1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Fuzhou Rockchip Electronics Co.Ltd
4 * Author:Mark Yao <mark.yao@rock-chips.com>
5 */
6
7 #include <linux/clk.h>
8 #include <linux/component.h>
9 #include <linux/delay.h>
10 #include <linux/iopoll.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/overflow.h>
16 #include <linux/platform_device.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19
20 #include <drm/drm.h>
21 #include <drm/drm_atomic.h>
22 #include <drm/drm_atomic_uapi.h>
23 #include <drm/drm_crtc.h>
24 #include <drm/drm_flip_work.h>
25 #include <drm/drm_fourcc.h>
26 #include <drm/drm_gem_framebuffer_helper.h>
27 #include <drm/drm_plane_helper.h>
28 #include <drm/drm_probe_helper.h>
29 #include <drm/drm_self_refresh_helper.h>
30 #include <drm/drm_vblank.h>
31
32 #ifdef CONFIG_DRM_ANALOGIX_DP
33 #include <drm/bridge/analogix_dp.h>
34 #endif
35
36 #include "rockchip_drm_drv.h"
37 #include "rockchip_drm_gem.h"
38 #include "rockchip_drm_fb.h"
39 #include "rockchip_drm_vop.h"
40 #include "rockchip_rgb.h"
41
42 #define VOP_WIN_SET(vop, win, name, v) \
43 vop_reg_set(vop, &win->phy->name, win->base, ~0, v, #name)
44 #define VOP_SCL_SET(vop, win, name, v) \
45 vop_reg_set(vop, &win->phy->scl->name, win->base, ~0, v, #name)
46 #define VOP_SCL_SET_EXT(vop, win, name, v) \
47 vop_reg_set(vop, &win->phy->scl->ext->name, \
48 win->base, ~0, v, #name)
49
50 #define VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, name, v) \
51 do { \
52 if (win_yuv2yuv && win_yuv2yuv->name.mask) \
53 vop_reg_set(vop, &win_yuv2yuv->name, 0, ~0, v, #name); \
54 } while (0)
55
56 #define VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop, win_yuv2yuv, name, v) \
57 do { \
58 if (win_yuv2yuv && win_yuv2yuv->phy->name.mask) \
59 vop_reg_set(vop, &win_yuv2yuv->phy->name, win_yuv2yuv->base, ~0, v, #name); \
60 } while (0)
61
62 #define VOP_INTR_SET_MASK(vop, name, mask, v) \
63 vop_reg_set(vop, &vop->data->intr->name, 0, mask, v, #name)
64
65 #define VOP_REG_SET(vop, group, name, v) \
66 vop_reg_set(vop, &vop->data->group->name, 0, ~0, v, #name)
67
68 #define VOP_INTR_SET_TYPE(vop, name, type, v) \
69 do { \
70 int i, reg = 0, mask = 0; \
71 for (i = 0; i < vop->data->intr->nintrs; i++) { \
72 if (vop->data->intr->intrs[i] & type) { \
73 reg |= (v) << i; \
74 mask |= 1 << i; \
75 } \
76 } \
77 VOP_INTR_SET_MASK(vop, name, mask, reg); \
78 } while (0)
79 #define VOP_INTR_GET_TYPE(vop, name, type) \
80 vop_get_intr_type(vop, &vop->data->intr->name, type)
81
82 #define VOP_WIN_GET(vop, win, name) \
83 vop_read_reg(vop, win->base, &win->phy->name)
84
85 #define VOP_WIN_HAS_REG(win, name) \
86 (!!(win->phy->name.mask))
87
88 #define VOP_WIN_GET_YRGBADDR(vop, win) \
89 vop_readl(vop, win->base + win->phy->yrgb_mst.offset)
90
91 #define VOP_WIN_TO_INDEX(vop_win) \
92 ((vop_win) - (vop_win)->vop->win)
93
94 #define VOP_AFBC_SET(vop, name, v) \
95 do { \
96 if ((vop)->data->afbc) \
97 vop_reg_set((vop), &(vop)->data->afbc->name, \
98 0, ~0, v, #name); \
99 } while (0)
100
101 #define to_vop(x) container_of(x, struct vop, crtc)
102 #define to_vop_win(x) container_of(x, struct vop_win, base)
103
104 #define AFBC_FMT_RGB565 0x0
105 #define AFBC_FMT_U8U8U8U8 0x5
106 #define AFBC_FMT_U8U8U8 0x4
107
108 #define AFBC_TILE_16x16 BIT(4)
109
110 /*
111 * The coefficients of the following matrix are all fixed points.
112 * The format is S2.10 for the 3x3 part of the matrix, and S9.12 for the offsets.
113 * They are all represented in two's complement.
114 */
115 static const uint32_t bt601_yuv2rgb[] = {
116 0x4A8, 0x0, 0x662,
117 0x4A8, 0x1E6F, 0x1CBF,
118 0x4A8, 0x812, 0x0,
119 0x321168, 0x0877CF, 0x2EB127
120 };
121
122 enum vop_pending {
123 VOP_PENDING_FB_UNREF,
124 };
125
126 struct vop_win {
127 struct drm_plane base;
128 const struct vop_win_data *data;
129 const struct vop_win_yuv2yuv_data *yuv2yuv_data;
130 struct vop *vop;
131 };
132
133 struct rockchip_rgb;
134 struct vop {
135 struct drm_crtc crtc;
136 struct device *dev;
137 struct drm_device *drm_dev;
138 bool is_enabled;
139
140 struct completion dsp_hold_completion;
141 unsigned int win_enabled;
142
143 /* protected by dev->event_lock */
144 struct drm_pending_vblank_event *event;
145
146 struct drm_flip_work fb_unref_work;
147 unsigned long pending;
148
149 struct completion line_flag_completion;
150
151 const struct vop_data *data;
152
153 uint32_t *regsbak;
154 void __iomem *regs;
155 void __iomem *lut_regs;
156
157 /* physical map length of vop register */
158 uint32_t len;
159
160 /* one time only one process allowed to config the register */
161 spinlock_t reg_lock;
162 /* lock vop irq reg */
163 spinlock_t irq_lock;
164 /* protects crtc enable/disable */
165 struct mutex vop_lock;
166
167 unsigned int irq;
168
169 /* vop AHP clk */
170 struct clk *hclk;
171 /* vop dclk */
172 struct clk *dclk;
173 /* vop share memory frequency */
174 struct clk *aclk;
175
176 /* vop dclk reset */
177 struct reset_control *dclk_rst;
178
179 /* optional internal rgb encoder */
180 struct rockchip_rgb *rgb;
181
182 struct vop_win win[];
183 };
184
vop_writel(struct vop * vop,uint32_t offset,uint32_t v)185 static inline void vop_writel(struct vop *vop, uint32_t offset, uint32_t v)
186 {
187 writel(v, vop->regs + offset);
188 vop->regsbak[offset >> 2] = v;
189 }
190
vop_readl(struct vop * vop,uint32_t offset)191 static inline uint32_t vop_readl(struct vop *vop, uint32_t offset)
192 {
193 return readl(vop->regs + offset);
194 }
195
vop_read_reg(struct vop * vop,uint32_t base,const struct vop_reg * reg)196 static inline uint32_t vop_read_reg(struct vop *vop, uint32_t base,
197 const struct vop_reg *reg)
198 {
199 return (vop_readl(vop, base + reg->offset) >> reg->shift) & reg->mask;
200 }
201
vop_reg_set(struct vop * vop,const struct vop_reg * reg,uint32_t _offset,uint32_t _mask,uint32_t v,const char * reg_name)202 static void vop_reg_set(struct vop *vop, const struct vop_reg *reg,
203 uint32_t _offset, uint32_t _mask, uint32_t v,
204 const char *reg_name)
205 {
206 int offset, mask, shift;
207
208 if (!reg || !reg->mask) {
209 DRM_DEV_DEBUG(vop->dev, "Warning: not support %s\n", reg_name);
210 return;
211 }
212
213 offset = reg->offset + _offset;
214 mask = reg->mask & _mask;
215 shift = reg->shift;
216
217 if (reg->write_mask) {
218 v = ((v << shift) & 0xffff) | (mask << (shift + 16));
219 } else {
220 uint32_t cached_val = vop->regsbak[offset >> 2];
221
222 v = (cached_val & ~(mask << shift)) | ((v & mask) << shift);
223 vop->regsbak[offset >> 2] = v;
224 }
225
226 if (reg->relaxed)
227 writel_relaxed(v, vop->regs + offset);
228 else
229 writel(v, vop->regs + offset);
230 }
231
vop_get_intr_type(struct vop * vop,const struct vop_reg * reg,int type)232 static inline uint32_t vop_get_intr_type(struct vop *vop,
233 const struct vop_reg *reg, int type)
234 {
235 uint32_t i, ret = 0;
236 uint32_t regs = vop_read_reg(vop, 0, reg);
237
238 for (i = 0; i < vop->data->intr->nintrs; i++) {
239 if ((type & vop->data->intr->intrs[i]) && (regs & 1 << i))
240 ret |= vop->data->intr->intrs[i];
241 }
242
243 return ret;
244 }
245
vop_cfg_done(struct vop * vop)246 static inline void vop_cfg_done(struct vop *vop)
247 {
248 VOP_REG_SET(vop, common, cfg_done, 1);
249 }
250
has_rb_swapped(uint32_t format)251 static bool has_rb_swapped(uint32_t format)
252 {
253 switch (format) {
254 case DRM_FORMAT_XBGR8888:
255 case DRM_FORMAT_ABGR8888:
256 case DRM_FORMAT_BGR888:
257 case DRM_FORMAT_BGR565:
258 return true;
259 default:
260 return false;
261 }
262 }
263
vop_convert_format(uint32_t format)264 static enum vop_data_format vop_convert_format(uint32_t format)
265 {
266 switch (format) {
267 case DRM_FORMAT_XRGB8888:
268 case DRM_FORMAT_ARGB8888:
269 case DRM_FORMAT_XBGR8888:
270 case DRM_FORMAT_ABGR8888:
271 return VOP_FMT_ARGB8888;
272 case DRM_FORMAT_RGB888:
273 case DRM_FORMAT_BGR888:
274 return VOP_FMT_RGB888;
275 case DRM_FORMAT_RGB565:
276 case DRM_FORMAT_BGR565:
277 return VOP_FMT_RGB565;
278 case DRM_FORMAT_NV12:
279 return VOP_FMT_YUV420SP;
280 case DRM_FORMAT_NV16:
281 return VOP_FMT_YUV422SP;
282 case DRM_FORMAT_NV24:
283 return VOP_FMT_YUV444SP;
284 default:
285 DRM_ERROR("unsupported format[%08x]\n", format);
286 return -EINVAL;
287 }
288 }
289
vop_convert_afbc_format(uint32_t format)290 static int vop_convert_afbc_format(uint32_t format)
291 {
292 switch (format) {
293 case DRM_FORMAT_XRGB8888:
294 case DRM_FORMAT_ARGB8888:
295 case DRM_FORMAT_XBGR8888:
296 case DRM_FORMAT_ABGR8888:
297 return AFBC_FMT_U8U8U8U8;
298 case DRM_FORMAT_RGB888:
299 case DRM_FORMAT_BGR888:
300 return AFBC_FMT_U8U8U8;
301 case DRM_FORMAT_RGB565:
302 case DRM_FORMAT_BGR565:
303 return AFBC_FMT_RGB565;
304 /* either of the below should not be reachable */
305 default:
306 DRM_WARN_ONCE("unsupported AFBC format[%08x]\n", format);
307 return -EINVAL;
308 }
309
310 return -EINVAL;
311 }
312
scl_vop_cal_scale(enum scale_mode mode,uint32_t src,uint32_t dst,bool is_horizontal,int vsu_mode,int * vskiplines)313 static uint16_t scl_vop_cal_scale(enum scale_mode mode, uint32_t src,
314 uint32_t dst, bool is_horizontal,
315 int vsu_mode, int *vskiplines)
316 {
317 uint16_t val = 1 << SCL_FT_DEFAULT_FIXPOINT_SHIFT;
318
319 if (vskiplines)
320 *vskiplines = 0;
321
322 if (is_horizontal) {
323 if (mode == SCALE_UP)
324 val = GET_SCL_FT_BIC(src, dst);
325 else if (mode == SCALE_DOWN)
326 val = GET_SCL_FT_BILI_DN(src, dst);
327 } else {
328 if (mode == SCALE_UP) {
329 if (vsu_mode == SCALE_UP_BIL)
330 val = GET_SCL_FT_BILI_UP(src, dst);
331 else
332 val = GET_SCL_FT_BIC(src, dst);
333 } else if (mode == SCALE_DOWN) {
334 if (vskiplines) {
335 *vskiplines = scl_get_vskiplines(src, dst);
336 val = scl_get_bili_dn_vskip(src, dst,
337 *vskiplines);
338 } else {
339 val = GET_SCL_FT_BILI_DN(src, dst);
340 }
341 }
342 }
343
344 return val;
345 }
346
scl_vop_cal_scl_fac(struct vop * vop,const struct vop_win_data * win,uint32_t src_w,uint32_t src_h,uint32_t dst_w,uint32_t dst_h,const struct drm_format_info * info)347 static void scl_vop_cal_scl_fac(struct vop *vop, const struct vop_win_data *win,
348 uint32_t src_w, uint32_t src_h, uint32_t dst_w,
349 uint32_t dst_h, const struct drm_format_info *info)
350 {
351 uint16_t yrgb_hor_scl_mode, yrgb_ver_scl_mode;
352 uint16_t cbcr_hor_scl_mode = SCALE_NONE;
353 uint16_t cbcr_ver_scl_mode = SCALE_NONE;
354 bool is_yuv = false;
355 uint16_t cbcr_src_w = src_w / info->hsub;
356 uint16_t cbcr_src_h = src_h / info->vsub;
357 uint16_t vsu_mode;
358 uint16_t lb_mode;
359 uint32_t val;
360 int vskiplines;
361
362 if (info->is_yuv)
363 is_yuv = true;
364
365 if (dst_w > 3840) {
366 DRM_DEV_ERROR(vop->dev, "Maximum dst width (3840) exceeded\n");
367 return;
368 }
369
370 if (!win->phy->scl->ext) {
371 VOP_SCL_SET(vop, win, scale_yrgb_x,
372 scl_cal_scale2(src_w, dst_w));
373 VOP_SCL_SET(vop, win, scale_yrgb_y,
374 scl_cal_scale2(src_h, dst_h));
375 if (is_yuv) {
376 VOP_SCL_SET(vop, win, scale_cbcr_x,
377 scl_cal_scale2(cbcr_src_w, dst_w));
378 VOP_SCL_SET(vop, win, scale_cbcr_y,
379 scl_cal_scale2(cbcr_src_h, dst_h));
380 }
381 return;
382 }
383
384 yrgb_hor_scl_mode = scl_get_scl_mode(src_w, dst_w);
385 yrgb_ver_scl_mode = scl_get_scl_mode(src_h, dst_h);
386
387 if (is_yuv) {
388 cbcr_hor_scl_mode = scl_get_scl_mode(cbcr_src_w, dst_w);
389 cbcr_ver_scl_mode = scl_get_scl_mode(cbcr_src_h, dst_h);
390 if (cbcr_hor_scl_mode == SCALE_DOWN)
391 lb_mode = scl_vop_cal_lb_mode(dst_w, true);
392 else
393 lb_mode = scl_vop_cal_lb_mode(cbcr_src_w, true);
394 } else {
395 if (yrgb_hor_scl_mode == SCALE_DOWN)
396 lb_mode = scl_vop_cal_lb_mode(dst_w, false);
397 else
398 lb_mode = scl_vop_cal_lb_mode(src_w, false);
399 }
400
401 VOP_SCL_SET_EXT(vop, win, lb_mode, lb_mode);
402 if (lb_mode == LB_RGB_3840X2) {
403 if (yrgb_ver_scl_mode != SCALE_NONE) {
404 DRM_DEV_ERROR(vop->dev, "not allow yrgb ver scale\n");
405 return;
406 }
407 if (cbcr_ver_scl_mode != SCALE_NONE) {
408 DRM_DEV_ERROR(vop->dev, "not allow cbcr ver scale\n");
409 return;
410 }
411 vsu_mode = SCALE_UP_BIL;
412 } else if (lb_mode == LB_RGB_2560X4) {
413 vsu_mode = SCALE_UP_BIL;
414 } else {
415 vsu_mode = SCALE_UP_BIC;
416 }
417
418 val = scl_vop_cal_scale(yrgb_hor_scl_mode, src_w, dst_w,
419 true, 0, NULL);
420 VOP_SCL_SET(vop, win, scale_yrgb_x, val);
421 val = scl_vop_cal_scale(yrgb_ver_scl_mode, src_h, dst_h,
422 false, vsu_mode, &vskiplines);
423 VOP_SCL_SET(vop, win, scale_yrgb_y, val);
424
425 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt4, vskiplines == 4);
426 VOP_SCL_SET_EXT(vop, win, vsd_yrgb_gt2, vskiplines == 2);
427
428 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, yrgb_hor_scl_mode);
429 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, yrgb_ver_scl_mode);
430 VOP_SCL_SET_EXT(vop, win, yrgb_hsd_mode, SCALE_DOWN_BIL);
431 VOP_SCL_SET_EXT(vop, win, yrgb_vsd_mode, SCALE_DOWN_BIL);
432 VOP_SCL_SET_EXT(vop, win, yrgb_vsu_mode, vsu_mode);
433 if (is_yuv) {
434 val = scl_vop_cal_scale(cbcr_hor_scl_mode, cbcr_src_w,
435 dst_w, true, 0, NULL);
436 VOP_SCL_SET(vop, win, scale_cbcr_x, val);
437 val = scl_vop_cal_scale(cbcr_ver_scl_mode, cbcr_src_h,
438 dst_h, false, vsu_mode, &vskiplines);
439 VOP_SCL_SET(vop, win, scale_cbcr_y, val);
440
441 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt4, vskiplines == 4);
442 VOP_SCL_SET_EXT(vop, win, vsd_cbcr_gt2, vskiplines == 2);
443 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, cbcr_hor_scl_mode);
444 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, cbcr_ver_scl_mode);
445 VOP_SCL_SET_EXT(vop, win, cbcr_hsd_mode, SCALE_DOWN_BIL);
446 VOP_SCL_SET_EXT(vop, win, cbcr_vsd_mode, SCALE_DOWN_BIL);
447 VOP_SCL_SET_EXT(vop, win, cbcr_vsu_mode, vsu_mode);
448 }
449 }
450
vop_dsp_hold_valid_irq_enable(struct vop * vop)451 static void vop_dsp_hold_valid_irq_enable(struct vop *vop)
452 {
453 unsigned long flags;
454
455 if (WARN_ON(!vop->is_enabled))
456 return;
457
458 spin_lock_irqsave(&vop->irq_lock, flags);
459
460 VOP_INTR_SET_TYPE(vop, clear, DSP_HOLD_VALID_INTR, 1);
461 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 1);
462
463 spin_unlock_irqrestore(&vop->irq_lock, flags);
464 }
465
vop_dsp_hold_valid_irq_disable(struct vop * vop)466 static void vop_dsp_hold_valid_irq_disable(struct vop *vop)
467 {
468 unsigned long flags;
469
470 if (WARN_ON(!vop->is_enabled))
471 return;
472
473 spin_lock_irqsave(&vop->irq_lock, flags);
474
475 VOP_INTR_SET_TYPE(vop, enable, DSP_HOLD_VALID_INTR, 0);
476
477 spin_unlock_irqrestore(&vop->irq_lock, flags);
478 }
479
480 /*
481 * (1) each frame starts at the start of the Vsync pulse which is signaled by
482 * the "FRAME_SYNC" interrupt.
483 * (2) the active data region of each frame ends at dsp_vact_end
484 * (3) we should program this same number (dsp_vact_end) into dsp_line_frag_num,
485 * to get "LINE_FLAG" interrupt at the end of the active on screen data.
486 *
487 * VOP_INTR_CTRL0.dsp_line_frag_num = VOP_DSP_VACT_ST_END.dsp_vact_end
488 * Interrupts
489 * LINE_FLAG -------------------------------+
490 * FRAME_SYNC ----+ |
491 * | |
492 * v v
493 * | Vsync | Vbp | Vactive | Vfp |
494 * ^ ^ ^ ^
495 * | | | |
496 * | | | |
497 * dsp_vs_end ------------+ | | | VOP_DSP_VTOTAL_VS_END
498 * dsp_vact_start --------------+ | | VOP_DSP_VACT_ST_END
499 * dsp_vact_end ----------------------------+ | VOP_DSP_VACT_ST_END
500 * dsp_total -------------------------------------+ VOP_DSP_VTOTAL_VS_END
501 */
vop_line_flag_irq_is_enabled(struct vop * vop)502 static bool vop_line_flag_irq_is_enabled(struct vop *vop)
503 {
504 uint32_t line_flag_irq;
505 unsigned long flags;
506
507 spin_lock_irqsave(&vop->irq_lock, flags);
508
509 line_flag_irq = VOP_INTR_GET_TYPE(vop, enable, LINE_FLAG_INTR);
510
511 spin_unlock_irqrestore(&vop->irq_lock, flags);
512
513 return !!line_flag_irq;
514 }
515
vop_line_flag_irq_enable(struct vop * vop)516 static void vop_line_flag_irq_enable(struct vop *vop)
517 {
518 unsigned long flags;
519
520 if (WARN_ON(!vop->is_enabled))
521 return;
522
523 spin_lock_irqsave(&vop->irq_lock, flags);
524
525 VOP_INTR_SET_TYPE(vop, clear, LINE_FLAG_INTR, 1);
526 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 1);
527
528 spin_unlock_irqrestore(&vop->irq_lock, flags);
529 }
530
vop_line_flag_irq_disable(struct vop * vop)531 static void vop_line_flag_irq_disable(struct vop *vop)
532 {
533 unsigned long flags;
534
535 if (WARN_ON(!vop->is_enabled))
536 return;
537
538 spin_lock_irqsave(&vop->irq_lock, flags);
539
540 VOP_INTR_SET_TYPE(vop, enable, LINE_FLAG_INTR, 0);
541
542 spin_unlock_irqrestore(&vop->irq_lock, flags);
543 }
544
vop_core_clks_enable(struct vop * vop)545 static int vop_core_clks_enable(struct vop *vop)
546 {
547 int ret;
548
549 ret = clk_enable(vop->hclk);
550 if (ret < 0)
551 return ret;
552
553 ret = clk_enable(vop->aclk);
554 if (ret < 0)
555 goto err_disable_hclk;
556
557 return 0;
558
559 err_disable_hclk:
560 clk_disable(vop->hclk);
561 return ret;
562 }
563
vop_core_clks_disable(struct vop * vop)564 static void vop_core_clks_disable(struct vop *vop)
565 {
566 clk_disable(vop->aclk);
567 clk_disable(vop->hclk);
568 }
569
vop_win_disable(struct vop * vop,const struct vop_win * vop_win)570 static void vop_win_disable(struct vop *vop, const struct vop_win *vop_win)
571 {
572 const struct vop_win_data *win = vop_win->data;
573
574 if (win->phy->scl && win->phy->scl->ext) {
575 VOP_SCL_SET_EXT(vop, win, yrgb_hor_scl_mode, SCALE_NONE);
576 VOP_SCL_SET_EXT(vop, win, yrgb_ver_scl_mode, SCALE_NONE);
577 VOP_SCL_SET_EXT(vop, win, cbcr_hor_scl_mode, SCALE_NONE);
578 VOP_SCL_SET_EXT(vop, win, cbcr_ver_scl_mode, SCALE_NONE);
579 }
580
581 VOP_WIN_SET(vop, win, enable, 0);
582 vop->win_enabled &= ~BIT(VOP_WIN_TO_INDEX(vop_win));
583 }
584
vop_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)585 static int vop_enable(struct drm_crtc *crtc, struct drm_crtc_state *old_state)
586 {
587 struct vop *vop = to_vop(crtc);
588 int ret, i;
589
590 ret = pm_runtime_get_sync(vop->dev);
591 if (ret < 0) {
592 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
593 return ret;
594 }
595
596 ret = vop_core_clks_enable(vop);
597 if (WARN_ON(ret < 0))
598 goto err_put_pm_runtime;
599
600 ret = clk_enable(vop->dclk);
601 if (WARN_ON(ret < 0))
602 goto err_disable_core;
603
604 /*
605 * Slave iommu shares power, irq and clock with vop. It was associated
606 * automatically with this master device via common driver code.
607 * Now that we have enabled the clock we attach it to the shared drm
608 * mapping.
609 */
610 ret = rockchip_drm_dma_attach_device(vop->drm_dev, vop->dev);
611 if (ret) {
612 DRM_DEV_ERROR(vop->dev,
613 "failed to attach dma mapping, %d\n", ret);
614 goto err_disable_dclk;
615 }
616
617 spin_lock(&vop->reg_lock);
618 for (i = 0; i < vop->len; i += 4)
619 writel_relaxed(vop->regsbak[i / 4], vop->regs + i);
620
621 /*
622 * We need to make sure that all windows are disabled before we
623 * enable the crtc. Otherwise we might try to scan from a destroyed
624 * buffer later.
625 *
626 * In the case of enable-after-PSR, we don't need to worry about this
627 * case since the buffer is guaranteed to be valid and disabling the
628 * window will result in screen glitches on PSR exit.
629 */
630 if (!old_state || !old_state->self_refresh_active) {
631 for (i = 0; i < vop->data->win_size; i++) {
632 struct vop_win *vop_win = &vop->win[i];
633
634 vop_win_disable(vop, vop_win);
635 }
636 }
637
638 if (vop->data->afbc) {
639 struct rockchip_crtc_state *s;
640 /*
641 * Disable AFBC and forget there was a vop window with AFBC
642 */
643 VOP_AFBC_SET(vop, enable, 0);
644 s = to_rockchip_crtc_state(crtc->state);
645 s->enable_afbc = false;
646 }
647
648 vop_cfg_done(vop);
649
650 spin_unlock(&vop->reg_lock);
651
652 /*
653 * At here, vop clock & iommu is enable, R/W vop regs would be safe.
654 */
655 vop->is_enabled = true;
656
657 spin_lock(&vop->reg_lock);
658
659 VOP_REG_SET(vop, common, standby, 1);
660
661 spin_unlock(&vop->reg_lock);
662
663 drm_crtc_vblank_on(crtc);
664
665 return 0;
666
667 err_disable_dclk:
668 clk_disable(vop->dclk);
669 err_disable_core:
670 vop_core_clks_disable(vop);
671 err_put_pm_runtime:
672 pm_runtime_put_sync(vop->dev);
673 return ret;
674 }
675
rockchip_drm_set_win_enabled(struct drm_crtc * crtc,bool enabled)676 static void rockchip_drm_set_win_enabled(struct drm_crtc *crtc, bool enabled)
677 {
678 struct vop *vop = to_vop(crtc);
679 int i;
680
681 spin_lock(&vop->reg_lock);
682
683 for (i = 0; i < vop->data->win_size; i++) {
684 struct vop_win *vop_win = &vop->win[i];
685 const struct vop_win_data *win = vop_win->data;
686
687 VOP_WIN_SET(vop, win, enable,
688 enabled && (vop->win_enabled & BIT(i)));
689 }
690 vop_cfg_done(vop);
691
692 spin_unlock(&vop->reg_lock);
693 }
694
vop_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)695 static void vop_crtc_atomic_disable(struct drm_crtc *crtc,
696 struct drm_crtc_state *old_state)
697 {
698 struct vop *vop = to_vop(crtc);
699
700 WARN_ON(vop->event);
701
702 if (crtc->state->self_refresh_active)
703 rockchip_drm_set_win_enabled(crtc, false);
704
705 mutex_lock(&vop->vop_lock);
706
707 drm_crtc_vblank_off(crtc);
708
709 if (crtc->state->self_refresh_active)
710 goto out;
711
712 /*
713 * Vop standby will take effect at end of current frame,
714 * if dsp hold valid irq happen, it means standby complete.
715 *
716 * we must wait standby complete when we want to disable aclk,
717 * if not, memory bus maybe dead.
718 */
719 reinit_completion(&vop->dsp_hold_completion);
720 vop_dsp_hold_valid_irq_enable(vop);
721
722 spin_lock(&vop->reg_lock);
723
724 VOP_REG_SET(vop, common, standby, 1);
725
726 spin_unlock(&vop->reg_lock);
727
728 wait_for_completion(&vop->dsp_hold_completion);
729
730 vop_dsp_hold_valid_irq_disable(vop);
731
732 vop->is_enabled = false;
733
734 /*
735 * vop standby complete, so iommu detach is safe.
736 */
737 rockchip_drm_dma_detach_device(vop->drm_dev, vop->dev);
738
739 clk_disable(vop->dclk);
740 vop_core_clks_disable(vop);
741 pm_runtime_put(vop->dev);
742
743 out:
744 mutex_unlock(&vop->vop_lock);
745
746 if (crtc->state->event && !crtc->state->active) {
747 spin_lock_irq(&crtc->dev->event_lock);
748 drm_crtc_send_vblank_event(crtc, crtc->state->event);
749 spin_unlock_irq(&crtc->dev->event_lock);
750
751 crtc->state->event = NULL;
752 }
753 }
754
vop_plane_destroy(struct drm_plane * plane)755 static void vop_plane_destroy(struct drm_plane *plane)
756 {
757 drm_plane_cleanup(plane);
758 }
759
rockchip_afbc(u64 modifier)760 static inline bool rockchip_afbc(u64 modifier)
761 {
762 return modifier == ROCKCHIP_AFBC_MOD;
763 }
764
rockchip_mod_supported(struct drm_plane * plane,u32 format,u64 modifier)765 static bool rockchip_mod_supported(struct drm_plane *plane,
766 u32 format, u64 modifier)
767 {
768 if (modifier == DRM_FORMAT_MOD_LINEAR)
769 return true;
770
771 if (!rockchip_afbc(modifier)) {
772 DRM_DEBUG_KMS("Unsupported format modifier 0x%llx\n", modifier);
773
774 return false;
775 }
776
777 return vop_convert_afbc_format(format) >= 0;
778 }
779
vop_plane_atomic_check(struct drm_plane * plane,struct drm_plane_state * state)780 static int vop_plane_atomic_check(struct drm_plane *plane,
781 struct drm_plane_state *state)
782 {
783 struct drm_crtc *crtc = state->crtc;
784 struct drm_crtc_state *crtc_state;
785 struct drm_framebuffer *fb = state->fb;
786 struct vop_win *vop_win = to_vop_win(plane);
787 const struct vop_win_data *win = vop_win->data;
788 int ret;
789 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
790 DRM_PLANE_HELPER_NO_SCALING;
791 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
792 DRM_PLANE_HELPER_NO_SCALING;
793
794 if (!crtc || WARN_ON(!fb))
795 return 0;
796
797 crtc_state = drm_atomic_get_existing_crtc_state(state->state, crtc);
798 if (WARN_ON(!crtc_state))
799 return -EINVAL;
800
801 ret = drm_atomic_helper_check_plane_state(state, crtc_state,
802 min_scale, max_scale,
803 true, true);
804 if (ret)
805 return ret;
806
807 if (!state->visible)
808 return 0;
809
810 ret = vop_convert_format(fb->format->format);
811 if (ret < 0)
812 return ret;
813
814 /*
815 * Src.x1 can be odd when do clip, but yuv plane start point
816 * need align with 2 pixel.
817 */
818 if (fb->format->is_yuv && ((state->src.x1 >> 16) % 2)) {
819 DRM_ERROR("Invalid Source: Yuv format not support odd xpos\n");
820 return -EINVAL;
821 }
822
823 if (fb->format->is_yuv && state->rotation & DRM_MODE_REFLECT_Y) {
824 DRM_ERROR("Invalid Source: Yuv format does not support this rotation\n");
825 return -EINVAL;
826 }
827
828 if (rockchip_afbc(fb->modifier)) {
829 struct vop *vop = to_vop(crtc);
830
831 if (!vop->data->afbc) {
832 DRM_ERROR("vop does not support AFBC\n");
833 return -EINVAL;
834 }
835
836 ret = vop_convert_afbc_format(fb->format->format);
837 if (ret < 0)
838 return ret;
839
840 if (state->src.x1 || state->src.y1) {
841 DRM_ERROR("AFBC does not support offset display, xpos=%d, ypos=%d, offset=%d\n", state->src.x1, state->src.y1, fb->offsets[0]);
842 return -EINVAL;
843 }
844
845 if (state->rotation && state->rotation != DRM_MODE_ROTATE_0) {
846 DRM_ERROR("No rotation support in AFBC, rotation=%d\n",
847 state->rotation);
848 return -EINVAL;
849 }
850 }
851
852 return 0;
853 }
854
vop_plane_atomic_disable(struct drm_plane * plane,struct drm_plane_state * old_state)855 static void vop_plane_atomic_disable(struct drm_plane *plane,
856 struct drm_plane_state *old_state)
857 {
858 struct vop_win *vop_win = to_vop_win(plane);
859 struct vop *vop = to_vop(old_state->crtc);
860
861 if (!old_state->crtc)
862 return;
863
864 spin_lock(&vop->reg_lock);
865
866 vop_win_disable(vop, vop_win);
867
868 spin_unlock(&vop->reg_lock);
869 }
870
vop_plane_atomic_update(struct drm_plane * plane,struct drm_plane_state * old_state)871 static void vop_plane_atomic_update(struct drm_plane *plane,
872 struct drm_plane_state *old_state)
873 {
874 struct drm_plane_state *state = plane->state;
875 struct drm_crtc *crtc = state->crtc;
876 struct vop_win *vop_win = to_vop_win(plane);
877 const struct vop_win_data *win = vop_win->data;
878 const struct vop_win_yuv2yuv_data *win_yuv2yuv = vop_win->yuv2yuv_data;
879 struct vop *vop = to_vop(state->crtc);
880 struct drm_framebuffer *fb = state->fb;
881 unsigned int actual_w, actual_h;
882 unsigned int dsp_stx, dsp_sty;
883 uint32_t act_info, dsp_info, dsp_st;
884 struct drm_rect *src = &state->src;
885 struct drm_rect *dest = &state->dst;
886 struct drm_gem_object *obj, *uv_obj;
887 struct rockchip_gem_object *rk_obj, *rk_uv_obj;
888 unsigned long offset;
889 dma_addr_t dma_addr;
890 uint32_t val;
891 bool rb_swap;
892 int win_index = VOP_WIN_TO_INDEX(vop_win);
893 int format;
894 int is_yuv = fb->format->is_yuv;
895 int i;
896
897 /*
898 * can't update plane when vop is disabled.
899 */
900 if (WARN_ON(!crtc))
901 return;
902
903 if (WARN_ON(!vop->is_enabled))
904 return;
905
906 if (!state->visible) {
907 vop_plane_atomic_disable(plane, old_state);
908 return;
909 }
910
911 obj = fb->obj[0];
912 rk_obj = to_rockchip_obj(obj);
913
914 actual_w = drm_rect_width(src) >> 16;
915 actual_h = drm_rect_height(src) >> 16;
916 act_info = (actual_h - 1) << 16 | ((actual_w - 1) & 0xffff);
917
918 dsp_info = (drm_rect_height(dest) - 1) << 16;
919 dsp_info |= (drm_rect_width(dest) - 1) & 0xffff;
920
921 dsp_stx = dest->x1 + crtc->mode.htotal - crtc->mode.hsync_start;
922 dsp_sty = dest->y1 + crtc->mode.vtotal - crtc->mode.vsync_start;
923 dsp_st = dsp_sty << 16 | (dsp_stx & 0xffff);
924
925 offset = (src->x1 >> 16) * fb->format->cpp[0];
926 offset += (src->y1 >> 16) * fb->pitches[0];
927 dma_addr = rk_obj->dma_addr + offset + fb->offsets[0];
928
929 /*
930 * For y-mirroring we need to move address
931 * to the beginning of the last line.
932 */
933 if (state->rotation & DRM_MODE_REFLECT_Y)
934 dma_addr += (actual_h - 1) * fb->pitches[0];
935
936 format = vop_convert_format(fb->format->format);
937
938 spin_lock(&vop->reg_lock);
939
940 if (rockchip_afbc(fb->modifier)) {
941 int afbc_format = vop_convert_afbc_format(fb->format->format);
942
943 VOP_AFBC_SET(vop, format, afbc_format | AFBC_TILE_16x16);
944 VOP_AFBC_SET(vop, hreg_block_split, 0);
945 VOP_AFBC_SET(vop, win_sel, VOP_WIN_TO_INDEX(vop_win));
946 VOP_AFBC_SET(vop, hdr_ptr, dma_addr);
947 VOP_AFBC_SET(vop, pic_size, act_info);
948 }
949
950 VOP_WIN_SET(vop, win, format, format);
951 VOP_WIN_SET(vop, win, yrgb_vir, DIV_ROUND_UP(fb->pitches[0], 4));
952 VOP_WIN_SET(vop, win, yrgb_mst, dma_addr);
953 VOP_WIN_YUV2YUV_SET(vop, win_yuv2yuv, y2r_en, is_yuv);
954 VOP_WIN_SET(vop, win, y_mir_en,
955 (state->rotation & DRM_MODE_REFLECT_Y) ? 1 : 0);
956 VOP_WIN_SET(vop, win, x_mir_en,
957 (state->rotation & DRM_MODE_REFLECT_X) ? 1 : 0);
958
959 if (is_yuv) {
960 int hsub = fb->format->hsub;
961 int vsub = fb->format->vsub;
962 int bpp = fb->format->cpp[1];
963
964 uv_obj = fb->obj[1];
965 rk_uv_obj = to_rockchip_obj(uv_obj);
966
967 offset = (src->x1 >> 16) * bpp / hsub;
968 offset += (src->y1 >> 16) * fb->pitches[1] / vsub;
969
970 dma_addr = rk_uv_obj->dma_addr + offset + fb->offsets[1];
971 VOP_WIN_SET(vop, win, uv_vir, DIV_ROUND_UP(fb->pitches[1], 4));
972 VOP_WIN_SET(vop, win, uv_mst, dma_addr);
973
974 for (i = 0; i < NUM_YUV2YUV_COEFFICIENTS; i++) {
975 VOP_WIN_YUV2YUV_COEFFICIENT_SET(vop,
976 win_yuv2yuv,
977 y2r_coefficients[i],
978 bt601_yuv2rgb[i]);
979 }
980 }
981
982 if (win->phy->scl)
983 scl_vop_cal_scl_fac(vop, win, actual_w, actual_h,
984 drm_rect_width(dest), drm_rect_height(dest),
985 fb->format);
986
987 VOP_WIN_SET(vop, win, act_info, act_info);
988 VOP_WIN_SET(vop, win, dsp_info, dsp_info);
989 VOP_WIN_SET(vop, win, dsp_st, dsp_st);
990
991 rb_swap = has_rb_swapped(fb->format->format);
992 VOP_WIN_SET(vop, win, rb_swap, rb_swap);
993
994 /*
995 * Blending win0 with the background color doesn't seem to work
996 * correctly. We only get the background color, no matter the contents
997 * of the win0 framebuffer. However, blending pre-multiplied color
998 * with the default opaque black default background color is a no-op,
999 * so we can just disable blending to get the correct result.
1000 */
1001 if (fb->format->has_alpha && win_index > 0) {
1002 VOP_WIN_SET(vop, win, dst_alpha_ctl,
1003 DST_FACTOR_M0(ALPHA_SRC_INVERSE));
1004 val = SRC_ALPHA_EN(1) | SRC_COLOR_M0(ALPHA_SRC_PRE_MUL) |
1005 SRC_ALPHA_M0(ALPHA_STRAIGHT) |
1006 SRC_BLEND_M0(ALPHA_PER_PIX) |
1007 SRC_ALPHA_CAL_M0(ALPHA_NO_SATURATION) |
1008 SRC_FACTOR_M0(ALPHA_ONE);
1009 VOP_WIN_SET(vop, win, src_alpha_ctl, val);
1010
1011 VOP_WIN_SET(vop, win, alpha_pre_mul, ALPHA_SRC_PRE_MUL);
1012 VOP_WIN_SET(vop, win, alpha_mode, ALPHA_PER_PIX);
1013 VOP_WIN_SET(vop, win, alpha_en, 1);
1014 } else {
1015 VOP_WIN_SET(vop, win, src_alpha_ctl, SRC_ALPHA_EN(0));
1016 }
1017
1018 VOP_WIN_SET(vop, win, enable, 1);
1019 vop->win_enabled |= BIT(win_index);
1020 spin_unlock(&vop->reg_lock);
1021 }
1022
vop_plane_atomic_async_check(struct drm_plane * plane,struct drm_plane_state * state)1023 static int vop_plane_atomic_async_check(struct drm_plane *plane,
1024 struct drm_plane_state *state)
1025 {
1026 struct vop_win *vop_win = to_vop_win(plane);
1027 const struct vop_win_data *win = vop_win->data;
1028 int min_scale = win->phy->scl ? FRAC_16_16(1, 8) :
1029 DRM_PLANE_HELPER_NO_SCALING;
1030 int max_scale = win->phy->scl ? FRAC_16_16(8, 1) :
1031 DRM_PLANE_HELPER_NO_SCALING;
1032 struct drm_crtc_state *crtc_state;
1033
1034 if (plane != state->crtc->cursor)
1035 return -EINVAL;
1036
1037 if (!plane->state)
1038 return -EINVAL;
1039
1040 if (!plane->state->fb)
1041 return -EINVAL;
1042
1043 if (state->state)
1044 crtc_state = drm_atomic_get_existing_crtc_state(state->state,
1045 state->crtc);
1046 else /* Special case for asynchronous cursor updates. */
1047 crtc_state = plane->crtc->state;
1048
1049 return drm_atomic_helper_check_plane_state(plane->state, crtc_state,
1050 min_scale, max_scale,
1051 true, true);
1052 }
1053
vop_plane_atomic_async_update(struct drm_plane * plane,struct drm_plane_state * new_state)1054 static void vop_plane_atomic_async_update(struct drm_plane *plane,
1055 struct drm_plane_state *new_state)
1056 {
1057 struct vop *vop = to_vop(plane->state->crtc);
1058 struct drm_framebuffer *old_fb = plane->state->fb;
1059
1060 plane->state->crtc_x = new_state->crtc_x;
1061 plane->state->crtc_y = new_state->crtc_y;
1062 plane->state->crtc_h = new_state->crtc_h;
1063 plane->state->crtc_w = new_state->crtc_w;
1064 plane->state->src_x = new_state->src_x;
1065 plane->state->src_y = new_state->src_y;
1066 plane->state->src_h = new_state->src_h;
1067 plane->state->src_w = new_state->src_w;
1068 swap(plane->state->fb, new_state->fb);
1069
1070 if (vop->is_enabled) {
1071 vop_plane_atomic_update(plane, plane->state);
1072 spin_lock(&vop->reg_lock);
1073 vop_cfg_done(vop);
1074 spin_unlock(&vop->reg_lock);
1075
1076 /*
1077 * A scanout can still be occurring, so we can't drop the
1078 * reference to the old framebuffer. To solve this we get a
1079 * reference to old_fb and set a worker to release it later.
1080 * FIXME: if we perform 500 async_update calls before the
1081 * vblank, then we can have 500 different framebuffers waiting
1082 * to be released.
1083 */
1084 if (old_fb && plane->state->fb != old_fb) {
1085 drm_framebuffer_get(old_fb);
1086 WARN_ON(drm_crtc_vblank_get(plane->state->crtc) != 0);
1087 drm_flip_work_queue(&vop->fb_unref_work, old_fb);
1088 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1089 }
1090 }
1091 }
1092
1093 static const struct drm_plane_helper_funcs plane_helper_funcs = {
1094 .atomic_check = vop_plane_atomic_check,
1095 .atomic_update = vop_plane_atomic_update,
1096 .atomic_disable = vop_plane_atomic_disable,
1097 .atomic_async_check = vop_plane_atomic_async_check,
1098 .atomic_async_update = vop_plane_atomic_async_update,
1099 .prepare_fb = drm_gem_fb_prepare_fb,
1100 };
1101
1102 static const struct drm_plane_funcs vop_plane_funcs = {
1103 .update_plane = drm_atomic_helper_update_plane,
1104 .disable_plane = drm_atomic_helper_disable_plane,
1105 .destroy = vop_plane_destroy,
1106 .reset = drm_atomic_helper_plane_reset,
1107 .atomic_duplicate_state = drm_atomic_helper_plane_duplicate_state,
1108 .atomic_destroy_state = drm_atomic_helper_plane_destroy_state,
1109 .format_mod_supported = rockchip_mod_supported,
1110 };
1111
vop_crtc_enable_vblank(struct drm_crtc * crtc)1112 static int vop_crtc_enable_vblank(struct drm_crtc *crtc)
1113 {
1114 struct vop *vop = to_vop(crtc);
1115 unsigned long flags;
1116
1117 if (WARN_ON(!vop->is_enabled))
1118 return -EPERM;
1119
1120 spin_lock_irqsave(&vop->irq_lock, flags);
1121
1122 VOP_INTR_SET_TYPE(vop, clear, FS_INTR, 1);
1123 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 1);
1124
1125 spin_unlock_irqrestore(&vop->irq_lock, flags);
1126
1127 return 0;
1128 }
1129
vop_crtc_disable_vblank(struct drm_crtc * crtc)1130 static void vop_crtc_disable_vblank(struct drm_crtc *crtc)
1131 {
1132 struct vop *vop = to_vop(crtc);
1133 unsigned long flags;
1134
1135 if (WARN_ON(!vop->is_enabled))
1136 return;
1137
1138 spin_lock_irqsave(&vop->irq_lock, flags);
1139
1140 VOP_INTR_SET_TYPE(vop, enable, FS_INTR, 0);
1141
1142 spin_unlock_irqrestore(&vop->irq_lock, flags);
1143 }
1144
vop_crtc_mode_fixup(struct drm_crtc * crtc,const struct drm_display_mode * mode,struct drm_display_mode * adjusted_mode)1145 static bool vop_crtc_mode_fixup(struct drm_crtc *crtc,
1146 const struct drm_display_mode *mode,
1147 struct drm_display_mode *adjusted_mode)
1148 {
1149 struct vop *vop = to_vop(crtc);
1150 unsigned long rate;
1151
1152 /*
1153 * Clock craziness.
1154 *
1155 * Key points:
1156 *
1157 * - DRM works in in kHz.
1158 * - Clock framework works in Hz.
1159 * - Rockchip's clock driver picks the clock rate that is the
1160 * same _OR LOWER_ than the one requested.
1161 *
1162 * Action plan:
1163 *
1164 * 1. When DRM gives us a mode, we should add 999 Hz to it. That way
1165 * if the clock we need is 60000001 Hz (~60 MHz) and DRM tells us to
1166 * make 60000 kHz then the clock framework will actually give us
1167 * the right clock.
1168 *
1169 * NOTE: if the PLL (maybe through a divider) could actually make
1170 * a clock rate 999 Hz higher instead of the one we want then this
1171 * could be a problem. Unfortunately there's not much we can do
1172 * since it's baked into DRM to use kHz. It shouldn't matter in
1173 * practice since Rockchip PLLs are controlled by tables and
1174 * even if there is a divider in the middle I wouldn't expect PLL
1175 * rates in the table that are just a few kHz different.
1176 *
1177 * 2. Get the clock framework to round the rate for us to tell us
1178 * what it will actually make.
1179 *
1180 * 3. Store the rounded up rate so that we don't need to worry about
1181 * this in the actual clk_set_rate().
1182 */
1183 rate = clk_round_rate(vop->dclk, adjusted_mode->clock * 1000 + 999);
1184 adjusted_mode->clock = DIV_ROUND_UP(rate, 1000);
1185
1186 return true;
1187 }
1188
vop_dsp_lut_is_enabled(struct vop * vop)1189 static bool vop_dsp_lut_is_enabled(struct vop *vop)
1190 {
1191 return vop_read_reg(vop, 0, &vop->data->common->dsp_lut_en);
1192 }
1193
vop_crtc_write_gamma_lut(struct vop * vop,struct drm_crtc * crtc)1194 static void vop_crtc_write_gamma_lut(struct vop *vop, struct drm_crtc *crtc)
1195 {
1196 struct drm_color_lut *lut = crtc->state->gamma_lut->data;
1197 unsigned int i;
1198
1199 for (i = 0; i < crtc->gamma_size; i++) {
1200 u32 word;
1201
1202 word = (drm_color_lut_extract(lut[i].red, 10) << 20) |
1203 (drm_color_lut_extract(lut[i].green, 10) << 10) |
1204 drm_color_lut_extract(lut[i].blue, 10);
1205 writel(word, vop->lut_regs + i * 4);
1206 }
1207 }
1208
vop_crtc_gamma_set(struct vop * vop,struct drm_crtc * crtc,struct drm_crtc_state * old_state)1209 static void vop_crtc_gamma_set(struct vop *vop, struct drm_crtc *crtc,
1210 struct drm_crtc_state *old_state)
1211 {
1212 struct drm_crtc_state *state = crtc->state;
1213 unsigned int idle;
1214 int ret;
1215
1216 if (!vop->lut_regs)
1217 return;
1218 /*
1219 * To disable gamma (gamma_lut is null) or to write
1220 * an update to the LUT, clear dsp_lut_en.
1221 */
1222 spin_lock(&vop->reg_lock);
1223 VOP_REG_SET(vop, common, dsp_lut_en, 0);
1224 vop_cfg_done(vop);
1225 spin_unlock(&vop->reg_lock);
1226
1227 /*
1228 * In order to write the LUT to the internal memory,
1229 * we need to first make sure the dsp_lut_en bit is cleared.
1230 */
1231 ret = readx_poll_timeout(vop_dsp_lut_is_enabled, vop,
1232 idle, !idle, 5, 30 * 1000);
1233 if (ret) {
1234 DRM_DEV_ERROR(vop->dev, "display LUT RAM enable timeout!\n");
1235 return;
1236 }
1237
1238 if (!state->gamma_lut)
1239 return;
1240
1241 spin_lock(&vop->reg_lock);
1242 vop_crtc_write_gamma_lut(vop, crtc);
1243 VOP_REG_SET(vop, common, dsp_lut_en, 1);
1244 vop_cfg_done(vop);
1245 spin_unlock(&vop->reg_lock);
1246 }
1247
vop_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)1248 static void vop_crtc_atomic_begin(struct drm_crtc *crtc,
1249 struct drm_crtc_state *old_crtc_state)
1250 {
1251 struct vop *vop = to_vop(crtc);
1252
1253 /*
1254 * Only update GAMMA if the 'active' flag is not changed,
1255 * otherwise it's updated by .atomic_enable.
1256 */
1257 if (crtc->state->color_mgmt_changed &&
1258 !crtc->state->active_changed)
1259 vop_crtc_gamma_set(vop, crtc, old_crtc_state);
1260 }
1261
vop_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)1262 static void vop_crtc_atomic_enable(struct drm_crtc *crtc,
1263 struct drm_crtc_state *old_state)
1264 {
1265 struct vop *vop = to_vop(crtc);
1266 const struct vop_data *vop_data = vop->data;
1267 struct rockchip_crtc_state *s = to_rockchip_crtc_state(crtc->state);
1268 struct drm_display_mode *adjusted_mode = &crtc->state->adjusted_mode;
1269 u16 hsync_len = adjusted_mode->hsync_end - adjusted_mode->hsync_start;
1270 u16 hdisplay = adjusted_mode->hdisplay;
1271 u16 htotal = adjusted_mode->htotal;
1272 u16 hact_st = adjusted_mode->htotal - adjusted_mode->hsync_start;
1273 u16 hact_end = hact_st + hdisplay;
1274 u16 vdisplay = adjusted_mode->vdisplay;
1275 u16 vtotal = adjusted_mode->vtotal;
1276 u16 vsync_len = adjusted_mode->vsync_end - adjusted_mode->vsync_start;
1277 u16 vact_st = adjusted_mode->vtotal - adjusted_mode->vsync_start;
1278 u16 vact_end = vact_st + vdisplay;
1279 uint32_t pin_pol, val;
1280 int dither_bpc = s->output_bpc ? s->output_bpc : 10;
1281 int ret;
1282
1283 if (old_state && old_state->self_refresh_active) {
1284 drm_crtc_vblank_on(crtc);
1285 rockchip_drm_set_win_enabled(crtc, true);
1286 return;
1287 }
1288
1289 /*
1290 * If we have a GAMMA LUT in the state, then let's make sure
1291 * it's updated. We might be coming out of suspend,
1292 * which means the LUT internal memory needs to be re-written.
1293 */
1294 if (crtc->state->gamma_lut)
1295 vop_crtc_gamma_set(vop, crtc, old_state);
1296
1297 mutex_lock(&vop->vop_lock);
1298
1299 WARN_ON(vop->event);
1300
1301 ret = vop_enable(crtc, old_state);
1302 if (ret) {
1303 mutex_unlock(&vop->vop_lock);
1304 DRM_DEV_ERROR(vop->dev, "Failed to enable vop (%d)\n", ret);
1305 return;
1306 }
1307 pin_pol = (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC) ?
1308 BIT(HSYNC_POSITIVE) : 0;
1309 pin_pol |= (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC) ?
1310 BIT(VSYNC_POSITIVE) : 0;
1311 VOP_REG_SET(vop, output, pin_pol, pin_pol);
1312 VOP_REG_SET(vop, output, mipi_dual_channel_en, 0);
1313
1314 switch (s->output_type) {
1315 case DRM_MODE_CONNECTOR_LVDS:
1316 VOP_REG_SET(vop, output, rgb_dclk_pol, 1);
1317 VOP_REG_SET(vop, output, rgb_pin_pol, pin_pol);
1318 VOP_REG_SET(vop, output, rgb_en, 1);
1319 break;
1320 case DRM_MODE_CONNECTOR_eDP:
1321 VOP_REG_SET(vop, output, edp_dclk_pol, 1);
1322 VOP_REG_SET(vop, output, edp_pin_pol, pin_pol);
1323 VOP_REG_SET(vop, output, edp_en, 1);
1324 break;
1325 case DRM_MODE_CONNECTOR_HDMIA:
1326 VOP_REG_SET(vop, output, hdmi_dclk_pol, 1);
1327 VOP_REG_SET(vop, output, hdmi_pin_pol, pin_pol);
1328 VOP_REG_SET(vop, output, hdmi_en, 1);
1329 break;
1330 case DRM_MODE_CONNECTOR_DSI:
1331 VOP_REG_SET(vop, output, mipi_dclk_pol, 1);
1332 VOP_REG_SET(vop, output, mipi_pin_pol, pin_pol);
1333 VOP_REG_SET(vop, output, mipi_en, 1);
1334 VOP_REG_SET(vop, output, mipi_dual_channel_en,
1335 !!(s->output_flags & ROCKCHIP_OUTPUT_DSI_DUAL));
1336 break;
1337 case DRM_MODE_CONNECTOR_DisplayPort:
1338 VOP_REG_SET(vop, output, dp_dclk_pol, 0);
1339 VOP_REG_SET(vop, output, dp_pin_pol, pin_pol);
1340 VOP_REG_SET(vop, output, dp_en, 1);
1341 break;
1342 default:
1343 DRM_DEV_ERROR(vop->dev, "unsupported connector_type [%d]\n",
1344 s->output_type);
1345 }
1346
1347 /*
1348 * if vop is not support RGB10 output, need force RGB10 to RGB888.
1349 */
1350 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA &&
1351 !(vop_data->feature & VOP_FEATURE_OUTPUT_RGB10))
1352 s->output_mode = ROCKCHIP_OUT_MODE_P888;
1353
1354 if (s->output_mode == ROCKCHIP_OUT_MODE_AAAA && dither_bpc <= 8)
1355 VOP_REG_SET(vop, common, pre_dither_down, 1);
1356 else
1357 VOP_REG_SET(vop, common, pre_dither_down, 0);
1358
1359 if (dither_bpc == 6) {
1360 VOP_REG_SET(vop, common, dither_down_sel, DITHER_DOWN_ALLEGRO);
1361 VOP_REG_SET(vop, common, dither_down_mode, RGB888_TO_RGB666);
1362 VOP_REG_SET(vop, common, dither_down_en, 1);
1363 } else {
1364 VOP_REG_SET(vop, common, dither_down_en, 0);
1365 }
1366
1367 VOP_REG_SET(vop, common, out_mode, s->output_mode);
1368
1369 VOP_REG_SET(vop, modeset, htotal_pw, (htotal << 16) | hsync_len);
1370 val = hact_st << 16;
1371 val |= hact_end;
1372 VOP_REG_SET(vop, modeset, hact_st_end, val);
1373 VOP_REG_SET(vop, modeset, hpost_st_end, val);
1374
1375 VOP_REG_SET(vop, modeset, vtotal_pw, (vtotal << 16) | vsync_len);
1376 val = vact_st << 16;
1377 val |= vact_end;
1378 VOP_REG_SET(vop, modeset, vact_st_end, val);
1379 VOP_REG_SET(vop, modeset, vpost_st_end, val);
1380
1381 VOP_REG_SET(vop, intr, line_flag_num[0], vact_end);
1382
1383 clk_set_rate(vop->dclk, adjusted_mode->clock * 1000);
1384
1385 VOP_REG_SET(vop, common, standby, 0);
1386 mutex_unlock(&vop->vop_lock);
1387 }
1388
vop_fs_irq_is_pending(struct vop * vop)1389 static bool vop_fs_irq_is_pending(struct vop *vop)
1390 {
1391 return VOP_INTR_GET_TYPE(vop, status, FS_INTR);
1392 }
1393
vop_wait_for_irq_handler(struct vop * vop)1394 static void vop_wait_for_irq_handler(struct vop *vop)
1395 {
1396 bool pending;
1397 int ret;
1398
1399 /*
1400 * Spin until frame start interrupt status bit goes low, which means
1401 * that interrupt handler was invoked and cleared it. The timeout of
1402 * 10 msecs is really too long, but it is just a safety measure if
1403 * something goes really wrong. The wait will only happen in the very
1404 * unlikely case of a vblank happening exactly at the same time and
1405 * shouldn't exceed microseconds range.
1406 */
1407 ret = readx_poll_timeout_atomic(vop_fs_irq_is_pending, vop, pending,
1408 !pending, 0, 10 * 1000);
1409 if (ret)
1410 DRM_DEV_ERROR(vop->dev, "VOP vblank IRQ stuck for 10 ms\n");
1411
1412 synchronize_irq(vop->irq);
1413 }
1414
vop_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * crtc_state)1415 static int vop_crtc_atomic_check(struct drm_crtc *crtc,
1416 struct drm_crtc_state *crtc_state)
1417 {
1418 struct vop *vop = to_vop(crtc);
1419 struct drm_plane *plane;
1420 struct drm_plane_state *plane_state;
1421 struct rockchip_crtc_state *s;
1422 int afbc_planes = 0;
1423
1424 if (vop->lut_regs && crtc_state->color_mgmt_changed &&
1425 crtc_state->gamma_lut) {
1426 unsigned int len;
1427
1428 len = drm_color_lut_size(crtc_state->gamma_lut);
1429 if (len != crtc->gamma_size) {
1430 DRM_DEBUG_KMS("Invalid LUT size; got %d, expected %d\n",
1431 len, crtc->gamma_size);
1432 return -EINVAL;
1433 }
1434 }
1435
1436 drm_atomic_crtc_state_for_each_plane(plane, crtc_state) {
1437 plane_state =
1438 drm_atomic_get_plane_state(crtc_state->state, plane);
1439 if (IS_ERR(plane_state)) {
1440 DRM_DEBUG_KMS("Cannot get plane state for plane %s\n",
1441 plane->name);
1442 return PTR_ERR(plane_state);
1443 }
1444
1445 if (drm_is_afbc(plane_state->fb->modifier))
1446 ++afbc_planes;
1447 }
1448
1449 if (afbc_planes > 1) {
1450 DRM_DEBUG_KMS("Invalid number of AFBC planes; got %d, expected at most 1\n", afbc_planes);
1451 return -EINVAL;
1452 }
1453
1454 s = to_rockchip_crtc_state(crtc_state);
1455 s->enable_afbc = afbc_planes > 0;
1456
1457 return 0;
1458 }
1459
vop_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)1460 static void vop_crtc_atomic_flush(struct drm_crtc *crtc,
1461 struct drm_crtc_state *old_crtc_state)
1462 {
1463 struct drm_atomic_state *old_state = old_crtc_state->state;
1464 struct drm_plane_state *old_plane_state, *new_plane_state;
1465 struct vop *vop = to_vop(crtc);
1466 struct drm_plane *plane;
1467 struct rockchip_crtc_state *s;
1468 int i;
1469
1470 if (WARN_ON(!vop->is_enabled))
1471 return;
1472
1473 spin_lock(&vop->reg_lock);
1474
1475 /* Enable AFBC if there is some AFBC window, disable otherwise. */
1476 s = to_rockchip_crtc_state(crtc->state);
1477 VOP_AFBC_SET(vop, enable, s->enable_afbc);
1478 vop_cfg_done(vop);
1479
1480 spin_unlock(&vop->reg_lock);
1481
1482 /*
1483 * There is a (rather unlikely) possiblity that a vblank interrupt
1484 * fired before we set the cfg_done bit. To avoid spuriously
1485 * signalling flip completion we need to wait for it to finish.
1486 */
1487 vop_wait_for_irq_handler(vop);
1488
1489 spin_lock_irq(&crtc->dev->event_lock);
1490 if (crtc->state->event) {
1491 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1492 WARN_ON(vop->event);
1493
1494 vop->event = crtc->state->event;
1495 crtc->state->event = NULL;
1496 }
1497 spin_unlock_irq(&crtc->dev->event_lock);
1498
1499 for_each_oldnew_plane_in_state(old_state, plane, old_plane_state,
1500 new_plane_state, i) {
1501 if (!old_plane_state->fb)
1502 continue;
1503
1504 if (old_plane_state->fb == new_plane_state->fb)
1505 continue;
1506
1507 drm_framebuffer_get(old_plane_state->fb);
1508 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
1509 drm_flip_work_queue(&vop->fb_unref_work, old_plane_state->fb);
1510 set_bit(VOP_PENDING_FB_UNREF, &vop->pending);
1511 }
1512 }
1513
1514 static const struct drm_crtc_helper_funcs vop_crtc_helper_funcs = {
1515 .mode_fixup = vop_crtc_mode_fixup,
1516 .atomic_check = vop_crtc_atomic_check,
1517 .atomic_begin = vop_crtc_atomic_begin,
1518 .atomic_flush = vop_crtc_atomic_flush,
1519 .atomic_enable = vop_crtc_atomic_enable,
1520 .atomic_disable = vop_crtc_atomic_disable,
1521 };
1522
vop_crtc_destroy(struct drm_crtc * crtc)1523 static void vop_crtc_destroy(struct drm_crtc *crtc)
1524 {
1525 drm_crtc_cleanup(crtc);
1526 }
1527
vop_crtc_duplicate_state(struct drm_crtc * crtc)1528 static struct drm_crtc_state *vop_crtc_duplicate_state(struct drm_crtc *crtc)
1529 {
1530 struct rockchip_crtc_state *rockchip_state;
1531
1532 rockchip_state = kzalloc(sizeof(*rockchip_state), GFP_KERNEL);
1533 if (!rockchip_state)
1534 return NULL;
1535
1536 __drm_atomic_helper_crtc_duplicate_state(crtc, &rockchip_state->base);
1537 return &rockchip_state->base;
1538 }
1539
vop_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)1540 static void vop_crtc_destroy_state(struct drm_crtc *crtc,
1541 struct drm_crtc_state *state)
1542 {
1543 struct rockchip_crtc_state *s = to_rockchip_crtc_state(state);
1544
1545 __drm_atomic_helper_crtc_destroy_state(&s->base);
1546 kfree(s);
1547 }
1548
vop_crtc_reset(struct drm_crtc * crtc)1549 static void vop_crtc_reset(struct drm_crtc *crtc)
1550 {
1551 struct rockchip_crtc_state *crtc_state =
1552 kzalloc(sizeof(*crtc_state), GFP_KERNEL);
1553
1554 if (crtc->state)
1555 vop_crtc_destroy_state(crtc, crtc->state);
1556
1557 __drm_atomic_helper_crtc_reset(crtc, &crtc_state->base);
1558 }
1559
1560 #ifdef CONFIG_DRM_ANALOGIX_DP
vop_get_edp_connector(struct vop * vop)1561 static struct drm_connector *vop_get_edp_connector(struct vop *vop)
1562 {
1563 struct drm_connector *connector;
1564 struct drm_connector_list_iter conn_iter;
1565
1566 drm_connector_list_iter_begin(vop->drm_dev, &conn_iter);
1567 drm_for_each_connector_iter(connector, &conn_iter) {
1568 if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
1569 drm_connector_list_iter_end(&conn_iter);
1570 return connector;
1571 }
1572 }
1573 drm_connector_list_iter_end(&conn_iter);
1574
1575 return NULL;
1576 }
1577
vop_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1578 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1579 const char *source_name)
1580 {
1581 struct vop *vop = to_vop(crtc);
1582 struct drm_connector *connector;
1583 int ret;
1584
1585 connector = vop_get_edp_connector(vop);
1586 if (!connector)
1587 return -EINVAL;
1588
1589 if (source_name && strcmp(source_name, "auto") == 0)
1590 ret = analogix_dp_start_crc(connector);
1591 else if (!source_name)
1592 ret = analogix_dp_stop_crc(connector);
1593 else
1594 ret = -EINVAL;
1595
1596 return ret;
1597 }
1598
1599 static int
vop_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1600 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1601 size_t *values_cnt)
1602 {
1603 if (source_name && strcmp(source_name, "auto") != 0)
1604 return -EINVAL;
1605
1606 *values_cnt = 3;
1607 return 0;
1608 }
1609
1610 #else
vop_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name)1611 static int vop_crtc_set_crc_source(struct drm_crtc *crtc,
1612 const char *source_name)
1613 {
1614 return -ENODEV;
1615 }
1616
1617 static int
vop_crtc_verify_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)1618 vop_crtc_verify_crc_source(struct drm_crtc *crtc, const char *source_name,
1619 size_t *values_cnt)
1620 {
1621 return -ENODEV;
1622 }
1623 #endif
1624
1625 static const struct drm_crtc_funcs vop_crtc_funcs = {
1626 .set_config = drm_atomic_helper_set_config,
1627 .page_flip = drm_atomic_helper_page_flip,
1628 .destroy = vop_crtc_destroy,
1629 .reset = vop_crtc_reset,
1630 .atomic_duplicate_state = vop_crtc_duplicate_state,
1631 .atomic_destroy_state = vop_crtc_destroy_state,
1632 .enable_vblank = vop_crtc_enable_vblank,
1633 .disable_vblank = vop_crtc_disable_vblank,
1634 .set_crc_source = vop_crtc_set_crc_source,
1635 .verify_crc_source = vop_crtc_verify_crc_source,
1636 .gamma_set = drm_atomic_helper_legacy_gamma_set,
1637 };
1638
vop_fb_unref_worker(struct drm_flip_work * work,void * val)1639 static void vop_fb_unref_worker(struct drm_flip_work *work, void *val)
1640 {
1641 struct vop *vop = container_of(work, struct vop, fb_unref_work);
1642 struct drm_framebuffer *fb = val;
1643
1644 drm_crtc_vblank_put(&vop->crtc);
1645 drm_framebuffer_put(fb);
1646 }
1647
vop_handle_vblank(struct vop * vop)1648 static void vop_handle_vblank(struct vop *vop)
1649 {
1650 struct drm_device *drm = vop->drm_dev;
1651 struct drm_crtc *crtc = &vop->crtc;
1652
1653 spin_lock(&drm->event_lock);
1654 if (vop->event) {
1655 drm_crtc_send_vblank_event(crtc, vop->event);
1656 drm_crtc_vblank_put(crtc);
1657 vop->event = NULL;
1658 }
1659 spin_unlock(&drm->event_lock);
1660
1661 if (test_and_clear_bit(VOP_PENDING_FB_UNREF, &vop->pending))
1662 drm_flip_work_commit(&vop->fb_unref_work, system_unbound_wq);
1663 }
1664
vop_isr(int irq,void * data)1665 static irqreturn_t vop_isr(int irq, void *data)
1666 {
1667 struct vop *vop = data;
1668 struct drm_crtc *crtc = &vop->crtc;
1669 uint32_t active_irqs;
1670 int ret = IRQ_NONE;
1671
1672 /*
1673 * The irq is shared with the iommu. If the runtime-pm state of the
1674 * vop-device is disabled the irq has to be targeted at the iommu.
1675 */
1676 if (!pm_runtime_get_if_in_use(vop->dev))
1677 return IRQ_NONE;
1678
1679 if (vop_core_clks_enable(vop)) {
1680 DRM_DEV_ERROR_RATELIMITED(vop->dev, "couldn't enable clocks\n");
1681 goto out;
1682 }
1683
1684 /*
1685 * interrupt register has interrupt status, enable and clear bits, we
1686 * must hold irq_lock to avoid a race with enable/disable_vblank().
1687 */
1688 spin_lock(&vop->irq_lock);
1689
1690 active_irqs = VOP_INTR_GET_TYPE(vop, status, INTR_MASK);
1691 /* Clear all active interrupt sources */
1692 if (active_irqs)
1693 VOP_INTR_SET_TYPE(vop, clear, active_irqs, 1);
1694
1695 spin_unlock(&vop->irq_lock);
1696
1697 /* This is expected for vop iommu irqs, since the irq is shared */
1698 if (!active_irqs)
1699 goto out_disable;
1700
1701 if (active_irqs & DSP_HOLD_VALID_INTR) {
1702 complete(&vop->dsp_hold_completion);
1703 active_irqs &= ~DSP_HOLD_VALID_INTR;
1704 ret = IRQ_HANDLED;
1705 }
1706
1707 if (active_irqs & LINE_FLAG_INTR) {
1708 complete(&vop->line_flag_completion);
1709 active_irqs &= ~LINE_FLAG_INTR;
1710 ret = IRQ_HANDLED;
1711 }
1712
1713 if (active_irqs & FS_INTR) {
1714 drm_crtc_handle_vblank(crtc);
1715 vop_handle_vblank(vop);
1716 active_irqs &= ~FS_INTR;
1717 ret = IRQ_HANDLED;
1718 }
1719
1720 /* Unhandled irqs are spurious. */
1721 if (active_irqs)
1722 DRM_DEV_ERROR(vop->dev, "Unknown VOP IRQs: %#02x\n",
1723 active_irqs);
1724
1725 out_disable:
1726 vop_core_clks_disable(vop);
1727 out:
1728 pm_runtime_put(vop->dev);
1729 return ret;
1730 }
1731
vop_plane_add_properties(struct drm_plane * plane,const struct vop_win_data * win_data)1732 static void vop_plane_add_properties(struct drm_plane *plane,
1733 const struct vop_win_data *win_data)
1734 {
1735 unsigned int flags = 0;
1736
1737 flags |= VOP_WIN_HAS_REG(win_data, x_mir_en) ? DRM_MODE_REFLECT_X : 0;
1738 flags |= VOP_WIN_HAS_REG(win_data, y_mir_en) ? DRM_MODE_REFLECT_Y : 0;
1739 if (flags)
1740 drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1741 DRM_MODE_ROTATE_0 | flags);
1742 }
1743
vop_create_crtc(struct vop * vop)1744 static int vop_create_crtc(struct vop *vop)
1745 {
1746 const struct vop_data *vop_data = vop->data;
1747 struct device *dev = vop->dev;
1748 struct drm_device *drm_dev = vop->drm_dev;
1749 struct drm_plane *primary = NULL, *cursor = NULL, *plane, *tmp;
1750 struct drm_crtc *crtc = &vop->crtc;
1751 struct device_node *port;
1752 int ret;
1753 int i;
1754
1755 /*
1756 * Create drm_plane for primary and cursor planes first, since we need
1757 * to pass them to drm_crtc_init_with_planes, which sets the
1758 * "possible_crtcs" to the newly initialized crtc.
1759 */
1760 for (i = 0; i < vop_data->win_size; i++) {
1761 struct vop_win *vop_win = &vop->win[i];
1762 const struct vop_win_data *win_data = vop_win->data;
1763
1764 if (win_data->type != DRM_PLANE_TYPE_PRIMARY &&
1765 win_data->type != DRM_PLANE_TYPE_CURSOR)
1766 continue;
1767
1768 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1769 0, &vop_plane_funcs,
1770 win_data->phy->data_formats,
1771 win_data->phy->nformats,
1772 win_data->phy->format_modifiers,
1773 win_data->type, NULL);
1774 if (ret) {
1775 DRM_DEV_ERROR(vop->dev, "failed to init plane %d\n",
1776 ret);
1777 goto err_cleanup_planes;
1778 }
1779
1780 plane = &vop_win->base;
1781 drm_plane_helper_add(plane, &plane_helper_funcs);
1782 vop_plane_add_properties(plane, win_data);
1783 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
1784 primary = plane;
1785 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
1786 cursor = plane;
1787 }
1788
1789 ret = drm_crtc_init_with_planes(drm_dev, crtc, primary, cursor,
1790 &vop_crtc_funcs, NULL);
1791 if (ret)
1792 goto err_cleanup_planes;
1793
1794 drm_crtc_helper_add(crtc, &vop_crtc_helper_funcs);
1795 if (vop->lut_regs) {
1796 drm_mode_crtc_set_gamma_size(crtc, vop_data->lut_size);
1797 drm_crtc_enable_color_mgmt(crtc, 0, false, vop_data->lut_size);
1798 }
1799
1800 /*
1801 * Create drm_planes for overlay windows with possible_crtcs restricted
1802 * to the newly created crtc.
1803 */
1804 for (i = 0; i < vop_data->win_size; i++) {
1805 struct vop_win *vop_win = &vop->win[i];
1806 const struct vop_win_data *win_data = vop_win->data;
1807 unsigned long possible_crtcs = drm_crtc_mask(crtc);
1808
1809 if (win_data->type != DRM_PLANE_TYPE_OVERLAY)
1810 continue;
1811
1812 ret = drm_universal_plane_init(vop->drm_dev, &vop_win->base,
1813 possible_crtcs,
1814 &vop_plane_funcs,
1815 win_data->phy->data_formats,
1816 win_data->phy->nformats,
1817 win_data->phy->format_modifiers,
1818 win_data->type, NULL);
1819 if (ret) {
1820 DRM_DEV_ERROR(vop->dev, "failed to init overlay %d\n",
1821 ret);
1822 goto err_cleanup_crtc;
1823 }
1824 drm_plane_helper_add(&vop_win->base, &plane_helper_funcs);
1825 vop_plane_add_properties(&vop_win->base, win_data);
1826 }
1827
1828 port = of_get_child_by_name(dev->of_node, "port");
1829 if (!port) {
1830 DRM_DEV_ERROR(vop->dev, "no port node found in %pOF\n",
1831 dev->of_node);
1832 ret = -ENOENT;
1833 goto err_cleanup_crtc;
1834 }
1835
1836 drm_flip_work_init(&vop->fb_unref_work, "fb_unref",
1837 vop_fb_unref_worker);
1838
1839 init_completion(&vop->dsp_hold_completion);
1840 init_completion(&vop->line_flag_completion);
1841 crtc->port = port;
1842
1843 ret = drm_self_refresh_helper_init(crtc);
1844 if (ret)
1845 DRM_DEV_DEBUG_KMS(vop->dev,
1846 "Failed to init %s with SR helpers %d, ignoring\n",
1847 crtc->name, ret);
1848
1849 return 0;
1850
1851 err_cleanup_crtc:
1852 drm_crtc_cleanup(crtc);
1853 err_cleanup_planes:
1854 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1855 head)
1856 drm_plane_cleanup(plane);
1857 return ret;
1858 }
1859
vop_destroy_crtc(struct vop * vop)1860 static void vop_destroy_crtc(struct vop *vop)
1861 {
1862 struct drm_crtc *crtc = &vop->crtc;
1863 struct drm_device *drm_dev = vop->drm_dev;
1864 struct drm_plane *plane, *tmp;
1865
1866 drm_self_refresh_helper_cleanup(crtc);
1867
1868 of_node_put(crtc->port);
1869
1870 /*
1871 * We need to cleanup the planes now. Why?
1872 *
1873 * The planes are "&vop->win[i].base". That means the memory is
1874 * all part of the big "struct vop" chunk of memory. That memory
1875 * was devm allocated and associated with this component. We need to
1876 * free it ourselves before vop_unbind() finishes.
1877 */
1878 list_for_each_entry_safe(plane, tmp, &drm_dev->mode_config.plane_list,
1879 head)
1880 vop_plane_destroy(plane);
1881
1882 /*
1883 * Destroy CRTC after vop_plane_destroy() since vop_disable_plane()
1884 * references the CRTC.
1885 */
1886 drm_crtc_cleanup(crtc);
1887 drm_flip_work_cleanup(&vop->fb_unref_work);
1888 }
1889
vop_initial(struct vop * vop)1890 static int vop_initial(struct vop *vop)
1891 {
1892 struct reset_control *ahb_rst;
1893 int i, ret;
1894
1895 vop->hclk = devm_clk_get(vop->dev, "hclk_vop");
1896 if (IS_ERR(vop->hclk)) {
1897 DRM_DEV_ERROR(vop->dev, "failed to get hclk source\n");
1898 return PTR_ERR(vop->hclk);
1899 }
1900 vop->aclk = devm_clk_get(vop->dev, "aclk_vop");
1901 if (IS_ERR(vop->aclk)) {
1902 DRM_DEV_ERROR(vop->dev, "failed to get aclk source\n");
1903 return PTR_ERR(vop->aclk);
1904 }
1905 vop->dclk = devm_clk_get(vop->dev, "dclk_vop");
1906 if (IS_ERR(vop->dclk)) {
1907 DRM_DEV_ERROR(vop->dev, "failed to get dclk source\n");
1908 return PTR_ERR(vop->dclk);
1909 }
1910
1911 ret = pm_runtime_get_sync(vop->dev);
1912 if (ret < 0) {
1913 DRM_DEV_ERROR(vop->dev, "failed to get pm runtime: %d\n", ret);
1914 return ret;
1915 }
1916
1917 ret = clk_prepare(vop->dclk);
1918 if (ret < 0) {
1919 DRM_DEV_ERROR(vop->dev, "failed to prepare dclk\n");
1920 goto err_put_pm_runtime;
1921 }
1922
1923 /* Enable both the hclk and aclk to setup the vop */
1924 ret = clk_prepare_enable(vop->hclk);
1925 if (ret < 0) {
1926 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable hclk\n");
1927 goto err_unprepare_dclk;
1928 }
1929
1930 ret = clk_prepare_enable(vop->aclk);
1931 if (ret < 0) {
1932 DRM_DEV_ERROR(vop->dev, "failed to prepare/enable aclk\n");
1933 goto err_disable_hclk;
1934 }
1935
1936 /*
1937 * do hclk_reset, reset all vop registers.
1938 */
1939 ahb_rst = devm_reset_control_get(vop->dev, "ahb");
1940 if (IS_ERR(ahb_rst)) {
1941 DRM_DEV_ERROR(vop->dev, "failed to get ahb reset\n");
1942 ret = PTR_ERR(ahb_rst);
1943 goto err_disable_aclk;
1944 }
1945 reset_control_assert(ahb_rst);
1946 usleep_range(10, 20);
1947 reset_control_deassert(ahb_rst);
1948
1949 VOP_INTR_SET_TYPE(vop, clear, INTR_MASK, 1);
1950 VOP_INTR_SET_TYPE(vop, enable, INTR_MASK, 0);
1951
1952 for (i = 0; i < vop->len; i += sizeof(u32))
1953 vop->regsbak[i / 4] = readl_relaxed(vop->regs + i);
1954
1955 VOP_REG_SET(vop, misc, global_regdone_en, 1);
1956 VOP_REG_SET(vop, common, dsp_blank, 0);
1957
1958 for (i = 0; i < vop->data->win_size; i++) {
1959 struct vop_win *vop_win = &vop->win[i];
1960 const struct vop_win_data *win = vop_win->data;
1961 int channel = i * 2 + 1;
1962
1963 VOP_WIN_SET(vop, win, channel, (channel + 1) << 4 | channel);
1964 vop_win_disable(vop, vop_win);
1965 VOP_WIN_SET(vop, win, gate, 1);
1966 }
1967
1968 vop_cfg_done(vop);
1969
1970 /*
1971 * do dclk_reset, let all config take affect.
1972 */
1973 vop->dclk_rst = devm_reset_control_get(vop->dev, "dclk");
1974 if (IS_ERR(vop->dclk_rst)) {
1975 DRM_DEV_ERROR(vop->dev, "failed to get dclk reset\n");
1976 ret = PTR_ERR(vop->dclk_rst);
1977 goto err_disable_aclk;
1978 }
1979 reset_control_assert(vop->dclk_rst);
1980 usleep_range(10, 20);
1981 reset_control_deassert(vop->dclk_rst);
1982
1983 clk_disable(vop->hclk);
1984 clk_disable(vop->aclk);
1985
1986 vop->is_enabled = false;
1987
1988 pm_runtime_put_sync(vop->dev);
1989
1990 return 0;
1991
1992 err_disable_aclk:
1993 clk_disable_unprepare(vop->aclk);
1994 err_disable_hclk:
1995 clk_disable_unprepare(vop->hclk);
1996 err_unprepare_dclk:
1997 clk_unprepare(vop->dclk);
1998 err_put_pm_runtime:
1999 pm_runtime_put_sync(vop->dev);
2000 return ret;
2001 }
2002
2003 /*
2004 * Initialize the vop->win array elements.
2005 */
vop_win_init(struct vop * vop)2006 static void vop_win_init(struct vop *vop)
2007 {
2008 const struct vop_data *vop_data = vop->data;
2009 unsigned int i;
2010
2011 for (i = 0; i < vop_data->win_size; i++) {
2012 struct vop_win *vop_win = &vop->win[i];
2013 const struct vop_win_data *win_data = &vop_data->win[i];
2014
2015 vop_win->data = win_data;
2016 vop_win->vop = vop;
2017
2018 if (vop_data->win_yuv2yuv)
2019 vop_win->yuv2yuv_data = &vop_data->win_yuv2yuv[i];
2020 }
2021 }
2022
2023 /**
2024 * rockchip_drm_wait_vact_end
2025 * @crtc: CRTC to enable line flag
2026 * @mstimeout: millisecond for timeout
2027 *
2028 * Wait for vact_end line flag irq or timeout.
2029 *
2030 * Returns:
2031 * Zero on success, negative errno on failure.
2032 */
rockchip_drm_wait_vact_end(struct drm_crtc * crtc,unsigned int mstimeout)2033 int rockchip_drm_wait_vact_end(struct drm_crtc *crtc, unsigned int mstimeout)
2034 {
2035 struct vop *vop = to_vop(crtc);
2036 unsigned long jiffies_left;
2037 int ret = 0;
2038
2039 if (!crtc || !vop->is_enabled)
2040 return -ENODEV;
2041
2042 mutex_lock(&vop->vop_lock);
2043 if (mstimeout <= 0) {
2044 ret = -EINVAL;
2045 goto out;
2046 }
2047
2048 if (vop_line_flag_irq_is_enabled(vop)) {
2049 ret = -EBUSY;
2050 goto out;
2051 }
2052
2053 reinit_completion(&vop->line_flag_completion);
2054 vop_line_flag_irq_enable(vop);
2055
2056 jiffies_left = wait_for_completion_timeout(&vop->line_flag_completion,
2057 msecs_to_jiffies(mstimeout));
2058 vop_line_flag_irq_disable(vop);
2059
2060 if (jiffies_left == 0) {
2061 DRM_DEV_ERROR(vop->dev, "Timeout waiting for IRQ\n");
2062 ret = -ETIMEDOUT;
2063 goto out;
2064 }
2065
2066 out:
2067 mutex_unlock(&vop->vop_lock);
2068 return ret;
2069 }
2070 EXPORT_SYMBOL(rockchip_drm_wait_vact_end);
2071
vop_bind(struct device * dev,struct device * master,void * data)2072 static int vop_bind(struct device *dev, struct device *master, void *data)
2073 {
2074 struct platform_device *pdev = to_platform_device(dev);
2075 const struct vop_data *vop_data;
2076 struct drm_device *drm_dev = data;
2077 struct vop *vop;
2078 struct resource *res;
2079 int ret, irq;
2080
2081 vop_data = of_device_get_match_data(dev);
2082 if (!vop_data)
2083 return -ENODEV;
2084
2085 /* Allocate vop struct and its vop_win array */
2086 vop = devm_kzalloc(dev, struct_size(vop, win, vop_data->win_size),
2087 GFP_KERNEL);
2088 if (!vop)
2089 return -ENOMEM;
2090
2091 vop->dev = dev;
2092 vop->data = vop_data;
2093 vop->drm_dev = drm_dev;
2094 dev_set_drvdata(dev, vop);
2095
2096 vop_win_init(vop);
2097
2098 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2099 vop->len = resource_size(res);
2100 vop->regs = devm_ioremap_resource(dev, res);
2101 if (IS_ERR(vop->regs))
2102 return PTR_ERR(vop->regs);
2103
2104 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2105 if (res) {
2106 if (!vop_data->lut_size) {
2107 DRM_DEV_ERROR(dev, "no gamma LUT size defined\n");
2108 return -EINVAL;
2109 }
2110 vop->lut_regs = devm_ioremap_resource(dev, res);
2111 if (IS_ERR(vop->lut_regs))
2112 return PTR_ERR(vop->lut_regs);
2113 }
2114
2115 vop->regsbak = devm_kzalloc(dev, vop->len, GFP_KERNEL);
2116 if (!vop->regsbak)
2117 return -ENOMEM;
2118
2119 irq = platform_get_irq(pdev, 0);
2120 if (irq < 0) {
2121 DRM_DEV_ERROR(dev, "cannot find irq for vop\n");
2122 return irq;
2123 }
2124 vop->irq = (unsigned int)irq;
2125
2126 spin_lock_init(&vop->reg_lock);
2127 spin_lock_init(&vop->irq_lock);
2128 mutex_init(&vop->vop_lock);
2129
2130 ret = vop_create_crtc(vop);
2131 if (ret)
2132 return ret;
2133
2134 pm_runtime_enable(&pdev->dev);
2135
2136 ret = vop_initial(vop);
2137 if (ret < 0) {
2138 DRM_DEV_ERROR(&pdev->dev,
2139 "cannot initial vop dev - err %d\n", ret);
2140 goto err_disable_pm_runtime;
2141 }
2142
2143 ret = devm_request_irq(dev, vop->irq, vop_isr,
2144 IRQF_SHARED, dev_name(dev), vop);
2145 if (ret)
2146 goto err_disable_pm_runtime;
2147
2148 if (vop->data->feature & VOP_FEATURE_INTERNAL_RGB) {
2149 vop->rgb = rockchip_rgb_init(dev, &vop->crtc, vop->drm_dev);
2150 if (IS_ERR(vop->rgb)) {
2151 ret = PTR_ERR(vop->rgb);
2152 goto err_disable_pm_runtime;
2153 }
2154 }
2155
2156 return 0;
2157
2158 err_disable_pm_runtime:
2159 pm_runtime_disable(&pdev->dev);
2160 vop_destroy_crtc(vop);
2161 return ret;
2162 }
2163
vop_unbind(struct device * dev,struct device * master,void * data)2164 static void vop_unbind(struct device *dev, struct device *master, void *data)
2165 {
2166 struct vop *vop = dev_get_drvdata(dev);
2167
2168 if (vop->rgb)
2169 rockchip_rgb_fini(vop->rgb);
2170
2171 pm_runtime_disable(dev);
2172 vop_destroy_crtc(vop);
2173
2174 clk_unprepare(vop->aclk);
2175 clk_unprepare(vop->hclk);
2176 clk_unprepare(vop->dclk);
2177 }
2178
2179 const struct component_ops vop_component_ops = {
2180 .bind = vop_bind,
2181 .unbind = vop_unbind,
2182 };
2183 EXPORT_SYMBOL_GPL(vop_component_ops);
2184