state *state)
1084 {
1085 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
1086 plane);
1087 struct vop *vop = to_vop(plane->state->crtc);
1088 struct drm_framebuffer *old_fb = plane->state->fb;
1089
1090 plane->state->crtc_x = new_state->crtc_x;
1091 plane->state->crtc_y = new_state->crtc_y;
1092 plane->state->crtc_h = new_state->crtc_h;
1093 plane->state->crtc_w = new_state->crtc_w;
1094 plane->state->src_x = new_state->src_x;
1095 plane->state->src_y = new_state->src_y;
1096 plane->state->src_h = new_state->src_h;
1097 plane->state->src_w = new_state->src_w;
1098 swap(plane->state->fb, new_state->fb);
1099
1100 if (vop->is_enabled) {
1101 vop_plane_atomic_update(plane, state);
1102 spin_lock(&vop->reg_lock);
1103 vop_cfg_done(vop);
1104 spin_unlock(&vop->reg_lock);
1105
1106 /*
1107 * A scanout can still be occurring, so we can't drop the
1108 * reference to the old framebuffer. To solve this we get a
1109 * reference to old_fb and set a worker to release it later.
1110 * FIXME: if we perform 500 async_update calls before the
1111 * vblank, then we can have 500 different framebuffers waiting
1112 * to be released.
1113 */
1114 if (old_fb && plane->state->fb != old_fb) {
1115 drm_framebuffer_get(old_fb);
1116 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1117 drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1118 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1119 }
1120 }
1121 }
1122
1123 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1124 .atomic_check = vop_plane_atomic_check,
1125 .atomic_update = vop_plane_atomic_update,
1126 .atomic_disable = vop_plane_atomic_disable,
1127 .atomic_async_check = vop_plane_atomic_async_check,
1128 .atomic_async_update = vop_plane_atomic_async_update,
1129 };
1130
1131 static const struct drm_plane_funcs vop_plane_funcs = {
1132 .update_plane = drm_atomic_helper_update_plane,
1133 .disable_plane = drm_atomic_helper_disable_plane,
1134 .destroy = vop_plane_destroy,
1135 .reset = drm_atomic_helper_plane_reset,
1136 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1137 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1138 .format_mod_supported = rockchip_mod_supported,
1139 };
1140
vop_crtc_enable_vblank(struct drm_crtc * crtc)1141 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1142 {
1143 struct vop *vop = to_vop(crtc);
1144 unsigned long flags;
1145
1146 if (WARN_ON(!vop->is_enabled))
1147 return -EPERM;
1148
1149 spin_lock_irqsave(&vop->irq_lock, flags);
1150
1151 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1152 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1153
1154 spin_unlock_irqrestore(&vop->irq_lock, flags);
1155
1156 return 0;
1157 }
1158
vop_crtc_disable_vblank(struct drm_crtc * crtc)1159 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1160 {
1161 struct vop *vop = to_vop(crtc);
1162 unsigned long flags;
1163
1164 if (WARN_ON(!vop->is_enabled))
1165 return;
1166
1167 spin_lock_irqsave(&vop->irq_lock, flags);
1168
1169 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1170
1171 spin_unlock_irqrestore(&vop->irq_lock, flags);
1172 }
1173
vop_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)1174 static enum drm_mode_status vop_crtc_mode_valid(struct drm_crtc *crtc,
1175 const struct drm_display_mode *mode)
1176 {
1177 struct vop *vop = to_vop(crtc);
1178
1179 if (vop->data->max_output.width && mode->hdisplay > vop->data->max_output.width)
1180 return MODE_BAD_HVALUE;
1181
1182 return MODE_OK;
1183 }
1184
vop_crtc_mode_fixup(struct drm_crtc * crtc,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1185 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1186 const struct drm_display_mode *mode,
1187 struct drm_display_mode *adjusted_mode)
1188 {
1189 struct vop *vop = to_vop(crtc);
1190 unsigned long rate;
1191
1192 /*
1193 * Clock craziness.
1194 *
1195 * Key points:
1196 *
1197 * - DRM works in kHz.
1198 * - Clock framework works in Hz.
1199 * - Rockchip's clock driver picks the clock rate that is the
1200 * same _OR LOWER_ than the one requested.
1201 *
1202 * Action plan:
1203 *
1204 * 1. Try to set the exact rate first, and confirm the clock framework
1205 * can provide it.
1206 *
1207 * 2. If the clock framework cannot provide the exact rate, we should
1208 * add 999 Hz to the requested rate. That way if the clock we need
1209 * is 60000001 Hz (~60 MHz) and DRM tells us to make 60000 kHz then
1210 * the clock framework will actually give us the right clock.
1211 *
1212 * 3. Get the clock framework to round the rate for us to tell us
1213 * what it will actually make.
1214 *
1215 * 4. Store the rounded up rate so that we don't need to worry about
1216 * this in the actual clk_set_rate().
1217 */
1218 rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000);
1219 if (rate / 1000 != adjusted_mode->clock)
1220 rate = clk_round_rate(vop->dclk,
1221 adjusted_mode->clock * 1000 + 999);
1222 adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1223
1224 return true;
1225 }
1226
vop_dsp_lut_is_enabled(struct vop * vop)1227 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1228 {
1229 return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1230 }
1231
vop_lut_buffer_index(struct vop * vop)1232 static u32 vop_lut_buffer_index(struct vop *vop)
1233 {
1234 return vop_read_reg(vop, 0, &vop->data->common->lut_buffer_index);
1235 }
1236
vop_crtc_write_gamma_lut(struct vop * vop,struct drm_crtc * crtc)1237 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1238 {
1239 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1240 unsigned int i, bpc = ilog2(vop->data->lut_size);
1241
1242 for (i = 0; i < crtc->gamma_size; i++) {
1243 u32 word;
1244
1245 word = (drm_color_lut_extract(lut[i].red, bpc) << (2 * bpc)) |
1246 (drm_color_lut_extract(lut[i].green, bpc) << bpc) |
1247 drm_color_lut_extract(lut[i].blue, bpc);
1248 writel(word, vop->lut_regs + i * 4);
1249 }
1250 }
1251
vop_crtc_gamma_set(struct vop * vop,struct drm_crtc * crtc,struct drm_crtc_state * old_state)1252 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1253 struct drm_crtc_state *old_state)
1254 {
1255 struct drm_crtc_state *state = crtc->state;
1256 unsigned int idle;
1257 u32 lut_idx, old_idx;
1258 int ret;
1259
1260 if (!vop->lut_regs)
1261 return;
1262
1263 if (!state->gamma_lut || !VOP_HAS_REG(vop, common, update_gamma_lut)) {
1264 /*
1265 * To disable gamma (gamma_lut is null) or to write
1266 * an update to the LUT, clear dsp_lut_en.
1267 */
1268 spin_lock(&vop->reg_lock);
1269 VOP_REG_SET(vop, common, dsp_lut_en, 0);
1270 vop_cfg_done(vop);
1271 spin_unlock(&vop->reg_lock);
1272
1273 /*
1274 * In order to write the LUT to the internal memory,
1275 * we need to first make sure the dsp_lut_en bit is cleared.
1276 */
1277 ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1278 idle, !idle, 5, 30 * 1000);
1279 if (ret) {
1280 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1281 return;
1282 }
1283
1284 if (!state->gamma_lut)
1285 return;
1286 } else {
1287 /*
1288 * On RK3399 the gamma LUT can updated without clearing dsp_lut_en,
1289 * by setting update_gamma_lut then waiting for lut_buffer_index change
1290 */
1291 old_idx = vop_lut_buffer_index(vop);
1292 }
1293
1294 spin_lock(&vop->reg_lock);
1295 vop_crtc_write_gamma_lut(vop, crtc);
1296 VOP_REG_SET(vop, common, dsp_lut_en, 1);
1297 VOP_REG_SET(vop, common, update_gamma_lut, 1);
1298 vop_cfg_done(vop);
1299 spin_unlock(&vop->reg_lock);
1300
1301 if (VOP_HAS_REG(vop, common, update_gamma_lut)) {
1302 ret = readx_poll_timeout(vop_lut_buffer_index, vop,
1303 lut_idx, lut_idx != old_idx, 5, 30 * 1000);
1304 if (ret) {
1305 DRM_DEV_ERROR(vop->dev, "gamma LUT update timeout!\n");
1306 return;
1307 }
1308
1309 /*
1310 * update_gamma_lut is auto cleared by HW, but write 0 to clear the bit
1311 * in our backup of the regs.
1312 */
1313 spin_lock(&vop->reg_lock);
1314 VOP_REG_SET(vop, common, update_gamma_lut, 0);
1315 spin_unlock(&vop->reg_lock);
1316 }
1317 }
1318
vop_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)1319 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1320 struct drm_atomic_state *state)
1321 {
1322 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1323 crtc);
1324 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1325 crtc);
1326 struct vop *vop = to_vop(crtc);
1327
1328 /*
1329 * Only update GAMMA if the 'active' flag is not changed,
1330 * otherwise it's updated by .atomic_enable.
1331 */
1332 if (crtc_state->color_mgmt_changed &&
1333 !crtc_state->active_changed)
1334 vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1335 }
1336
vop_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)1337 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1338 struct drm_atomic_state *state)
1339 {
1340 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
1341 crtc);
1342 struct vop *vop = to_vop(crtc);
1343 const struct vop_data *vop_data = vop->data;
1344 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1345 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1346 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1347 u16 hdisplay = adjusted_mode->hdisplay;
1348 u16 htotal = adjusted_mode->htotal;
1349 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1350 u16 hact_end = hact_st + hdisplay;
1351 u16 vdisplay = adjusted_mode->vdisplay;
1352 u16 vtotal = adjusted_mode->vtotal;
1353 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1354 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1355 u16 vact_end = vact_st + vdisplay;
1356 uint32_t pin_pol, val;
1357 int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1358 int ret;
1359
1360 if (old_state && old_state->self_refresh_active) {
1361 drm_crtc_vblank_on(crtc);
1362 rockchip_drm_set_win_enabled(crtc, true);
1363 return;
1364 }
1365
1366 mutex_lock(&vop->vop_lock);
1367
1368 WARN_ON(vop->event);
1369
1370 ret = vop_enable(crtc, old_state);
1371 if (ret) {
1372 mutex_unlock(&vop->vop_lock);
1373 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1374 return;
1375 }
1376 pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1377 BIT(HSYNC_POSITIVE) : 0;
1378 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1379 BIT(VSYNC_POSITIVE) : 0;
1380 VOP_REG_SET(vop, output, pin_pol, pin_pol);
1381 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1382
1383 switch (s->output_type) {
1384 case DRM_MODE_CONNECTOR_LVDS:
1385 VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1386 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1387 VOP_REG_SET(vop, output, rgb_en, 1);
1388 break;
1389 case DRM_MODE_CONNECTOR_eDP:
1390 VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1391 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1392 VOP_REG_SET(vop, output, edp_en, 1);
1393 break;
1394 case DRM_MODE_CONNECTOR_HDMIA:
1395 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1396 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1397 VOP_REG_SET(vop, output, hdmi_en, 1);
1398 break;
1399 case DRM_MODE_CONNECTOR_DSI:
1400 VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1401 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1402 VOP_REG_SET(vop, output, mipi_en, 1);
1403 VOP_REG_SET(vop, output, mipi_dual_channel_en,
1404 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1405 break;
1406 case DRM_MODE_CONNECTOR_DisplayPort:
1407 VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1408 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1409 VOP_REG_SET(vop, output, dp_en, 1);
1410 break;
1411 default:
1412 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1413 s->output_type);
1414 }
1415
1416 /*
1417 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1418 */
1419 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1420 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1421 s->output_mode = ROCKCHIP_OUT_MODE_P888;
1422
1423 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1424 VOP_REG_SET(vop, common, pre_dither_down, 1);
1425 else
1426 VOP_REG_SET(vop, common, pre_dither_down, 0);
1427
1428 if (dither_bpc == 6) {
1429 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1430 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1431 VOP_REG_SET(vop, common, dither_down_en, 1);
1432 } else {
1433 VOP_REG_SET(vop, common, dither_down_en, 0);
1434 }
1435
1436 VOP_REG_SET(vop, common, out_mode, s->output_mode);
1437
1438 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1439 val = hact_st << 16;
1440 val |= hact_end;
1441 VOP_REG_SET(vop, modeset, hact_st_end, val);
1442 VOP_REG_SET(vop, modeset, hpost_st_end, val);
1443
1444 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1445 val = vact_st << 16;
1446 val |= vact_end;
1447 VOP_REG_SET(vop, modeset, vact_st_end, val);
1448 VOP_REG_SET(vop, modeset, vpost_st_end, val);
1449
1450 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1451
1452 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1453
1454 VOP_REG_SET(vop, common, standby, 0);
1455 mutex_unlock(&vop->vop_lock);
1456
1457 /*
1458 * If we have a GAMMA LUT in the state, then let's make sure
1459 * it's updated. We might be coming out of suspend,
1460 * which means the LUT internal memory needs to be re-written.
1461 */
1462 if (crtc->state->gamma_lut)
1463 vop_crtc_gamma_set(vop, crtc, old_state);
1464 }
1465
vop_fs_irq_is_pending(struct vop * vop)1466 static bool vop_fs_irq_is_pending(struct vop *vop)
1467 {
1468 return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1469 }
1470
vop_wait_for_irq_handler(struct vop * vop)1471 static void vop_wait_for_irq_handler(struct vop *vop)
1472 {
1473 bool pending;
1474 int ret;
1475
1476 /*
1477 * Spin until frame start interrupt status bit goes low, which means
1478 * that interrupt handler was invoked and cleared it. The timeout of
1479 * 10 msecs is really too long, but it is just a safety measure if
1480 * something goes really wrong. The wait will only happen in the very
1481 * unlikely case of a vblank happening exactly at the same time and
1482 * shouldn't exceed microseconds range.
1483 */
1484 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1485 !pending, 0, 10 * 1000);
1486 if (ret)
1487 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1488
1489 synchronize_irq(vop->irq);
1490 }
1491
vop_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)1492 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1493 struct drm_atomic_state *state)
1494 {
1495 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
1496 crtc);
1497 struct vop *vop = to_vop(crtc);
1498 struct drm_plane *plane;
1499 struct drm_plane_state *plane_state;
1500 struct rockchip_crtc_state *s;
1501 int afbc_planes = 0;
1502
1503 if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1504 crtc_state->gamma_lut) {
1505 unsigned int len;
1506
1507 len = drm_color_lut_size(crtc_state->gamma_lut);
1508 if (len != crtc->gamma_size) {
1509 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1510 len, crtc->gamma_size);
1511 return -EINVAL;
1512 }
1513 }
1514
1515 drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1516 plane_state =
1517 drm_atomic_get_plane_state(crtc_state->state, plane);
1518 if (IS_ERR(plane_state)) {
1519 DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1520 plane->name);
1521 return PTR_ERR(plane_state);
1522 }
1523
1524 if (drm_is_afbc(plane_state->fb->modifier))
1525 ++afbc_planes;
1526 }
1527
1528 if (afbc_planes > 1) {
1529 DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1530 return -EINVAL;
1531 }
1532
1533 s = to_rockchip_crtc_state(crtc_state);
1534 s->enable_afbc = afbc_planes > 0;
1535
1536 return 0;
1537 }
1538
vop_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)1539 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1540 struct drm_atomic_state *state)
1541 {
1542 struct drm_crtc_state *old_crtc_state = drm_atomic_get_old_crtc_state(state,
1543 crtc);
1544 struct drm_atomic_state *old_state = old_crtc_state->state;
1545 struct drm_plane_state *old_plane_state, *new_plane_state;
1546 struct vop *vop = to_vop(crtc);
1547 struct drm_plane *plane;
1548 struct rockchip_crtc_state *s;
1549 int i;
1550
1551 if (WARN_ON(!vop->is_enabled))
1552 return;
1553
1554 spin_lock(&vop->reg_lock);
1555
1556 /* Enable AFBC if there is some AFBC window, disable otherwise. */
1557 s = to_rockchip_crtc_state(crtc->state);
1558 VOP_AFBC_SET(vop, enable, s->enable_afbc);
1559 vop_cfg_done(vop);
1560
1561 spin_unlock(&vop->reg_lock);
1562
1563 /*
1564 * There is a (rather unlikely) possiblity that a vblank interrupt
1565 * fired before we set the cfg_done bit. To avoid spuriously
1566 * signalling flip completion we need to wait for it to finish.
1567 */
1568 vop_wait_for_irq_handler(vop);
1569
1570 spin_lock_irq(&crtc->dev->event_lock);
1571 if (crtc->state->event) {
1572 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1573 WARN_ON(vop->event);
1574
1575 vop->event = crtc->state->event;
1576 crtc->state->event = NULL;
1577 }
1578 spin_unlock_irq(&crtc->dev->event_lock);
1579
1580 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1581 new_plane_state, i) {
1582 if (!old_plane_state->fb)
1583 continue;
1584
1585 if (old_plane_state->fb == new_plane_state->fb)
1586 continue;
1587
1588 drm_framebuffer_get(old_plane_state->fb);
1589 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1590 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1591 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1592 }
1593 }
1594
1595 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1596 .mode_valid = vop_crtc_mode_valid,
1597 .mode_fixup = vop_crtc_mode_fixup,
1598 .atomic_check = vop_crtc_atomic_check,
1599 .atomic_begin = vop_crtc_atomic_begin,
1600 .atomic_flush = vop_crtc_atomic_flush,
1601 .atomic_enable = vop_crtc_atomic_enable,
1602 .atomic_disable = vop_crtc_atomic_disable,
1603 };
1604
vop_crtc_destroy(struct drm_crtc * crtc)1605 static void vop_crtc_destroy(struct drm_crtc *crtc)
1606 {
1607 drm_crtc_cleanup(crtc);
1608 }
1609
vop_crtc_duplicate_state(struct drm_crtc * crtc)1610 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1611 {
1612 struct rockchip_crtc_state *rockchip_state;
1613
1614 if (WARN_ON(!crtc->state))
1615 return NULL;
1616
1617 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1618 if (!rockchip_state)
1619 return NULL;
1620
1621 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1622 return &rockchip_state->base;
1623 }
1624
vop_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1625 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1626 struct drm_crtc_state *state)
1627 {
1628 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1629
1630 __drm_atomic_helper_crtc_destroy_state(&s->base);
1631 kfree(s);
1632 }
1633
vop_crtc_reset(struct drm_crtc * crtc)1634 static void vop_crtc_reset(struct drm_crtc *crtc)
1635 {
1636 struct rockchip_crtc_state *crtc_state =
1637 kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1638
1639 if (crtc->state)
1640 vop_crtc_destroy_state(crtc, crtc->state);
1641
1642 __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1643 }
1644
1645 #ifdef CONFIG_DRM_ANALOGIX_DP
vop_get_edp_connector(struct vop * vop)1646 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1647 {
1648 struct drm_connector *connector;
1649 struct drm_connector_list_iter conn_iter;
1650
1651 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1652 drm_for_each_connector_iter(connector, &conn_iter) {
1653 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1654 drm_connector_list_iter_end(&conn_iter);
1655 return connector;
1656 }
1657 }
1658 drm_connector_list_iter_end(&conn_iter);
1659
1660 return NULL;
1661 }
1662
vop_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1663 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1664 const char *source_name)
1665 {
1666 struct vop *vop = to_vop(crtc);
1667 struct drm_connector *connector;
1668 int ret;
1669
1670 connector = vop_get_edp_connector(vop);
1671 if (!connector)
1672 return -EINVAL;
1673
1674 if (source_name && strcmp(source_name, "auto") == 0)
1675 ret = analogix_dp_start_crc(connector);
1676 else if (!source_name)
1677 ret = analogix_dp_stop_crc(connector);
1678 else
1679 ret = -EINVAL;
1680
1681 return ret;
1682 }
1683
1684 static int
vop_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1685 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1686 size_t *values_cnt)
1687 {
1688 if (source_name && strcmp(source_name, "auto") != 0)
1689 return -EINVAL;
1690
1691 *values_cnt = 3;
1692 return 0;
1693 }
1694
1695 #else
vop_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1696 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1697 const char *source_name)
1698 {
1699 return -ENODEV;
1700 }
1701
1702 static int
vop_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1703 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1704 size_t *values_cnt)
1705 {
1706 return -ENODEV;
1707 }
1708 #endif
1709
1710 static const struct drm_crtc_funcs vop_crtc_funcs = {
1711 .set_config = drm_atomic_helper_set_config,
1712 .page_flip = drm_atomic_helper_page_flip,
1713 .destroy = vop_crtc_destroy,
1714 .reset = vop_crtc_reset,
1715 .atomic_duplicate_state = vop_crtc_duplicate_state,
1716 .atomic_destroy_state = vop_crtc_destroy_state,
1717 .enable_vblank = vop_crtc_enable_vblank,
1718 .disable_vblank = vop_crtc_disable_vblank,
1719 .set_crc_source = vop_crtc_set_crc_source,
1720 .verify_crc_source = vop_crtc_verify_crc_source,
1721 };
1722
vop_fb_unref_worker(struct drm_flip_work * work,void * val)1723 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1724 {
1725 struct vop *vop = container_of(work, struct vop, fb_unref_work);
1726 struct drm_framebuffer *fb = val;
1727
1728 drm_crtc_vblank_put(&vop->crtc);
1729 drm_framebuffer_put(fb);
1730 }
1731
vop_handle_vblank(struct vop * vop)1732 static void vop_handle_vblank(struct vop *vop)
1733 {
1734 struct drm_device *drm = vop->drm_dev;
1735 struct drm_crtc *crtc = &vop->crtc;
1736
1737 spin_lock(&drm->event_lock);
1738 if (vop->event) {
1739 drm_crtc_send_vblank_event(crtc, vop->event);
1740 drm_crtc_vblank_put(crtc);
1741 vop->event = NULL;
1742 }
1743 spin_unlock(&drm->event_lock);
1744
1745 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1746 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1747 }
1748
vop_isr(int irq,void * data)1749 static irqreturn_t vop_isr(int irq, void *data)
1750 {
1751 struct vop *vop = data;
1752 struct drm_crtc *crtc = &vop->crtc;
1753 uint32_t active_irqs;
1754 int ret = IRQ_NONE;
1755
1756 /*
1757 * The irq is shared with the iommu. If the runtime-pm state of the
1758 * vop-device is disabled the irq has to be targeted at the iommu.
1759 */
1760 if (!pm_runtime_get_if_in_use(vop->dev))
1761 return IRQ_NONE;
1762
1763 if (vop_core_clks_enable(vop)) {
1764 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1765 goto out;
1766 }
1767
1768 /*
1769 * interrupt register has interrupt status, enable and clear bits, we
1770 * must hold irq_lock to avoid a race with enable/disable_vblank().
1771 */
1772 spin_lock(&vop->irq_lock);
1773
1774 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1775 /* Clear all active interrupt sources */
1776 if (active_irqs)
1777 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1778
1779 spin_unlock(&vop->irq_lock);
1780
1781 /* This is expected for vop iommu irqs, since the irq is shared */
1782 if (!active_irqs)
1783 goto out_disable;
1784
1785 if (active_irqs & DSP_HOLD_VALID_INTR) {
1786 complete(&vop->dsp_hold_completion);
1787 active_irqs &= ~DSP_HOLD_VALID_INTR;
1788 ret = IRQ_HANDLED;
1789 }
1790
1791 if (active_irqs & LINE_FLAG_INTR) {
1792 complete(&vop->line_flag_completion);
1793 active_irqs &= ~LINE_FLAG_INTR;
1794 ret = IRQ_HANDLED;
1795 }
1796
1797 if (active_irqs & FS_INTR) {
1798 drm_crtc_handle_vblank(crtc);
1799 vop_handle_vblank(vop);
1800 active_irqs &= ~FS_INTR;
1801 ret = IRQ_HANDLED;
1802 }
1803
1804 /* Unhandled irqs are spurious. */
1805 if (active_irqs)
1806 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1807 active_irqs);
1808
1809 out_disable:
1810 vop_core_clks_disable(vop);
1811 out:
1812 pm_runtime_put(vop->dev);
1813 return ret;
1814 }
1815
vop_plane_add_properties(struct drm_plane * plane,const struct vop_win_data * win_data)1816 static void vop_plane_add_properties(struct drm_plane *plane,
1817 const struct vop_win_data *win_data)
1818 {
1819 unsigned int flags = 0;
1820
1821 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1822 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1823 if (flags)
1824 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1825 DRM_MODE_ROTATE_0 | flags);
1826 }
1827
vop_create_crtc(struct vop * vop)1828 static int vop_create_crtc(struct vop *vop)
1829 {
1830 const struct vop_data *vop_data = vop->data;
1831 struct device *dev = vop->dev;
1832 struct drm_device *drm_dev = vop->drm_dev;
1833 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1834 struct drm_crtc *crtc = &vop->crtc;
1835 struct device_node *port;
1836 int ret;
1837 int i;
1838
1839 /*
1840 * Create drm_plane for primary and cursor planes first, since we need
1841 * to pass them to drm_crtc_init_with_planes, which sets the
1842 * "possible_crtcs" to the newly initialized crtc.
1843 */
1844 for (i = 0; i < vop_data->win_size; i++) {
1845 struct vop_win *vop_win = &vop->win[i];
1846 const struct vop_win_data *win_data = vop_win->data;
1847
1848 if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1849 win_data->type != DRM_PLANE_TYPE_CURSOR)
1850 continue;
1851
1852 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1853 0, &vop_plane_funcs,
1854 win_data->phy->data_formats,
1855 win_data->phy->nformats,
1856 win_data->phy->format_modifiers,
1857 win_data->type, NULL);
1858 if (ret) {
1859 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1860 ret);
1861 goto err_cleanup_planes;
1862 }
1863
1864 plane = &vop_win->base;
1865 drm_plane_helper_add(plane, &plane_helper_funcs);
1866 vop_plane_add_properties(plane, win_data);
1867 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1868 primary = plane;
1869 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1870 cursor = plane;
1871 }
1872
1873 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1874 &vop_crtc_funcs, NULL);
1875 if (ret)
1876 goto err_cleanup_planes;
1877
1878 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1879 if (vop->lut_regs) {
1880 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1881 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1882 }
1883
1884 /*
1885 * Create drm_planes for overlay windows with possible_crtcs restricted
1886 * to the newly created crtc.
1887 */
1888 for (i = 0; i < vop_data->win_size; i++) {
1889 struct vop_win *vop_win = &vop->win[i];
1890 const struct vop_win_data *win_data = vop_win->data;
1891 unsigned long possible_crtcs = drm_crtc_mask(crtc);
1892
1893 if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1894 continue;
1895
1896 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1897 possible_crtcs,
1898 &vop_plane_funcs,
1899 win_data->phy->data_formats,
1900 win_data->phy->nformats,
1901 win_data->phy->format_modifiers,
1902 win_data->type, NULL);
1903 if (ret) {
1904 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1905 ret);
1906 goto err_cleanup_crtc;
1907 }
1908 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1909 vop_plane_add_properties(&vop_win->base, win_data);
1910 }
1911
1912 port = of_get_child_by_name(dev->of_node, "port");
1913 if (!port) {
1914 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1915 dev->of_node);
1916 ret = -ENOENT;
1917 goto err_cleanup_crtc;
1918 }
1919
1920 drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1921 vop_fb_unref_worker);
1922
1923 init_completion(&vop->dsp_hold_completion);
1924 init_completion(&vop->line_flag_completion);
1925 crtc->port = port;
1926
1927 ret = drm_self_refresh_helper_init(crtc);
1928 if (ret)
1929 DRM_DEV_DEBUG_KMS(vop->dev,
1930 "Failed to init %s with SR helpers %d, ignoring\n",
1931 crtc->name, ret);
1932
1933 return 0;
1934
1935 err_cleanup_crtc:
1936 drm_crtc_cleanup(crtc);
1937 err_cleanup_planes:
1938 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1939 head)
1940 drm_plane_cleanup(plane);
1941 return ret;
1942 }
1943
vop_destroy_crtc(struct vop * vop)1944 static void vop_destroy_crtc(struct vop *vop)
1945 {
1946 struct drm_crtc *crtc = &vop->crtc;
1947 struct drm_device *drm_dev = vop->drm_dev;
1948 struct drm_plane *plane, *tmp;
1949
1950 drm_self_refresh_helper_cleanup(crtc);
1951
1952 of_node_put(crtc->port);
1953
1954 /*
1955 * We need to cleanup the planes now. Why?
1956 *
1957 * The planes are "&vop->win[i].base". That means the memory is
1958 * all part of the big "struct vop" chunk of memory. That memory
1959 * was devm allocated and associated with this component. We need to
1960 * free it ourselves before vop_unbind() finishes.
1961 */
1962 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1963 head)
1964 vop_plane_destroy(plane);
1965
1966 /*
1967 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1968 * references the CRTC.
1969 */
1970 drm_crtc_cleanup(crtc);
1971 drm_flip_work_cleanup(&vop->fb_unref_work);
1972 }
1973
vop_initial(struct vop * vop)1974 static int vop_initial(struct vop *vop)
1975 {
1976 struct reset_control *ahb_rst;
1977 int i, ret;
1978
1979 vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1980 if (IS_ERR(vop->hclk)) {
1981 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1982 return PTR_ERR(vop->hclk);
1983 }
1984 vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1985 if (IS_ERR(vop->aclk)) {
1986 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1987 return PTR_ERR(vop->aclk);
1988 }
1989 vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1990 if (IS_ERR(vop->dclk)) {
1991 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1992 return PTR_ERR(vop->dclk);
1993 }
1994
1995 ret = pm_runtime_resume_and_get(vop->dev);
1996 if (ret < 0) {
1997 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1998 return ret;
1999 }
2000
2001 ret = clk_prepare(vop->dclk);
2002 if (ret < 0) {
2003 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
2004 goto err_put_pm_runtime;
2005 }
2006
2007 /* Enable both the hclk and aclk to setup the vop */
2008 ret = clk_prepare_enable(vop->hclk);
2009 if (ret < 0) {
2010 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
2011 goto err_unprepare_dclk;
2012 }
2013
2014 ret = clk_prepare_enable(vop->aclk);
2015 if (ret < 0) {
2016 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
2017 goto err_disable_hclk;
2018 }
2019
2020 /*
2021 * do hclk_reset, reset all vop registers.
2022 */
2023 ahb_rst = devm_reset_control_get(vop->dev, "ahb");
2024 if (IS_ERR(ahb_rst)) {
2025 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
2026 ret = PTR_ERR(ahb_rst);
2027 goto err_disable_aclk;
2028 }
2029 reset_control_assert(ahb_rst);
2030 usleep_range(10, 20);
2031 reset_control_deassert(ahb_rst);
2032
2033 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
2034 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
2035
2036 for (i = 0; i < vop->len; i += sizeof(u32))
2037 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
2038
2039 VOP_REG_SET(vop, misc, global_regdone_en, 1);
2040 VOP_REG_SET(vop, common, dsp_blank, 0);
2041
2042 for (i = 0; i < vop->data->win_size; i++) {
2043 struct vop_win *vop_win = &vop->win[i];
2044 const struct vop_win_data *win = vop_win->data;
2045 int channel = i * 2 + 1;
2046
2047 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
2048 vop_win_disable(vop, vop_win);
2049 VOP_WIN_SET(vop, win, gate, 1);
2050 }
2051
2052 vop_cfg_done(vop);
2053
2054 /*
2055 * do dclk_reset, let all config take affect.
2056 */
2057 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
2058 if (IS_ERR(vop->dclk_rst)) {
2059 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
2060 ret = PTR_ERR(vop->dclk_rst);
2061 goto err_disable_aclk;
2062 }
2063 reset_control_assert(vop->dclk_rst);
2064 usleep_range(10, 20);
2065 reset_control_deassert(vop->dclk_rst);
2066
2067 clk_disable(vop->hclk);
2068 clk_disable(vop->aclk);
2069
2070 vop->is_enabled = false;
2071
2072 pm_runtime_put_sync(vop->dev);
2073
2074 return 0;
2075
2076 err_disable_aclk:
2077 clk_disable_unprepare(vop->aclk);
2078 err_disable_hclk:
2079 clk_disable_unprepare(vop->hclk);
2080 err_unprepare_dclk:
2081 clk_unprepare(vop->dclk);
2082 err_put_pm_runtime:
2083 pm_runtime_put_sync(vop->dev);
2084 return ret;
2085 }
2086
2087 /*
2088 * Initialize the vop->win array elements.
2089 */
vop_win_init(struct vop * vop)2090 static void vop_win_init(struct vop *vop)
2091 {
2092 const struct vop_data *vop_data = vop->data;
2093 unsigned int i;
2094
2095 for (i = 0; i < vop_data->win_size; i++) {
2096 struct vop_win *vop_win = &vop->win[i];
2097 const struct vop_win_data *win_data = &vop_data->win[i];
2098
2099 vop_win->data = win_data;
2100 vop_win->vop = vop;
2101
2102 if (vop_data->win_yuv2yuv)
2103 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2104 }
2105 }
2106
2107 /**
2108 * rockchip_drm_wait_vact_end
2109 * @crtc: CRTC to enable line flag
2110 * @mstimeout: millisecond for timeout
2111 *
2112 * Wait for vact_end line flag irq or timeout.
2113 *
2114 * Returns:
2115 * Zero on success, negative errno on failure.
2116 */
rockchip_drm_wait_vact_end(struct drm_crtc * crtc,unsigned int mstimeout)2117 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2118 {
2119 struct vop *vop = to_vop(crtc);
2120 unsigned long jiffies_left;
2121 int ret = 0;
2122
2123 if (!crtc || !vop->is_enabled)
2124 return -ENODEV;
2125
2126 mutex_lock(&vop->vop_lock);
2127 if (mstimeout <= 0) {
2128 ret = -EINVAL;
2129 goto out;
2130 }
2131
2132 if (vop_line_flag_irq_is_enabled(vop)) {
2133 ret = -EBUSY;
2134 goto out;
2135 }
2136
2137 reinit_completion(&vop->line_flag_completion);
2138 vop_line_flag_irq_enable(vop);
2139
2140 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2141 msecs_to_jiffies(mstimeout));
2142 vop_line_flag_irq_disable(vop);
2143
2144 if (jiffies_left == 0) {
2145 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2146 ret = -ETIMEDOUT;
2147 goto out;
2148 }
2149
2150 out:
2151 mutex_unlock(&vop->vop_lock);
2152 return ret;
2153 }
2154 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2155
vop_bind(struct device * dev,struct device * master,void * data)2156 static int vop_bind(struct device *dev, struct device *master, void *data)
2157 {
2158 struct platform_device *pdev = to_platform_device(dev);
2159 const struct vop_data *vop_data;
2160 struct drm_device *drm_dev = data;
2161 struct vop *vop;
2162 struct resource *res;
2163 int ret, irq;
2164
2165 vop_data = of_device_get_match_data(dev);
2166 if (!vop_data)
2167 return -ENODEV;
2168
2169 /* Allocate vop struct and its vop_win array */
2170 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2171 GFP_KERNEL);
2172 if (!vop)
2173 return -ENOMEM;
2174
2175 vop->dev = dev;
2176 vop->data = vop_data;
2177 vop->drm_dev = drm_dev;
2178 dev_set_drvdata(dev, vop);
2179
2180 vop_win_init(vop);
2181
2182 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2183 vop->regs = devm_ioremap_resource(dev, res);
2184 if (IS_ERR(vop->regs))
2185 return PTR_ERR(vop->regs);
2186 vop->len = resource_size(res);
2187
2188 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2189 if (res) {
2190 if (vop_data->lut_size != 1024 && vop_data->lut_size != 256) {
2191 DRM_DEV_ERROR(dev, "unsupported gamma LUT size %d\n", vop_data->lut_size);
2192 return -EINVAL;
2193 }
2194 vop->lut_regs = devm_ioremap_resource(dev, res);
2195 if (IS_ERR(vop->lut_regs))
2196 return PTR_ERR(vop->lut_regs);
2197 }
2198
2199 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2200 if (!vop->regsbak)
2201 return -ENOMEM;
2202
2203 irq = platform_get_irq(pdev, 0);
2204 if (irq < 0) {
2205 DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2206 return irq;
2207 }
2208 vop->irq = (unsigned int)irq;
2209
2210 spin_lock_init(&vop->reg_lock);
2211 spin_lock_init(&vop->irq_lock);
2212 mutex_init(&vop->vop_lock);
2213
2214 ret = vop_create_crtc(vop);
2215 if (ret)
2216 return ret;
2217
2218 pm_runtime_enable(&pdev->dev);
2219
2220 ret = vop_initial(vop);
2221 if (ret < 0) {
2222 DRM_DEV_ERROR(&pdev->dev,
2223 "cannot initial vop dev - err %d\n", ret);
2224 goto err_disable_pm_runtime;
2225 }
2226
2227 ret = devm_request_irq(dev, vop->irq, vop_isr,
2228 IRQF_SHARED, dev_name(dev), vop);
2229 if (ret)
2230 goto err_disable_pm_runtime;
2231
2232 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2233 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev, 0);
2234 if (IS_ERR(vop->rgb)) {
2235 ret = PTR_ERR(vop->rgb);
2236 goto err_disable_pm_runtime;
2237 }
2238 }
2239
2240 rockchip_drm_dma_init_device(drm_dev, dev);
2241
2242 return 0;
2243
2244 err_disable_pm_runtime:
2245 pm_runtime_disable(&pdev->dev);
2246 vop_destroy_crtc(vop);
2247 return ret;
2248 }
2249
vop_unbind(struct device * dev,struct device * master,void * data)2250 static void vop_unbind(struct device *dev, struct device *master, void *data)
2251 {
2252 struct vop *vop = dev_get_drvdata(dev);
2253
2254 if (vop->rgb)
2255 rockchip_rgb_fini(vop->rgb);
2256
2257 pm_runtime_disable(dev);
2258 vop_destroy_crtc(vop);
2259
2260 clk_unprepare(vop->aclk);
2261 clk_unprepare(vop->hclk);
2262 clk_unprepare(vop->dclk);
2263 }
2264
2265 const struct component_ops vop_component_ops = {
2266 .bind = vop_bind,
2267 .unbind = vop_unbind,
2268 };
2269 EXPORT_SYMBOL_GPL(vop_component_ops);
2270