1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 {}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 enable_unrestricted_guest, bool, S_IRUGO);
96
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105
106 module_param(enable_apicv, bool, S_IRUGO);
107
108 bool __read_mostly enable_ipiv = true;
109 module_param(enable_ipiv, bool, 0444);
110
111 /*
112 * If nested=1, nested virtualization is supported, i.e., guests may use
113 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
114 * use VMX instructions.
115 */
116 static bool __read_mostly nested = 1;
117 module_param(nested, bool, S_IRUGO);
118
119 bool __read_mostly enable_pml = 1;
120 module_param_named(pml, enable_pml, bool, S_IRUGO);
121
122 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
123 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
124
125 static bool __read_mostly dump_invalid_vmcs = 0;
126 module_param(dump_invalid_vmcs, bool, 0644);
127
128 #define MSR_BITMAP_MODE_X2APIC 1
129 #define MSR_BITMAP_MODE_X2APIC_APICV 2
130
131 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
132
133 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
134 static int __read_mostly cpu_preemption_timer_multi;
135 static bool __read_mostly enable_preemption_timer = 1;
136 #ifdef CONFIG_X86_64
137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
138 #endif
139
140 extern bool __read_mostly allow_smaller_maxphyaddr;
141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
142
143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
145 #define KVM_VM_CR0_ALWAYS_ON \
146 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
147
148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
151
152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
153
154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
155 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
156 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
157 RTIT_STATUS_BYTECNT))
158
159 /*
160 * List of MSRs that can be directly passed to the guest.
161 * In addition to these x2apic and PT MSRs are handled specially.
162 */
163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
164 MSR_IA32_SPEC_CTRL,
165 MSR_IA32_PRED_CMD,
166 MSR_IA32_FLUSH_CMD,
167 MSR_IA32_TSC,
168 #ifdef CONFIG_X86_64
169 MSR_FS_BASE,
170 MSR_GS_BASE,
171 MSR_KERNEL_GS_BASE,
172 MSR_IA32_XFD,
173 MSR_IA32_XFD_ERR,
174 #endif
175 MSR_IA32_SYSENTER_CS,
176 MSR_IA32_SYSENTER_ESP,
177 MSR_IA32_SYSENTER_EIP,
178 MSR_CORE_C1_RES,
179 MSR_CORE_C3_RESIDENCY,
180 MSR_CORE_C6_RESIDENCY,
181 MSR_CORE_C7_RESIDENCY,
182 };
183
184 /*
185 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
186 * ple_gap: upper bound on the amount of time between two successive
187 * executions of PAUSE in a loop. Also indicate if ple enabled.
188 * According to test, this time is usually smaller than 128 cycles.
189 * ple_window: upper bound on the amount of time a guest is allowed to execute
190 * in a PAUSE loop. Tests indicate that most spinlocks are held for
191 * less than 2^12 cycles
192 * Time is measured based on a counter that runs at the same rate as the TSC,
193 * refer SDM volume 3b section 21.6.13 & 22.1.3.
194 */
195 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
196 module_param(ple_gap, uint, 0444);
197
198 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
199 module_param(ple_window, uint, 0444);
200
201 /* Default doubles per-vcpu window every exit. */
202 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
203 module_param(ple_window_grow, uint, 0444);
204
205 /* Default resets per-vcpu window every exit to ple_window. */
206 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
207 module_param(ple_window_shrink, uint, 0444);
208
209 /* Default is to compute the maximum so we can never overflow. */
210 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
211 module_param(ple_window_max, uint, 0444);
212
213 /* Default is SYSTEM mode, 1 for host-guest mode */
214 int __read_mostly pt_mode = PT_MODE_SYSTEM;
215 module_param(pt_mode, int, S_IRUGO);
216
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
219 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
220
221 /* Storage for pre module init parameter parsing */
222 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
223
224 static const struct {
225 const char *option;
226 bool for_parse;
227 } vmentry_l1d_param[] = {
228 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
229 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
230 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
231 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
232 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
233 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
234 };
235
236 #define L1D_CACHE_ORDER 4
237 static void *vmx_l1d_flush_pages;
238
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)239 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
240 {
241 struct page *page;
242 unsigned int i;
243
244 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
246 return 0;
247 }
248
249 if (!enable_ept) {
250 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
251 return 0;
252 }
253
254 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
255 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
256 return 0;
257 }
258
259 /* If set to auto use the default l1tf mitigation method */
260 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
261 switch (l1tf_mitigation) {
262 case L1TF_MITIGATION_OFF:
263 l1tf = VMENTER_L1D_FLUSH_NEVER;
264 break;
265 case L1TF_MITIGATION_FLUSH_NOWARN:
266 case L1TF_MITIGATION_FLUSH:
267 case L1TF_MITIGATION_FLUSH_NOSMT:
268 l1tf = VMENTER_L1D_FLUSH_COND;
269 break;
270 case L1TF_MITIGATION_FULL:
271 case L1TF_MITIGATION_FULL_FORCE:
272 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
273 break;
274 }
275 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
276 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
277 }
278
279 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
280 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
281 /*
282 * This allocation for vmx_l1d_flush_pages is not tied to a VM
283 * lifetime and so should not be charged to a memcg.
284 */
285 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
286 if (!page)
287 return -ENOMEM;
288 vmx_l1d_flush_pages = page_address(page);
289
290 /*
291 * Initialize each page with a different pattern in
292 * order to protect against KSM in the nested
293 * virtualization case.
294 */
295 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
296 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
297 PAGE_SIZE);
298 }
299 }
300
301 l1tf_vmx_mitigation = l1tf;
302
303 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
304 static_branch_enable(&vmx_l1d_should_flush);
305 else
306 static_branch_disable(&vmx_l1d_should_flush);
307
308 if (l1tf == VMENTER_L1D_FLUSH_COND)
309 static_branch_enable(&vmx_l1d_flush_cond);
310 else
311 static_branch_disable(&vmx_l1d_flush_cond);
312 return 0;
313 }
314
vmentry_l1d_flush_parse(const char * s)315 static int vmentry_l1d_flush_parse(const char *s)
316 {
317 unsigned int i;
318
319 if (s) {
320 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
321 if (vmentry_l1d_param[i].for_parse &&
322 sysfs_streq(s, vmentry_l1d_param[i].option))
323 return i;
324 }
325 }
326 return -EINVAL;
327 }
328
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)329 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
330 {
331 int l1tf, ret;
332
333 l1tf = vmentry_l1d_flush_parse(s);
334 if (l1tf < 0)
335 return l1tf;
336
337 if (!boot_cpu_has(X86_BUG_L1TF))
338 return 0;
339
340 /*
341 * Has vmx_init() run already? If not then this is the pre init
342 * parameter parsing. In that case just store the value and let
343 * vmx_init() do the proper setup after enable_ept has been
344 * established.
345 */
346 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
347 vmentry_l1d_flush_param = l1tf;
348 return 0;
349 }
350
351 mutex_lock(&vmx_l1d_flush_mutex);
352 ret = vmx_setup_l1d_flush(l1tf);
353 mutex_unlock(&vmx_l1d_flush_mutex);
354 return ret;
355 }
356
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)357 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
358 {
359 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
360 return sysfs_emit(s, "???\n");
361
362 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
363 }
364
vmx_disable_fb_clear(struct vcpu_vmx * vmx)365 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
366 {
367 u64 msr;
368
369 if (!vmx->disable_fb_clear)
370 return;
371
372 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
373 msr |= FB_CLEAR_DIS;
374 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
375 /* Cache the MSR value to avoid reading it later */
376 vmx->msr_ia32_mcu_opt_ctrl = msr;
377 }
378
vmx_enable_fb_clear(struct vcpu_vmx * vmx)379 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
380 {
381 if (!vmx->disable_fb_clear)
382 return;
383
384 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
386 }
387
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)388 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
389 {
390 vmx->disable_fb_clear = (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
391 !boot_cpu_has_bug(X86_BUG_MDS) &&
392 !boot_cpu_has_bug(X86_BUG_TAA);
393
394 /*
395 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
396 * at VMEntry. Skip the MSR read/write when a guest has no use case to
397 * execute VERW.
398 */
399 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
400 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
401 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
402 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
403 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
404 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
405 vmx->disable_fb_clear = false;
406 }
407
408 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
409 .set = vmentry_l1d_flush_set,
410 .get = vmentry_l1d_flush_get,
411 };
412 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
413
414 static u32 vmx_segment_access_rights(struct kvm_segment *var);
415
416 void vmx_vmexit(void);
417
418 #define vmx_insn_failed(fmt...) \
419 do { \
420 WARN_ONCE(1, fmt); \
421 pr_warn_ratelimited(fmt); \
422 } while (0)
423
vmread_error(unsigned long field)424 noinline void vmread_error(unsigned long field)
425 {
426 vmx_insn_failed("vmread failed: field=%lx\n", field);
427 }
428
429 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)430 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
431 {
432 if (fault) {
433 kvm_spurious_fault();
434 } else {
435 instrumentation_begin();
436 vmread_error(field);
437 instrumentation_end();
438 }
439 }
440 #endif
441
vmwrite_error(unsigned long field,unsigned long value)442 noinline void vmwrite_error(unsigned long field, unsigned long value)
443 {
444 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
445 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
446 }
447
vmclear_error(struct vmcs * vmcs,u64 phys_addr)448 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
449 {
450 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
451 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
452 }
453
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)454 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
455 {
456 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
457 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
458 }
459
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)460 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
461 {
462 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
463 ext, vpid, gva);
464 }
465
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)466 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
467 {
468 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
469 ext, eptp, gpa);
470 }
471
472 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
473 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
474 /*
475 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
476 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
477 */
478 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
479
480 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
481 static DEFINE_SPINLOCK(vmx_vpid_lock);
482
483 struct vmcs_config vmcs_config __ro_after_init;
484 struct vmx_capability vmx_capability __ro_after_init;
485
486 #define VMX_SEGMENT_FIELD(seg) \
487 [VCPU_SREG_##seg] = { \
488 .selector = GUEST_##seg##_SELECTOR, \
489 .base = GUEST_##seg##_BASE, \
490 .limit = GUEST_##seg##_LIMIT, \
491 .ar_bytes = GUEST_##seg##_AR_BYTES, \
492 }
493
494 static const struct kvm_vmx_segment_field {
495 unsigned selector;
496 unsigned base;
497 unsigned limit;
498 unsigned ar_bytes;
499 } kvm_vmx_segment_fields[] = {
500 VMX_SEGMENT_FIELD(CS),
501 VMX_SEGMENT_FIELD(DS),
502 VMX_SEGMENT_FIELD(ES),
503 VMX_SEGMENT_FIELD(FS),
504 VMX_SEGMENT_FIELD(GS),
505 VMX_SEGMENT_FIELD(SS),
506 VMX_SEGMENT_FIELD(TR),
507 VMX_SEGMENT_FIELD(LDTR),
508 };
509
vmx_segment_cache_clear(struct vcpu_vmx * vmx)510 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
511 {
512 vmx->segment_cache.bitmask = 0;
513 }
514
515 static unsigned long host_idt_base;
516
517 #if IS_ENABLED(CONFIG_HYPERV)
518 static struct kvm_x86_ops vmx_x86_ops __initdata;
519
520 static bool __read_mostly enlightened_vmcs = true;
521 module_param(enlightened_vmcs, bool, 0444);
522
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)523 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
524 {
525 struct hv_enlightened_vmcs *evmcs;
526 struct hv_partition_assist_pg **p_hv_pa_pg =
527 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
528 /*
529 * Synthetic VM-Exit is not enabled in current code and so All
530 * evmcs in singe VM shares same assist page.
531 */
532 if (!*p_hv_pa_pg)
533 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
534
535 if (!*p_hv_pa_pg)
536 return -ENOMEM;
537
538 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
539
540 evmcs->partition_assist_page =
541 __pa(*p_hv_pa_pg);
542 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
543 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
544
545 return 0;
546 }
547
hv_init_evmcs(void)548 static __init void hv_init_evmcs(void)
549 {
550 int cpu;
551
552 if (!enlightened_vmcs)
553 return;
554
555 /*
556 * Enlightened VMCS usage should be recommended and the host needs
557 * to support eVMCS v1 or above.
558 */
559 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
560 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
561 KVM_EVMCS_VERSION) {
562
563 /* Check that we have assist pages on all online CPUs */
564 for_each_online_cpu(cpu) {
565 if (!hv_get_vp_assist_page(cpu)) {
566 enlightened_vmcs = false;
567 break;
568 }
569 }
570
571 if (enlightened_vmcs) {
572 pr_info("Using Hyper-V Enlightened VMCS\n");
573 static_branch_enable(&__kvm_is_using_evmcs);
574 }
575
576 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
577 vmx_x86_ops.enable_l2_tlb_flush
578 = hv_enable_l2_tlb_flush;
579
580 } else {
581 enlightened_vmcs = false;
582 }
583 }
584
hv_reset_evmcs(void)585 static void hv_reset_evmcs(void)
586 {
587 struct hv_vp_assist_page *vp_ap;
588
589 if (!kvm_is_using_evmcs())
590 return;
591
592 /*
593 * KVM should enable eVMCS if and only if all CPUs have a VP assist
594 * page, and should reject CPU onlining if eVMCS is enabled the CPU
595 * doesn't have a VP assist page allocated.
596 */
597 vp_ap = hv_get_vp_assist_page(smp_processor_id());
598 if (WARN_ON_ONCE(!vp_ap))
599 return;
600
601 /*
602 * Reset everything to support using non-enlightened VMCS access later
603 * (e.g. when we reload the module with enlightened_vmcs=0)
604 */
605 vp_ap->nested_control.features.directhypercall = 0;
606 vp_ap->current_nested_vmcs = 0;
607 vp_ap->enlighten_vmentry = 0;
608 }
609
610 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)611 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)612 static void hv_reset_evmcs(void) {}
613 #endif /* IS_ENABLED(CONFIG_HYPERV) */
614
615 /*
616 * Comment's format: document - errata name - stepping - processor name.
617 * Refer from
618 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
619 */
620 static u32 vmx_preemption_cpu_tfms[] = {
621 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
622 0x000206E6,
623 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
624 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
625 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
626 0x00020652,
627 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
628 0x00020655,
629 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
630 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
631 /*
632 * 320767.pdf - AAP86 - B1 -
633 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
634 */
635 0x000106E5,
636 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
637 0x000106A0,
638 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
639 0x000106A1,
640 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
641 0x000106A4,
642 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
643 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
644 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
645 0x000106A5,
646 /* Xeon E3-1220 V2 */
647 0x000306A8,
648 };
649
cpu_has_broken_vmx_preemption_timer(void)650 static inline bool cpu_has_broken_vmx_preemption_timer(void)
651 {
652 u32 eax = cpuid_eax(0x00000001), i;
653
654 /* Clear the reserved bits */
655 eax &= ~(0x3U << 14 | 0xfU << 28);
656 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
657 if (eax == vmx_preemption_cpu_tfms[i])
658 return true;
659
660 return false;
661 }
662
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)663 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
664 {
665 return flexpriority_enabled && lapic_in_kernel(vcpu);
666 }
667
possible_passthrough_msr_slot(u32 msr)668 static int possible_passthrough_msr_slot(u32 msr)
669 {
670 u32 i;
671
672 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
673 if (vmx_possible_passthrough_msrs[i] == msr)
674 return i;
675
676 return -ENOENT;
677 }
678
is_valid_passthrough_msr(u32 msr)679 static bool is_valid_passthrough_msr(u32 msr)
680 {
681 bool r;
682
683 switch (msr) {
684 case 0x800 ... 0x8ff:
685 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
686 return true;
687 case MSR_IA32_RTIT_STATUS:
688 case MSR_IA32_RTIT_OUTPUT_BASE:
689 case MSR_IA32_RTIT_OUTPUT_MASK:
690 case MSR_IA32_RTIT_CR3_MATCH:
691 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
692 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
693 case MSR_LBR_SELECT:
694 case MSR_LBR_TOS:
695 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
696 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
697 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
698 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
699 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
700 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
701 return true;
702 }
703
704 r = possible_passthrough_msr_slot(msr) != -ENOENT;
705
706 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
707
708 return r;
709 }
710
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)711 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
712 {
713 int i;
714
715 i = kvm_find_user_return_msr(msr);
716 if (i >= 0)
717 return &vmx->guest_uret_msrs[i];
718 return NULL;
719 }
720
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)721 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
722 struct vmx_uret_msr *msr, u64 data)
723 {
724 unsigned int slot = msr - vmx->guest_uret_msrs;
725 int ret = 0;
726
727 if (msr->load_into_hardware) {
728 preempt_disable();
729 ret = kvm_set_user_return_msr(slot, data, msr->mask);
730 preempt_enable();
731 }
732 if (!ret)
733 msr->data = data;
734 return ret;
735 }
736
737 /*
738 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
739 *
740 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
741 * atomically track post-VMXON state, e.g. this may be called in NMI context.
742 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
743 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
744 * magically in RM, VM86, compat mode, or at CPL>0.
745 */
kvm_cpu_vmxoff(void)746 static int kvm_cpu_vmxoff(void)
747 {
748 asm_volatile_goto("1: vmxoff\n\t"
749 _ASM_EXTABLE(1b, %l[fault])
750 ::: "cc", "memory" : fault);
751
752 cr4_clear_bits(X86_CR4_VMXE);
753 return 0;
754
755 fault:
756 cr4_clear_bits(X86_CR4_VMXE);
757 return -EIO;
758 }
759
vmx_emergency_disable(void)760 static void vmx_emergency_disable(void)
761 {
762 int cpu = raw_smp_processor_id();
763 struct loaded_vmcs *v;
764
765 kvm_rebooting = true;
766
767 /*
768 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
769 * set in task context. If this races with VMX is disabled by an NMI,
770 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
771 * kvm_rebooting set.
772 */
773 if (!(__read_cr4() & X86_CR4_VMXE))
774 return;
775
776 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
777 loaded_vmcss_on_cpu_link)
778 vmcs_clear(v->vmcs);
779
780 kvm_cpu_vmxoff();
781 }
782
__loaded_vmcs_clear(void * arg)783 static void __loaded_vmcs_clear(void *arg)
784 {
785 struct loaded_vmcs *loaded_vmcs = arg;
786 int cpu = raw_smp_processor_id();
787
788 if (loaded_vmcs->cpu != cpu)
789 return; /* vcpu migration can race with cpu offline */
790 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
791 per_cpu(current_vmcs, cpu) = NULL;
792
793 vmcs_clear(loaded_vmcs->vmcs);
794 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
795 vmcs_clear(loaded_vmcs->shadow_vmcs);
796
797 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
798
799 /*
800 * Ensure all writes to loaded_vmcs, including deleting it from its
801 * current percpu list, complete before setting loaded_vmcs->cpu to
802 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
803 * and add loaded_vmcs to its percpu list before it's deleted from this
804 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
805 */
806 smp_wmb();
807
808 loaded_vmcs->cpu = -1;
809 loaded_vmcs->launched = 0;
810 }
811
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)812 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
813 {
814 int cpu = loaded_vmcs->cpu;
815
816 if (cpu != -1)
817 smp_call_function_single(cpu,
818 __loaded_vmcs_clear, loaded_vmcs, 1);
819 }
820
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)821 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
822 unsigned field)
823 {
824 bool ret;
825 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
826
827 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
828 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
829 vmx->segment_cache.bitmask = 0;
830 }
831 ret = vmx->segment_cache.bitmask & mask;
832 vmx->segment_cache.bitmask |= mask;
833 return ret;
834 }
835
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)836 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
837 {
838 u16 *p = &vmx->segment_cache.seg[seg].selector;
839
840 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
841 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
842 return *p;
843 }
844
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)845 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
846 {
847 ulong *p = &vmx->segment_cache.seg[seg].base;
848
849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
850 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
851 return *p;
852 }
853
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)854 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
855 {
856 u32 *p = &vmx->segment_cache.seg[seg].limit;
857
858 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
859 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
860 return *p;
861 }
862
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)863 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
864 {
865 u32 *p = &vmx->segment_cache.seg[seg].ar;
866
867 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
868 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
869 return *p;
870 }
871
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)872 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
873 {
874 u32 eb;
875
876 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
877 (1u << DB_VECTOR) | (1u << AC_VECTOR);
878 /*
879 * Guest access to VMware backdoor ports could legitimately
880 * trigger #GP because of TSS I/O permission bitmap.
881 * We intercept those #GP and allow access to them anyway
882 * as VMware does.
883 */
884 if (enable_vmware_backdoor)
885 eb |= (1u << GP_VECTOR);
886 if ((vcpu->guest_debug &
887 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
888 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
889 eb |= 1u << BP_VECTOR;
890 if (to_vmx(vcpu)->rmode.vm86_active)
891 eb = ~0;
892 if (!vmx_need_pf_intercept(vcpu))
893 eb &= ~(1u << PF_VECTOR);
894
895 /* When we are running a nested L2 guest and L1 specified for it a
896 * certain exception bitmap, we must trap the same exceptions and pass
897 * them to L1. When running L2, we will only handle the exceptions
898 * specified above if L1 did not want them.
899 */
900 if (is_guest_mode(vcpu))
901 eb |= get_vmcs12(vcpu)->exception_bitmap;
902 else {
903 int mask = 0, match = 0;
904
905 if (enable_ept && (eb & (1u << PF_VECTOR))) {
906 /*
907 * If EPT is enabled, #PF is currently only intercepted
908 * if MAXPHYADDR is smaller on the guest than on the
909 * host. In that case we only care about present,
910 * non-reserved faults. For vmcs02, however, PFEC_MASK
911 * and PFEC_MATCH are set in prepare_vmcs02_rare.
912 */
913 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
914 match = PFERR_PRESENT_MASK;
915 }
916 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
917 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
918 }
919
920 /*
921 * Disabling xfd interception indicates that dynamic xfeatures
922 * might be used in the guest. Always trap #NM in this case
923 * to save guest xfd_err timely.
924 */
925 if (vcpu->arch.xfd_no_write_intercept)
926 eb |= (1u << NM_VECTOR);
927
928 vmcs_write32(EXCEPTION_BITMAP, eb);
929 }
930
931 /*
932 * Check if MSR is intercepted for currently loaded MSR bitmap.
933 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)934 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
935 {
936 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
937 return true;
938
939 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
940 }
941
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)942 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
943 {
944 unsigned int flags = 0;
945
946 if (vmx->loaded_vmcs->launched)
947 flags |= VMX_RUN_VMRESUME;
948
949 /*
950 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
951 * to change it directly without causing a vmexit. In that case read
952 * it after vmexit and store it in vmx->spec_ctrl.
953 */
954 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
955 flags |= VMX_RUN_SAVE_SPEC_CTRL;
956
957 return flags;
958 }
959
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)960 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
961 unsigned long entry, unsigned long exit)
962 {
963 vm_entry_controls_clearbit(vmx, entry);
964 vm_exit_controls_clearbit(vmx, exit);
965 }
966
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)967 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
968 {
969 unsigned int i;
970
971 for (i = 0; i < m->nr; ++i) {
972 if (m->val[i].index == msr)
973 return i;
974 }
975 return -ENOENT;
976 }
977
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)978 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
979 {
980 int i;
981 struct msr_autoload *m = &vmx->msr_autoload;
982
983 switch (msr) {
984 case MSR_EFER:
985 if (cpu_has_load_ia32_efer()) {
986 clear_atomic_switch_msr_special(vmx,
987 VM_ENTRY_LOAD_IA32_EFER,
988 VM_EXIT_LOAD_IA32_EFER);
989 return;
990 }
991 break;
992 case MSR_CORE_PERF_GLOBAL_CTRL:
993 if (cpu_has_load_perf_global_ctrl()) {
994 clear_atomic_switch_msr_special(vmx,
995 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
996 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
997 return;
998 }
999 break;
1000 }
1001 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1002 if (i < 0)
1003 goto skip_guest;
1004 --m->guest.nr;
1005 m->guest.val[i] = m->guest.val[m->guest.nr];
1006 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1007
1008 skip_guest:
1009 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1010 if (i < 0)
1011 return;
1012
1013 --m->host.nr;
1014 m->host.val[i] = m->host.val[m->host.nr];
1015 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1016 }
1017
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1018 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1019 unsigned long entry, unsigned long exit,
1020 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1021 u64 guest_val, u64 host_val)
1022 {
1023 vmcs_write64(guest_val_vmcs, guest_val);
1024 if (host_val_vmcs != HOST_IA32_EFER)
1025 vmcs_write64(host_val_vmcs, host_val);
1026 vm_entry_controls_setbit(vmx, entry);
1027 vm_exit_controls_setbit(vmx, exit);
1028 }
1029
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1030 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1031 u64 guest_val, u64 host_val, bool entry_only)
1032 {
1033 int i, j = 0;
1034 struct msr_autoload *m = &vmx->msr_autoload;
1035
1036 switch (msr) {
1037 case MSR_EFER:
1038 if (cpu_has_load_ia32_efer()) {
1039 add_atomic_switch_msr_special(vmx,
1040 VM_ENTRY_LOAD_IA32_EFER,
1041 VM_EXIT_LOAD_IA32_EFER,
1042 GUEST_IA32_EFER,
1043 HOST_IA32_EFER,
1044 guest_val, host_val);
1045 return;
1046 }
1047 break;
1048 case MSR_CORE_PERF_GLOBAL_CTRL:
1049 if (cpu_has_load_perf_global_ctrl()) {
1050 add_atomic_switch_msr_special(vmx,
1051 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1052 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1053 GUEST_IA32_PERF_GLOBAL_CTRL,
1054 HOST_IA32_PERF_GLOBAL_CTRL,
1055 guest_val, host_val);
1056 return;
1057 }
1058 break;
1059 case MSR_IA32_PEBS_ENABLE:
1060 /* PEBS needs a quiescent period after being disabled (to write
1061 * a record). Disabling PEBS through VMX MSR swapping doesn't
1062 * provide that period, so a CPU could write host's record into
1063 * guest's memory.
1064 */
1065 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1066 }
1067
1068 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1069 if (!entry_only)
1070 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1071
1072 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1073 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1074 printk_once(KERN_WARNING "Not enough msr switch entries. "
1075 "Can't add msr %x\n", msr);
1076 return;
1077 }
1078 if (i < 0) {
1079 i = m->guest.nr++;
1080 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1081 }
1082 m->guest.val[i].index = msr;
1083 m->guest.val[i].value = guest_val;
1084
1085 if (entry_only)
1086 return;
1087
1088 if (j < 0) {
1089 j = m->host.nr++;
1090 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1091 }
1092 m->host.val[j].index = msr;
1093 m->host.val[j].value = host_val;
1094 }
1095
update_transition_efer(struct vcpu_vmx * vmx)1096 static bool update_transition_efer(struct vcpu_vmx *vmx)
1097 {
1098 u64 guest_efer = vmx->vcpu.arch.efer;
1099 u64 ignore_bits = 0;
1100 int i;
1101
1102 /* Shadow paging assumes NX to be available. */
1103 if (!enable_ept)
1104 guest_efer |= EFER_NX;
1105
1106 /*
1107 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1108 */
1109 ignore_bits |= EFER_SCE;
1110 #ifdef CONFIG_X86_64
1111 ignore_bits |= EFER_LMA | EFER_LME;
1112 /* SCE is meaningful only in long mode on Intel */
1113 if (guest_efer & EFER_LMA)
1114 ignore_bits &= ~(u64)EFER_SCE;
1115 #endif
1116
1117 /*
1118 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1119 * On CPUs that support "load IA32_EFER", always switch EFER
1120 * atomically, since it's faster than switching it manually.
1121 */
1122 if (cpu_has_load_ia32_efer() ||
1123 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1124 if (!(guest_efer & EFER_LMA))
1125 guest_efer &= ~EFER_LME;
1126 if (guest_efer != host_efer)
1127 add_atomic_switch_msr(vmx, MSR_EFER,
1128 guest_efer, host_efer, false);
1129 else
1130 clear_atomic_switch_msr(vmx, MSR_EFER);
1131 return false;
1132 }
1133
1134 i = kvm_find_user_return_msr(MSR_EFER);
1135 if (i < 0)
1136 return false;
1137
1138 clear_atomic_switch_msr(vmx, MSR_EFER);
1139
1140 guest_efer &= ~ignore_bits;
1141 guest_efer |= host_efer & ignore_bits;
1142
1143 vmx->guest_uret_msrs[i].data = guest_efer;
1144 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1145
1146 return true;
1147 }
1148
1149 #ifdef CONFIG_X86_32
1150 /*
1151 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1152 * VMCS rather than the segment table. KVM uses this helper to figure
1153 * out the current bases to poke them into the VMCS before entry.
1154 */
segment_base(u16 selector)1155 static unsigned long segment_base(u16 selector)
1156 {
1157 struct desc_struct *table;
1158 unsigned long v;
1159
1160 if (!(selector & ~SEGMENT_RPL_MASK))
1161 return 0;
1162
1163 table = get_current_gdt_ro();
1164
1165 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1166 u16 ldt_selector = kvm_read_ldt();
1167
1168 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1169 return 0;
1170
1171 table = (struct desc_struct *)segment_base(ldt_selector);
1172 }
1173 v = get_desc_base(&table[selector >> 3]);
1174 return v;
1175 }
1176 #endif
1177
pt_can_write_msr(struct vcpu_vmx * vmx)1178 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1179 {
1180 return vmx_pt_mode_is_host_guest() &&
1181 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1182 }
1183
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1184 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1185 {
1186 /* The base must be 128-byte aligned and a legal physical address. */
1187 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1188 }
1189
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1190 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1191 {
1192 u32 i;
1193
1194 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1195 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1196 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1197 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1198 for (i = 0; i < addr_range; i++) {
1199 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1200 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1201 }
1202 }
1203
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1204 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1205 {
1206 u32 i;
1207
1208 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1209 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1210 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1211 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1212 for (i = 0; i < addr_range; i++) {
1213 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1214 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1215 }
1216 }
1217
pt_guest_enter(struct vcpu_vmx * vmx)1218 static void pt_guest_enter(struct vcpu_vmx *vmx)
1219 {
1220 if (vmx_pt_mode_is_system())
1221 return;
1222
1223 /*
1224 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1225 * Save host state before VM entry.
1226 */
1227 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1228 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1229 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1230 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1231 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1232 }
1233 }
1234
pt_guest_exit(struct vcpu_vmx * vmx)1235 static void pt_guest_exit(struct vcpu_vmx *vmx)
1236 {
1237 if (vmx_pt_mode_is_system())
1238 return;
1239
1240 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1241 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1242 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1243 }
1244
1245 /*
1246 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1247 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1248 */
1249 if (vmx->pt_desc.host.ctl)
1250 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1251 }
1252
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1253 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1254 unsigned long fs_base, unsigned long gs_base)
1255 {
1256 if (unlikely(fs_sel != host->fs_sel)) {
1257 if (!(fs_sel & 7))
1258 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1259 else
1260 vmcs_write16(HOST_FS_SELECTOR, 0);
1261 host->fs_sel = fs_sel;
1262 }
1263 if (unlikely(gs_sel != host->gs_sel)) {
1264 if (!(gs_sel & 7))
1265 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1266 else
1267 vmcs_write16(HOST_GS_SELECTOR, 0);
1268 host->gs_sel = gs_sel;
1269 }
1270 if (unlikely(fs_base != host->fs_base)) {
1271 vmcs_writel(HOST_FS_BASE, fs_base);
1272 host->fs_base = fs_base;
1273 }
1274 if (unlikely(gs_base != host->gs_base)) {
1275 vmcs_writel(HOST_GS_BASE, gs_base);
1276 host->gs_base = gs_base;
1277 }
1278 }
1279
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1280 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1281 {
1282 struct vcpu_vmx *vmx = to_vmx(vcpu);
1283 struct vmcs_host_state *host_state;
1284 #ifdef CONFIG_X86_64
1285 int cpu = raw_smp_processor_id();
1286 #endif
1287 unsigned long fs_base, gs_base;
1288 u16 fs_sel, gs_sel;
1289 int i;
1290
1291 vmx->req_immediate_exit = false;
1292
1293 /*
1294 * Note that guest MSRs to be saved/restored can also be changed
1295 * when guest state is loaded. This happens when guest transitions
1296 * to/from long-mode by setting MSR_EFER.LMA.
1297 */
1298 if (!vmx->guest_uret_msrs_loaded) {
1299 vmx->guest_uret_msrs_loaded = true;
1300 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1301 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1302 continue;
1303
1304 kvm_set_user_return_msr(i,
1305 vmx->guest_uret_msrs[i].data,
1306 vmx->guest_uret_msrs[i].mask);
1307 }
1308 }
1309
1310 if (vmx->nested.need_vmcs12_to_shadow_sync)
1311 nested_sync_vmcs12_to_shadow(vcpu);
1312
1313 if (vmx->guest_state_loaded)
1314 return;
1315
1316 host_state = &vmx->loaded_vmcs->host_state;
1317
1318 /*
1319 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1320 * allow segment selectors with cpl > 0 or ti == 1.
1321 */
1322 host_state->ldt_sel = kvm_read_ldt();
1323
1324 #ifdef CONFIG_X86_64
1325 savesegment(ds, host_state->ds_sel);
1326 savesegment(es, host_state->es_sel);
1327
1328 gs_base = cpu_kernelmode_gs_base(cpu);
1329 if (likely(is_64bit_mm(current->mm))) {
1330 current_save_fsgs();
1331 fs_sel = current->thread.fsindex;
1332 gs_sel = current->thread.gsindex;
1333 fs_base = current->thread.fsbase;
1334 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1335 } else {
1336 savesegment(fs, fs_sel);
1337 savesegment(gs, gs_sel);
1338 fs_base = read_msr(MSR_FS_BASE);
1339 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1340 }
1341
1342 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1343 #else
1344 savesegment(fs, fs_sel);
1345 savesegment(gs, gs_sel);
1346 fs_base = segment_base(fs_sel);
1347 gs_base = segment_base(gs_sel);
1348 #endif
1349
1350 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1351 vmx->guest_state_loaded = true;
1352 }
1353
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1354 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1355 {
1356 struct vmcs_host_state *host_state;
1357
1358 if (!vmx->guest_state_loaded)
1359 return;
1360
1361 host_state = &vmx->loaded_vmcs->host_state;
1362
1363 ++vmx->vcpu.stat.host_state_reload;
1364
1365 #ifdef CONFIG_X86_64
1366 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1367 #endif
1368 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1369 kvm_load_ldt(host_state->ldt_sel);
1370 #ifdef CONFIG_X86_64
1371 load_gs_index(host_state->gs_sel);
1372 #else
1373 loadsegment(gs, host_state->gs_sel);
1374 #endif
1375 }
1376 if (host_state->fs_sel & 7)
1377 loadsegment(fs, host_state->fs_sel);
1378 #ifdef CONFIG_X86_64
1379 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1380 loadsegment(ds, host_state->ds_sel);
1381 loadsegment(es, host_state->es_sel);
1382 }
1383 #endif
1384 invalidate_tss_limit();
1385 #ifdef CONFIG_X86_64
1386 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1387 #endif
1388 load_fixmap_gdt(raw_smp_processor_id());
1389 vmx->guest_state_loaded = false;
1390 vmx->guest_uret_msrs_loaded = false;
1391 }
1392
1393 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1394 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1395 {
1396 preempt_disable();
1397 if (vmx->guest_state_loaded)
1398 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1399 preempt_enable();
1400 return vmx->msr_guest_kernel_gs_base;
1401 }
1402
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1403 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1404 {
1405 preempt_disable();
1406 if (vmx->guest_state_loaded)
1407 wrmsrl(MSR_KERNEL_GS_BASE, data);
1408 preempt_enable();
1409 vmx->msr_guest_kernel_gs_base = data;
1410 }
1411 #endif
1412
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1413 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1414 struct loaded_vmcs *buddy)
1415 {
1416 struct vcpu_vmx *vmx = to_vmx(vcpu);
1417 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1418 struct vmcs *prev;
1419
1420 if (!already_loaded) {
1421 loaded_vmcs_clear(vmx->loaded_vmcs);
1422 local_irq_disable();
1423
1424 /*
1425 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1426 * this cpu's percpu list, otherwise it may not yet be deleted
1427 * from its previous cpu's percpu list. Pairs with the
1428 * smb_wmb() in __loaded_vmcs_clear().
1429 */
1430 smp_rmb();
1431
1432 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1433 &per_cpu(loaded_vmcss_on_cpu, cpu));
1434 local_irq_enable();
1435 }
1436
1437 prev = per_cpu(current_vmcs, cpu);
1438 if (prev != vmx->loaded_vmcs->vmcs) {
1439 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1440 vmcs_load(vmx->loaded_vmcs->vmcs);
1441
1442 /*
1443 * No indirect branch prediction barrier needed when switching
1444 * the active VMCS within a vCPU, unless IBRS is advertised to
1445 * the vCPU. To minimize the number of IBPBs executed, KVM
1446 * performs IBPB on nested VM-Exit (a single nested transition
1447 * may switch the active VMCS multiple times).
1448 */
1449 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1450 indirect_branch_prediction_barrier();
1451 }
1452
1453 if (!already_loaded) {
1454 void *gdt = get_current_gdt_ro();
1455
1456 /*
1457 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1458 * TLB entries from its previous association with the vCPU.
1459 */
1460 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1461
1462 /*
1463 * Linux uses per-cpu TSS and GDT, so set these when switching
1464 * processors. See 22.2.4.
1465 */
1466 vmcs_writel(HOST_TR_BASE,
1467 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1468 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1469
1470 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1471 /* 22.2.3 */
1472 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1473 (unsigned long)(cpu_entry_stack(cpu) + 1));
1474 }
1475
1476 vmx->loaded_vmcs->cpu = cpu;
1477 }
1478 }
1479
1480 /*
1481 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1482 * vcpu mutex is already taken.
1483 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1484 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1485 {
1486 struct vcpu_vmx *vmx = to_vmx(vcpu);
1487
1488 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1489
1490 vmx_vcpu_pi_load(vcpu, cpu);
1491
1492 vmx->host_debugctlmsr = get_debugctlmsr();
1493 }
1494
vmx_vcpu_put(struct kvm_vcpu * vcpu)1495 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1496 {
1497 vmx_vcpu_pi_put(vcpu);
1498
1499 vmx_prepare_switch_to_host(to_vmx(vcpu));
1500 }
1501
vmx_emulation_required(struct kvm_vcpu * vcpu)1502 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1503 {
1504 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1505 }
1506
vmx_get_rflags(struct kvm_vcpu * vcpu)1507 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1508 {
1509 struct vcpu_vmx *vmx = to_vmx(vcpu);
1510 unsigned long rflags, save_rflags;
1511
1512 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1513 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1514 rflags = vmcs_readl(GUEST_RFLAGS);
1515 if (vmx->rmode.vm86_active) {
1516 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1517 save_rflags = vmx->rmode.save_rflags;
1518 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1519 }
1520 vmx->rflags = rflags;
1521 }
1522 return vmx->rflags;
1523 }
1524
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1525 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1526 {
1527 struct vcpu_vmx *vmx = to_vmx(vcpu);
1528 unsigned long old_rflags;
1529
1530 /*
1531 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1532 * is an unrestricted guest in order to mark L2 as needing emulation
1533 * if L1 runs L2 as a restricted guest.
1534 */
1535 if (is_unrestricted_guest(vcpu)) {
1536 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1537 vmx->rflags = rflags;
1538 vmcs_writel(GUEST_RFLAGS, rflags);
1539 return;
1540 }
1541
1542 old_rflags = vmx_get_rflags(vcpu);
1543 vmx->rflags = rflags;
1544 if (vmx->rmode.vm86_active) {
1545 vmx->rmode.save_rflags = rflags;
1546 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1547 }
1548 vmcs_writel(GUEST_RFLAGS, rflags);
1549
1550 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1551 vmx->emulation_required = vmx_emulation_required(vcpu);
1552 }
1553
vmx_get_if_flag(struct kvm_vcpu * vcpu)1554 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1555 {
1556 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1557 }
1558
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1559 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1560 {
1561 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1562 int ret = 0;
1563
1564 if (interruptibility & GUEST_INTR_STATE_STI)
1565 ret |= KVM_X86_SHADOW_INT_STI;
1566 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1567 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1568
1569 return ret;
1570 }
1571
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1572 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1573 {
1574 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1575 u32 interruptibility = interruptibility_old;
1576
1577 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1578
1579 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1580 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1581 else if (mask & KVM_X86_SHADOW_INT_STI)
1582 interruptibility |= GUEST_INTR_STATE_STI;
1583
1584 if ((interruptibility != interruptibility_old))
1585 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1586 }
1587
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1588 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1589 {
1590 struct vcpu_vmx *vmx = to_vmx(vcpu);
1591 unsigned long value;
1592
1593 /*
1594 * Any MSR write that attempts to change bits marked reserved will
1595 * case a #GP fault.
1596 */
1597 if (data & vmx->pt_desc.ctl_bitmask)
1598 return 1;
1599
1600 /*
1601 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1602 * result in a #GP unless the same write also clears TraceEn.
1603 */
1604 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1605 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1606 return 1;
1607
1608 /*
1609 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1610 * and FabricEn would cause #GP, if
1611 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1612 */
1613 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1614 !(data & RTIT_CTL_FABRIC_EN) &&
1615 !intel_pt_validate_cap(vmx->pt_desc.caps,
1616 PT_CAP_single_range_output))
1617 return 1;
1618
1619 /*
1620 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1621 * utilize encodings marked reserved will cause a #GP fault.
1622 */
1623 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1624 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1625 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1626 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1627 return 1;
1628 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1629 PT_CAP_cycle_thresholds);
1630 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1631 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1632 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1633 return 1;
1634 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1635 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1636 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1637 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1638 return 1;
1639
1640 /*
1641 * If ADDRx_CFG is reserved or the encodings is >2 will
1642 * cause a #GP fault.
1643 */
1644 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1645 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1646 return 1;
1647 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1648 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1649 return 1;
1650 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1651 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1652 return 1;
1653 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1654 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1655 return 1;
1656
1657 return 0;
1658 }
1659
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1660 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1661 void *insn, int insn_len)
1662 {
1663 /*
1664 * Emulation of instructions in SGX enclaves is impossible as RIP does
1665 * not point at the failing instruction, and even if it did, the code
1666 * stream is inaccessible. Inject #UD instead of exiting to userspace
1667 * so that guest userspace can't DoS the guest simply by triggering
1668 * emulation (enclaves are CPL3 only).
1669 */
1670 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1671 kvm_queue_exception(vcpu, UD_VECTOR);
1672 return false;
1673 }
1674 return true;
1675 }
1676
skip_emulated_instruction(struct kvm_vcpu * vcpu)1677 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1678 {
1679 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1680 unsigned long rip, orig_rip;
1681 u32 instr_len;
1682
1683 /*
1684 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1685 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1686 * set when EPT misconfig occurs. In practice, real hardware updates
1687 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1688 * (namely Hyper-V) don't set it due to it being undefined behavior,
1689 * i.e. we end up advancing IP with some random value.
1690 */
1691 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1692 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1693 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1694
1695 /*
1696 * Emulating an enclave's instructions isn't supported as KVM
1697 * cannot access the enclave's memory or its true RIP, e.g. the
1698 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1699 * the RIP that actually triggered the VM-Exit. But, because
1700 * most instructions that cause VM-Exit will #UD in an enclave,
1701 * most instruction-based VM-Exits simply do not occur.
1702 *
1703 * There are a few exceptions, notably the debug instructions
1704 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1705 * and generate #DB/#BP as expected, which KVM might intercept.
1706 * But again, the CPU does the dirty work and saves an instr
1707 * length of zero so VMMs don't shoot themselves in the foot.
1708 * WARN if KVM tries to skip a non-zero length instruction on
1709 * a VM-Exit from an enclave.
1710 */
1711 if (!instr_len)
1712 goto rip_updated;
1713
1714 WARN_ONCE(exit_reason.enclave_mode,
1715 "skipping instruction after SGX enclave VM-Exit");
1716
1717 orig_rip = kvm_rip_read(vcpu);
1718 rip = orig_rip + instr_len;
1719 #ifdef CONFIG_X86_64
1720 /*
1721 * We need to mask out the high 32 bits of RIP if not in 64-bit
1722 * mode, but just finding out that we are in 64-bit mode is
1723 * quite expensive. Only do it if there was a carry.
1724 */
1725 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1726 rip = (u32)rip;
1727 #endif
1728 kvm_rip_write(vcpu, rip);
1729 } else {
1730 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1731 return 0;
1732 }
1733
1734 rip_updated:
1735 /* skipping an emulated instruction also counts */
1736 vmx_set_interrupt_shadow(vcpu, 0);
1737
1738 return 1;
1739 }
1740
1741 /*
1742 * Recognizes a pending MTF VM-exit and records the nested state for later
1743 * delivery.
1744 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1745 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1746 {
1747 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1748 struct vcpu_vmx *vmx = to_vmx(vcpu);
1749
1750 if (!is_guest_mode(vcpu))
1751 return;
1752
1753 /*
1754 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1755 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1756 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1757 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1758 * as ICEBP is higher priority than both. As instruction emulation is
1759 * completed at this point (i.e. KVM is at the instruction boundary),
1760 * any #DB exception pending delivery must be a debug-trap of lower
1761 * priority than MTF. Record the pending MTF state to be delivered in
1762 * vmx_check_nested_events().
1763 */
1764 if (nested_cpu_has_mtf(vmcs12) &&
1765 (!vcpu->arch.exception.pending ||
1766 vcpu->arch.exception.vector == DB_VECTOR) &&
1767 (!vcpu->arch.exception_vmexit.pending ||
1768 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1769 vmx->nested.mtf_pending = true;
1770 kvm_make_request(KVM_REQ_EVENT, vcpu);
1771 } else {
1772 vmx->nested.mtf_pending = false;
1773 }
1774 }
1775
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1776 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1777 {
1778 vmx_update_emulated_instruction(vcpu);
1779 return skip_emulated_instruction(vcpu);
1780 }
1781
vmx_clear_hlt(struct kvm_vcpu * vcpu)1782 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1783 {
1784 /*
1785 * Ensure that we clear the HLT state in the VMCS. We don't need to
1786 * explicitly skip the instruction because if the HLT state is set,
1787 * then the instruction is already executing and RIP has already been
1788 * advanced.
1789 */
1790 if (kvm_hlt_in_guest(vcpu->kvm) &&
1791 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1792 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1793 }
1794
vmx_inject_exception(struct kvm_vcpu * vcpu)1795 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1796 {
1797 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1798 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1799 struct vcpu_vmx *vmx = to_vmx(vcpu);
1800
1801 kvm_deliver_exception_payload(vcpu, ex);
1802
1803 if (ex->has_error_code) {
1804 /*
1805 * Despite the error code being architecturally defined as 32
1806 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1807 * VMX don't actually supporting setting bits 31:16. Hardware
1808 * will (should) never provide a bogus error code, but AMD CPUs
1809 * do generate error codes with bits 31:16 set, and so KVM's
1810 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1811 * the upper bits to avoid VM-Fail, losing information that
1812 * does't really exist is preferable to killing the VM.
1813 */
1814 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1815 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1816 }
1817
1818 if (vmx->rmode.vm86_active) {
1819 int inc_eip = 0;
1820 if (kvm_exception_is_soft(ex->vector))
1821 inc_eip = vcpu->arch.event_exit_inst_len;
1822 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1823 return;
1824 }
1825
1826 WARN_ON_ONCE(vmx->emulation_required);
1827
1828 if (kvm_exception_is_soft(ex->vector)) {
1829 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1830 vmx->vcpu.arch.event_exit_inst_len);
1831 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1832 } else
1833 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1834
1835 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1836
1837 vmx_clear_hlt(vcpu);
1838 }
1839
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1840 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1841 bool load_into_hardware)
1842 {
1843 struct vmx_uret_msr *uret_msr;
1844
1845 uret_msr = vmx_find_uret_msr(vmx, msr);
1846 if (!uret_msr)
1847 return;
1848
1849 uret_msr->load_into_hardware = load_into_hardware;
1850 }
1851
1852 /*
1853 * Configuring user return MSRs to automatically save, load, and restore MSRs
1854 * that need to be shoved into hardware when running the guest. Note, omitting
1855 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1856 * loaded into hardware when running the guest.
1857 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1858 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1859 {
1860 #ifdef CONFIG_X86_64
1861 bool load_syscall_msrs;
1862
1863 /*
1864 * The SYSCALL MSRs are only needed on long mode guests, and only
1865 * when EFER.SCE is set.
1866 */
1867 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1868 (vmx->vcpu.arch.efer & EFER_SCE);
1869
1870 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1871 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1872 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1873 #endif
1874 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1875
1876 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1877 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1878 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1879
1880 /*
1881 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1882 * kernel and old userspace. If those guests run on a tsx=off host, do
1883 * allow guests to use TSX_CTRL, but don't change the value in hardware
1884 * so that TSX remains always disabled.
1885 */
1886 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1887
1888 /*
1889 * The set of MSRs to load may have changed, reload MSRs before the
1890 * next VM-Enter.
1891 */
1892 vmx->guest_uret_msrs_loaded = false;
1893 }
1894
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1895 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1896 {
1897 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1898
1899 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1900 return vmcs12->tsc_offset;
1901
1902 return 0;
1903 }
1904
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1905 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1906 {
1907 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1908
1909 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1910 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1911 return vmcs12->tsc_multiplier;
1912
1913 return kvm_caps.default_tsc_scaling_ratio;
1914 }
1915
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1916 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1917 {
1918 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1919 }
1920
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1921 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1922 {
1923 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1924 }
1925
1926 /*
1927 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1928 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1929 * backwards compatibility even though KVM doesn't support emulating SMX. And
1930 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1931 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1932 */
1933 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1934 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1935 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1936 FEAT_CTL_SGX_LC_ENABLED | \
1937 FEAT_CTL_SGX_ENABLED | \
1938 FEAT_CTL_LMCE_ENABLED)
1939
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1940 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1941 struct msr_data *msr)
1942 {
1943 uint64_t valid_bits;
1944
1945 /*
1946 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1947 * exposed to the guest.
1948 */
1949 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1950 ~KVM_SUPPORTED_FEATURE_CONTROL);
1951
1952 if (!msr->host_initiated &&
1953 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1954 return false;
1955
1956 if (msr->host_initiated)
1957 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1958 else
1959 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1960
1961 return !(msr->data & ~valid_bits);
1962 }
1963
vmx_get_msr_feature(struct kvm_msr_entry * msr)1964 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1965 {
1966 switch (msr->index) {
1967 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1968 if (!nested)
1969 return 1;
1970 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1971 default:
1972 return KVM_MSR_RET_INVALID;
1973 }
1974 }
1975
1976 /*
1977 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1978 * Returns 0 on success, non-0 otherwise.
1979 * Assumes vcpu_load() was already called.
1980 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1981 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1982 {
1983 struct vcpu_vmx *vmx = to_vmx(vcpu);
1984 struct vmx_uret_msr *msr;
1985 u32 index;
1986
1987 switch (msr_info->index) {
1988 #ifdef CONFIG_X86_64
1989 case MSR_FS_BASE:
1990 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1991 break;
1992 case MSR_GS_BASE:
1993 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1994 break;
1995 case MSR_KERNEL_GS_BASE:
1996 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1997 break;
1998 #endif
1999 case MSR_EFER:
2000 return kvm_get_msr_common(vcpu, msr_info);
2001 case MSR_IA32_TSX_CTRL:
2002 if (!msr_info->host_initiated &&
2003 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2004 return 1;
2005 goto find_uret_msr;
2006 case MSR_IA32_UMWAIT_CONTROL:
2007 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2008 return 1;
2009
2010 msr_info->data = vmx->msr_ia32_umwait_control;
2011 break;
2012 case MSR_IA32_SPEC_CTRL:
2013 if (!msr_info->host_initiated &&
2014 !guest_has_spec_ctrl_msr(vcpu))
2015 return 1;
2016
2017 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2018 break;
2019 case MSR_IA32_SYSENTER_CS:
2020 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2021 break;
2022 case MSR_IA32_SYSENTER_EIP:
2023 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2024 break;
2025 case MSR_IA32_SYSENTER_ESP:
2026 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2027 break;
2028 case MSR_IA32_BNDCFGS:
2029 if (!kvm_mpx_supported() ||
2030 (!msr_info->host_initiated &&
2031 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2032 return 1;
2033 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2034 break;
2035 case MSR_IA32_MCG_EXT_CTL:
2036 if (!msr_info->host_initiated &&
2037 !(vmx->msr_ia32_feature_control &
2038 FEAT_CTL_LMCE_ENABLED))
2039 return 1;
2040 msr_info->data = vcpu->arch.mcg_ext_ctl;
2041 break;
2042 case MSR_IA32_FEAT_CTL:
2043 msr_info->data = vmx->msr_ia32_feature_control;
2044 break;
2045 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2046 if (!msr_info->host_initiated &&
2047 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2048 return 1;
2049 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2050 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2051 break;
2052 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2053 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2054 return 1;
2055 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2056 &msr_info->data))
2057 return 1;
2058 /*
2059 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2060 * instead of just ignoring the features, different Hyper-V
2061 * versions are either trying to use them and fail or do some
2062 * sanity checking and refuse to boot. Filter all unsupported
2063 * features out.
2064 */
2065 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2066 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2067 &msr_info->data);
2068 break;
2069 case MSR_IA32_RTIT_CTL:
2070 if (!vmx_pt_mode_is_host_guest())
2071 return 1;
2072 msr_info->data = vmx->pt_desc.guest.ctl;
2073 break;
2074 case MSR_IA32_RTIT_STATUS:
2075 if (!vmx_pt_mode_is_host_guest())
2076 return 1;
2077 msr_info->data = vmx->pt_desc.guest.status;
2078 break;
2079 case MSR_IA32_RTIT_CR3_MATCH:
2080 if (!vmx_pt_mode_is_host_guest() ||
2081 !intel_pt_validate_cap(vmx->pt_desc.caps,
2082 PT_CAP_cr3_filtering))
2083 return 1;
2084 msr_info->data = vmx->pt_desc.guest.cr3_match;
2085 break;
2086 case MSR_IA32_RTIT_OUTPUT_BASE:
2087 if (!vmx_pt_mode_is_host_guest() ||
2088 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2089 PT_CAP_topa_output) &&
2090 !intel_pt_validate_cap(vmx->pt_desc.caps,
2091 PT_CAP_single_range_output)))
2092 return 1;
2093 msr_info->data = vmx->pt_desc.guest.output_base;
2094 break;
2095 case MSR_IA32_RTIT_OUTPUT_MASK:
2096 if (!vmx_pt_mode_is_host_guest() ||
2097 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2098 PT_CAP_topa_output) &&
2099 !intel_pt_validate_cap(vmx->pt_desc.caps,
2100 PT_CAP_single_range_output)))
2101 return 1;
2102 msr_info->data = vmx->pt_desc.guest.output_mask;
2103 break;
2104 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2105 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2106 if (!vmx_pt_mode_is_host_guest() ||
2107 (index >= 2 * vmx->pt_desc.num_address_ranges))
2108 return 1;
2109 if (index % 2)
2110 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2111 else
2112 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2113 break;
2114 case MSR_IA32_DEBUGCTLMSR:
2115 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2116 break;
2117 default:
2118 find_uret_msr:
2119 msr = vmx_find_uret_msr(vmx, msr_info->index);
2120 if (msr) {
2121 msr_info->data = msr->data;
2122 break;
2123 }
2124 return kvm_get_msr_common(vcpu, msr_info);
2125 }
2126
2127 return 0;
2128 }
2129
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2130 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2131 u64 data)
2132 {
2133 #ifdef CONFIG_X86_64
2134 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2135 return (u32)data;
2136 #endif
2137 return (unsigned long)data;
2138 }
2139
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2140 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2141 {
2142 u64 debugctl = 0;
2143
2144 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2145 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2146 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2147
2148 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2149 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2150 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2151
2152 return debugctl;
2153 }
2154
2155 /*
2156 * Writes msr value into the appropriate "register".
2157 * Returns 0 on success, non-0 otherwise.
2158 * Assumes vcpu_load() was already called.
2159 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2160 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2161 {
2162 struct vcpu_vmx *vmx = to_vmx(vcpu);
2163 struct vmx_uret_msr *msr;
2164 int ret = 0;
2165 u32 msr_index = msr_info->index;
2166 u64 data = msr_info->data;
2167 u32 index;
2168
2169 switch (msr_index) {
2170 case MSR_EFER:
2171 ret = kvm_set_msr_common(vcpu, msr_info);
2172 break;
2173 #ifdef CONFIG_X86_64
2174 case MSR_FS_BASE:
2175 vmx_segment_cache_clear(vmx);
2176 vmcs_writel(GUEST_FS_BASE, data);
2177 break;
2178 case MSR_GS_BASE:
2179 vmx_segment_cache_clear(vmx);
2180 vmcs_writel(GUEST_GS_BASE, data);
2181 break;
2182 case MSR_KERNEL_GS_BASE:
2183 vmx_write_guest_kernel_gs_base(vmx, data);
2184 break;
2185 case MSR_IA32_XFD:
2186 ret = kvm_set_msr_common(vcpu, msr_info);
2187 /*
2188 * Always intercepting WRMSR could incur non-negligible
2189 * overhead given xfd might be changed frequently in
2190 * guest context switch. Disable write interception
2191 * upon the first write with a non-zero value (indicating
2192 * potential usage on dynamic xfeatures). Also update
2193 * exception bitmap to trap #NM for proper virtualization
2194 * of guest xfd_err.
2195 */
2196 if (!ret && data) {
2197 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2198 MSR_TYPE_RW);
2199 vcpu->arch.xfd_no_write_intercept = true;
2200 vmx_update_exception_bitmap(vcpu);
2201 }
2202 break;
2203 #endif
2204 case MSR_IA32_SYSENTER_CS:
2205 if (is_guest_mode(vcpu))
2206 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2207 vmcs_write32(GUEST_SYSENTER_CS, data);
2208 break;
2209 case MSR_IA32_SYSENTER_EIP:
2210 if (is_guest_mode(vcpu)) {
2211 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2212 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2213 }
2214 vmcs_writel(GUEST_SYSENTER_EIP, data);
2215 break;
2216 case MSR_IA32_SYSENTER_ESP:
2217 if (is_guest_mode(vcpu)) {
2218 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2219 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2220 }
2221 vmcs_writel(GUEST_SYSENTER_ESP, data);
2222 break;
2223 case MSR_IA32_DEBUGCTLMSR: {
2224 u64 invalid;
2225
2226 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2227 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2228 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2229 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2230 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2231 }
2232
2233 if (invalid)
2234 return 1;
2235
2236 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2237 VM_EXIT_SAVE_DEBUG_CONTROLS)
2238 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2239
2240 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2241 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2242 (data & DEBUGCTLMSR_LBR))
2243 intel_pmu_create_guest_lbr_event(vcpu);
2244 return 0;
2245 }
2246 case MSR_IA32_BNDCFGS:
2247 if (!kvm_mpx_supported() ||
2248 (!msr_info->host_initiated &&
2249 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2250 return 1;
2251 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2252 (data & MSR_IA32_BNDCFGS_RSVD))
2253 return 1;
2254
2255 if (is_guest_mode(vcpu) &&
2256 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2257 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2258 get_vmcs12(vcpu)->guest_bndcfgs = data;
2259
2260 vmcs_write64(GUEST_BNDCFGS, data);
2261 break;
2262 case MSR_IA32_UMWAIT_CONTROL:
2263 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2264 return 1;
2265
2266 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2267 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2268 return 1;
2269
2270 vmx->msr_ia32_umwait_control = data;
2271 break;
2272 case MSR_IA32_SPEC_CTRL:
2273 if (!msr_info->host_initiated &&
2274 !guest_has_spec_ctrl_msr(vcpu))
2275 return 1;
2276
2277 if (kvm_spec_ctrl_test_value(data))
2278 return 1;
2279
2280 vmx->spec_ctrl = data;
2281 if (!data)
2282 break;
2283
2284 /*
2285 * For non-nested:
2286 * When it's written (to non-zero) for the first time, pass
2287 * it through.
2288 *
2289 * For nested:
2290 * The handling of the MSR bitmap for L2 guests is done in
2291 * nested_vmx_prepare_msr_bitmap. We should not touch the
2292 * vmcs02.msr_bitmap here since it gets completely overwritten
2293 * in the merging. We update the vmcs01 here for L1 as well
2294 * since it will end up touching the MSR anyway now.
2295 */
2296 vmx_disable_intercept_for_msr(vcpu,
2297 MSR_IA32_SPEC_CTRL,
2298 MSR_TYPE_RW);
2299 break;
2300 case MSR_IA32_TSX_CTRL:
2301 if (!msr_info->host_initiated &&
2302 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2303 return 1;
2304 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2305 return 1;
2306 goto find_uret_msr;
2307 case MSR_IA32_CR_PAT:
2308 ret = kvm_set_msr_common(vcpu, msr_info);
2309 if (ret)
2310 break;
2311
2312 if (is_guest_mode(vcpu) &&
2313 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2314 get_vmcs12(vcpu)->guest_ia32_pat = data;
2315
2316 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2317 vmcs_write64(GUEST_IA32_PAT, data);
2318 break;
2319 case MSR_IA32_MCG_EXT_CTL:
2320 if ((!msr_info->host_initiated &&
2321 !(to_vmx(vcpu)->msr_ia32_feature_control &
2322 FEAT_CTL_LMCE_ENABLED)) ||
2323 (data & ~MCG_EXT_CTL_LMCE_EN))
2324 return 1;
2325 vcpu->arch.mcg_ext_ctl = data;
2326 break;
2327 case MSR_IA32_FEAT_CTL:
2328 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2329 return 1;
2330
2331 vmx->msr_ia32_feature_control = data;
2332 if (msr_info->host_initiated && data == 0)
2333 vmx_leave_nested(vcpu);
2334
2335 /* SGX may be enabled/disabled by guest's firmware */
2336 vmx_write_encls_bitmap(vcpu, NULL);
2337 break;
2338 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2339 /*
2340 * On real hardware, the LE hash MSRs are writable before
2341 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2342 * at which point SGX related bits in IA32_FEATURE_CONTROL
2343 * become writable.
2344 *
2345 * KVM does not emulate SGX activation for simplicity, so
2346 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2347 * is unlocked. This is technically not architectural
2348 * behavior, but it's close enough.
2349 */
2350 if (!msr_info->host_initiated &&
2351 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2352 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2353 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2354 return 1;
2355 vmx->msr_ia32_sgxlepubkeyhash
2356 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2357 break;
2358 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2359 if (!msr_info->host_initiated)
2360 return 1; /* they are read-only */
2361 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2362 return 1;
2363 return vmx_set_vmx_msr(vcpu, msr_index, data);
2364 case MSR_IA32_RTIT_CTL:
2365 if (!vmx_pt_mode_is_host_guest() ||
2366 vmx_rtit_ctl_check(vcpu, data) ||
2367 vmx->nested.vmxon)
2368 return 1;
2369 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2370 vmx->pt_desc.guest.ctl = data;
2371 pt_update_intercept_for_msr(vcpu);
2372 break;
2373 case MSR_IA32_RTIT_STATUS:
2374 if (!pt_can_write_msr(vmx))
2375 return 1;
2376 if (data & MSR_IA32_RTIT_STATUS_MASK)
2377 return 1;
2378 vmx->pt_desc.guest.status = data;
2379 break;
2380 case MSR_IA32_RTIT_CR3_MATCH:
2381 if (!pt_can_write_msr(vmx))
2382 return 1;
2383 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2384 PT_CAP_cr3_filtering))
2385 return 1;
2386 vmx->pt_desc.guest.cr3_match = data;
2387 break;
2388 case MSR_IA32_RTIT_OUTPUT_BASE:
2389 if (!pt_can_write_msr(vmx))
2390 return 1;
2391 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2392 PT_CAP_topa_output) &&
2393 !intel_pt_validate_cap(vmx->pt_desc.caps,
2394 PT_CAP_single_range_output))
2395 return 1;
2396 if (!pt_output_base_valid(vcpu, data))
2397 return 1;
2398 vmx->pt_desc.guest.output_base = data;
2399 break;
2400 case MSR_IA32_RTIT_OUTPUT_MASK:
2401 if (!pt_can_write_msr(vmx))
2402 return 1;
2403 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2404 PT_CAP_topa_output) &&
2405 !intel_pt_validate_cap(vmx->pt_desc.caps,
2406 PT_CAP_single_range_output))
2407 return 1;
2408 vmx->pt_desc.guest.output_mask = data;
2409 break;
2410 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2411 if (!pt_can_write_msr(vmx))
2412 return 1;
2413 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2414 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2415 return 1;
2416 if (is_noncanonical_address(data, vcpu))
2417 return 1;
2418 if (index % 2)
2419 vmx->pt_desc.guest.addr_b[index / 2] = data;
2420 else
2421 vmx->pt_desc.guest.addr_a[index / 2] = data;
2422 break;
2423 case MSR_IA32_PERF_CAPABILITIES:
2424 if (data && !vcpu_to_pmu(vcpu)->version)
2425 return 1;
2426 if (data & PMU_CAP_LBR_FMT) {
2427 if ((data & PMU_CAP_LBR_FMT) !=
2428 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2429 return 1;
2430 if (!cpuid_model_is_consistent(vcpu))
2431 return 1;
2432 }
2433 if (data & PERF_CAP_PEBS_FORMAT) {
2434 if ((data & PERF_CAP_PEBS_MASK) !=
2435 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2436 return 1;
2437 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2438 return 1;
2439 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2440 return 1;
2441 if (!cpuid_model_is_consistent(vcpu))
2442 return 1;
2443 }
2444 ret = kvm_set_msr_common(vcpu, msr_info);
2445 break;
2446
2447 default:
2448 find_uret_msr:
2449 msr = vmx_find_uret_msr(vmx, msr_index);
2450 if (msr)
2451 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2452 else
2453 ret = kvm_set_msr_common(vcpu, msr_info);
2454 }
2455
2456 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2457 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2458 vmx_update_fb_clear_dis(vcpu, vmx);
2459
2460 return ret;
2461 }
2462
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2463 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2464 {
2465 unsigned long guest_owned_bits;
2466
2467 kvm_register_mark_available(vcpu, reg);
2468
2469 switch (reg) {
2470 case VCPU_REGS_RSP:
2471 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2472 break;
2473 case VCPU_REGS_RIP:
2474 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2475 break;
2476 case VCPU_EXREG_PDPTR:
2477 if (enable_ept)
2478 ept_save_pdptrs(vcpu);
2479 break;
2480 case VCPU_EXREG_CR0:
2481 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2482
2483 vcpu->arch.cr0 &= ~guest_owned_bits;
2484 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2485 break;
2486 case VCPU_EXREG_CR3:
2487 /*
2488 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2489 * CR3 is loaded into hardware, not the guest's CR3.
2490 */
2491 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2492 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2493 break;
2494 case VCPU_EXREG_CR4:
2495 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2496
2497 vcpu->arch.cr4 &= ~guest_owned_bits;
2498 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2499 break;
2500 default:
2501 KVM_BUG_ON(1, vcpu->kvm);
2502 break;
2503 }
2504 }
2505
2506 /*
2507 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2508 * directly instead of going through cpu_has(), to ensure KVM is trapping
2509 * ENCLS whenever it's supported in hardware. It does not matter whether
2510 * the host OS supports or has enabled SGX.
2511 */
cpu_has_sgx(void)2512 static bool cpu_has_sgx(void)
2513 {
2514 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2515 }
2516
2517 /*
2518 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2519 * can't be used due to errata where VM Exit may incorrectly clear
2520 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2521 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2522 */
cpu_has_perf_global_ctrl_bug(void)2523 static bool cpu_has_perf_global_ctrl_bug(void)
2524 {
2525 if (boot_cpu_data.x86 == 0x6) {
2526 switch (boot_cpu_data.x86_model) {
2527 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
2528 case INTEL_FAM6_NEHALEM: /* AAP115 */
2529 case INTEL_FAM6_WESTMERE: /* AAT100 */
2530 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
2531 case INTEL_FAM6_NEHALEM_EX: /* BA97 */
2532 return true;
2533 default:
2534 break;
2535 }
2536 }
2537
2538 return false;
2539 }
2540
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2541 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2542 {
2543 u32 vmx_msr_low, vmx_msr_high;
2544 u32 ctl = ctl_min | ctl_opt;
2545
2546 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2547
2548 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2549 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2550
2551 /* Ensure minimum (required) set of control bits are supported. */
2552 if (ctl_min & ~ctl)
2553 return -EIO;
2554
2555 *result = ctl;
2556 return 0;
2557 }
2558
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2559 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2560 {
2561 u64 allowed;
2562
2563 rdmsrl(msr, allowed);
2564
2565 return ctl_opt & allowed;
2566 }
2567
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2568 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2569 struct vmx_capability *vmx_cap)
2570 {
2571 u32 vmx_msr_low, vmx_msr_high;
2572 u32 _pin_based_exec_control = 0;
2573 u32 _cpu_based_exec_control = 0;
2574 u32 _cpu_based_2nd_exec_control = 0;
2575 u64 _cpu_based_3rd_exec_control = 0;
2576 u32 _vmexit_control = 0;
2577 u32 _vmentry_control = 0;
2578 u64 misc_msr;
2579 int i;
2580
2581 /*
2582 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2583 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2584 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2585 */
2586 struct {
2587 u32 entry_control;
2588 u32 exit_control;
2589 } const vmcs_entry_exit_pairs[] = {
2590 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2591 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2592 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2593 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2594 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2595 };
2596
2597 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2598
2599 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2600 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2601 MSR_IA32_VMX_PROCBASED_CTLS,
2602 &_cpu_based_exec_control))
2603 return -EIO;
2604 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2605 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2606 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2607 MSR_IA32_VMX_PROCBASED_CTLS2,
2608 &_cpu_based_2nd_exec_control))
2609 return -EIO;
2610 }
2611 #ifndef CONFIG_X86_64
2612 if (!(_cpu_based_2nd_exec_control &
2613 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2614 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2615 #endif
2616
2617 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2618 _cpu_based_2nd_exec_control &= ~(
2619 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2620 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2621 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2622
2623 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2624 &vmx_cap->ept, &vmx_cap->vpid);
2625
2626 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2627 vmx_cap->ept) {
2628 pr_warn_once("EPT CAP should not exist if not support "
2629 "1-setting enable EPT VM-execution control\n");
2630
2631 if (error_on_inconsistent_vmcs_config)
2632 return -EIO;
2633
2634 vmx_cap->ept = 0;
2635 }
2636 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2637 vmx_cap->vpid) {
2638 pr_warn_once("VPID CAP should not exist if not support "
2639 "1-setting enable VPID VM-execution control\n");
2640
2641 if (error_on_inconsistent_vmcs_config)
2642 return -EIO;
2643
2644 vmx_cap->vpid = 0;
2645 }
2646
2647 if (!cpu_has_sgx())
2648 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2649
2650 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2651 _cpu_based_3rd_exec_control =
2652 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2653 MSR_IA32_VMX_PROCBASED_CTLS3);
2654
2655 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2656 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2657 MSR_IA32_VMX_EXIT_CTLS,
2658 &_vmexit_control))
2659 return -EIO;
2660
2661 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2662 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2663 MSR_IA32_VMX_PINBASED_CTLS,
2664 &_pin_based_exec_control))
2665 return -EIO;
2666
2667 if (cpu_has_broken_vmx_preemption_timer())
2668 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2669 if (!(_cpu_based_2nd_exec_control &
2670 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2671 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2672
2673 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2674 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2675 MSR_IA32_VMX_ENTRY_CTLS,
2676 &_vmentry_control))
2677 return -EIO;
2678
2679 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2680 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2681 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2682
2683 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2684 continue;
2685
2686 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2687 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2688
2689 if (error_on_inconsistent_vmcs_config)
2690 return -EIO;
2691
2692 _vmentry_control &= ~n_ctrl;
2693 _vmexit_control &= ~x_ctrl;
2694 }
2695
2696 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2697
2698 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2699 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2700 return -EIO;
2701
2702 #ifdef CONFIG_X86_64
2703 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2704 if (vmx_msr_high & (1u<<16))
2705 return -EIO;
2706 #endif
2707
2708 /* Require Write-Back (WB) memory type for VMCS accesses. */
2709 if (((vmx_msr_high >> 18) & 15) != 6)
2710 return -EIO;
2711
2712 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2713
2714 vmcs_conf->size = vmx_msr_high & 0x1fff;
2715 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2716
2717 vmcs_conf->revision_id = vmx_msr_low;
2718
2719 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2720 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2721 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2722 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2723 vmcs_conf->vmexit_ctrl = _vmexit_control;
2724 vmcs_conf->vmentry_ctrl = _vmentry_control;
2725 vmcs_conf->misc = misc_msr;
2726
2727 #if IS_ENABLED(CONFIG_HYPERV)
2728 if (enlightened_vmcs)
2729 evmcs_sanitize_exec_ctrls(vmcs_conf);
2730 #endif
2731
2732 return 0;
2733 }
2734
__kvm_is_vmx_supported(void)2735 static bool __kvm_is_vmx_supported(void)
2736 {
2737 int cpu = smp_processor_id();
2738
2739 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2740 pr_err("VMX not supported by CPU %d\n", cpu);
2741 return false;
2742 }
2743
2744 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2745 !this_cpu_has(X86_FEATURE_VMX)) {
2746 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2747 return false;
2748 }
2749
2750 return true;
2751 }
2752
kvm_is_vmx_supported(void)2753 static bool kvm_is_vmx_supported(void)
2754 {
2755 bool supported;
2756
2757 migrate_disable();
2758 supported = __kvm_is_vmx_supported();
2759 migrate_enable();
2760
2761 return supported;
2762 }
2763
vmx_check_processor_compat(void)2764 static int vmx_check_processor_compat(void)
2765 {
2766 int cpu = raw_smp_processor_id();
2767 struct vmcs_config vmcs_conf;
2768 struct vmx_capability vmx_cap;
2769
2770 if (!__kvm_is_vmx_supported())
2771 return -EIO;
2772
2773 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2774 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2775 return -EIO;
2776 }
2777 if (nested)
2778 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2779 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2780 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2781 return -EIO;
2782 }
2783 return 0;
2784 }
2785
kvm_cpu_vmxon(u64 vmxon_pointer)2786 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2787 {
2788 u64 msr;
2789
2790 cr4_set_bits(X86_CR4_VMXE);
2791
2792 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2793 _ASM_EXTABLE(1b, %l[fault])
2794 : : [vmxon_pointer] "m"(vmxon_pointer)
2795 : : fault);
2796 return 0;
2797
2798 fault:
2799 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2800 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2801 cr4_clear_bits(X86_CR4_VMXE);
2802
2803 return -EFAULT;
2804 }
2805
vmx_hardware_enable(void)2806 static int vmx_hardware_enable(void)
2807 {
2808 int cpu = raw_smp_processor_id();
2809 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2810 int r;
2811
2812 if (cr4_read_shadow() & X86_CR4_VMXE)
2813 return -EBUSY;
2814
2815 /*
2816 * This can happen if we hot-added a CPU but failed to allocate
2817 * VP assist page for it.
2818 */
2819 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2820 return -EFAULT;
2821
2822 intel_pt_handle_vmx(1);
2823
2824 r = kvm_cpu_vmxon(phys_addr);
2825 if (r) {
2826 intel_pt_handle_vmx(0);
2827 return r;
2828 }
2829
2830 if (enable_ept)
2831 ept_sync_global();
2832
2833 return 0;
2834 }
2835
vmclear_local_loaded_vmcss(void)2836 static void vmclear_local_loaded_vmcss(void)
2837 {
2838 int cpu = raw_smp_processor_id();
2839 struct loaded_vmcs *v, *n;
2840
2841 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2842 loaded_vmcss_on_cpu_link)
2843 __loaded_vmcs_clear(v);
2844 }
2845
vmx_hardware_disable(void)2846 static void vmx_hardware_disable(void)
2847 {
2848 vmclear_local_loaded_vmcss();
2849
2850 if (kvm_cpu_vmxoff())
2851 kvm_spurious_fault();
2852
2853 hv_reset_evmcs();
2854
2855 intel_pt_handle_vmx(0);
2856 }
2857
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2858 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2859 {
2860 int node = cpu_to_node(cpu);
2861 struct page *pages;
2862 struct vmcs *vmcs;
2863
2864 pages = __alloc_pages_node(node, flags, 0);
2865 if (!pages)
2866 return NULL;
2867 vmcs = page_address(pages);
2868 memset(vmcs, 0, vmcs_config.size);
2869
2870 /* KVM supports Enlightened VMCS v1 only */
2871 if (kvm_is_using_evmcs())
2872 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2873 else
2874 vmcs->hdr.revision_id = vmcs_config.revision_id;
2875
2876 if (shadow)
2877 vmcs->hdr.shadow_vmcs = 1;
2878 return vmcs;
2879 }
2880
free_vmcs(struct vmcs * vmcs)2881 void free_vmcs(struct vmcs *vmcs)
2882 {
2883 free_page((unsigned long)vmcs);
2884 }
2885
2886 /*
2887 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2888 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2889 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2890 {
2891 if (!loaded_vmcs->vmcs)
2892 return;
2893 loaded_vmcs_clear(loaded_vmcs);
2894 free_vmcs(loaded_vmcs->vmcs);
2895 loaded_vmcs->vmcs = NULL;
2896 if (loaded_vmcs->msr_bitmap)
2897 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2898 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2899 }
2900
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2901 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2902 {
2903 loaded_vmcs->vmcs = alloc_vmcs(false);
2904 if (!loaded_vmcs->vmcs)
2905 return -ENOMEM;
2906
2907 vmcs_clear(loaded_vmcs->vmcs);
2908
2909 loaded_vmcs->shadow_vmcs = NULL;
2910 loaded_vmcs->hv_timer_soft_disabled = false;
2911 loaded_vmcs->cpu = -1;
2912 loaded_vmcs->launched = 0;
2913
2914 if (cpu_has_vmx_msr_bitmap()) {
2915 loaded_vmcs->msr_bitmap = (unsigned long *)
2916 __get_free_page(GFP_KERNEL_ACCOUNT);
2917 if (!loaded_vmcs->msr_bitmap)
2918 goto out_vmcs;
2919 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2920 }
2921
2922 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2923 memset(&loaded_vmcs->controls_shadow, 0,
2924 sizeof(struct vmcs_controls_shadow));
2925
2926 return 0;
2927
2928 out_vmcs:
2929 free_loaded_vmcs(loaded_vmcs);
2930 return -ENOMEM;
2931 }
2932
free_kvm_area(void)2933 static void free_kvm_area(void)
2934 {
2935 int cpu;
2936
2937 for_each_possible_cpu(cpu) {
2938 free_vmcs(per_cpu(vmxarea, cpu));
2939 per_cpu(vmxarea, cpu) = NULL;
2940 }
2941 }
2942
alloc_kvm_area(void)2943 static __init int alloc_kvm_area(void)
2944 {
2945 int cpu;
2946
2947 for_each_possible_cpu(cpu) {
2948 struct vmcs *vmcs;
2949
2950 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2951 if (!vmcs) {
2952 free_kvm_area();
2953 return -ENOMEM;
2954 }
2955
2956 /*
2957 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2958 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2959 * revision_id reported by MSR_IA32_VMX_BASIC.
2960 *
2961 * However, even though not explicitly documented by
2962 * TLFS, VMXArea passed as VMXON argument should
2963 * still be marked with revision_id reported by
2964 * physical CPU.
2965 */
2966 if (kvm_is_using_evmcs())
2967 vmcs->hdr.revision_id = vmcs_config.revision_id;
2968
2969 per_cpu(vmxarea, cpu) = vmcs;
2970 }
2971 return 0;
2972 }
2973
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2974 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2975 struct kvm_segment *save)
2976 {
2977 if (!emulate_invalid_guest_state) {
2978 /*
2979 * CS and SS RPL should be equal during guest entry according
2980 * to VMX spec, but in reality it is not always so. Since vcpu
2981 * is in the middle of the transition from real mode to
2982 * protected mode it is safe to assume that RPL 0 is a good
2983 * default value.
2984 */
2985 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2986 save->selector &= ~SEGMENT_RPL_MASK;
2987 save->dpl = save->selector & SEGMENT_RPL_MASK;
2988 save->s = 1;
2989 }
2990 __vmx_set_segment(vcpu, save, seg);
2991 }
2992
enter_pmode(struct kvm_vcpu * vcpu)2993 static void enter_pmode(struct kvm_vcpu *vcpu)
2994 {
2995 unsigned long flags;
2996 struct vcpu_vmx *vmx = to_vmx(vcpu);
2997
2998 /*
2999 * Update real mode segment cache. It may be not up-to-date if segment
3000 * register was written while vcpu was in a guest mode.
3001 */
3002 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3003 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3004 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3005 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3006 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3007 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3008
3009 vmx->rmode.vm86_active = 0;
3010
3011 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3012
3013 flags = vmcs_readl(GUEST_RFLAGS);
3014 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3015 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3016 vmcs_writel(GUEST_RFLAGS, flags);
3017
3018 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3019 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3020
3021 vmx_update_exception_bitmap(vcpu);
3022
3023 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3024 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3025 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3026 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3027 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3028 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3029 }
3030
fix_rmode_seg(int seg,struct kvm_segment * save)3031 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3032 {
3033 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3034 struct kvm_segment var = *save;
3035
3036 var.dpl = 0x3;
3037 if (seg == VCPU_SREG_CS)
3038 var.type = 0x3;
3039
3040 if (!emulate_invalid_guest_state) {
3041 var.selector = var.base >> 4;
3042 var.base = var.base & 0xffff0;
3043 var.limit = 0xffff;
3044 var.g = 0;
3045 var.db = 0;
3046 var.present = 1;
3047 var.s = 1;
3048 var.l = 0;
3049 var.unusable = 0;
3050 var.type = 0x3;
3051 var.avl = 0;
3052 if (save->base & 0xf)
3053 pr_warn_once("segment base is not paragraph aligned "
3054 "when entering protected mode (seg=%d)", seg);
3055 }
3056
3057 vmcs_write16(sf->selector, var.selector);
3058 vmcs_writel(sf->base, var.base);
3059 vmcs_write32(sf->limit, var.limit);
3060 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3061 }
3062
enter_rmode(struct kvm_vcpu * vcpu)3063 static void enter_rmode(struct kvm_vcpu *vcpu)
3064 {
3065 unsigned long flags;
3066 struct vcpu_vmx *vmx = to_vmx(vcpu);
3067 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3068
3069 /*
3070 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3071 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3072 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3073 * should VM-Fail and KVM should reject userspace attempts to stuff
3074 * CR0.PG=0 when L2 is active.
3075 */
3076 WARN_ON_ONCE(is_guest_mode(vcpu));
3077
3078 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3079 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3080 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3081 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3082 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3083 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3084 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3085
3086 vmx->rmode.vm86_active = 1;
3087
3088 vmx_segment_cache_clear(vmx);
3089
3090 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3091 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3092 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3093
3094 flags = vmcs_readl(GUEST_RFLAGS);
3095 vmx->rmode.save_rflags = flags;
3096
3097 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3098
3099 vmcs_writel(GUEST_RFLAGS, flags);
3100 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3101 vmx_update_exception_bitmap(vcpu);
3102
3103 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3104 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3105 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3106 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3107 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3108 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3109 }
3110
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3111 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3112 {
3113 struct vcpu_vmx *vmx = to_vmx(vcpu);
3114
3115 /* Nothing to do if hardware doesn't support EFER. */
3116 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3117 return 0;
3118
3119 vcpu->arch.efer = efer;
3120 #ifdef CONFIG_X86_64
3121 if (efer & EFER_LMA)
3122 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3123 else
3124 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3125 #else
3126 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3127 return 1;
3128 #endif
3129
3130 vmx_setup_uret_msrs(vmx);
3131 return 0;
3132 }
3133
3134 #ifdef CONFIG_X86_64
3135
enter_lmode(struct kvm_vcpu * vcpu)3136 static void enter_lmode(struct kvm_vcpu *vcpu)
3137 {
3138 u32 guest_tr_ar;
3139
3140 vmx_segment_cache_clear(to_vmx(vcpu));
3141
3142 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3143 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3144 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3145 __func__);
3146 vmcs_write32(GUEST_TR_AR_BYTES,
3147 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3148 | VMX_AR_TYPE_BUSY_64_TSS);
3149 }
3150 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3151 }
3152
exit_lmode(struct kvm_vcpu * vcpu)3153 static void exit_lmode(struct kvm_vcpu *vcpu)
3154 {
3155 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3156 }
3157
3158 #endif
3159
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3160 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3161 {
3162 struct vcpu_vmx *vmx = to_vmx(vcpu);
3163
3164 /*
3165 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3166 * the CPU is not required to invalidate guest-physical mappings on
3167 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3168 * associated with the root EPT structure and not any particular VPID
3169 * (INVVPID also isn't required to invalidate guest-physical mappings).
3170 */
3171 if (enable_ept) {
3172 ept_sync_global();
3173 } else if (enable_vpid) {
3174 if (cpu_has_vmx_invvpid_global()) {
3175 vpid_sync_vcpu_global();
3176 } else {
3177 vpid_sync_vcpu_single(vmx->vpid);
3178 vpid_sync_vcpu_single(vmx->nested.vpid02);
3179 }
3180 }
3181 }
3182
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3183 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3184 {
3185 if (is_guest_mode(vcpu))
3186 return nested_get_vpid02(vcpu);
3187 return to_vmx(vcpu)->vpid;
3188 }
3189
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3190 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3191 {
3192 struct kvm_mmu *mmu = vcpu->arch.mmu;
3193 u64 root_hpa = mmu->root.hpa;
3194
3195 /* No flush required if the current context is invalid. */
3196 if (!VALID_PAGE(root_hpa))
3197 return;
3198
3199 if (enable_ept)
3200 ept_sync_context(construct_eptp(vcpu, root_hpa,
3201 mmu->root_role.level));
3202 else
3203 vpid_sync_context(vmx_get_current_vpid(vcpu));
3204 }
3205
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3206 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3207 {
3208 /*
3209 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3210 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3211 */
3212 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3213 }
3214
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3215 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3216 {
3217 /*
3218 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3219 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3220 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3221 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3222 * i.e. no explicit INVVPID is necessary.
3223 */
3224 vpid_sync_context(vmx_get_current_vpid(vcpu));
3225 }
3226
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3227 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3228 {
3229 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3230
3231 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3232 return;
3233
3234 if (is_pae_paging(vcpu)) {
3235 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3236 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3237 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3238 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3239 }
3240 }
3241
ept_save_pdptrs(struct kvm_vcpu * vcpu)3242 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3243 {
3244 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3245
3246 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3247 return;
3248
3249 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3250 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3251 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3252 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3253
3254 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3255 }
3256
3257 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3258 CPU_BASED_CR3_STORE_EXITING)
3259
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3260 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3261 {
3262 if (is_guest_mode(vcpu))
3263 return nested_guest_cr0_valid(vcpu, cr0);
3264
3265 if (to_vmx(vcpu)->nested.vmxon)
3266 return nested_host_cr0_valid(vcpu, cr0);
3267
3268 return true;
3269 }
3270
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3271 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3272 {
3273 struct vcpu_vmx *vmx = to_vmx(vcpu);
3274 unsigned long hw_cr0, old_cr0_pg;
3275 u32 tmp;
3276
3277 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3278
3279 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3280 if (enable_unrestricted_guest)
3281 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3282 else {
3283 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3284 if (!enable_ept)
3285 hw_cr0 |= X86_CR0_WP;
3286
3287 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3288 enter_pmode(vcpu);
3289
3290 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3291 enter_rmode(vcpu);
3292 }
3293
3294 vmcs_writel(CR0_READ_SHADOW, cr0);
3295 vmcs_writel(GUEST_CR0, hw_cr0);
3296 vcpu->arch.cr0 = cr0;
3297 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3298
3299 #ifdef CONFIG_X86_64
3300 if (vcpu->arch.efer & EFER_LME) {
3301 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3302 enter_lmode(vcpu);
3303 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3304 exit_lmode(vcpu);
3305 }
3306 #endif
3307
3308 if (enable_ept && !enable_unrestricted_guest) {
3309 /*
3310 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3311 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3312 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3313 * KVM's CR3 is installed.
3314 */
3315 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3316 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3317
3318 /*
3319 * When running with EPT but not unrestricted guest, KVM must
3320 * intercept CR3 accesses when paging is _disabled_. This is
3321 * necessary because restricted guests can't actually run with
3322 * paging disabled, and so KVM stuffs its own CR3 in order to
3323 * run the guest when identity mapped page tables.
3324 *
3325 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3326 * update, it may be stale with respect to CR3 interception,
3327 * e.g. after nested VM-Enter.
3328 *
3329 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3330 * stores to forward them to L1, even if KVM does not need to
3331 * intercept them to preserve its identity mapped page tables.
3332 */
3333 if (!(cr0 & X86_CR0_PG)) {
3334 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3335 } else if (!is_guest_mode(vcpu)) {
3336 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3337 } else {
3338 tmp = exec_controls_get(vmx);
3339 tmp &= ~CR3_EXITING_BITS;
3340 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3341 exec_controls_set(vmx, tmp);
3342 }
3343
3344 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3345 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3346 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3347
3348 /*
3349 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3350 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3351 */
3352 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3353 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3354 }
3355
3356 /* depends on vcpu->arch.cr0 to be set to a new value */
3357 vmx->emulation_required = vmx_emulation_required(vcpu);
3358 }
3359
vmx_get_max_ept_level(void)3360 static int vmx_get_max_ept_level(void)
3361 {
3362 if (cpu_has_vmx_ept_5levels())
3363 return 5;
3364 return 4;
3365 }
3366
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3367 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3368 {
3369 u64 eptp = VMX_EPTP_MT_WB;
3370
3371 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3372
3373 if (enable_ept_ad_bits &&
3374 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3375 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3376 eptp |= root_hpa;
3377
3378 return eptp;
3379 }
3380
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3381 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3382 int root_level)
3383 {
3384 struct kvm *kvm = vcpu->kvm;
3385 bool update_guest_cr3 = true;
3386 unsigned long guest_cr3;
3387 u64 eptp;
3388
3389 if (enable_ept) {
3390 eptp = construct_eptp(vcpu, root_hpa, root_level);
3391 vmcs_write64(EPT_POINTER, eptp);
3392
3393 hv_track_root_tdp(vcpu, root_hpa);
3394
3395 if (!enable_unrestricted_guest && !is_paging(vcpu))
3396 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3397 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3398 guest_cr3 = vcpu->arch.cr3;
3399 else /* vmcs.GUEST_CR3 is already up-to-date. */
3400 update_guest_cr3 = false;
3401 vmx_ept_load_pdptrs(vcpu);
3402 } else {
3403 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3404 }
3405
3406 if (update_guest_cr3)
3407 vmcs_writel(GUEST_CR3, guest_cr3);
3408 }
3409
3410
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3411 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3412 {
3413 /*
3414 * We operate under the default treatment of SMM, so VMX cannot be
3415 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3416 * i.e. is a reserved bit, is handled by common x86 code.
3417 */
3418 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3419 return false;
3420
3421 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3422 return false;
3423
3424 return true;
3425 }
3426
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3427 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3428 {
3429 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3430 struct vcpu_vmx *vmx = to_vmx(vcpu);
3431 unsigned long hw_cr4;
3432
3433 /*
3434 * Pass through host's Machine Check Enable value to hw_cr4, which
3435 * is in force while we are in guest mode. Do not let guests control
3436 * this bit, even if host CR4.MCE == 0.
3437 */
3438 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3439 if (enable_unrestricted_guest)
3440 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3441 else if (vmx->rmode.vm86_active)
3442 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3443 else
3444 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3445
3446 if (vmx_umip_emulated()) {
3447 if (cr4 & X86_CR4_UMIP) {
3448 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3449 hw_cr4 &= ~X86_CR4_UMIP;
3450 } else if (!is_guest_mode(vcpu) ||
3451 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3452 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3453 }
3454 }
3455
3456 vcpu->arch.cr4 = cr4;
3457 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3458
3459 if (!enable_unrestricted_guest) {
3460 if (enable_ept) {
3461 if (!is_paging(vcpu)) {
3462 hw_cr4 &= ~X86_CR4_PAE;
3463 hw_cr4 |= X86_CR4_PSE;
3464 } else if (!(cr4 & X86_CR4_PAE)) {
3465 hw_cr4 &= ~X86_CR4_PAE;
3466 }
3467 }
3468
3469 /*
3470 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3471 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3472 * to be manually disabled when guest switches to non-paging
3473 * mode.
3474 *
3475 * If !enable_unrestricted_guest, the CPU is always running
3476 * with CR0.PG=1 and CR4 needs to be modified.
3477 * If enable_unrestricted_guest, the CPU automatically
3478 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3479 */
3480 if (!is_paging(vcpu))
3481 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3482 }
3483
3484 vmcs_writel(CR4_READ_SHADOW, cr4);
3485 vmcs_writel(GUEST_CR4, hw_cr4);
3486
3487 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3488 kvm_update_cpuid_runtime(vcpu);
3489 }
3490
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3491 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3492 {
3493 struct vcpu_vmx *vmx = to_vmx(vcpu);
3494 u32 ar;
3495
3496 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3497 *var = vmx->rmode.segs[seg];
3498 if (seg == VCPU_SREG_TR
3499 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3500 return;
3501 var->base = vmx_read_guest_seg_base(vmx, seg);
3502 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3503 return;
3504 }
3505 var->base = vmx_read_guest_seg_base(vmx, seg);
3506 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3507 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3508 ar = vmx_read_guest_seg_ar(vmx, seg);
3509 var->unusable = (ar >> 16) & 1;
3510 var->type = ar & 15;
3511 var->s = (ar >> 4) & 1;
3512 var->dpl = (ar >> 5) & 3;
3513 /*
3514 * Some userspaces do not preserve unusable property. Since usable
3515 * segment has to be present according to VMX spec we can use present
3516 * property to amend userspace bug by making unusable segment always
3517 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3518 * segment as unusable.
3519 */
3520 var->present = !var->unusable;
3521 var->avl = (ar >> 12) & 1;
3522 var->l = (ar >> 13) & 1;
3523 var->db = (ar >> 14) & 1;
3524 var->g = (ar >> 15) & 1;
3525 }
3526
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3527 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3528 {
3529 struct kvm_segment s;
3530
3531 if (to_vmx(vcpu)->rmode.vm86_active) {
3532 vmx_get_segment(vcpu, &s, seg);
3533 return s.base;
3534 }
3535 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3536 }
3537
vmx_get_cpl(struct kvm_vcpu * vcpu)3538 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3539 {
3540 struct vcpu_vmx *vmx = to_vmx(vcpu);
3541
3542 if (unlikely(vmx->rmode.vm86_active))
3543 return 0;
3544 else {
3545 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3546 return VMX_AR_DPL(ar);
3547 }
3548 }
3549
vmx_segment_access_rights(struct kvm_segment * var)3550 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3551 {
3552 u32 ar;
3553
3554 ar = var->type & 15;
3555 ar |= (var->s & 1) << 4;
3556 ar |= (var->dpl & 3) << 5;
3557 ar |= (var->present & 1) << 7;
3558 ar |= (var->avl & 1) << 12;
3559 ar |= (var->l & 1) << 13;
3560 ar |= (var->db & 1) << 14;
3561 ar |= (var->g & 1) << 15;
3562 ar |= (var->unusable || !var->present) << 16;
3563
3564 return ar;
3565 }
3566
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3567 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3568 {
3569 struct vcpu_vmx *vmx = to_vmx(vcpu);
3570 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3571
3572 vmx_segment_cache_clear(vmx);
3573
3574 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3575 vmx->rmode.segs[seg] = *var;
3576 if (seg == VCPU_SREG_TR)
3577 vmcs_write16(sf->selector, var->selector);
3578 else if (var->s)
3579 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3580 return;
3581 }
3582
3583 vmcs_writel(sf->base, var->base);
3584 vmcs_write32(sf->limit, var->limit);
3585 vmcs_write16(sf->selector, var->selector);
3586
3587 /*
3588 * Fix the "Accessed" bit in AR field of segment registers for older
3589 * qemu binaries.
3590 * IA32 arch specifies that at the time of processor reset the
3591 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3592 * is setting it to 0 in the userland code. This causes invalid guest
3593 * state vmexit when "unrestricted guest" mode is turned on.
3594 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3595 * tree. Newer qemu binaries with that qemu fix would not need this
3596 * kvm hack.
3597 */
3598 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3599 var->type |= 0x1; /* Accessed */
3600
3601 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3602 }
3603
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3604 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3605 {
3606 __vmx_set_segment(vcpu, var, seg);
3607
3608 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3609 }
3610
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3611 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3612 {
3613 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3614
3615 *db = (ar >> 14) & 1;
3616 *l = (ar >> 13) & 1;
3617 }
3618
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3619 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3620 {
3621 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3622 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3623 }
3624
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3625 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3626 {
3627 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3628 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3629 }
3630
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3631 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3632 {
3633 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3634 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3635 }
3636
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3637 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3638 {
3639 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3640 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3641 }
3642
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3643 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3644 {
3645 struct kvm_segment var;
3646 u32 ar;
3647
3648 vmx_get_segment(vcpu, &var, seg);
3649 var.dpl = 0x3;
3650 if (seg == VCPU_SREG_CS)
3651 var.type = 0x3;
3652 ar = vmx_segment_access_rights(&var);
3653
3654 if (var.base != (var.selector << 4))
3655 return false;
3656 if (var.limit != 0xffff)
3657 return false;
3658 if (ar != 0xf3)
3659 return false;
3660
3661 return true;
3662 }
3663
code_segment_valid(struct kvm_vcpu * vcpu)3664 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3665 {
3666 struct kvm_segment cs;
3667 unsigned int cs_rpl;
3668
3669 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3670 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3671
3672 if (cs.unusable)
3673 return false;
3674 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3675 return false;
3676 if (!cs.s)
3677 return false;
3678 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3679 if (cs.dpl > cs_rpl)
3680 return false;
3681 } else {
3682 if (cs.dpl != cs_rpl)
3683 return false;
3684 }
3685 if (!cs.present)
3686 return false;
3687
3688 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3689 return true;
3690 }
3691
stack_segment_valid(struct kvm_vcpu * vcpu)3692 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3693 {
3694 struct kvm_segment ss;
3695 unsigned int ss_rpl;
3696
3697 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3698 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3699
3700 if (ss.unusable)
3701 return true;
3702 if (ss.type != 3 && ss.type != 7)
3703 return false;
3704 if (!ss.s)
3705 return false;
3706 if (ss.dpl != ss_rpl) /* DPL != RPL */
3707 return false;
3708 if (!ss.present)
3709 return false;
3710
3711 return true;
3712 }
3713
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3714 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3715 {
3716 struct kvm_segment var;
3717 unsigned int rpl;
3718
3719 vmx_get_segment(vcpu, &var, seg);
3720 rpl = var.selector & SEGMENT_RPL_MASK;
3721
3722 if (var.unusable)
3723 return true;
3724 if (!var.s)
3725 return false;
3726 if (!var.present)
3727 return false;
3728 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3729 if (var.dpl < rpl) /* DPL < RPL */
3730 return false;
3731 }
3732
3733 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3734 * rights flags
3735 */
3736 return true;
3737 }
3738
tr_valid(struct kvm_vcpu * vcpu)3739 static bool tr_valid(struct kvm_vcpu *vcpu)
3740 {
3741 struct kvm_segment tr;
3742
3743 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3744
3745 if (tr.unusable)
3746 return false;
3747 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3748 return false;
3749 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3750 return false;
3751 if (!tr.present)
3752 return false;
3753
3754 return true;
3755 }
3756
ldtr_valid(struct kvm_vcpu * vcpu)3757 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3758 {
3759 struct kvm_segment ldtr;
3760
3761 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3762
3763 if (ldtr.unusable)
3764 return true;
3765 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3766 return false;
3767 if (ldtr.type != 2)
3768 return false;
3769 if (!ldtr.present)
3770 return false;
3771
3772 return true;
3773 }
3774
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3775 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3776 {
3777 struct kvm_segment cs, ss;
3778
3779 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3780 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3781
3782 return ((cs.selector & SEGMENT_RPL_MASK) ==
3783 (ss.selector & SEGMENT_RPL_MASK));
3784 }
3785
3786 /*
3787 * Check if guest state is valid. Returns true if valid, false if
3788 * not.
3789 * We assume that registers are always usable
3790 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3791 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3792 {
3793 /* real mode guest state checks */
3794 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3795 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3796 return false;
3797 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3798 return false;
3799 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3800 return false;
3801 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3802 return false;
3803 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3804 return false;
3805 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3806 return false;
3807 } else {
3808 /* protected mode guest state checks */
3809 if (!cs_ss_rpl_check(vcpu))
3810 return false;
3811 if (!code_segment_valid(vcpu))
3812 return false;
3813 if (!stack_segment_valid(vcpu))
3814 return false;
3815 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3816 return false;
3817 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3818 return false;
3819 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3820 return false;
3821 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3822 return false;
3823 if (!tr_valid(vcpu))
3824 return false;
3825 if (!ldtr_valid(vcpu))
3826 return false;
3827 }
3828 /* TODO:
3829 * - Add checks on RIP
3830 * - Add checks on RFLAGS
3831 */
3832
3833 return true;
3834 }
3835
init_rmode_tss(struct kvm * kvm,void __user * ua)3836 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3837 {
3838 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3839 u16 data;
3840 int i;
3841
3842 for (i = 0; i < 3; i++) {
3843 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3844 return -EFAULT;
3845 }
3846
3847 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3848 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3849 return -EFAULT;
3850
3851 data = ~0;
3852 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3853 return -EFAULT;
3854
3855 return 0;
3856 }
3857
init_rmode_identity_map(struct kvm * kvm)3858 static int init_rmode_identity_map(struct kvm *kvm)
3859 {
3860 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3861 int i, r = 0;
3862 void __user *uaddr;
3863 u32 tmp;
3864
3865 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3866 mutex_lock(&kvm->slots_lock);
3867
3868 if (likely(kvm_vmx->ept_identity_pagetable_done))
3869 goto out;
3870
3871 if (!kvm_vmx->ept_identity_map_addr)
3872 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3873
3874 uaddr = __x86_set_memory_region(kvm,
3875 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3876 kvm_vmx->ept_identity_map_addr,
3877 PAGE_SIZE);
3878 if (IS_ERR(uaddr)) {
3879 r = PTR_ERR(uaddr);
3880 goto out;
3881 }
3882
3883 /* Set up identity-mapping pagetable for EPT in real mode */
3884 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3885 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3886 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3887 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3888 r = -EFAULT;
3889 goto out;
3890 }
3891 }
3892 kvm_vmx->ept_identity_pagetable_done = true;
3893
3894 out:
3895 mutex_unlock(&kvm->slots_lock);
3896 return r;
3897 }
3898
seg_setup(int seg)3899 static void seg_setup(int seg)
3900 {
3901 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3902 unsigned int ar;
3903
3904 vmcs_write16(sf->selector, 0);
3905 vmcs_writel(sf->base, 0);
3906 vmcs_write32(sf->limit, 0xffff);
3907 ar = 0x93;
3908 if (seg == VCPU_SREG_CS)
3909 ar |= 0x08; /* code segment */
3910
3911 vmcs_write32(sf->ar_bytes, ar);
3912 }
3913
allocate_vpid(void)3914 int allocate_vpid(void)
3915 {
3916 int vpid;
3917
3918 if (!enable_vpid)
3919 return 0;
3920 spin_lock(&vmx_vpid_lock);
3921 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3922 if (vpid < VMX_NR_VPIDS)
3923 __set_bit(vpid, vmx_vpid_bitmap);
3924 else
3925 vpid = 0;
3926 spin_unlock(&vmx_vpid_lock);
3927 return vpid;
3928 }
3929
free_vpid(int vpid)3930 void free_vpid(int vpid)
3931 {
3932 if (!enable_vpid || vpid == 0)
3933 return;
3934 spin_lock(&vmx_vpid_lock);
3935 __clear_bit(vpid, vmx_vpid_bitmap);
3936 spin_unlock(&vmx_vpid_lock);
3937 }
3938
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3939 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3940 {
3941 /*
3942 * When KVM is a nested hypervisor on top of Hyper-V and uses
3943 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3944 * bitmap has changed.
3945 */
3946 if (kvm_is_using_evmcs()) {
3947 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3948
3949 if (evmcs->hv_enlightenments_control.msr_bitmap)
3950 evmcs->hv_clean_fields &=
3951 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3952 }
3953
3954 vmx->nested.force_msr_bitmap_recalc = true;
3955 }
3956
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3957 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3958 {
3959 struct vcpu_vmx *vmx = to_vmx(vcpu);
3960 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3961
3962 if (!cpu_has_vmx_msr_bitmap())
3963 return;
3964
3965 vmx_msr_bitmap_l01_changed(vmx);
3966
3967 /*
3968 * Mark the desired intercept state in shadow bitmap, this is needed
3969 * for resync when the MSR filters change.
3970 */
3971 if (is_valid_passthrough_msr(msr)) {
3972 int idx = possible_passthrough_msr_slot(msr);
3973
3974 if (idx != -ENOENT) {
3975 if (type & MSR_TYPE_R)
3976 clear_bit(idx, vmx->shadow_msr_intercept.read);
3977 if (type & MSR_TYPE_W)
3978 clear_bit(idx, vmx->shadow_msr_intercept.write);
3979 }
3980 }
3981
3982 if ((type & MSR_TYPE_R) &&
3983 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3984 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3985 type &= ~MSR_TYPE_R;
3986 }
3987
3988 if ((type & MSR_TYPE_W) &&
3989 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3990 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3991 type &= ~MSR_TYPE_W;
3992 }
3993
3994 if (type & MSR_TYPE_R)
3995 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3996
3997 if (type & MSR_TYPE_W)
3998 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3999 }
4000
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4001 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4002 {
4003 struct vcpu_vmx *vmx = to_vmx(vcpu);
4004 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4005
4006 if (!cpu_has_vmx_msr_bitmap())
4007 return;
4008
4009 vmx_msr_bitmap_l01_changed(vmx);
4010
4011 /*
4012 * Mark the desired intercept state in shadow bitmap, this is needed
4013 * for resync when the MSR filter changes.
4014 */
4015 if (is_valid_passthrough_msr(msr)) {
4016 int idx = possible_passthrough_msr_slot(msr);
4017
4018 if (idx != -ENOENT) {
4019 if (type & MSR_TYPE_R)
4020 set_bit(idx, vmx->shadow_msr_intercept.read);
4021 if (type & MSR_TYPE_W)
4022 set_bit(idx, vmx->shadow_msr_intercept.write);
4023 }
4024 }
4025
4026 if (type & MSR_TYPE_R)
4027 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4028
4029 if (type & MSR_TYPE_W)
4030 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4031 }
4032
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4033 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4034 {
4035 /*
4036 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4037 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4038 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4039 */
4040 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4041 const int write_idx = read_idx + (0x800 / sizeof(u64));
4042 struct vcpu_vmx *vmx = to_vmx(vcpu);
4043 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4044 u8 mode;
4045
4046 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4047 return;
4048
4049 if (cpu_has_secondary_exec_ctrls() &&
4050 (secondary_exec_controls_get(vmx) &
4051 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4052 mode = MSR_BITMAP_MODE_X2APIC;
4053 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4054 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4055 } else {
4056 mode = 0;
4057 }
4058
4059 if (mode == vmx->x2apic_msr_bitmap_mode)
4060 return;
4061
4062 vmx->x2apic_msr_bitmap_mode = mode;
4063
4064 /*
4065 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4066 * registers (0x840 and above) intercepted, KVM doesn't support them.
4067 * Intercept all writes by default and poke holes as needed. Pass
4068 * through reads for all valid registers by default in x2APIC+APICv
4069 * mode, only the current timer count needs on-demand emulation by KVM.
4070 */
4071 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4072 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4073 else
4074 msr_bitmap[read_idx] = ~0ull;
4075 msr_bitmap[write_idx] = ~0ull;
4076
4077 /*
4078 * TPR reads and writes can be virtualized even if virtual interrupt
4079 * delivery is not in use.
4080 */
4081 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4082 !(mode & MSR_BITMAP_MODE_X2APIC));
4083
4084 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4085 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4086 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4087 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4088 if (enable_ipiv)
4089 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4090 }
4091 }
4092
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4093 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4094 {
4095 struct vcpu_vmx *vmx = to_vmx(vcpu);
4096 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4097 u32 i;
4098
4099 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4100 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4101 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4102 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4103 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4104 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4105 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4106 }
4107 }
4108
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)4109 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4110 {
4111 struct vcpu_vmx *vmx = to_vmx(vcpu);
4112 void *vapic_page;
4113 u32 vppr;
4114 int rvi;
4115
4116 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4117 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4118 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4119 return false;
4120
4121 rvi = vmx_get_rvi();
4122
4123 vapic_page = vmx->nested.virtual_apic_map.hva;
4124 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4125
4126 return ((rvi & 0xf0) > (vppr & 0xf0));
4127 }
4128
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4129 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4130 {
4131 struct vcpu_vmx *vmx = to_vmx(vcpu);
4132 u32 i;
4133
4134 /*
4135 * Redo intercept permissions for MSRs that KVM is passing through to
4136 * the guest. Disabling interception will check the new MSR filter and
4137 * ensure that KVM enables interception if usersepace wants to filter
4138 * the MSR. MSRs that KVM is already intercepting don't need to be
4139 * refreshed since KVM is going to intercept them regardless of what
4140 * userspace wants.
4141 */
4142 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4143 u32 msr = vmx_possible_passthrough_msrs[i];
4144
4145 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4146 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4147
4148 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4149 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4150 }
4151
4152 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4153 if (vmx_pt_mode_is_host_guest())
4154 pt_update_intercept_for_msr(vcpu);
4155 }
4156
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4157 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4158 int pi_vec)
4159 {
4160 #ifdef CONFIG_SMP
4161 if (vcpu->mode == IN_GUEST_MODE) {
4162 /*
4163 * The vector of the virtual has already been set in the PIR.
4164 * Send a notification event to deliver the virtual interrupt
4165 * unless the vCPU is the currently running vCPU, i.e. the
4166 * event is being sent from a fastpath VM-Exit handler, in
4167 * which case the PIR will be synced to the vIRR before
4168 * re-entering the guest.
4169 *
4170 * When the target is not the running vCPU, the following
4171 * possibilities emerge:
4172 *
4173 * Case 1: vCPU stays in non-root mode. Sending a notification
4174 * event posts the interrupt to the vCPU.
4175 *
4176 * Case 2: vCPU exits to root mode and is still runnable. The
4177 * PIR will be synced to the vIRR before re-entering the guest.
4178 * Sending a notification event is ok as the host IRQ handler
4179 * will ignore the spurious event.
4180 *
4181 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4182 * has already synced PIR to vIRR and never blocks the vCPU if
4183 * the vIRR is not empty. Therefore, a blocked vCPU here does
4184 * not wait for any requested interrupts in PIR, and sending a
4185 * notification event also results in a benign, spurious event.
4186 */
4187
4188 if (vcpu != kvm_get_running_vcpu())
4189 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4190 return;
4191 }
4192 #endif
4193 /*
4194 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4195 * otherwise do nothing as KVM will grab the highest priority pending
4196 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4197 */
4198 kvm_vcpu_wake_up(vcpu);
4199 }
4200
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4201 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4202 int vector)
4203 {
4204 struct vcpu_vmx *vmx = to_vmx(vcpu);
4205
4206 if (is_guest_mode(vcpu) &&
4207 vector == vmx->nested.posted_intr_nv) {
4208 /*
4209 * If a posted intr is not recognized by hardware,
4210 * we will accomplish it in the next vmentry.
4211 */
4212 vmx->nested.pi_pending = true;
4213 kvm_make_request(KVM_REQ_EVENT, vcpu);
4214
4215 /*
4216 * This pairs with the smp_mb_*() after setting vcpu->mode in
4217 * vcpu_enter_guest() to guarantee the vCPU sees the event
4218 * request if triggering a posted interrupt "fails" because
4219 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4220 * the smb_wmb() in kvm_make_request() only ensures everything
4221 * done before making the request is visible when the request
4222 * is visible, it doesn't ensure ordering between the store to
4223 * vcpu->requests and the load from vcpu->mode.
4224 */
4225 smp_mb__after_atomic();
4226
4227 /* the PIR and ON have been set by L1. */
4228 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4229 return 0;
4230 }
4231 return -1;
4232 }
4233 /*
4234 * Send interrupt to vcpu via posted interrupt way.
4235 * 1. If target vcpu is running(non-root mode), send posted interrupt
4236 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4237 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4238 * interrupt from PIR in next vmentry.
4239 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4240 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4241 {
4242 struct vcpu_vmx *vmx = to_vmx(vcpu);
4243 int r;
4244
4245 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4246 if (!r)
4247 return 0;
4248
4249 /* Note, this is called iff the local APIC is in-kernel. */
4250 if (!vcpu->arch.apic->apicv_active)
4251 return -1;
4252
4253 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4254 return 0;
4255
4256 /* If a previous notification has sent the IPI, nothing to do. */
4257 if (pi_test_and_set_on(&vmx->pi_desc))
4258 return 0;
4259
4260 /*
4261 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4262 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4263 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4264 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4265 */
4266 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4267 return 0;
4268 }
4269
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4270 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4271 int trig_mode, int vector)
4272 {
4273 struct kvm_vcpu *vcpu = apic->vcpu;
4274
4275 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4276 kvm_lapic_set_irr(vector, apic);
4277 kvm_make_request(KVM_REQ_EVENT, vcpu);
4278 kvm_vcpu_kick(vcpu);
4279 } else {
4280 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4281 trig_mode, vector);
4282 }
4283 }
4284
4285 /*
4286 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4287 * will not change in the lifetime of the guest.
4288 * Note that host-state that does change is set elsewhere. E.g., host-state
4289 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4290 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4291 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4292 {
4293 u32 low32, high32;
4294 unsigned long tmpl;
4295 unsigned long cr0, cr3, cr4;
4296
4297 cr0 = read_cr0();
4298 WARN_ON(cr0 & X86_CR0_TS);
4299 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4300
4301 /*
4302 * Save the most likely value for this task's CR3 in the VMCS.
4303 * We can't use __get_current_cr3_fast() because we're not atomic.
4304 */
4305 cr3 = __read_cr3();
4306 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4307 vmx->loaded_vmcs->host_state.cr3 = cr3;
4308
4309 /* Save the most likely value for this task's CR4 in the VMCS. */
4310 cr4 = cr4_read_shadow();
4311 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4312 vmx->loaded_vmcs->host_state.cr4 = cr4;
4313
4314 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4315 #ifdef CONFIG_X86_64
4316 /*
4317 * Load null selectors, so we can avoid reloading them in
4318 * vmx_prepare_switch_to_host(), in case userspace uses
4319 * the null selectors too (the expected case).
4320 */
4321 vmcs_write16(HOST_DS_SELECTOR, 0);
4322 vmcs_write16(HOST_ES_SELECTOR, 0);
4323 #else
4324 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4325 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4326 #endif
4327 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4328 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4329
4330 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4331
4332 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4333
4334 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4335 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4336
4337 /*
4338 * SYSENTER is used for 32-bit system calls on either 32-bit or
4339 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4340 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4341 * have already done so!).
4342 */
4343 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4344 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4345
4346 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4347 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4348
4349 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4350 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4351 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4352 }
4353
4354 if (cpu_has_load_ia32_efer())
4355 vmcs_write64(HOST_IA32_EFER, host_efer);
4356 }
4357
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4358 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4359 {
4360 struct kvm_vcpu *vcpu = &vmx->vcpu;
4361
4362 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4363 ~vcpu->arch.cr4_guest_rsvd_bits;
4364 if (!enable_ept) {
4365 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4366 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4367 }
4368 if (is_guest_mode(&vmx->vcpu))
4369 vcpu->arch.cr4_guest_owned_bits &=
4370 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4371 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4372 }
4373
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4374 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4375 {
4376 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4377
4378 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4379 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4380
4381 if (!enable_vnmi)
4382 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4383
4384 if (!enable_preemption_timer)
4385 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4386
4387 return pin_based_exec_ctrl;
4388 }
4389
vmx_vmentry_ctrl(void)4390 static u32 vmx_vmentry_ctrl(void)
4391 {
4392 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4393
4394 if (vmx_pt_mode_is_system())
4395 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4396 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4397 /*
4398 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4399 */
4400 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4401 VM_ENTRY_LOAD_IA32_EFER |
4402 VM_ENTRY_IA32E_MODE);
4403
4404 if (cpu_has_perf_global_ctrl_bug())
4405 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4406
4407 return vmentry_ctrl;
4408 }
4409
vmx_vmexit_ctrl(void)4410 static u32 vmx_vmexit_ctrl(void)
4411 {
4412 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4413
4414 /*
4415 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4416 * nested virtualization and thus allowed to be set in vmcs12.
4417 */
4418 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4419 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4420
4421 if (vmx_pt_mode_is_system())
4422 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4423 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4424
4425 if (cpu_has_perf_global_ctrl_bug())
4426 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4427
4428 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4429 return vmexit_ctrl &
4430 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4431 }
4432
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4433 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4434 {
4435 struct vcpu_vmx *vmx = to_vmx(vcpu);
4436
4437 if (is_guest_mode(vcpu)) {
4438 vmx->nested.update_vmcs01_apicv_status = true;
4439 return;
4440 }
4441
4442 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4443
4444 if (kvm_vcpu_apicv_active(vcpu)) {
4445 secondary_exec_controls_setbit(vmx,
4446 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4447 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4448 if (enable_ipiv)
4449 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4450 } else {
4451 secondary_exec_controls_clearbit(vmx,
4452 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4453 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4454 if (enable_ipiv)
4455 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4456 }
4457
4458 vmx_update_msr_bitmap_x2apic(vcpu);
4459 }
4460
vmx_exec_control(struct vcpu_vmx * vmx)4461 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4462 {
4463 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4464
4465 /*
4466 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4467 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4468 */
4469 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4470 CPU_BASED_USE_IO_BITMAPS |
4471 CPU_BASED_MONITOR_TRAP_FLAG |
4472 CPU_BASED_PAUSE_EXITING);
4473
4474 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4475 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4476 CPU_BASED_NMI_WINDOW_EXITING);
4477
4478 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4479 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4480
4481 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4482 exec_control &= ~CPU_BASED_TPR_SHADOW;
4483
4484 #ifdef CONFIG_X86_64
4485 if (exec_control & CPU_BASED_TPR_SHADOW)
4486 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4487 CPU_BASED_CR8_STORE_EXITING);
4488 else
4489 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4490 CPU_BASED_CR8_LOAD_EXITING;
4491 #endif
4492 /* No need to intercept CR3 access or INVPLG when using EPT. */
4493 if (enable_ept)
4494 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4495 CPU_BASED_CR3_STORE_EXITING |
4496 CPU_BASED_INVLPG_EXITING);
4497 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4498 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4499 CPU_BASED_MONITOR_EXITING);
4500 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4501 exec_control &= ~CPU_BASED_HLT_EXITING;
4502 return exec_control;
4503 }
4504
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4505 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4506 {
4507 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4508
4509 /*
4510 * IPI virtualization relies on APICv. Disable IPI virtualization if
4511 * APICv is inhibited.
4512 */
4513 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4514 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4515
4516 return exec_control;
4517 }
4518
4519 /*
4520 * Adjust a single secondary execution control bit to intercept/allow an
4521 * instruction in the guest. This is usually done based on whether or not a
4522 * feature has been exposed to the guest in order to correctly emulate faults.
4523 */
4524 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4525 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4526 u32 control, bool enabled, bool exiting)
4527 {
4528 /*
4529 * If the control is for an opt-in feature, clear the control if the
4530 * feature is not exposed to the guest, i.e. not enabled. If the
4531 * control is opt-out, i.e. an exiting control, clear the control if
4532 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4533 * disabled for the associated instruction. Note, the caller is
4534 * responsible presetting exec_control to set all supported bits.
4535 */
4536 if (enabled == exiting)
4537 *exec_control &= ~control;
4538
4539 /*
4540 * Update the nested MSR settings so that a nested VMM can/can't set
4541 * controls for features that are/aren't exposed to the guest.
4542 */
4543 if (nested) {
4544 /*
4545 * All features that can be added or removed to VMX MSRs must
4546 * be supported in the first place for nested virtualization.
4547 */
4548 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4549 enabled = false;
4550
4551 if (enabled)
4552 vmx->nested.msrs.secondary_ctls_high |= control;
4553 else
4554 vmx->nested.msrs.secondary_ctls_high &= ~control;
4555 }
4556 }
4557
4558 /*
4559 * Wrapper macro for the common case of adjusting a secondary execution control
4560 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4561 * verifies that the control is actually supported by KVM and hardware.
4562 */
4563 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4564 ({ \
4565 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4566 bool __enabled; \
4567 \
4568 if (cpu_has_vmx_##name()) { \
4569 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
4570 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
4571 else \
4572 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
4573 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4574 __enabled, exiting); \
4575 } \
4576 })
4577
4578 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4579 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4580 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4581
4582 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4583 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4584
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4585 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4586 {
4587 struct kvm_vcpu *vcpu = &vmx->vcpu;
4588
4589 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4590
4591 if (vmx_pt_mode_is_system())
4592 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4593 if (!cpu_need_virtualize_apic_accesses(vcpu))
4594 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4595 if (vmx->vpid == 0)
4596 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4597 if (!enable_ept) {
4598 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4599 enable_unrestricted_guest = 0;
4600 }
4601 if (!enable_unrestricted_guest)
4602 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4603 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4604 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4605 if (!kvm_vcpu_apicv_active(vcpu))
4606 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4607 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4608 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4609
4610 /*
4611 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4612 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4613 */
4614 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4615
4616 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4617 * in vmx_set_cr4. */
4618 exec_control &= ~SECONDARY_EXEC_DESC;
4619
4620 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4621 (handle_vmptrld).
4622 We can NOT enable shadow_vmcs here because we don't have yet
4623 a current VMCS12
4624 */
4625 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4626
4627 /*
4628 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4629 * it needs to be set here when dirty logging is already active, e.g.
4630 * if this vCPU was created after dirty logging was enabled.
4631 */
4632 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4633 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4634
4635 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4636
4637 /*
4638 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4639 * feature is exposed to the guest. This creates a virtualization hole
4640 * if both are supported in hardware but only one is exposed to the
4641 * guest, but letting the guest execute RDTSCP or RDPID when either one
4642 * is advertised is preferable to emulating the advertised instruction
4643 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4644 */
4645 if (cpu_has_vmx_rdtscp()) {
4646 bool rdpid_or_rdtscp_enabled =
4647 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4648 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4649
4650 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4651 SECONDARY_EXEC_ENABLE_RDTSCP,
4652 rdpid_or_rdtscp_enabled, false);
4653 }
4654
4655 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4656
4657 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4658 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4659
4660 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4661 ENABLE_USR_WAIT_PAUSE, false);
4662
4663 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4664 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4665
4666 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4667 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4668
4669 return exec_control;
4670 }
4671
vmx_get_pid_table_order(struct kvm * kvm)4672 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4673 {
4674 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4675 }
4676
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4677 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4678 {
4679 struct page *pages;
4680 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4681
4682 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4683 return 0;
4684
4685 if (kvm_vmx->pid_table)
4686 return 0;
4687
4688 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4689 vmx_get_pid_table_order(kvm));
4690 if (!pages)
4691 return -ENOMEM;
4692
4693 kvm_vmx->pid_table = (void *)page_address(pages);
4694 return 0;
4695 }
4696
vmx_vcpu_precreate(struct kvm * kvm)4697 static int vmx_vcpu_precreate(struct kvm *kvm)
4698 {
4699 return vmx_alloc_ipiv_pid_table(kvm);
4700 }
4701
4702 #define VMX_XSS_EXIT_BITMAP 0
4703
init_vmcs(struct vcpu_vmx * vmx)4704 static void init_vmcs(struct vcpu_vmx *vmx)
4705 {
4706 struct kvm *kvm = vmx->vcpu.kvm;
4707 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4708
4709 if (nested)
4710 nested_vmx_set_vmcs_shadowing_bitmap();
4711
4712 if (cpu_has_vmx_msr_bitmap())
4713 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4714
4715 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4716
4717 /* Control */
4718 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4719
4720 exec_controls_set(vmx, vmx_exec_control(vmx));
4721
4722 if (cpu_has_secondary_exec_ctrls())
4723 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4724
4725 if (cpu_has_tertiary_exec_ctrls())
4726 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4727
4728 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4729 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4730 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4731 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4732 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4733
4734 vmcs_write16(GUEST_INTR_STATUS, 0);
4735
4736 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4737 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4738 }
4739
4740 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4741 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4742 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4743 }
4744
4745 if (!kvm_pause_in_guest(kvm)) {
4746 vmcs_write32(PLE_GAP, ple_gap);
4747 vmx->ple_window = ple_window;
4748 vmx->ple_window_dirty = true;
4749 }
4750
4751 if (kvm_notify_vmexit_enabled(kvm))
4752 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4753
4754 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4755 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4756 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4757
4758 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4759 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4760 vmx_set_constant_host_state(vmx);
4761 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4762 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4763
4764 if (cpu_has_vmx_vmfunc())
4765 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4766
4767 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4768 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4769 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4770 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4771 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4772
4773 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4774 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4775
4776 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4777
4778 /* 22.2.1, 20.8.1 */
4779 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4780
4781 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4782 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4783
4784 set_cr4_guest_host_mask(vmx);
4785
4786 if (vmx->vpid != 0)
4787 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4788
4789 if (cpu_has_vmx_xsaves())
4790 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4791
4792 if (enable_pml) {
4793 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4794 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4795 }
4796
4797 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4798
4799 if (vmx_pt_mode_is_host_guest()) {
4800 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4801 /* Bit[6~0] are forced to 1, writes are ignored. */
4802 vmx->pt_desc.guest.output_mask = 0x7F;
4803 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4804 }
4805
4806 vmcs_write32(GUEST_SYSENTER_CS, 0);
4807 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4808 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4809 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4810
4811 if (cpu_has_vmx_tpr_shadow()) {
4812 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4813 if (cpu_need_tpr_shadow(&vmx->vcpu))
4814 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4815 __pa(vmx->vcpu.arch.apic->regs));
4816 vmcs_write32(TPR_THRESHOLD, 0);
4817 }
4818
4819 vmx_setup_uret_msrs(vmx);
4820 }
4821
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4822 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4823 {
4824 struct vcpu_vmx *vmx = to_vmx(vcpu);
4825
4826 init_vmcs(vmx);
4827
4828 if (nested)
4829 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4830
4831 vcpu_setup_sgx_lepubkeyhash(vcpu);
4832
4833 vmx->nested.posted_intr_nv = -1;
4834 vmx->nested.vmxon_ptr = INVALID_GPA;
4835 vmx->nested.current_vmptr = INVALID_GPA;
4836 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4837
4838 vcpu->arch.microcode_version = 0x100000000ULL;
4839 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4840
4841 /*
4842 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4843 * or POSTED_INTR_WAKEUP_VECTOR.
4844 */
4845 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4846 vmx->pi_desc.sn = 1;
4847 }
4848
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4849 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4850 {
4851 struct vcpu_vmx *vmx = to_vmx(vcpu);
4852
4853 if (!init_event)
4854 __vmx_vcpu_reset(vcpu);
4855
4856 vmx->rmode.vm86_active = 0;
4857 vmx->spec_ctrl = 0;
4858
4859 vmx->msr_ia32_umwait_control = 0;
4860
4861 vmx->hv_deadline_tsc = -1;
4862 kvm_set_cr8(vcpu, 0);
4863
4864 vmx_segment_cache_clear(vmx);
4865 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4866
4867 seg_setup(VCPU_SREG_CS);
4868 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4869 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4870
4871 seg_setup(VCPU_SREG_DS);
4872 seg_setup(VCPU_SREG_ES);
4873 seg_setup(VCPU_SREG_FS);
4874 seg_setup(VCPU_SREG_GS);
4875 seg_setup(VCPU_SREG_SS);
4876
4877 vmcs_write16(GUEST_TR_SELECTOR, 0);
4878 vmcs_writel(GUEST_TR_BASE, 0);
4879 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4880 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4881
4882 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4883 vmcs_writel(GUEST_LDTR_BASE, 0);
4884 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4885 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4886
4887 vmcs_writel(GUEST_GDTR_BASE, 0);
4888 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4889
4890 vmcs_writel(GUEST_IDTR_BASE, 0);
4891 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4892
4893 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4894 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4895 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4896 if (kvm_mpx_supported())
4897 vmcs_write64(GUEST_BNDCFGS, 0);
4898
4899 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4900
4901 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4902
4903 vpid_sync_context(vmx->vpid);
4904
4905 vmx_update_fb_clear_dis(vcpu, vmx);
4906 }
4907
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4908 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4909 {
4910 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4911 }
4912
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4913 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4914 {
4915 if (!enable_vnmi ||
4916 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4917 vmx_enable_irq_window(vcpu);
4918 return;
4919 }
4920
4921 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4922 }
4923
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4924 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4925 {
4926 struct vcpu_vmx *vmx = to_vmx(vcpu);
4927 uint32_t intr;
4928 int irq = vcpu->arch.interrupt.nr;
4929
4930 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4931
4932 ++vcpu->stat.irq_injections;
4933 if (vmx->rmode.vm86_active) {
4934 int inc_eip = 0;
4935 if (vcpu->arch.interrupt.soft)
4936 inc_eip = vcpu->arch.event_exit_inst_len;
4937 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4938 return;
4939 }
4940 intr = irq | INTR_INFO_VALID_MASK;
4941 if (vcpu->arch.interrupt.soft) {
4942 intr |= INTR_TYPE_SOFT_INTR;
4943 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4944 vmx->vcpu.arch.event_exit_inst_len);
4945 } else
4946 intr |= INTR_TYPE_EXT_INTR;
4947 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4948
4949 vmx_clear_hlt(vcpu);
4950 }
4951
vmx_inject_nmi(struct kvm_vcpu * vcpu)4952 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4953 {
4954 struct vcpu_vmx *vmx = to_vmx(vcpu);
4955
4956 if (!enable_vnmi) {
4957 /*
4958 * Tracking the NMI-blocked state in software is built upon
4959 * finding the next open IRQ window. This, in turn, depends on
4960 * well-behaving guests: They have to keep IRQs disabled at
4961 * least as long as the NMI handler runs. Otherwise we may
4962 * cause NMI nesting, maybe breaking the guest. But as this is
4963 * highly unlikely, we can live with the residual risk.
4964 */
4965 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4966 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4967 }
4968
4969 ++vcpu->stat.nmi_injections;
4970 vmx->loaded_vmcs->nmi_known_unmasked = false;
4971
4972 if (vmx->rmode.vm86_active) {
4973 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4974 return;
4975 }
4976
4977 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4978 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4979
4980 vmx_clear_hlt(vcpu);
4981 }
4982
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4983 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4984 {
4985 struct vcpu_vmx *vmx = to_vmx(vcpu);
4986 bool masked;
4987
4988 if (!enable_vnmi)
4989 return vmx->loaded_vmcs->soft_vnmi_blocked;
4990 if (vmx->loaded_vmcs->nmi_known_unmasked)
4991 return false;
4992 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4993 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4994 return masked;
4995 }
4996
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4997 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4998 {
4999 struct vcpu_vmx *vmx = to_vmx(vcpu);
5000
5001 if (!enable_vnmi) {
5002 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5003 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5004 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5005 }
5006 } else {
5007 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5008 if (masked)
5009 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5010 GUEST_INTR_STATE_NMI);
5011 else
5012 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5013 GUEST_INTR_STATE_NMI);
5014 }
5015 }
5016
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5017 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5018 {
5019 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5020 return false;
5021
5022 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5023 return true;
5024
5025 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5026 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5027 GUEST_INTR_STATE_NMI));
5028 }
5029
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5030 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5031 {
5032 if (to_vmx(vcpu)->nested.nested_run_pending)
5033 return -EBUSY;
5034
5035 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5036 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5037 return -EBUSY;
5038
5039 return !vmx_nmi_blocked(vcpu);
5040 }
5041
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5042 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5043 {
5044 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5045 return false;
5046
5047 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5048 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5049 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5050 }
5051
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5052 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5053 {
5054 if (to_vmx(vcpu)->nested.nested_run_pending)
5055 return -EBUSY;
5056
5057 /*
5058 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5059 * e.g. if the IRQ arrived asynchronously after checking nested events.
5060 */
5061 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5062 return -EBUSY;
5063
5064 return !vmx_interrupt_blocked(vcpu);
5065 }
5066
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5067 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5068 {
5069 void __user *ret;
5070
5071 if (enable_unrestricted_guest)
5072 return 0;
5073
5074 mutex_lock(&kvm->slots_lock);
5075 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5076 PAGE_SIZE * 3);
5077 mutex_unlock(&kvm->slots_lock);
5078
5079 if (IS_ERR(ret))
5080 return PTR_ERR(ret);
5081
5082 to_kvm_vmx(kvm)->tss_addr = addr;
5083
5084 return init_rmode_tss(kvm, ret);
5085 }
5086
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5087 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5088 {
5089 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5090 return 0;
5091 }
5092
rmode_exception(struct kvm_vcpu * vcpu,int vec)5093 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5094 {
5095 switch (vec) {
5096 case BP_VECTOR:
5097 /*
5098 * Update instruction length as we may reinject the exception
5099 * from user space while in guest debugging mode.
5100 */
5101 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5102 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5103 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5104 return false;
5105 fallthrough;
5106 case DB_VECTOR:
5107 return !(vcpu->guest_debug &
5108 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5109 case DE_VECTOR:
5110 case OF_VECTOR:
5111 case BR_VECTOR:
5112 case UD_VECTOR:
5113 case DF_VECTOR:
5114 case SS_VECTOR:
5115 case GP_VECTOR:
5116 case MF_VECTOR:
5117 return true;
5118 }
5119 return false;
5120 }
5121
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5122 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5123 int vec, u32 err_code)
5124 {
5125 /*
5126 * Instruction with address size override prefix opcode 0x67
5127 * Cause the #SS fault with 0 error code in VM86 mode.
5128 */
5129 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5130 if (kvm_emulate_instruction(vcpu, 0)) {
5131 if (vcpu->arch.halt_request) {
5132 vcpu->arch.halt_request = 0;
5133 return kvm_emulate_halt_noskip(vcpu);
5134 }
5135 return 1;
5136 }
5137 return 0;
5138 }
5139
5140 /*
5141 * Forward all other exceptions that are valid in real mode.
5142 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5143 * the required debugging infrastructure rework.
5144 */
5145 kvm_queue_exception(vcpu, vec);
5146 return 1;
5147 }
5148
handle_machine_check(struct kvm_vcpu * vcpu)5149 static int handle_machine_check(struct kvm_vcpu *vcpu)
5150 {
5151 /* handled by vmx_vcpu_run() */
5152 return 1;
5153 }
5154
5155 /*
5156 * If the host has split lock detection disabled, then #AC is
5157 * unconditionally injected into the guest, which is the pre split lock
5158 * detection behaviour.
5159 *
5160 * If the host has split lock detection enabled then #AC is
5161 * only injected into the guest when:
5162 * - Guest CPL == 3 (user mode)
5163 * - Guest has #AC detection enabled in CR0
5164 * - Guest EFLAGS has AC bit set
5165 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5166 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5167 {
5168 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5169 return true;
5170
5171 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5172 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5173 }
5174
handle_exception_nmi(struct kvm_vcpu * vcpu)5175 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5176 {
5177 struct vcpu_vmx *vmx = to_vmx(vcpu);
5178 struct kvm_run *kvm_run = vcpu->run;
5179 u32 intr_info, ex_no, error_code;
5180 unsigned long cr2, dr6;
5181 u32 vect_info;
5182
5183 vect_info = vmx->idt_vectoring_info;
5184 intr_info = vmx_get_intr_info(vcpu);
5185
5186 /*
5187 * Machine checks are handled by handle_exception_irqoff(), or by
5188 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5189 * vmx_vcpu_enter_exit().
5190 */
5191 if (is_machine_check(intr_info) || is_nmi(intr_info))
5192 return 1;
5193
5194 /*
5195 * Queue the exception here instead of in handle_nm_fault_irqoff().
5196 * This ensures the nested_vmx check is not skipped so vmexit can
5197 * be reflected to L1 (when it intercepts #NM) before reaching this
5198 * point.
5199 */
5200 if (is_nm_fault(intr_info)) {
5201 kvm_queue_exception(vcpu, NM_VECTOR);
5202 return 1;
5203 }
5204
5205 if (is_invalid_opcode(intr_info))
5206 return handle_ud(vcpu);
5207
5208 error_code = 0;
5209 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5210 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5211
5212 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5213 WARN_ON_ONCE(!enable_vmware_backdoor);
5214
5215 /*
5216 * VMware backdoor emulation on #GP interception only handles
5217 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5218 * error code on #GP.
5219 */
5220 if (error_code) {
5221 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5222 return 1;
5223 }
5224 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5225 }
5226
5227 /*
5228 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5229 * MMIO, it is better to report an internal error.
5230 * See the comments in vmx_handle_exit.
5231 */
5232 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5233 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5234 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5235 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5236 vcpu->run->internal.ndata = 4;
5237 vcpu->run->internal.data[0] = vect_info;
5238 vcpu->run->internal.data[1] = intr_info;
5239 vcpu->run->internal.data[2] = error_code;
5240 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5241 return 0;
5242 }
5243
5244 if (is_page_fault(intr_info)) {
5245 cr2 = vmx_get_exit_qual(vcpu);
5246 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5247 /*
5248 * EPT will cause page fault only if we need to
5249 * detect illegal GPAs.
5250 */
5251 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5252 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5253 return 1;
5254 } else
5255 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5256 }
5257
5258 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5259
5260 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5261 return handle_rmode_exception(vcpu, ex_no, error_code);
5262
5263 switch (ex_no) {
5264 case DB_VECTOR:
5265 dr6 = vmx_get_exit_qual(vcpu);
5266 if (!(vcpu->guest_debug &
5267 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5268 /*
5269 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5270 * instruction. ICEBP generates a trap-like #DB, but
5271 * despite its interception control being tied to #DB,
5272 * is an instruction intercept, i.e. the VM-Exit occurs
5273 * on the ICEBP itself. Use the inner "skip" helper to
5274 * avoid single-step #DB and MTF updates, as ICEBP is
5275 * higher priority. Note, skipping ICEBP still clears
5276 * STI and MOVSS blocking.
5277 *
5278 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5279 * if single-step is enabled in RFLAGS and STI or MOVSS
5280 * blocking is active, as the CPU doesn't set the bit
5281 * on VM-Exit due to #DB interception. VM-Entry has a
5282 * consistency check that a single-step #DB is pending
5283 * in this scenario as the previous instruction cannot
5284 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5285 * don't modify RFLAGS), therefore the one instruction
5286 * delay when activating single-step breakpoints must
5287 * have already expired. Note, the CPU sets/clears BS
5288 * as appropriate for all other VM-Exits types.
5289 */
5290 if (is_icebp(intr_info))
5291 WARN_ON(!skip_emulated_instruction(vcpu));
5292 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5293 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5294 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5295 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5296 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5297
5298 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5299 return 1;
5300 }
5301 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5302 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5303 fallthrough;
5304 case BP_VECTOR:
5305 /*
5306 * Update instruction length as we may reinject #BP from
5307 * user space while in guest debugging mode. Reading it for
5308 * #DB as well causes no harm, it is not used in that case.
5309 */
5310 vmx->vcpu.arch.event_exit_inst_len =
5311 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5312 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5313 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5314 kvm_run->debug.arch.exception = ex_no;
5315 break;
5316 case AC_VECTOR:
5317 if (vmx_guest_inject_ac(vcpu)) {
5318 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5319 return 1;
5320 }
5321
5322 /*
5323 * Handle split lock. Depending on detection mode this will
5324 * either warn and disable split lock detection for this
5325 * task or force SIGBUS on it.
5326 */
5327 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5328 return 1;
5329 fallthrough;
5330 default:
5331 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5332 kvm_run->ex.exception = ex_no;
5333 kvm_run->ex.error_code = error_code;
5334 break;
5335 }
5336 return 0;
5337 }
5338
handle_external_interrupt(struct kvm_vcpu * vcpu)5339 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5340 {
5341 ++vcpu->stat.irq_exits;
5342 return 1;
5343 }
5344
handle_triple_fault(struct kvm_vcpu * vcpu)5345 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5346 {
5347 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5348 vcpu->mmio_needed = 0;
5349 return 0;
5350 }
5351
handle_io(struct kvm_vcpu * vcpu)5352 static int handle_io(struct kvm_vcpu *vcpu)
5353 {
5354 unsigned long exit_qualification;
5355 int size, in, string;
5356 unsigned port;
5357
5358 exit_qualification = vmx_get_exit_qual(vcpu);
5359 string = (exit_qualification & 16) != 0;
5360
5361 ++vcpu->stat.io_exits;
5362
5363 if (string)
5364 return kvm_emulate_instruction(vcpu, 0);
5365
5366 port = exit_qualification >> 16;
5367 size = (exit_qualification & 7) + 1;
5368 in = (exit_qualification & 8) != 0;
5369
5370 return kvm_fast_pio(vcpu, size, port, in);
5371 }
5372
5373 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5374 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5375 {
5376 /*
5377 * Patch in the VMCALL instruction:
5378 */
5379 hypercall[0] = 0x0f;
5380 hypercall[1] = 0x01;
5381 hypercall[2] = 0xc1;
5382 }
5383
5384 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5385 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5386 {
5387 if (is_guest_mode(vcpu)) {
5388 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5389 unsigned long orig_val = val;
5390
5391 /*
5392 * We get here when L2 changed cr0 in a way that did not change
5393 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5394 * but did change L0 shadowed bits. So we first calculate the
5395 * effective cr0 value that L1 would like to write into the
5396 * hardware. It consists of the L2-owned bits from the new
5397 * value combined with the L1-owned bits from L1's guest_cr0.
5398 */
5399 val = (val & ~vmcs12->cr0_guest_host_mask) |
5400 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5401
5402 if (kvm_set_cr0(vcpu, val))
5403 return 1;
5404 vmcs_writel(CR0_READ_SHADOW, orig_val);
5405 return 0;
5406 } else {
5407 return kvm_set_cr0(vcpu, val);
5408 }
5409 }
5410
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5411 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5412 {
5413 if (is_guest_mode(vcpu)) {
5414 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5415 unsigned long orig_val = val;
5416
5417 /* analogously to handle_set_cr0 */
5418 val = (val & ~vmcs12->cr4_guest_host_mask) |
5419 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5420 if (kvm_set_cr4(vcpu, val))
5421 return 1;
5422 vmcs_writel(CR4_READ_SHADOW, orig_val);
5423 return 0;
5424 } else
5425 return kvm_set_cr4(vcpu, val);
5426 }
5427
handle_desc(struct kvm_vcpu * vcpu)5428 static int handle_desc(struct kvm_vcpu *vcpu)
5429 {
5430 /*
5431 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5432 * and other code needs to be updated if UMIP can be guest owned.
5433 */
5434 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5435
5436 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5437 return kvm_emulate_instruction(vcpu, 0);
5438 }
5439
handle_cr(struct kvm_vcpu * vcpu)5440 static int handle_cr(struct kvm_vcpu *vcpu)
5441 {
5442 unsigned long exit_qualification, val;
5443 int cr;
5444 int reg;
5445 int err;
5446 int ret;
5447
5448 exit_qualification = vmx_get_exit_qual(vcpu);
5449 cr = exit_qualification & 15;
5450 reg = (exit_qualification >> 8) & 15;
5451 switch ((exit_qualification >> 4) & 3) {
5452 case 0: /* mov to cr */
5453 val = kvm_register_read(vcpu, reg);
5454 trace_kvm_cr_write(cr, val);
5455 switch (cr) {
5456 case 0:
5457 err = handle_set_cr0(vcpu, val);
5458 return kvm_complete_insn_gp(vcpu, err);
5459 case 3:
5460 WARN_ON_ONCE(enable_unrestricted_guest);
5461
5462 err = kvm_set_cr3(vcpu, val);
5463 return kvm_complete_insn_gp(vcpu, err);
5464 case 4:
5465 err = handle_set_cr4(vcpu, val);
5466 return kvm_complete_insn_gp(vcpu, err);
5467 case 8: {
5468 u8 cr8_prev = kvm_get_cr8(vcpu);
5469 u8 cr8 = (u8)val;
5470 err = kvm_set_cr8(vcpu, cr8);
5471 ret = kvm_complete_insn_gp(vcpu, err);
5472 if (lapic_in_kernel(vcpu))
5473 return ret;
5474 if (cr8_prev <= cr8)
5475 return ret;
5476 /*
5477 * TODO: we might be squashing a
5478 * KVM_GUESTDBG_SINGLESTEP-triggered
5479 * KVM_EXIT_DEBUG here.
5480 */
5481 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5482 return 0;
5483 }
5484 }
5485 break;
5486 case 2: /* clts */
5487 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5488 return -EIO;
5489 case 1: /*mov from cr*/
5490 switch (cr) {
5491 case 3:
5492 WARN_ON_ONCE(enable_unrestricted_guest);
5493
5494 val = kvm_read_cr3(vcpu);
5495 kvm_register_write(vcpu, reg, val);
5496 trace_kvm_cr_read(cr, val);
5497 return kvm_skip_emulated_instruction(vcpu);
5498 case 8:
5499 val = kvm_get_cr8(vcpu);
5500 kvm_register_write(vcpu, reg, val);
5501 trace_kvm_cr_read(cr, val);
5502 return kvm_skip_emulated_instruction(vcpu);
5503 }
5504 break;
5505 case 3: /* lmsw */
5506 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5507 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5508 kvm_lmsw(vcpu, val);
5509
5510 return kvm_skip_emulated_instruction(vcpu);
5511 default:
5512 break;
5513 }
5514 vcpu->run->exit_reason = 0;
5515 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5516 (int)(exit_qualification >> 4) & 3, cr);
5517 return 0;
5518 }
5519
handle_dr(struct kvm_vcpu * vcpu)5520 static int handle_dr(struct kvm_vcpu *vcpu)
5521 {
5522 unsigned long exit_qualification;
5523 int dr, dr7, reg;
5524 int err = 1;
5525
5526 exit_qualification = vmx_get_exit_qual(vcpu);
5527 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5528
5529 /* First, if DR does not exist, trigger UD */
5530 if (!kvm_require_dr(vcpu, dr))
5531 return 1;
5532
5533 if (vmx_get_cpl(vcpu) > 0)
5534 goto out;
5535
5536 dr7 = vmcs_readl(GUEST_DR7);
5537 if (dr7 & DR7_GD) {
5538 /*
5539 * As the vm-exit takes precedence over the debug trap, we
5540 * need to emulate the latter, either for the host or the
5541 * guest debugging itself.
5542 */
5543 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5544 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5545 vcpu->run->debug.arch.dr7 = dr7;
5546 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5547 vcpu->run->debug.arch.exception = DB_VECTOR;
5548 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5549 return 0;
5550 } else {
5551 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5552 return 1;
5553 }
5554 }
5555
5556 if (vcpu->guest_debug == 0) {
5557 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5558
5559 /*
5560 * No more DR vmexits; force a reload of the debug registers
5561 * and reenter on this instruction. The next vmexit will
5562 * retrieve the full state of the debug registers.
5563 */
5564 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5565 return 1;
5566 }
5567
5568 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5569 if (exit_qualification & TYPE_MOV_FROM_DR) {
5570 unsigned long val;
5571
5572 kvm_get_dr(vcpu, dr, &val);
5573 kvm_register_write(vcpu, reg, val);
5574 err = 0;
5575 } else {
5576 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5577 }
5578
5579 out:
5580 return kvm_complete_insn_gp(vcpu, err);
5581 }
5582
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5583 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5584 {
5585 get_debugreg(vcpu->arch.db[0], 0);
5586 get_debugreg(vcpu->arch.db[1], 1);
5587 get_debugreg(vcpu->arch.db[2], 2);
5588 get_debugreg(vcpu->arch.db[3], 3);
5589 get_debugreg(vcpu->arch.dr6, 6);
5590 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5591
5592 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5593 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5594
5595 /*
5596 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5597 * a stale dr6 from the guest.
5598 */
5599 set_debugreg(DR6_RESERVED, 6);
5600 }
5601
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5602 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5603 {
5604 vmcs_writel(GUEST_DR7, val);
5605 }
5606
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5607 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5608 {
5609 kvm_apic_update_ppr(vcpu);
5610 return 1;
5611 }
5612
handle_interrupt_window(struct kvm_vcpu * vcpu)5613 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5614 {
5615 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5616
5617 kvm_make_request(KVM_REQ_EVENT, vcpu);
5618
5619 ++vcpu->stat.irq_window_exits;
5620 return 1;
5621 }
5622
handle_invlpg(struct kvm_vcpu * vcpu)5623 static int handle_invlpg(struct kvm_vcpu *vcpu)
5624 {
5625 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5626
5627 kvm_mmu_invlpg(vcpu, exit_qualification);
5628 return kvm_skip_emulated_instruction(vcpu);
5629 }
5630
handle_apic_access(struct kvm_vcpu * vcpu)5631 static int handle_apic_access(struct kvm_vcpu *vcpu)
5632 {
5633 if (likely(fasteoi)) {
5634 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5635 int access_type, offset;
5636
5637 access_type = exit_qualification & APIC_ACCESS_TYPE;
5638 offset = exit_qualification & APIC_ACCESS_OFFSET;
5639 /*
5640 * Sane guest uses MOV to write EOI, with written value
5641 * not cared. So make a short-circuit here by avoiding
5642 * heavy instruction emulation.
5643 */
5644 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5645 (offset == APIC_EOI)) {
5646 kvm_lapic_set_eoi(vcpu);
5647 return kvm_skip_emulated_instruction(vcpu);
5648 }
5649 }
5650 return kvm_emulate_instruction(vcpu, 0);
5651 }
5652
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5653 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5654 {
5655 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5656 int vector = exit_qualification & 0xff;
5657
5658 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5659 kvm_apic_set_eoi_accelerated(vcpu, vector);
5660 return 1;
5661 }
5662
handle_apic_write(struct kvm_vcpu * vcpu)5663 static int handle_apic_write(struct kvm_vcpu *vcpu)
5664 {
5665 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5666
5667 /*
5668 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5669 * hardware has done any necessary aliasing, offset adjustments, etc...
5670 * for the access. I.e. the correct value has already been written to
5671 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5672 * retrieve the register value and emulate the access.
5673 */
5674 u32 offset = exit_qualification & 0xff0;
5675
5676 kvm_apic_write_nodecode(vcpu, offset);
5677 return 1;
5678 }
5679
handle_task_switch(struct kvm_vcpu * vcpu)5680 static int handle_task_switch(struct kvm_vcpu *vcpu)
5681 {
5682 struct vcpu_vmx *vmx = to_vmx(vcpu);
5683 unsigned long exit_qualification;
5684 bool has_error_code = false;
5685 u32 error_code = 0;
5686 u16 tss_selector;
5687 int reason, type, idt_v, idt_index;
5688
5689 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5690 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5691 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5692
5693 exit_qualification = vmx_get_exit_qual(vcpu);
5694
5695 reason = (u32)exit_qualification >> 30;
5696 if (reason == TASK_SWITCH_GATE && idt_v) {
5697 switch (type) {
5698 case INTR_TYPE_NMI_INTR:
5699 vcpu->arch.nmi_injected = false;
5700 vmx_set_nmi_mask(vcpu, true);
5701 break;
5702 case INTR_TYPE_EXT_INTR:
5703 case INTR_TYPE_SOFT_INTR:
5704 kvm_clear_interrupt_queue(vcpu);
5705 break;
5706 case INTR_TYPE_HARD_EXCEPTION:
5707 if (vmx->idt_vectoring_info &
5708 VECTORING_INFO_DELIVER_CODE_MASK) {
5709 has_error_code = true;
5710 error_code =
5711 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5712 }
5713 fallthrough;
5714 case INTR_TYPE_SOFT_EXCEPTION:
5715 kvm_clear_exception_queue(vcpu);
5716 break;
5717 default:
5718 break;
5719 }
5720 }
5721 tss_selector = exit_qualification;
5722
5723 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5724 type != INTR_TYPE_EXT_INTR &&
5725 type != INTR_TYPE_NMI_INTR))
5726 WARN_ON(!skip_emulated_instruction(vcpu));
5727
5728 /*
5729 * TODO: What about debug traps on tss switch?
5730 * Are we supposed to inject them and update dr6?
5731 */
5732 return kvm_task_switch(vcpu, tss_selector,
5733 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5734 reason, has_error_code, error_code);
5735 }
5736
handle_ept_violation(struct kvm_vcpu * vcpu)5737 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5738 {
5739 unsigned long exit_qualification;
5740 gpa_t gpa;
5741 u64 error_code;
5742
5743 exit_qualification = vmx_get_exit_qual(vcpu);
5744
5745 /*
5746 * EPT violation happened while executing iret from NMI,
5747 * "blocked by NMI" bit has to be set before next VM entry.
5748 * There are errata that may cause this bit to not be set:
5749 * AAK134, BY25.
5750 */
5751 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5752 enable_vnmi &&
5753 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5754 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5755
5756 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5757 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5758
5759 /* Is it a read fault? */
5760 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5761 ? PFERR_USER_MASK : 0;
5762 /* Is it a write fault? */
5763 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5764 ? PFERR_WRITE_MASK : 0;
5765 /* Is it a fetch fault? */
5766 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5767 ? PFERR_FETCH_MASK : 0;
5768 /* ept page table entry is present? */
5769 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5770 ? PFERR_PRESENT_MASK : 0;
5771
5772 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5773 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5774
5775 vcpu->arch.exit_qualification = exit_qualification;
5776
5777 /*
5778 * Check that the GPA doesn't exceed physical memory limits, as that is
5779 * a guest page fault. We have to emulate the instruction here, because
5780 * if the illegal address is that of a paging structure, then
5781 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5782 * would also use advanced VM-exit information for EPT violations to
5783 * reconstruct the page fault error code.
5784 */
5785 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5786 return kvm_emulate_instruction(vcpu, 0);
5787
5788 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5789 }
5790
handle_ept_misconfig(struct kvm_vcpu * vcpu)5791 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5792 {
5793 gpa_t gpa;
5794
5795 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5796 return 1;
5797
5798 /*
5799 * A nested guest cannot optimize MMIO vmexits, because we have an
5800 * nGPA here instead of the required GPA.
5801 */
5802 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5803 if (!is_guest_mode(vcpu) &&
5804 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5805 trace_kvm_fast_mmio(gpa);
5806 return kvm_skip_emulated_instruction(vcpu);
5807 }
5808
5809 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5810 }
5811
handle_nmi_window(struct kvm_vcpu * vcpu)5812 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5813 {
5814 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5815 return -EIO;
5816
5817 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5818 ++vcpu->stat.nmi_window_exits;
5819 kvm_make_request(KVM_REQ_EVENT, vcpu);
5820
5821 return 1;
5822 }
5823
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5824 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5825 {
5826 struct vcpu_vmx *vmx = to_vmx(vcpu);
5827
5828 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5829 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5830 }
5831
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5832 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5833 {
5834 struct vcpu_vmx *vmx = to_vmx(vcpu);
5835 bool intr_window_requested;
5836 unsigned count = 130;
5837
5838 intr_window_requested = exec_controls_get(vmx) &
5839 CPU_BASED_INTR_WINDOW_EXITING;
5840
5841 while (vmx->emulation_required && count-- != 0) {
5842 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5843 return handle_interrupt_window(&vmx->vcpu);
5844
5845 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5846 return 1;
5847
5848 if (!kvm_emulate_instruction(vcpu, 0))
5849 return 0;
5850
5851 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5852 kvm_prepare_emulation_failure_exit(vcpu);
5853 return 0;
5854 }
5855
5856 if (vcpu->arch.halt_request) {
5857 vcpu->arch.halt_request = 0;
5858 return kvm_emulate_halt_noskip(vcpu);
5859 }
5860
5861 /*
5862 * Note, return 1 and not 0, vcpu_run() will invoke
5863 * xfer_to_guest_mode() which will create a proper return
5864 * code.
5865 */
5866 if (__xfer_to_guest_mode_work_pending())
5867 return 1;
5868 }
5869
5870 return 1;
5871 }
5872
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5873 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5874 {
5875 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5876 kvm_prepare_emulation_failure_exit(vcpu);
5877 return 0;
5878 }
5879
5880 return 1;
5881 }
5882
grow_ple_window(struct kvm_vcpu * vcpu)5883 static void grow_ple_window(struct kvm_vcpu *vcpu)
5884 {
5885 struct vcpu_vmx *vmx = to_vmx(vcpu);
5886 unsigned int old = vmx->ple_window;
5887
5888 vmx->ple_window = __grow_ple_window(old, ple_window,
5889 ple_window_grow,
5890 ple_window_max);
5891
5892 if (vmx->ple_window != old) {
5893 vmx->ple_window_dirty = true;
5894 trace_kvm_ple_window_update(vcpu->vcpu_id,
5895 vmx->ple_window, old);
5896 }
5897 }
5898
shrink_ple_window(struct kvm_vcpu * vcpu)5899 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5900 {
5901 struct vcpu_vmx *vmx = to_vmx(vcpu);
5902 unsigned int old = vmx->ple_window;
5903
5904 vmx->ple_window = __shrink_ple_window(old, ple_window,
5905 ple_window_shrink,
5906 ple_window);
5907
5908 if (vmx->ple_window != old) {
5909 vmx->ple_window_dirty = true;
5910 trace_kvm_ple_window_update(vcpu->vcpu_id,
5911 vmx->ple_window, old);
5912 }
5913 }
5914
5915 /*
5916 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5917 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5918 */
handle_pause(struct kvm_vcpu * vcpu)5919 static int handle_pause(struct kvm_vcpu *vcpu)
5920 {
5921 if (!kvm_pause_in_guest(vcpu->kvm))
5922 grow_ple_window(vcpu);
5923
5924 /*
5925 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5926 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5927 * never set PAUSE_EXITING and just set PLE if supported,
5928 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5929 */
5930 kvm_vcpu_on_spin(vcpu, true);
5931 return kvm_skip_emulated_instruction(vcpu);
5932 }
5933
handle_monitor_trap(struct kvm_vcpu * vcpu)5934 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5935 {
5936 return 1;
5937 }
5938
handle_invpcid(struct kvm_vcpu * vcpu)5939 static int handle_invpcid(struct kvm_vcpu *vcpu)
5940 {
5941 u32 vmx_instruction_info;
5942 unsigned long type;
5943 gva_t gva;
5944 struct {
5945 u64 pcid;
5946 u64 gla;
5947 } operand;
5948 int gpr_index;
5949
5950 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5951 kvm_queue_exception(vcpu, UD_VECTOR);
5952 return 1;
5953 }
5954
5955 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5956 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5957 type = kvm_register_read(vcpu, gpr_index);
5958
5959 /* According to the Intel instruction reference, the memory operand
5960 * is read even if it isn't needed (e.g., for type==all)
5961 */
5962 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5963 vmx_instruction_info, false,
5964 sizeof(operand), &gva))
5965 return 1;
5966
5967 return kvm_handle_invpcid(vcpu, type, gva);
5968 }
5969
handle_pml_full(struct kvm_vcpu * vcpu)5970 static int handle_pml_full(struct kvm_vcpu *vcpu)
5971 {
5972 unsigned long exit_qualification;
5973
5974 trace_kvm_pml_full(vcpu->vcpu_id);
5975
5976 exit_qualification = vmx_get_exit_qual(vcpu);
5977
5978 /*
5979 * PML buffer FULL happened while executing iret from NMI,
5980 * "blocked by NMI" bit has to be set before next VM entry.
5981 */
5982 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5983 enable_vnmi &&
5984 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5985 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5986 GUEST_INTR_STATE_NMI);
5987
5988 /*
5989 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5990 * here.., and there's no userspace involvement needed for PML.
5991 */
5992 return 1;
5993 }
5994
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5995 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5996 {
5997 struct vcpu_vmx *vmx = to_vmx(vcpu);
5998
5999 if (!vmx->req_immediate_exit &&
6000 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6001 kvm_lapic_expired_hv_timer(vcpu);
6002 return EXIT_FASTPATH_REENTER_GUEST;
6003 }
6004
6005 return EXIT_FASTPATH_NONE;
6006 }
6007
handle_preemption_timer(struct kvm_vcpu * vcpu)6008 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6009 {
6010 handle_fastpath_preemption_timer(vcpu);
6011 return 1;
6012 }
6013
6014 /*
6015 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6016 * are overwritten by nested_vmx_setup() when nested=1.
6017 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6018 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6019 {
6020 kvm_queue_exception(vcpu, UD_VECTOR);
6021 return 1;
6022 }
6023
6024 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6025 static int handle_encls(struct kvm_vcpu *vcpu)
6026 {
6027 /*
6028 * SGX virtualization is disabled. There is no software enable bit for
6029 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6030 * the guest from executing ENCLS (when SGX is supported by hardware).
6031 */
6032 kvm_queue_exception(vcpu, UD_VECTOR);
6033 return 1;
6034 }
6035 #endif /* CONFIG_X86_SGX_KVM */
6036
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6037 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6038 {
6039 /*
6040 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6041 * VM-Exits. Unconditionally set the flag here and leave the handling to
6042 * vmx_handle_exit().
6043 */
6044 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6045 return 1;
6046 }
6047
handle_notify(struct kvm_vcpu * vcpu)6048 static int handle_notify(struct kvm_vcpu *vcpu)
6049 {
6050 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6051 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6052
6053 ++vcpu->stat.notify_window_exits;
6054
6055 /*
6056 * Notify VM exit happened while executing iret from NMI,
6057 * "blocked by NMI" bit has to be set before next VM entry.
6058 */
6059 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6060 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6061 GUEST_INTR_STATE_NMI);
6062
6063 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6064 context_invalid) {
6065 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6066 vcpu->run->notify.flags = context_invalid ?
6067 KVM_NOTIFY_CONTEXT_INVALID : 0;
6068 return 0;
6069 }
6070
6071 return 1;
6072 }
6073
6074 /*
6075 * The exit handlers return 1 if the exit was handled fully and guest execution
6076 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6077 * to be done to userspace and return 0.
6078 */
6079 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6080 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6081 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6082 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6083 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6084 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6085 [EXIT_REASON_CR_ACCESS] = handle_cr,
6086 [EXIT_REASON_DR_ACCESS] = handle_dr,
6087 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6088 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6089 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6090 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6091 [EXIT_REASON_HLT] = kvm_emulate_halt,
6092 [EXIT_REASON_INVD] = kvm_emulate_invd,
6093 [EXIT_REASON_INVLPG] = handle_invlpg,
6094 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6095 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6096 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6097 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6098 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6099 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6100 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6101 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6102 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6103 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6104 [EXIT_REASON_VMON] = handle_vmx_instruction,
6105 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6106 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6107 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6108 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6109 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6110 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6111 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6112 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6113 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6114 [EXIT_REASON_LDTR_TR] = handle_desc,
6115 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6116 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6117 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6118 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6119 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6120 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6121 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6122 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6123 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6124 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6125 [EXIT_REASON_PML_FULL] = handle_pml_full,
6126 [EXIT_REASON_INVPCID] = handle_invpcid,
6127 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6128 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6129 [EXIT_REASON_ENCLS] = handle_encls,
6130 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6131 [EXIT_REASON_NOTIFY] = handle_notify,
6132 };
6133
6134 static const int kvm_vmx_max_exit_handlers =
6135 ARRAY_SIZE(kvm_vmx_exit_handlers);
6136
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6137 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6138 u64 *info1, u64 *info2,
6139 u32 *intr_info, u32 *error_code)
6140 {
6141 struct vcpu_vmx *vmx = to_vmx(vcpu);
6142
6143 *reason = vmx->exit_reason.full;
6144 *info1 = vmx_get_exit_qual(vcpu);
6145 if (!(vmx->exit_reason.failed_vmentry)) {
6146 *info2 = vmx->idt_vectoring_info;
6147 *intr_info = vmx_get_intr_info(vcpu);
6148 if (is_exception_with_error_code(*intr_info))
6149 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6150 else
6151 *error_code = 0;
6152 } else {
6153 *info2 = 0;
6154 *intr_info = 0;
6155 *error_code = 0;
6156 }
6157 }
6158
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6159 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6160 {
6161 if (vmx->pml_pg) {
6162 __free_page(vmx->pml_pg);
6163 vmx->pml_pg = NULL;
6164 }
6165 }
6166
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6167 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6168 {
6169 struct vcpu_vmx *vmx = to_vmx(vcpu);
6170 u64 *pml_buf;
6171 u16 pml_idx;
6172
6173 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6174
6175 /* Do nothing if PML buffer is empty */
6176 if (pml_idx == (PML_ENTITY_NUM - 1))
6177 return;
6178
6179 /* PML index always points to next available PML buffer entity */
6180 if (pml_idx >= PML_ENTITY_NUM)
6181 pml_idx = 0;
6182 else
6183 pml_idx++;
6184
6185 pml_buf = page_address(vmx->pml_pg);
6186 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6187 u64 gpa;
6188
6189 gpa = pml_buf[pml_idx];
6190 WARN_ON(gpa & (PAGE_SIZE - 1));
6191 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6192 }
6193
6194 /* reset PML index */
6195 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6196 }
6197
vmx_dump_sel(char * name,uint32_t sel)6198 static void vmx_dump_sel(char *name, uint32_t sel)
6199 {
6200 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6201 name, vmcs_read16(sel),
6202 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6203 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6204 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6205 }
6206
vmx_dump_dtsel(char * name,uint32_t limit)6207 static void vmx_dump_dtsel(char *name, uint32_t limit)
6208 {
6209 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6210 name, vmcs_read32(limit),
6211 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6212 }
6213
vmx_dump_msrs(char * name,struct vmx_msrs * m)6214 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6215 {
6216 unsigned int i;
6217 struct vmx_msr_entry *e;
6218
6219 pr_err("MSR %s:\n", name);
6220 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6221 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6222 }
6223
dump_vmcs(struct kvm_vcpu * vcpu)6224 void dump_vmcs(struct kvm_vcpu *vcpu)
6225 {
6226 struct vcpu_vmx *vmx = to_vmx(vcpu);
6227 u32 vmentry_ctl, vmexit_ctl;
6228 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6229 u64 tertiary_exec_control;
6230 unsigned long cr4;
6231 int efer_slot;
6232
6233 if (!dump_invalid_vmcs) {
6234 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6235 return;
6236 }
6237
6238 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6239 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6240 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6241 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6242 cr4 = vmcs_readl(GUEST_CR4);
6243
6244 if (cpu_has_secondary_exec_ctrls())
6245 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6246 else
6247 secondary_exec_control = 0;
6248
6249 if (cpu_has_tertiary_exec_ctrls())
6250 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6251 else
6252 tertiary_exec_control = 0;
6253
6254 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6255 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6256 pr_err("*** Guest State ***\n");
6257 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6258 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6259 vmcs_readl(CR0_GUEST_HOST_MASK));
6260 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6261 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6262 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6263 if (cpu_has_vmx_ept()) {
6264 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6265 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6266 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6267 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6268 }
6269 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6270 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6271 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6272 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6273 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6274 vmcs_readl(GUEST_SYSENTER_ESP),
6275 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6276 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6277 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6278 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6279 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6280 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6281 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6282 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6283 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6284 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6285 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6286 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6287 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6288 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6289 else if (efer_slot >= 0)
6290 pr_err("EFER= 0x%016llx (autoload)\n",
6291 vmx->msr_autoload.guest.val[efer_slot].value);
6292 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6293 pr_err("EFER= 0x%016llx (effective)\n",
6294 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6295 else
6296 pr_err("EFER= 0x%016llx (effective)\n",
6297 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6298 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6299 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6300 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6301 vmcs_read64(GUEST_IA32_DEBUGCTL),
6302 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6303 if (cpu_has_load_perf_global_ctrl() &&
6304 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6305 pr_err("PerfGlobCtl = 0x%016llx\n",
6306 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6307 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6308 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6309 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6310 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6311 vmcs_read32(GUEST_ACTIVITY_STATE));
6312 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6313 pr_err("InterruptStatus = %04x\n",
6314 vmcs_read16(GUEST_INTR_STATUS));
6315 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6316 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6317 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6318 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6319
6320 pr_err("*** Host State ***\n");
6321 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6322 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6323 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6324 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6325 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6326 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6327 vmcs_read16(HOST_TR_SELECTOR));
6328 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6329 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6330 vmcs_readl(HOST_TR_BASE));
6331 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6332 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6333 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6334 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6335 vmcs_readl(HOST_CR4));
6336 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6337 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6338 vmcs_read32(HOST_IA32_SYSENTER_CS),
6339 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6340 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6341 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6342 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6343 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6344 if (cpu_has_load_perf_global_ctrl() &&
6345 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6346 pr_err("PerfGlobCtl = 0x%016llx\n",
6347 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6348 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6349 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6350
6351 pr_err("*** Control State ***\n");
6352 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6353 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6354 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6355 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6356 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6357 vmcs_read32(EXCEPTION_BITMAP),
6358 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6359 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6360 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6361 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6362 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6363 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6364 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6365 vmcs_read32(VM_EXIT_INTR_INFO),
6366 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6367 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6368 pr_err(" reason=%08x qualification=%016lx\n",
6369 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6370 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6371 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6372 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6373 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6374 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6375 pr_err("TSC Multiplier = 0x%016llx\n",
6376 vmcs_read64(TSC_MULTIPLIER));
6377 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6378 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6379 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6380 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6381 }
6382 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6383 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6384 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6385 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6386 }
6387 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6388 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6389 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6390 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6391 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6392 pr_err("PLE Gap=%08x Window=%08x\n",
6393 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6394 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6395 pr_err("Virtual processor ID = 0x%04x\n",
6396 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6397 }
6398
6399 /*
6400 * The guest has exited. See if we can fix it or if we need userspace
6401 * assistance.
6402 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6403 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6404 {
6405 struct vcpu_vmx *vmx = to_vmx(vcpu);
6406 union vmx_exit_reason exit_reason = vmx->exit_reason;
6407 u32 vectoring_info = vmx->idt_vectoring_info;
6408 u16 exit_handler_index;
6409
6410 /*
6411 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6412 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6413 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6414 * mode as if vcpus is in root mode, the PML buffer must has been
6415 * flushed already. Note, PML is never enabled in hardware while
6416 * running L2.
6417 */
6418 if (enable_pml && !is_guest_mode(vcpu))
6419 vmx_flush_pml_buffer(vcpu);
6420
6421 /*
6422 * KVM should never reach this point with a pending nested VM-Enter.
6423 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6424 * invalid guest state should never happen as that means KVM knowingly
6425 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6426 */
6427 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6428 return -EIO;
6429
6430 if (is_guest_mode(vcpu)) {
6431 /*
6432 * PML is never enabled when running L2, bail immediately if a
6433 * PML full exit occurs as something is horribly wrong.
6434 */
6435 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6436 goto unexpected_vmexit;
6437
6438 /*
6439 * The host physical addresses of some pages of guest memory
6440 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6441 * Page). The CPU may write to these pages via their host
6442 * physical address while L2 is running, bypassing any
6443 * address-translation-based dirty tracking (e.g. EPT write
6444 * protection).
6445 *
6446 * Mark them dirty on every exit from L2 to prevent them from
6447 * getting out of sync with dirty tracking.
6448 */
6449 nested_mark_vmcs12_pages_dirty(vcpu);
6450
6451 /*
6452 * Synthesize a triple fault if L2 state is invalid. In normal
6453 * operation, nested VM-Enter rejects any attempt to enter L2
6454 * with invalid state. However, those checks are skipped if
6455 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6456 * L2 state is invalid, it means either L1 modified SMRAM state
6457 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6458 * doing so is architecturally allowed in the RSM case, and is
6459 * the least awful solution for the userspace case without
6460 * risking false positives.
6461 */
6462 if (vmx->emulation_required) {
6463 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6464 return 1;
6465 }
6466
6467 if (nested_vmx_reflect_vmexit(vcpu))
6468 return 1;
6469 }
6470
6471 /* If guest state is invalid, start emulating. L2 is handled above. */
6472 if (vmx->emulation_required)
6473 return handle_invalid_guest_state(vcpu);
6474
6475 if (exit_reason.failed_vmentry) {
6476 dump_vmcs(vcpu);
6477 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6478 vcpu->run->fail_entry.hardware_entry_failure_reason
6479 = exit_reason.full;
6480 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6481 return 0;
6482 }
6483
6484 if (unlikely(vmx->fail)) {
6485 dump_vmcs(vcpu);
6486 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6487 vcpu->run->fail_entry.hardware_entry_failure_reason
6488 = vmcs_read32(VM_INSTRUCTION_ERROR);
6489 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6490 return 0;
6491 }
6492
6493 /*
6494 * Note:
6495 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6496 * delivery event since it indicates guest is accessing MMIO.
6497 * The vm-exit can be triggered again after return to guest that
6498 * will cause infinite loop.
6499 */
6500 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6501 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6502 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6503 exit_reason.basic != EXIT_REASON_PML_FULL &&
6504 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6505 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6506 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6507 int ndata = 3;
6508
6509 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6510 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6511 vcpu->run->internal.data[0] = vectoring_info;
6512 vcpu->run->internal.data[1] = exit_reason.full;
6513 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6514 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6515 vcpu->run->internal.data[ndata++] =
6516 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6517 }
6518 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6519 vcpu->run->internal.ndata = ndata;
6520 return 0;
6521 }
6522
6523 if (unlikely(!enable_vnmi &&
6524 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6525 if (!vmx_interrupt_blocked(vcpu)) {
6526 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6527 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6528 vcpu->arch.nmi_pending) {
6529 /*
6530 * This CPU don't support us in finding the end of an
6531 * NMI-blocked window if the guest runs with IRQs
6532 * disabled. So we pull the trigger after 1 s of
6533 * futile waiting, but inform the user about this.
6534 */
6535 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6536 "state on VCPU %d after 1 s timeout\n",
6537 __func__, vcpu->vcpu_id);
6538 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6539 }
6540 }
6541
6542 if (exit_fastpath != EXIT_FASTPATH_NONE)
6543 return 1;
6544
6545 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6546 goto unexpected_vmexit;
6547 #ifdef CONFIG_RETPOLINE
6548 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6549 return kvm_emulate_wrmsr(vcpu);
6550 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6551 return handle_preemption_timer(vcpu);
6552 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6553 return handle_interrupt_window(vcpu);
6554 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6555 return handle_external_interrupt(vcpu);
6556 else if (exit_reason.basic == EXIT_REASON_HLT)
6557 return kvm_emulate_halt(vcpu);
6558 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6559 return handle_ept_misconfig(vcpu);
6560 #endif
6561
6562 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6563 kvm_vmx_max_exit_handlers);
6564 if (!kvm_vmx_exit_handlers[exit_handler_index])
6565 goto unexpected_vmexit;
6566
6567 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6568
6569 unexpected_vmexit:
6570 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6571 exit_reason.full);
6572 dump_vmcs(vcpu);
6573 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6574 vcpu->run->internal.suberror =
6575 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6576 vcpu->run->internal.ndata = 2;
6577 vcpu->run->internal.data[0] = exit_reason.full;
6578 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6579 return 0;
6580 }
6581
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6582 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6583 {
6584 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6585
6586 /*
6587 * Exit to user space when bus lock detected to inform that there is
6588 * a bus lock in guest.
6589 */
6590 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6591 if (ret > 0)
6592 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6593
6594 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6595 return 0;
6596 }
6597 return ret;
6598 }
6599
6600 /*
6601 * Software based L1D cache flush which is used when microcode providing
6602 * the cache control MSR is not loaded.
6603 *
6604 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6605 * flush it is required to read in 64 KiB because the replacement algorithm
6606 * is not exactly LRU. This could be sized at runtime via topology
6607 * information but as all relevant affected CPUs have 32KiB L1D cache size
6608 * there is no point in doing so.
6609 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6610 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6611 {
6612 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6613
6614 /*
6615 * This code is only executed when the flush mode is 'cond' or
6616 * 'always'
6617 */
6618 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6619 bool flush_l1d;
6620
6621 /*
6622 * Clear the per-vcpu flush bit, it gets set again
6623 * either from vcpu_run() or from one of the unsafe
6624 * VMEXIT handlers.
6625 */
6626 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6627 vcpu->arch.l1tf_flush_l1d = false;
6628
6629 /*
6630 * Clear the per-cpu flush bit, it gets set again from
6631 * the interrupt handlers.
6632 */
6633 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6634 kvm_clear_cpu_l1tf_flush_l1d();
6635
6636 if (!flush_l1d)
6637 return;
6638 }
6639
6640 vcpu->stat.l1d_flush++;
6641
6642 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6643 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6644 return;
6645 }
6646
6647 asm volatile(
6648 /* First ensure the pages are in the TLB */
6649 "xorl %%eax, %%eax\n"
6650 ".Lpopulate_tlb:\n\t"
6651 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6652 "addl $4096, %%eax\n\t"
6653 "cmpl %%eax, %[size]\n\t"
6654 "jne .Lpopulate_tlb\n\t"
6655 "xorl %%eax, %%eax\n\t"
6656 "cpuid\n\t"
6657 /* Now fill the cache */
6658 "xorl %%eax, %%eax\n"
6659 ".Lfill_cache:\n"
6660 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6661 "addl $64, %%eax\n\t"
6662 "cmpl %%eax, %[size]\n\t"
6663 "jne .Lfill_cache\n\t"
6664 "lfence\n"
6665 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6666 [size] "r" (size)
6667 : "eax", "ebx", "ecx", "edx");
6668 }
6669
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6670 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6671 {
6672 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6673 int tpr_threshold;
6674
6675 if (is_guest_mode(vcpu) &&
6676 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6677 return;
6678
6679 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6680 if (is_guest_mode(vcpu))
6681 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6682 else
6683 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6684 }
6685
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6686 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6687 {
6688 struct vcpu_vmx *vmx = to_vmx(vcpu);
6689 u32 sec_exec_control;
6690
6691 if (!lapic_in_kernel(vcpu))
6692 return;
6693
6694 if (!flexpriority_enabled &&
6695 !cpu_has_vmx_virtualize_x2apic_mode())
6696 return;
6697
6698 /* Postpone execution until vmcs01 is the current VMCS. */
6699 if (is_guest_mode(vcpu)) {
6700 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6701 return;
6702 }
6703
6704 sec_exec_control = secondary_exec_controls_get(vmx);
6705 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6706 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6707
6708 switch (kvm_get_apic_mode(vcpu)) {
6709 case LAPIC_MODE_INVALID:
6710 WARN_ONCE(true, "Invalid local APIC state");
6711 break;
6712 case LAPIC_MODE_DISABLED:
6713 break;
6714 case LAPIC_MODE_XAPIC:
6715 if (flexpriority_enabled) {
6716 sec_exec_control |=
6717 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6718 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6719
6720 /*
6721 * Flush the TLB, reloading the APIC access page will
6722 * only do so if its physical address has changed, but
6723 * the guest may have inserted a non-APIC mapping into
6724 * the TLB while the APIC access page was disabled.
6725 */
6726 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6727 }
6728 break;
6729 case LAPIC_MODE_X2APIC:
6730 if (cpu_has_vmx_virtualize_x2apic_mode())
6731 sec_exec_control |=
6732 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6733 break;
6734 }
6735 secondary_exec_controls_set(vmx, sec_exec_control);
6736
6737 vmx_update_msr_bitmap_x2apic(vcpu);
6738 }
6739
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6740 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6741 {
6742 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6743 struct kvm *kvm = vcpu->kvm;
6744 struct kvm_memslots *slots = kvm_memslots(kvm);
6745 struct kvm_memory_slot *slot;
6746 unsigned long mmu_seq;
6747 kvm_pfn_t pfn;
6748
6749 /* Defer reload until vmcs01 is the current VMCS. */
6750 if (is_guest_mode(vcpu)) {
6751 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6752 return;
6753 }
6754
6755 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6756 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6757 return;
6758
6759 /*
6760 * Grab the memslot so that the hva lookup for the mmu_notifier retry
6761 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely
6762 * on the pfn lookup's validation of the memslot to ensure a valid hva
6763 * is used for the retry check.
6764 */
6765 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6766 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6767 return;
6768
6769 /*
6770 * Ensure that the mmu_notifier sequence count is read before KVM
6771 * retrieves the pfn from the primary MMU. Note, the memslot is
6772 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6773 * in kvm_mmu_invalidate_end().
6774 */
6775 mmu_seq = kvm->mmu_invalidate_seq;
6776 smp_rmb();
6777
6778 /*
6779 * No need to retry if the memslot does not exist or is invalid. KVM
6780 * controls the APIC-access page memslot, and only deletes the memslot
6781 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6782 */
6783 pfn = gfn_to_pfn_memslot(slot, gfn);
6784 if (is_error_noslot_pfn(pfn))
6785 return;
6786
6787 read_lock(&vcpu->kvm->mmu_lock);
6788 if (mmu_invalidate_retry_hva(kvm, mmu_seq,
6789 gfn_to_hva_memslot(slot, gfn))) {
6790 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6791 read_unlock(&vcpu->kvm->mmu_lock);
6792 goto out;
6793 }
6794
6795 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6796 read_unlock(&vcpu->kvm->mmu_lock);
6797
6798 /*
6799 * No need for a manual TLB flush at this point, KVM has already done a
6800 * flush if there were SPTEs pointing at the previous page.
6801 */
6802 out:
6803 /*
6804 * Do not pin apic access page in memory, the MMU notifier
6805 * will call us again if it is migrated or swapped out.
6806 */
6807 kvm_release_pfn_clean(pfn);
6808 }
6809
vmx_hwapic_isr_update(int max_isr)6810 static void vmx_hwapic_isr_update(int max_isr)
6811 {
6812 u16 status;
6813 u8 old;
6814
6815 if (max_isr == -1)
6816 max_isr = 0;
6817
6818 status = vmcs_read16(GUEST_INTR_STATUS);
6819 old = status >> 8;
6820 if (max_isr != old) {
6821 status &= 0xff;
6822 status |= max_isr << 8;
6823 vmcs_write16(GUEST_INTR_STATUS, status);
6824 }
6825 }
6826
vmx_set_rvi(int vector)6827 static void vmx_set_rvi(int vector)
6828 {
6829 u16 status;
6830 u8 old;
6831
6832 if (vector == -1)
6833 vector = 0;
6834
6835 status = vmcs_read16(GUEST_INTR_STATUS);
6836 old = (u8)status & 0xff;
6837 if ((u8)vector != old) {
6838 status &= ~0xff;
6839 status |= (u8)vector;
6840 vmcs_write16(GUEST_INTR_STATUS, status);
6841 }
6842 }
6843
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6844 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6845 {
6846 /*
6847 * When running L2, updating RVI is only relevant when
6848 * vmcs12 virtual-interrupt-delivery enabled.
6849 * However, it can be enabled only when L1 also
6850 * intercepts external-interrupts and in that case
6851 * we should not update vmcs02 RVI but instead intercept
6852 * interrupt. Therefore, do nothing when running L2.
6853 */
6854 if (!is_guest_mode(vcpu))
6855 vmx_set_rvi(max_irr);
6856 }
6857
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6858 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6859 {
6860 struct vcpu_vmx *vmx = to_vmx(vcpu);
6861 int max_irr;
6862 bool got_posted_interrupt;
6863
6864 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6865 return -EIO;
6866
6867 if (pi_test_on(&vmx->pi_desc)) {
6868 pi_clear_on(&vmx->pi_desc);
6869 /*
6870 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6871 * But on x86 this is just a compiler barrier anyway.
6872 */
6873 smp_mb__after_atomic();
6874 got_posted_interrupt =
6875 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6876 } else {
6877 max_irr = kvm_lapic_find_highest_irr(vcpu);
6878 got_posted_interrupt = false;
6879 }
6880
6881 /*
6882 * Newly recognized interrupts are injected via either virtual interrupt
6883 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6884 * disabled in two cases:
6885 *
6886 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6887 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6888 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6889 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6890 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6891 *
6892 * 2) If APICv is disabled for this vCPU, assigned devices may still
6893 * attempt to post interrupts. The posted interrupt vector will cause
6894 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6895 */
6896 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6897 vmx_set_rvi(max_irr);
6898 else if (got_posted_interrupt)
6899 kvm_make_request(KVM_REQ_EVENT, vcpu);
6900
6901 return max_irr;
6902 }
6903
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6904 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6905 {
6906 if (!kvm_vcpu_apicv_active(vcpu))
6907 return;
6908
6909 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6910 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6911 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6912 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6913 }
6914
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6915 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6916 {
6917 struct vcpu_vmx *vmx = to_vmx(vcpu);
6918
6919 pi_clear_on(&vmx->pi_desc);
6920 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6921 }
6922
6923 void vmx_do_interrupt_irqoff(unsigned long entry);
6924 void vmx_do_nmi_irqoff(void);
6925
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6926 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6927 {
6928 /*
6929 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6930 * MSR value is not clobbered by the host activity before the guest
6931 * has chance to consume it.
6932 *
6933 * Do not blindly read xfd_err here, since this exception might
6934 * be caused by L1 interception on a platform which doesn't
6935 * support xfd at all.
6936 *
6937 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6938 * only when xfd contains a non-zero value.
6939 *
6940 * Queuing exception is done in vmx_handle_exit. See comment there.
6941 */
6942 if (vcpu->arch.guest_fpu.fpstate->xfd)
6943 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6944 }
6945
handle_exception_irqoff(struct vcpu_vmx * vmx)6946 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6947 {
6948 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6949
6950 /* if exit due to PF check for async PF */
6951 if (is_page_fault(intr_info))
6952 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6953 /* if exit due to NM, handle before interrupts are enabled */
6954 else if (is_nm_fault(intr_info))
6955 handle_nm_fault_irqoff(&vmx->vcpu);
6956 /* Handle machine checks before interrupts are enabled */
6957 else if (is_machine_check(intr_info))
6958 kvm_machine_check();
6959 }
6960
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6961 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6962 {
6963 u32 intr_info = vmx_get_intr_info(vcpu);
6964 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6965 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6966
6967 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6968 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6969 return;
6970
6971 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6972 vmx_do_interrupt_irqoff(gate_offset(desc));
6973 kvm_after_interrupt(vcpu);
6974
6975 vcpu->arch.at_instruction_boundary = true;
6976 }
6977
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6978 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6979 {
6980 struct vcpu_vmx *vmx = to_vmx(vcpu);
6981
6982 if (vmx->emulation_required)
6983 return;
6984
6985 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6986 handle_external_interrupt_irqoff(vcpu);
6987 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6988 handle_exception_irqoff(vmx);
6989 }
6990
6991 /*
6992 * The kvm parameter can be NULL (module initialization, or invocation before
6993 * VM creation). Be sure to check the kvm parameter before using it.
6994 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)6995 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6996 {
6997 switch (index) {
6998 case MSR_IA32_SMBASE:
6999 if (!IS_ENABLED(CONFIG_KVM_SMM))
7000 return false;
7001 /*
7002 * We cannot do SMM unless we can run the guest in big
7003 * real mode.
7004 */
7005 return enable_unrestricted_guest || emulate_invalid_guest_state;
7006 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7007 return nested;
7008 case MSR_AMD64_VIRT_SPEC_CTRL:
7009 case MSR_AMD64_TSC_RATIO:
7010 /* This is AMD only. */
7011 return false;
7012 default:
7013 return true;
7014 }
7015 }
7016
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7017 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7018 {
7019 u32 exit_intr_info;
7020 bool unblock_nmi;
7021 u8 vector;
7022 bool idtv_info_valid;
7023
7024 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7025
7026 if (enable_vnmi) {
7027 if (vmx->loaded_vmcs->nmi_known_unmasked)
7028 return;
7029
7030 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7031 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7032 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7033 /*
7034 * SDM 3: 27.7.1.2 (September 2008)
7035 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7036 * a guest IRET fault.
7037 * SDM 3: 23.2.2 (September 2008)
7038 * Bit 12 is undefined in any of the following cases:
7039 * If the VM exit sets the valid bit in the IDT-vectoring
7040 * information field.
7041 * If the VM exit is due to a double fault.
7042 */
7043 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7044 vector != DF_VECTOR && !idtv_info_valid)
7045 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7046 GUEST_INTR_STATE_NMI);
7047 else
7048 vmx->loaded_vmcs->nmi_known_unmasked =
7049 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7050 & GUEST_INTR_STATE_NMI);
7051 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7052 vmx->loaded_vmcs->vnmi_blocked_time +=
7053 ktime_to_ns(ktime_sub(ktime_get(),
7054 vmx->loaded_vmcs->entry_time));
7055 }
7056
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7057 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7058 u32 idt_vectoring_info,
7059 int instr_len_field,
7060 int error_code_field)
7061 {
7062 u8 vector;
7063 int type;
7064 bool idtv_info_valid;
7065
7066 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7067
7068 vcpu->arch.nmi_injected = false;
7069 kvm_clear_exception_queue(vcpu);
7070 kvm_clear_interrupt_queue(vcpu);
7071
7072 if (!idtv_info_valid)
7073 return;
7074
7075 kvm_make_request(KVM_REQ_EVENT, vcpu);
7076
7077 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7078 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7079
7080 switch (type) {
7081 case INTR_TYPE_NMI_INTR:
7082 vcpu->arch.nmi_injected = true;
7083 /*
7084 * SDM 3: 27.7.1.2 (September 2008)
7085 * Clear bit "block by NMI" before VM entry if a NMI
7086 * delivery faulted.
7087 */
7088 vmx_set_nmi_mask(vcpu, false);
7089 break;
7090 case INTR_TYPE_SOFT_EXCEPTION:
7091 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7092 fallthrough;
7093 case INTR_TYPE_HARD_EXCEPTION:
7094 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7095 u32 err = vmcs_read32(error_code_field);
7096 kvm_requeue_exception_e(vcpu, vector, err);
7097 } else
7098 kvm_requeue_exception(vcpu, vector);
7099 break;
7100 case INTR_TYPE_SOFT_INTR:
7101 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7102 fallthrough;
7103 case INTR_TYPE_EXT_INTR:
7104 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7105 break;
7106 default:
7107 break;
7108 }
7109 }
7110
vmx_complete_interrupts(struct vcpu_vmx * vmx)7111 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7112 {
7113 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7114 VM_EXIT_INSTRUCTION_LEN,
7115 IDT_VECTORING_ERROR_CODE);
7116 }
7117
vmx_cancel_injection(struct kvm_vcpu * vcpu)7118 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7119 {
7120 __vmx_complete_interrupts(vcpu,
7121 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7122 VM_ENTRY_INSTRUCTION_LEN,
7123 VM_ENTRY_EXCEPTION_ERROR_CODE);
7124
7125 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7126 }
7127
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7128 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7129 {
7130 int i, nr_msrs;
7131 struct perf_guest_switch_msr *msrs;
7132 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7133
7134 pmu->host_cross_mapped_mask = 0;
7135 if (pmu->pebs_enable & pmu->global_ctrl)
7136 intel_pmu_cross_mapped_check(pmu);
7137
7138 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7139 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7140 if (!msrs)
7141 return;
7142
7143 for (i = 0; i < nr_msrs; i++)
7144 if (msrs[i].host == msrs[i].guest)
7145 clear_atomic_switch_msr(vmx, msrs[i].msr);
7146 else
7147 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7148 msrs[i].host, false);
7149 }
7150
vmx_update_hv_timer(struct kvm_vcpu * vcpu)7151 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7152 {
7153 struct vcpu_vmx *vmx = to_vmx(vcpu);
7154 u64 tscl;
7155 u32 delta_tsc;
7156
7157 if (vmx->req_immediate_exit) {
7158 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7159 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7160 } else if (vmx->hv_deadline_tsc != -1) {
7161 tscl = rdtsc();
7162 if (vmx->hv_deadline_tsc > tscl)
7163 /* set_hv_timer ensures the delta fits in 32-bits */
7164 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7165 cpu_preemption_timer_multi);
7166 else
7167 delta_tsc = 0;
7168
7169 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7170 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7171 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7172 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7173 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7174 }
7175 }
7176
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7177 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7178 {
7179 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7180 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7181 vmcs_writel(HOST_RSP, host_rsp);
7182 }
7183 }
7184
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7185 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7186 unsigned int flags)
7187 {
7188 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7189
7190 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7191 return;
7192
7193 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7194 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7195
7196 /*
7197 * If the guest/host SPEC_CTRL values differ, restore the host value.
7198 *
7199 * For legacy IBRS, the IBRS bit always needs to be written after
7200 * transitioning from a less privileged predictor mode, regardless of
7201 * whether the guest/host values differ.
7202 */
7203 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7204 vmx->spec_ctrl != hostval)
7205 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7206
7207 barrier_nospec();
7208 }
7209
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)7210 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7211 {
7212 switch (to_vmx(vcpu)->exit_reason.basic) {
7213 case EXIT_REASON_MSR_WRITE:
7214 return handle_fastpath_set_msr_irqoff(vcpu);
7215 case EXIT_REASON_PREEMPTION_TIMER:
7216 return handle_fastpath_preemption_timer(vcpu);
7217 default:
7218 return EXIT_FASTPATH_NONE;
7219 }
7220 }
7221
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7222 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7223 unsigned int flags)
7224 {
7225 struct vcpu_vmx *vmx = to_vmx(vcpu);
7226
7227 guest_state_enter_irqoff();
7228
7229 /* L1D Flush includes CPU buffer clear to mitigate MDS */
7230 if (static_branch_unlikely(&vmx_l1d_should_flush))
7231 vmx_l1d_flush(vcpu);
7232 else if (static_branch_unlikely(&mds_user_clear))
7233 mds_clear_cpu_buffers();
7234 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7235 kvm_arch_has_assigned_device(vcpu->kvm))
7236 mds_clear_cpu_buffers();
7237
7238 vmx_disable_fb_clear(vmx);
7239
7240 if (vcpu->arch.cr2 != native_read_cr2())
7241 native_write_cr2(vcpu->arch.cr2);
7242
7243 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7244 flags);
7245
7246 vcpu->arch.cr2 = native_read_cr2();
7247 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7248
7249 vmx->idt_vectoring_info = 0;
7250
7251 vmx_enable_fb_clear(vmx);
7252
7253 if (unlikely(vmx->fail)) {
7254 vmx->exit_reason.full = 0xdead;
7255 goto out;
7256 }
7257
7258 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7259 if (likely(!vmx->exit_reason.failed_vmentry))
7260 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7261
7262 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7263 is_nmi(vmx_get_intr_info(vcpu))) {
7264 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7265 vmx_do_nmi_irqoff();
7266 kvm_after_interrupt(vcpu);
7267 }
7268
7269 out:
7270 guest_state_exit_irqoff();
7271 }
7272
vmx_vcpu_run(struct kvm_vcpu * vcpu)7273 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7274 {
7275 struct vcpu_vmx *vmx = to_vmx(vcpu);
7276 unsigned long cr3, cr4;
7277
7278 /* Record the guest's net vcpu time for enforced NMI injections. */
7279 if (unlikely(!enable_vnmi &&
7280 vmx->loaded_vmcs->soft_vnmi_blocked))
7281 vmx->loaded_vmcs->entry_time = ktime_get();
7282
7283 /*
7284 * Don't enter VMX if guest state is invalid, let the exit handler
7285 * start emulation until we arrive back to a valid state. Synthesize a
7286 * consistency check VM-Exit due to invalid guest state and bail.
7287 */
7288 if (unlikely(vmx->emulation_required)) {
7289 vmx->fail = 0;
7290
7291 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7292 vmx->exit_reason.failed_vmentry = 1;
7293 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7294 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7295 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7296 vmx->exit_intr_info = 0;
7297 return EXIT_FASTPATH_NONE;
7298 }
7299
7300 trace_kvm_entry(vcpu);
7301
7302 if (vmx->ple_window_dirty) {
7303 vmx->ple_window_dirty = false;
7304 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7305 }
7306
7307 /*
7308 * We did this in prepare_switch_to_guest, because it needs to
7309 * be within srcu_read_lock.
7310 */
7311 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7312
7313 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7314 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7315 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7316 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7317 vcpu->arch.regs_dirty = 0;
7318
7319 /*
7320 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7321 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7322 * it switches back to the current->mm, which can occur in KVM context
7323 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7324 * toggles a static key while handling a VM-Exit.
7325 */
7326 cr3 = __get_current_cr3_fast();
7327 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7328 vmcs_writel(HOST_CR3, cr3);
7329 vmx->loaded_vmcs->host_state.cr3 = cr3;
7330 }
7331
7332 cr4 = cr4_read_shadow();
7333 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7334 vmcs_writel(HOST_CR4, cr4);
7335 vmx->loaded_vmcs->host_state.cr4 = cr4;
7336 }
7337
7338 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7339 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7340 set_debugreg(vcpu->arch.dr6, 6);
7341
7342 /* When single-stepping over STI and MOV SS, we must clear the
7343 * corresponding interruptibility bits in the guest state. Otherwise
7344 * vmentry fails as it then expects bit 14 (BS) in pending debug
7345 * exceptions being set, but that's not correct for the guest debugging
7346 * case. */
7347 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7348 vmx_set_interrupt_shadow(vcpu, 0);
7349
7350 kvm_load_guest_xsave_state(vcpu);
7351
7352 pt_guest_enter(vmx);
7353
7354 atomic_switch_perf_msrs(vmx);
7355 if (intel_pmu_lbr_is_enabled(vcpu))
7356 vmx_passthrough_lbr_msrs(vcpu);
7357
7358 if (enable_preemption_timer)
7359 vmx_update_hv_timer(vcpu);
7360
7361 kvm_wait_lapic_expire(vcpu);
7362
7363 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7364 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7365
7366 /* All fields are clean at this point */
7367 if (kvm_is_using_evmcs()) {
7368 current_evmcs->hv_clean_fields |=
7369 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7370
7371 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7372 }
7373
7374 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7375 if (vmx->host_debugctlmsr)
7376 update_debugctlmsr(vmx->host_debugctlmsr);
7377
7378 #ifndef CONFIG_X86_64
7379 /*
7380 * The sysexit path does not restore ds/es, so we must set them to
7381 * a reasonable value ourselves.
7382 *
7383 * We can't defer this to vmx_prepare_switch_to_host() since that
7384 * function may be executed in interrupt context, which saves and
7385 * restore segments around it, nullifying its effect.
7386 */
7387 loadsegment(ds, __USER_DS);
7388 loadsegment(es, __USER_DS);
7389 #endif
7390
7391 pt_guest_exit(vmx);
7392
7393 kvm_load_host_xsave_state(vcpu);
7394
7395 if (is_guest_mode(vcpu)) {
7396 /*
7397 * Track VMLAUNCH/VMRESUME that have made past guest state
7398 * checking.
7399 */
7400 if (vmx->nested.nested_run_pending &&
7401 !vmx->exit_reason.failed_vmentry)
7402 ++vcpu->stat.nested_run;
7403
7404 vmx->nested.nested_run_pending = 0;
7405 }
7406
7407 if (unlikely(vmx->fail))
7408 return EXIT_FASTPATH_NONE;
7409
7410 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7411 kvm_machine_check();
7412
7413 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7414
7415 if (unlikely(vmx->exit_reason.failed_vmentry))
7416 return EXIT_FASTPATH_NONE;
7417
7418 vmx->loaded_vmcs->launched = 1;
7419
7420 vmx_recover_nmi_blocking(vmx);
7421 vmx_complete_interrupts(vmx);
7422
7423 if (is_guest_mode(vcpu))
7424 return EXIT_FASTPATH_NONE;
7425
7426 return vmx_exit_handlers_fastpath(vcpu);
7427 }
7428
vmx_vcpu_free(struct kvm_vcpu * vcpu)7429 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7430 {
7431 struct vcpu_vmx *vmx = to_vmx(vcpu);
7432
7433 if (enable_pml)
7434 vmx_destroy_pml_buffer(vmx);
7435 free_vpid(vmx->vpid);
7436 nested_vmx_free_vcpu(vcpu);
7437 free_loaded_vmcs(vmx->loaded_vmcs);
7438 }
7439
vmx_vcpu_create(struct kvm_vcpu * vcpu)7440 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7441 {
7442 struct vmx_uret_msr *tsx_ctrl;
7443 struct vcpu_vmx *vmx;
7444 int i, err;
7445
7446 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7447 vmx = to_vmx(vcpu);
7448
7449 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7450
7451 err = -ENOMEM;
7452
7453 vmx->vpid = allocate_vpid();
7454
7455 /*
7456 * If PML is turned on, failure on enabling PML just results in failure
7457 * of creating the vcpu, therefore we can simplify PML logic (by
7458 * avoiding dealing with cases, such as enabling PML partially on vcpus
7459 * for the guest), etc.
7460 */
7461 if (enable_pml) {
7462 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7463 if (!vmx->pml_pg)
7464 goto free_vpid;
7465 }
7466
7467 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7468 vmx->guest_uret_msrs[i].mask = -1ull;
7469 if (boot_cpu_has(X86_FEATURE_RTM)) {
7470 /*
7471 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7472 * Keep the host value unchanged to avoid changing CPUID bits
7473 * under the host kernel's feet.
7474 */
7475 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7476 if (tsx_ctrl)
7477 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7478 }
7479
7480 err = alloc_loaded_vmcs(&vmx->vmcs01);
7481 if (err < 0)
7482 goto free_pml;
7483
7484 /*
7485 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7486 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7487 * feature only for vmcs01, KVM currently isn't equipped to realize any
7488 * performance benefits from enabling it for vmcs02.
7489 */
7490 if (kvm_is_using_evmcs() &&
7491 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7492 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7493
7494 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7495 }
7496
7497 /* The MSR bitmap starts with all ones */
7498 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7499 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7500
7501 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7502 #ifdef CONFIG_X86_64
7503 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7504 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7505 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7506 #endif
7507 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7508 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7509 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7510 if (kvm_cstate_in_guest(vcpu->kvm)) {
7511 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7512 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7513 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7514 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7515 }
7516
7517 vmx->loaded_vmcs = &vmx->vmcs01;
7518
7519 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7520 err = kvm_alloc_apic_access_page(vcpu->kvm);
7521 if (err)
7522 goto free_vmcs;
7523 }
7524
7525 if (enable_ept && !enable_unrestricted_guest) {
7526 err = init_rmode_identity_map(vcpu->kvm);
7527 if (err)
7528 goto free_vmcs;
7529 }
7530
7531 if (vmx_can_use_ipiv(vcpu))
7532 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7533 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7534
7535 return 0;
7536
7537 free_vmcs:
7538 free_loaded_vmcs(vmx->loaded_vmcs);
7539 free_pml:
7540 vmx_destroy_pml_buffer(vmx);
7541 free_vpid:
7542 free_vpid(vmx->vpid);
7543 return err;
7544 }
7545
7546 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7547 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7548
vmx_vm_init(struct kvm * kvm)7549 static int vmx_vm_init(struct kvm *kvm)
7550 {
7551 if (!ple_gap)
7552 kvm->arch.pause_in_guest = true;
7553
7554 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7555 switch (l1tf_mitigation) {
7556 case L1TF_MITIGATION_OFF:
7557 case L1TF_MITIGATION_FLUSH_NOWARN:
7558 /* 'I explicitly don't care' is set */
7559 break;
7560 case L1TF_MITIGATION_FLUSH:
7561 case L1TF_MITIGATION_FLUSH_NOSMT:
7562 case L1TF_MITIGATION_FULL:
7563 /*
7564 * Warn upon starting the first VM in a potentially
7565 * insecure environment.
7566 */
7567 if (sched_smt_active())
7568 pr_warn_once(L1TF_MSG_SMT);
7569 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7570 pr_warn_once(L1TF_MSG_L1D);
7571 break;
7572 case L1TF_MITIGATION_FULL_FORCE:
7573 /* Flush is enforced */
7574 break;
7575 }
7576 }
7577 return 0;
7578 }
7579
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7580 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7581 {
7582 u8 cache;
7583
7584 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7585 * memory aliases with conflicting memory types and sometimes MCEs.
7586 * We have to be careful as to what are honored and when.
7587 *
7588 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7589 * UC. The effective memory type is UC or WC depending on guest PAT.
7590 * This was historically the source of MCEs and we want to be
7591 * conservative.
7592 *
7593 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7594 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7595 * EPT memory type is set to WB. The effective memory type is forced
7596 * WB.
7597 *
7598 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7599 * EPT memory type is used to emulate guest CD/MTRR.
7600 */
7601
7602 if (is_mmio)
7603 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7604
7605 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7606 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7607
7608 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7609 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7610 cache = MTRR_TYPE_WRBACK;
7611 else
7612 cache = MTRR_TYPE_UNCACHABLE;
7613
7614 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7615 }
7616
7617 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7618 }
7619
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7620 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7621 {
7622 /*
7623 * These bits in the secondary execution controls field
7624 * are dynamic, the others are mostly based on the hypervisor
7625 * architecture and the guest's CPUID. Do not touch the
7626 * dynamic bits.
7627 */
7628 u32 mask =
7629 SECONDARY_EXEC_SHADOW_VMCS |
7630 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7631 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7632 SECONDARY_EXEC_DESC;
7633
7634 u32 cur_ctl = secondary_exec_controls_get(vmx);
7635
7636 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7637 }
7638
7639 /*
7640 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7641 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7642 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7643 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7644 {
7645 struct vcpu_vmx *vmx = to_vmx(vcpu);
7646 struct kvm_cpuid_entry2 *entry;
7647
7648 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7649 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7650
7651 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7652 if (entry && (entry->_reg & (_cpuid_mask))) \
7653 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7654 } while (0)
7655
7656 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7657 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7658 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7659 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7660 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7661 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7662 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7663 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7664 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7665 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7666 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7667 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7668 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7669 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7670 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7671
7672 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7673 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7674 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7675 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7676 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7677 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7678 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7679
7680 #undef cr4_fixed1_update
7681 }
7682
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7683 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7684 {
7685 struct vcpu_vmx *vmx = to_vmx(vcpu);
7686 struct kvm_cpuid_entry2 *best = NULL;
7687 int i;
7688
7689 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7690 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7691 if (!best)
7692 return;
7693 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7694 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7695 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7696 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7697 }
7698
7699 /* Get the number of configurable Address Ranges for filtering */
7700 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7701 PT_CAP_num_address_ranges);
7702
7703 /* Initialize and clear the no dependency bits */
7704 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7705 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7706 RTIT_CTL_BRANCH_EN);
7707
7708 /*
7709 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7710 * will inject an #GP
7711 */
7712 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7713 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7714
7715 /*
7716 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7717 * PSBFreq can be set
7718 */
7719 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7720 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7721 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7722
7723 /*
7724 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7725 */
7726 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7727 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7728 RTIT_CTL_MTC_RANGE);
7729
7730 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7731 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7732 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7733 RTIT_CTL_PTW_EN);
7734
7735 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7736 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7737 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7738
7739 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7740 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7741 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7742
7743 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7744 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7745 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7746
7747 /* unmask address range configure area */
7748 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7749 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7750 }
7751
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7752 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7753 {
7754 struct vcpu_vmx *vmx = to_vmx(vcpu);
7755
7756 /*
7757 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7758 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7759 * set if and only if XSAVE is supported.
7760 */
7761 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7762 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7763 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7764
7765 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7766
7767 vmx_setup_uret_msrs(vmx);
7768
7769 if (cpu_has_secondary_exec_ctrls())
7770 vmcs_set_secondary_exec_control(vmx,
7771 vmx_secondary_exec_control(vmx));
7772
7773 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7774 vmx->msr_ia32_feature_control_valid_bits |=
7775 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7776 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7777 else
7778 vmx->msr_ia32_feature_control_valid_bits &=
7779 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7780 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7781
7782 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7783 nested_vmx_cr_fixed1_bits_update(vcpu);
7784
7785 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7786 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7787 update_intel_pt_cfg(vcpu);
7788
7789 if (boot_cpu_has(X86_FEATURE_RTM)) {
7790 struct vmx_uret_msr *msr;
7791 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7792 if (msr) {
7793 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7794 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7795 }
7796 }
7797
7798 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7799 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7800 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7801
7802 if (boot_cpu_has(X86_FEATURE_IBPB))
7803 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7804 !guest_has_pred_cmd_msr(vcpu));
7805
7806 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7807 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7808 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7809
7810 set_cr4_guest_host_mask(vmx);
7811
7812 vmx_write_encls_bitmap(vcpu, NULL);
7813 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7814 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7815 else
7816 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7817
7818 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7819 vmx->msr_ia32_feature_control_valid_bits |=
7820 FEAT_CTL_SGX_LC_ENABLED;
7821 else
7822 vmx->msr_ia32_feature_control_valid_bits &=
7823 ~FEAT_CTL_SGX_LC_ENABLED;
7824
7825 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7826 vmx_update_exception_bitmap(vcpu);
7827 }
7828
vmx_get_perf_capabilities(void)7829 static u64 vmx_get_perf_capabilities(void)
7830 {
7831 u64 perf_cap = PMU_CAP_FW_WRITES;
7832 struct x86_pmu_lbr lbr;
7833 u64 host_perf_cap = 0;
7834
7835 if (!enable_pmu)
7836 return 0;
7837
7838 if (boot_cpu_has(X86_FEATURE_PDCM))
7839 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7840
7841 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7842 x86_perf_get_lbr(&lbr);
7843 if (lbr.nr)
7844 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7845 }
7846
7847 if (vmx_pebs_supported()) {
7848 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7849 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7850 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7851 }
7852
7853 return perf_cap;
7854 }
7855
vmx_set_cpu_caps(void)7856 static __init void vmx_set_cpu_caps(void)
7857 {
7858 kvm_set_cpu_caps();
7859
7860 /* CPUID 0x1 */
7861 if (nested)
7862 kvm_cpu_cap_set(X86_FEATURE_VMX);
7863
7864 /* CPUID 0x7 */
7865 if (kvm_mpx_supported())
7866 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7867 if (!cpu_has_vmx_invpcid())
7868 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7869 if (vmx_pt_mode_is_host_guest())
7870 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7871 if (vmx_pebs_supported()) {
7872 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7873 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7874 }
7875
7876 if (!enable_pmu)
7877 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7878 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7879
7880 if (!enable_sgx) {
7881 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7882 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7883 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7884 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7885 }
7886
7887 if (vmx_umip_emulated())
7888 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7889
7890 /* CPUID 0xD.1 */
7891 kvm_caps.supported_xss = 0;
7892 if (!cpu_has_vmx_xsaves())
7893 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7894
7895 /* CPUID 0x80000001 and 0x7 (RDPID) */
7896 if (!cpu_has_vmx_rdtscp()) {
7897 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7898 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7899 }
7900
7901 if (cpu_has_vmx_waitpkg())
7902 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7903 }
7904
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7905 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7906 {
7907 to_vmx(vcpu)->req_immediate_exit = true;
7908 }
7909
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7910 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7911 struct x86_instruction_info *info)
7912 {
7913 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7914 unsigned short port;
7915 bool intercept;
7916 int size;
7917
7918 if (info->intercept == x86_intercept_in ||
7919 info->intercept == x86_intercept_ins) {
7920 port = info->src_val;
7921 size = info->dst_bytes;
7922 } else {
7923 port = info->dst_val;
7924 size = info->src_bytes;
7925 }
7926
7927 /*
7928 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7929 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7930 * control.
7931 *
7932 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7933 */
7934 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7935 intercept = nested_cpu_has(vmcs12,
7936 CPU_BASED_UNCOND_IO_EXITING);
7937 else
7938 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7939
7940 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7941 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7942 }
7943
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7944 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7945 struct x86_instruction_info *info,
7946 enum x86_intercept_stage stage,
7947 struct x86_exception *exception)
7948 {
7949 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7950
7951 switch (info->intercept) {
7952 /*
7953 * RDPID causes #UD if disabled through secondary execution controls.
7954 * Because it is marked as EmulateOnUD, we need to intercept it here.
7955 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7956 */
7957 case x86_intercept_rdpid:
7958 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7959 exception->vector = UD_VECTOR;
7960 exception->error_code_valid = false;
7961 return X86EMUL_PROPAGATE_FAULT;
7962 }
7963 break;
7964
7965 case x86_intercept_in:
7966 case x86_intercept_ins:
7967 case x86_intercept_out:
7968 case x86_intercept_outs:
7969 return vmx_check_intercept_io(vcpu, info);
7970
7971 case x86_intercept_lgdt:
7972 case x86_intercept_lidt:
7973 case x86_intercept_lldt:
7974 case x86_intercept_ltr:
7975 case x86_intercept_sgdt:
7976 case x86_intercept_sidt:
7977 case x86_intercept_sldt:
7978 case x86_intercept_str:
7979 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7980 return X86EMUL_CONTINUE;
7981
7982 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7983 break;
7984
7985 case x86_intercept_pause:
7986 /*
7987 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
7988 * with vanilla NOPs in the emulator. Apply the interception
7989 * check only to actual PAUSE instructions. Don't check
7990 * PAUSE-loop-exiting, software can't expect a given PAUSE to
7991 * exit, i.e. KVM is within its rights to allow L2 to execute
7992 * the PAUSE.
7993 */
7994 if ((info->rep_prefix != REPE_PREFIX) ||
7995 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
7996 return X86EMUL_CONTINUE;
7997
7998 break;
7999
8000 /* TODO: check more intercepts... */
8001 default:
8002 break;
8003 }
8004
8005 return X86EMUL_UNHANDLEABLE;
8006 }
8007
8008 #ifdef CONFIG_X86_64
8009 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8010 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8011 u64 divisor, u64 *result)
8012 {
8013 u64 low = a << shift, high = a >> (64 - shift);
8014
8015 /* To avoid the overflow on divq */
8016 if (high >= divisor)
8017 return 1;
8018
8019 /* Low hold the result, high hold rem which is discarded */
8020 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8021 "rm" (divisor), "0" (low), "1" (high));
8022 *result = low;
8023
8024 return 0;
8025 }
8026
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8027 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8028 bool *expired)
8029 {
8030 struct vcpu_vmx *vmx;
8031 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8032 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8033
8034 vmx = to_vmx(vcpu);
8035 tscl = rdtsc();
8036 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8037 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8038 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8039 ktimer->timer_advance_ns);
8040
8041 if (delta_tsc > lapic_timer_advance_cycles)
8042 delta_tsc -= lapic_timer_advance_cycles;
8043 else
8044 delta_tsc = 0;
8045
8046 /* Convert to host delta tsc if tsc scaling is enabled */
8047 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8048 delta_tsc && u64_shl_div_u64(delta_tsc,
8049 kvm_caps.tsc_scaling_ratio_frac_bits,
8050 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8051 return -ERANGE;
8052
8053 /*
8054 * If the delta tsc can't fit in the 32 bit after the multi shift,
8055 * we can't use the preemption timer.
8056 * It's possible that it fits on later vmentries, but checking
8057 * on every vmentry is costly so we just use an hrtimer.
8058 */
8059 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8060 return -ERANGE;
8061
8062 vmx->hv_deadline_tsc = tscl + delta_tsc;
8063 *expired = !delta_tsc;
8064 return 0;
8065 }
8066
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8067 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8068 {
8069 to_vmx(vcpu)->hv_deadline_tsc = -1;
8070 }
8071 #endif
8072
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)8073 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8074 {
8075 if (!kvm_pause_in_guest(vcpu->kvm))
8076 shrink_ple_window(vcpu);
8077 }
8078
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8079 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8080 {
8081 struct vcpu_vmx *vmx = to_vmx(vcpu);
8082
8083 if (WARN_ON_ONCE(!enable_pml))
8084 return;
8085
8086 if (is_guest_mode(vcpu)) {
8087 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8088 return;
8089 }
8090
8091 /*
8092 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8093 * code, but in that case another update request will be made and so
8094 * the guest will never run with a stale PML value.
8095 */
8096 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8097 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8098 else
8099 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8100 }
8101
vmx_setup_mce(struct kvm_vcpu * vcpu)8102 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8103 {
8104 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8105 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8106 FEAT_CTL_LMCE_ENABLED;
8107 else
8108 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8109 ~FEAT_CTL_LMCE_ENABLED;
8110 }
8111
8112 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8113 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8114 {
8115 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8116 if (to_vmx(vcpu)->nested.nested_run_pending)
8117 return -EBUSY;
8118 return !is_smm(vcpu);
8119 }
8120
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8121 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8122 {
8123 struct vcpu_vmx *vmx = to_vmx(vcpu);
8124
8125 /*
8126 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8127 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8128 * SMI and RSM only modify state that is saved and restored via SMRAM.
8129 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8130 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8131 */
8132 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8133 if (vmx->nested.smm.guest_mode)
8134 nested_vmx_vmexit(vcpu, -1, 0, 0);
8135
8136 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8137 vmx->nested.vmxon = false;
8138 vmx_clear_hlt(vcpu);
8139 return 0;
8140 }
8141
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8142 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8143 {
8144 struct vcpu_vmx *vmx = to_vmx(vcpu);
8145 int ret;
8146
8147 if (vmx->nested.smm.vmxon) {
8148 vmx->nested.vmxon = true;
8149 vmx->nested.smm.vmxon = false;
8150 }
8151
8152 if (vmx->nested.smm.guest_mode) {
8153 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8154 if (ret)
8155 return ret;
8156
8157 vmx->nested.nested_run_pending = 1;
8158 vmx->nested.smm.guest_mode = false;
8159 }
8160 return 0;
8161 }
8162
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8163 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8164 {
8165 /* RSM will cause a vmexit anyway. */
8166 }
8167 #endif
8168
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8169 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8170 {
8171 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8172 }
8173
vmx_migrate_timers(struct kvm_vcpu * vcpu)8174 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8175 {
8176 if (is_guest_mode(vcpu)) {
8177 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8178
8179 if (hrtimer_try_to_cancel(timer) == 1)
8180 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8181 }
8182 }
8183
vmx_hardware_unsetup(void)8184 static void vmx_hardware_unsetup(void)
8185 {
8186 kvm_set_posted_intr_wakeup_handler(NULL);
8187
8188 if (nested)
8189 nested_vmx_hardware_unsetup();
8190
8191 free_kvm_area();
8192 }
8193
8194 #define VMX_REQUIRED_APICV_INHIBITS \
8195 ( \
8196 BIT(APICV_INHIBIT_REASON_DISABLE)| \
8197 BIT(APICV_INHIBIT_REASON_ABSENT) | \
8198 BIT(APICV_INHIBIT_REASON_HYPERV) | \
8199 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
8200 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8201 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
8202 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \
8203 )
8204
vmx_vm_destroy(struct kvm * kvm)8205 static void vmx_vm_destroy(struct kvm *kvm)
8206 {
8207 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8208
8209 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8210 }
8211
8212 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8213 .name = KBUILD_MODNAME,
8214
8215 .check_processor_compatibility = vmx_check_processor_compat,
8216
8217 .hardware_unsetup = vmx_hardware_unsetup,
8218
8219 .hardware_enable = vmx_hardware_enable,
8220 .hardware_disable = vmx_hardware_disable,
8221 .has_emulated_msr = vmx_has_emulated_msr,
8222
8223 .vm_size = sizeof(struct kvm_vmx),
8224 .vm_init = vmx_vm_init,
8225 .vm_destroy = vmx_vm_destroy,
8226
8227 .vcpu_precreate = vmx_vcpu_precreate,
8228 .vcpu_create = vmx_vcpu_create,
8229 .vcpu_free = vmx_vcpu_free,
8230 .vcpu_reset = vmx_vcpu_reset,
8231
8232 .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8233 .vcpu_load = vmx_vcpu_load,
8234 .vcpu_put = vmx_vcpu_put,
8235
8236 .update_exception_bitmap = vmx_update_exception_bitmap,
8237 .get_msr_feature = vmx_get_msr_feature,
8238 .get_msr = vmx_get_msr,
8239 .set_msr = vmx_set_msr,
8240 .get_segment_base = vmx_get_segment_base,
8241 .get_segment = vmx_get_segment,
8242 .set_segment = vmx_set_segment,
8243 .get_cpl = vmx_get_cpl,
8244 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8245 .is_valid_cr0 = vmx_is_valid_cr0,
8246 .set_cr0 = vmx_set_cr0,
8247 .is_valid_cr4 = vmx_is_valid_cr4,
8248 .set_cr4 = vmx_set_cr4,
8249 .set_efer = vmx_set_efer,
8250 .get_idt = vmx_get_idt,
8251 .set_idt = vmx_set_idt,
8252 .get_gdt = vmx_get_gdt,
8253 .set_gdt = vmx_set_gdt,
8254 .set_dr7 = vmx_set_dr7,
8255 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8256 .cache_reg = vmx_cache_reg,
8257 .get_rflags = vmx_get_rflags,
8258 .set_rflags = vmx_set_rflags,
8259 .get_if_flag = vmx_get_if_flag,
8260
8261 .flush_tlb_all = vmx_flush_tlb_all,
8262 .flush_tlb_current = vmx_flush_tlb_current,
8263 .flush_tlb_gva = vmx_flush_tlb_gva,
8264 .flush_tlb_guest = vmx_flush_tlb_guest,
8265
8266 .vcpu_pre_run = vmx_vcpu_pre_run,
8267 .vcpu_run = vmx_vcpu_run,
8268 .handle_exit = vmx_handle_exit,
8269 .skip_emulated_instruction = vmx_skip_emulated_instruction,
8270 .update_emulated_instruction = vmx_update_emulated_instruction,
8271 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8272 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8273 .patch_hypercall = vmx_patch_hypercall,
8274 .inject_irq = vmx_inject_irq,
8275 .inject_nmi = vmx_inject_nmi,
8276 .inject_exception = vmx_inject_exception,
8277 .cancel_injection = vmx_cancel_injection,
8278 .interrupt_allowed = vmx_interrupt_allowed,
8279 .nmi_allowed = vmx_nmi_allowed,
8280 .get_nmi_mask = vmx_get_nmi_mask,
8281 .set_nmi_mask = vmx_set_nmi_mask,
8282 .enable_nmi_window = vmx_enable_nmi_window,
8283 .enable_irq_window = vmx_enable_irq_window,
8284 .update_cr8_intercept = vmx_update_cr8_intercept,
8285 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8286 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8287 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8288 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8289 .apicv_post_state_restore = vmx_apicv_post_state_restore,
8290 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8291 .hwapic_irr_update = vmx_hwapic_irr_update,
8292 .hwapic_isr_update = vmx_hwapic_isr_update,
8293 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8294 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8295 .deliver_interrupt = vmx_deliver_interrupt,
8296 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8297
8298 .set_tss_addr = vmx_set_tss_addr,
8299 .set_identity_map_addr = vmx_set_identity_map_addr,
8300 .get_mt_mask = vmx_get_mt_mask,
8301
8302 .get_exit_info = vmx_get_exit_info,
8303
8304 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8305
8306 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8307
8308 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8309 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8310 .write_tsc_offset = vmx_write_tsc_offset,
8311 .write_tsc_multiplier = vmx_write_tsc_multiplier,
8312
8313 .load_mmu_pgd = vmx_load_mmu_pgd,
8314
8315 .check_intercept = vmx_check_intercept,
8316 .handle_exit_irqoff = vmx_handle_exit_irqoff,
8317
8318 .request_immediate_exit = vmx_request_immediate_exit,
8319
8320 .sched_in = vmx_sched_in,
8321
8322 .cpu_dirty_log_size = PML_ENTITY_NUM,
8323 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8324
8325 .nested_ops = &vmx_nested_ops,
8326
8327 .pi_update_irte = vmx_pi_update_irte,
8328 .pi_start_assignment = vmx_pi_start_assignment,
8329
8330 #ifdef CONFIG_X86_64
8331 .set_hv_timer = vmx_set_hv_timer,
8332 .cancel_hv_timer = vmx_cancel_hv_timer,
8333 #endif
8334
8335 .setup_mce = vmx_setup_mce,
8336
8337 #ifdef CONFIG_KVM_SMM
8338 .smi_allowed = vmx_smi_allowed,
8339 .enter_smm = vmx_enter_smm,
8340 .leave_smm = vmx_leave_smm,
8341 .enable_smi_window = vmx_enable_smi_window,
8342 #endif
8343
8344 .can_emulate_instruction = vmx_can_emulate_instruction,
8345 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8346 .migrate_timers = vmx_migrate_timers,
8347
8348 .msr_filter_changed = vmx_msr_filter_changed,
8349 .complete_emulated_msr = kvm_complete_insn_gp,
8350
8351 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8352 };
8353
vmx_handle_intel_pt_intr(void)8354 static unsigned int vmx_handle_intel_pt_intr(void)
8355 {
8356 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8357
8358 /* '0' on failure so that the !PT case can use a RET0 static call. */
8359 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8360 return 0;
8361
8362 kvm_make_request(KVM_REQ_PMI, vcpu);
8363 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8364 (unsigned long *)&vcpu->arch.pmu.global_status);
8365 return 1;
8366 }
8367
vmx_setup_user_return_msrs(void)8368 static __init void vmx_setup_user_return_msrs(void)
8369 {
8370
8371 /*
8372 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8373 * will emulate SYSCALL in legacy mode if the vendor string in guest
8374 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8375 * support this emulation, MSR_STAR is included in the list for i386,
8376 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8377 * into hardware and is here purely for emulation purposes.
8378 */
8379 const u32 vmx_uret_msrs_list[] = {
8380 #ifdef CONFIG_X86_64
8381 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8382 #endif
8383 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8384 MSR_IA32_TSX_CTRL,
8385 };
8386 int i;
8387
8388 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8389
8390 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8391 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8392 }
8393
vmx_setup_me_spte_mask(void)8394 static void __init vmx_setup_me_spte_mask(void)
8395 {
8396 u64 me_mask = 0;
8397
8398 /*
8399 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
8400 * the former to avoid exposing shadow_phys_bits.
8401 *
8402 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8403 * shadow_phys_bits. On MKTME and/or TDX capable systems,
8404 * boot_cpu_data.x86_phys_bits holds the actual physical address
8405 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8406 * reported by CPUID. Those bits between are KeyID bits.
8407 */
8408 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8409 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8410 kvm_get_shadow_phys_bits() - 1);
8411 /*
8412 * Unlike SME, host kernel doesn't support setting up any
8413 * MKTME KeyID on Intel platforms. No memory encryption
8414 * bits should be included into the SPTE.
8415 */
8416 kvm_mmu_set_me_spte_mask(0, me_mask);
8417 }
8418
8419 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8420
hardware_setup(void)8421 static __init int hardware_setup(void)
8422 {
8423 unsigned long host_bndcfgs;
8424 struct desc_ptr dt;
8425 int r;
8426
8427 store_idt(&dt);
8428 host_idt_base = dt.address;
8429
8430 vmx_setup_user_return_msrs();
8431
8432 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8433 return -EIO;
8434
8435 if (cpu_has_perf_global_ctrl_bug())
8436 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8437 "does not work properly. Using workaround\n");
8438
8439 if (boot_cpu_has(X86_FEATURE_NX))
8440 kvm_enable_efer_bits(EFER_NX);
8441
8442 if (boot_cpu_has(X86_FEATURE_MPX)) {
8443 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8444 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8445 }
8446
8447 if (!cpu_has_vmx_mpx())
8448 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8449 XFEATURE_MASK_BNDCSR);
8450
8451 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8452 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8453 enable_vpid = 0;
8454
8455 if (!cpu_has_vmx_ept() ||
8456 !cpu_has_vmx_ept_4levels() ||
8457 !cpu_has_vmx_ept_mt_wb() ||
8458 !cpu_has_vmx_invept_global())
8459 enable_ept = 0;
8460
8461 /* NX support is required for shadow paging. */
8462 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8463 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8464 return -EOPNOTSUPP;
8465 }
8466
8467 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8468 enable_ept_ad_bits = 0;
8469
8470 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8471 enable_unrestricted_guest = 0;
8472
8473 if (!cpu_has_vmx_flexpriority())
8474 flexpriority_enabled = 0;
8475
8476 if (!cpu_has_virtual_nmis())
8477 enable_vnmi = 0;
8478
8479 #ifdef CONFIG_X86_SGX_KVM
8480 if (!cpu_has_vmx_encls_vmexit())
8481 enable_sgx = false;
8482 #endif
8483
8484 /*
8485 * set_apic_access_page_addr() is used to reload apic access
8486 * page upon invalidation. No need to do anything if not
8487 * using the APIC_ACCESS_ADDR VMCS field.
8488 */
8489 if (!flexpriority_enabled)
8490 vmx_x86_ops.set_apic_access_page_addr = NULL;
8491
8492 if (!cpu_has_vmx_tpr_shadow())
8493 vmx_x86_ops.update_cr8_intercept = NULL;
8494
8495 #if IS_ENABLED(CONFIG_HYPERV)
8496 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8497 && enable_ept) {
8498 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8499 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8500 }
8501 #endif
8502
8503 if (!cpu_has_vmx_ple()) {
8504 ple_gap = 0;
8505 ple_window = 0;
8506 ple_window_grow = 0;
8507 ple_window_max = 0;
8508 ple_window_shrink = 0;
8509 }
8510
8511 if (!cpu_has_vmx_apicv())
8512 enable_apicv = 0;
8513 if (!enable_apicv)
8514 vmx_x86_ops.sync_pir_to_irr = NULL;
8515
8516 if (!enable_apicv || !cpu_has_vmx_ipiv())
8517 enable_ipiv = false;
8518
8519 if (cpu_has_vmx_tsc_scaling())
8520 kvm_caps.has_tsc_control = true;
8521
8522 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8523 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8524 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8525 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8526
8527 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8528
8529 if (enable_ept)
8530 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8531 cpu_has_vmx_ept_execute_only());
8532
8533 /*
8534 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8535 * bits to shadow_zero_check.
8536 */
8537 vmx_setup_me_spte_mask();
8538
8539 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8540 ept_caps_to_lpage_level(vmx_capability.ept));
8541
8542 /*
8543 * Only enable PML when hardware supports PML feature, and both EPT
8544 * and EPT A/D bit features are enabled -- PML depends on them to work.
8545 */
8546 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8547 enable_pml = 0;
8548
8549 if (!enable_pml)
8550 vmx_x86_ops.cpu_dirty_log_size = 0;
8551
8552 if (!cpu_has_vmx_preemption_timer())
8553 enable_preemption_timer = false;
8554
8555 if (enable_preemption_timer) {
8556 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8557
8558 cpu_preemption_timer_multi =
8559 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8560
8561 if (tsc_khz)
8562 use_timer_freq = (u64)tsc_khz * 1000;
8563 use_timer_freq >>= cpu_preemption_timer_multi;
8564
8565 /*
8566 * KVM "disables" the preemption timer by setting it to its max
8567 * value. Don't use the timer if it might cause spurious exits
8568 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8569 */
8570 if (use_timer_freq > 0xffffffffu / 10)
8571 enable_preemption_timer = false;
8572 }
8573
8574 if (!enable_preemption_timer) {
8575 vmx_x86_ops.set_hv_timer = NULL;
8576 vmx_x86_ops.cancel_hv_timer = NULL;
8577 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8578 }
8579
8580 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8581 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8582
8583 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8584 return -EINVAL;
8585 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8586 pt_mode = PT_MODE_SYSTEM;
8587 if (pt_mode == PT_MODE_HOST_GUEST)
8588 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8589 else
8590 vmx_init_ops.handle_intel_pt_intr = NULL;
8591
8592 setup_default_sgx_lepubkeyhash();
8593
8594 if (nested) {
8595 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8596
8597 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8598 if (r)
8599 return r;
8600 }
8601
8602 vmx_set_cpu_caps();
8603
8604 r = alloc_kvm_area();
8605 if (r && nested)
8606 nested_vmx_hardware_unsetup();
8607
8608 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8609
8610 return r;
8611 }
8612
8613 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8614 .hardware_setup = hardware_setup,
8615 .handle_intel_pt_intr = NULL,
8616
8617 .runtime_ops = &vmx_x86_ops,
8618 .pmu_ops = &intel_pmu_ops,
8619 };
8620
vmx_cleanup_l1d_flush(void)8621 static void vmx_cleanup_l1d_flush(void)
8622 {
8623 if (vmx_l1d_flush_pages) {
8624 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8625 vmx_l1d_flush_pages = NULL;
8626 }
8627 /* Restore state so sysfs ignores VMX */
8628 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8629 }
8630
__vmx_exit(void)8631 static void __vmx_exit(void)
8632 {
8633 allow_smaller_maxphyaddr = false;
8634
8635 cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8636
8637 vmx_cleanup_l1d_flush();
8638 }
8639
vmx_exit(void)8640 static void vmx_exit(void)
8641 {
8642 kvm_exit();
8643 kvm_x86_vendor_exit();
8644
8645 __vmx_exit();
8646 }
8647 module_exit(vmx_exit);
8648
vmx_init(void)8649 static int __init vmx_init(void)
8650 {
8651 int r, cpu;
8652
8653 if (!kvm_is_vmx_supported())
8654 return -EOPNOTSUPP;
8655
8656 /*
8657 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8658 * to unwind if a later step fails.
8659 */
8660 hv_init_evmcs();
8661
8662 r = kvm_x86_vendor_init(&vmx_init_ops);
8663 if (r)
8664 return r;
8665
8666 /*
8667 * Must be called after common x86 init so enable_ept is properly set
8668 * up. Hand the parameter mitigation value in which was stored in
8669 * the pre module init parser. If no parameter was given, it will
8670 * contain 'auto' which will be turned into the default 'cond'
8671 * mitigation mode.
8672 */
8673 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8674 if (r)
8675 goto err_l1d_flush;
8676
8677 for_each_possible_cpu(cpu) {
8678 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8679
8680 pi_init_cpu(cpu);
8681 }
8682
8683 cpu_emergency_register_virt_callback(vmx_emergency_disable);
8684
8685 vmx_check_vmcs12_offsets();
8686
8687 /*
8688 * Shadow paging doesn't have a (further) performance penalty
8689 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8690 * by default
8691 */
8692 if (!enable_ept)
8693 allow_smaller_maxphyaddr = true;
8694
8695 /*
8696 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8697 * exposed to userspace!
8698 */
8699 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8700 THIS_MODULE);
8701 if (r)
8702 goto err_kvm_init;
8703
8704 return 0;
8705
8706 err_kvm_init:
8707 __vmx_exit();
8708 err_l1d_flush:
8709 kvm_x86_vendor_exit();
8710 return r;
8711 }
8712 module_init(vmx_init);
8713