1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68 X86_FEATURE_MATCH(X86_FEATURE_VMX),
69 {}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87 enable_unrestricted_guest, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100
101 /*
102 * If nested=1, nested virtualization is supported, i.e., guests may use
103 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104 * use VMX instructions.
105 */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108
109 static u64 __read_mostly host_xss;
110
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116
117 #define MSR_BITMAP_MODE_X2APIC 1
118 #define MSR_BITMAP_MODE_X2APIC_APICV 2
119
120 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
121
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON \
132 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
133 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS \
135 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
136 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 RTIT_STATUS_BYTECNT))
148
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151
152 /*
153 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154 * ple_gap: upper bound on the amount of time between two successive
155 * executions of PAUSE in a loop. Also indicate if ple enabled.
156 * According to test, this time is usually smaller than 128 cycles.
157 * ple_window: upper bound on the amount of time a guest is allowed to execute
158 * in a PAUSE loop. Tests indicate that most spinlocks are held for
159 * less than 2^12 cycles
160 * Time is measured based on a counter that runs at the same rate as the TSC,
161 * refer SDM volume 3b section 21.6.13 & 22.1.3.
162 */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191
192 static const struct {
193 const char *option;
194 bool for_parse;
195 } vmentry_l1d_param[] = {
196 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
197 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
198 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
199 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
200 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 struct page *page;
210 unsigned int i;
211
212 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214 return 0;
215 }
216
217 if (!enable_ept) {
218 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219 return 0;
220 }
221
222 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223 u64 msr;
224
225 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228 return 0;
229 }
230 }
231
232 /* If set to auto use the default l1tf mitigation method */
233 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 switch (l1tf_mitigation) {
235 case L1TF_MITIGATION_OFF:
236 l1tf = VMENTER_L1D_FLUSH_NEVER;
237 break;
238 case L1TF_MITIGATION_FLUSH_NOWARN:
239 case L1TF_MITIGATION_FLUSH:
240 case L1TF_MITIGATION_FLUSH_NOSMT:
241 l1tf = VMENTER_L1D_FLUSH_COND;
242 break;
243 case L1TF_MITIGATION_FULL:
244 case L1TF_MITIGATION_FULL_FORCE:
245 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246 break;
247 }
248 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250 }
251
252 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254 /*
255 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 * lifetime and so should not be charged to a memcg.
257 */
258 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259 if (!page)
260 return -ENOMEM;
261 vmx_l1d_flush_pages = page_address(page);
262
263 /*
264 * Initialize each page with a different pattern in
265 * order to protect against KSM in the nested
266 * virtualization case.
267 */
268 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270 PAGE_SIZE);
271 }
272 }
273
274 l1tf_vmx_mitigation = l1tf;
275
276 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 static_branch_enable(&vmx_l1d_should_flush);
278 else
279 static_branch_disable(&vmx_l1d_should_flush);
280
281 if (l1tf == VMENTER_L1D_FLUSH_COND)
282 static_branch_enable(&vmx_l1d_flush_cond);
283 else
284 static_branch_disable(&vmx_l1d_flush_cond);
285 return 0;
286 }
287
vmentry_l1d_flush_parse(const char * s)288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290 unsigned int i;
291
292 if (s) {
293 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 if (vmentry_l1d_param[i].for_parse &&
295 sysfs_streq(s, vmentry_l1d_param[i].option))
296 return i;
297 }
298 }
299 return -EINVAL;
300 }
301
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304 int l1tf, ret;
305
306 l1tf = vmentry_l1d_flush_parse(s);
307 if (l1tf < 0)
308 return l1tf;
309
310 if (!boot_cpu_has(X86_BUG_L1TF))
311 return 0;
312
313 /*
314 * Has vmx_init() run already? If not then this is the pre init
315 * parameter parsing. In that case just store the value and let
316 * vmx_init() do the proper setup after enable_ept has been
317 * established.
318 */
319 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 vmentry_l1d_flush_param = l1tf;
321 return 0;
322 }
323
324 mutex_lock(&vmx_l1d_flush_mutex);
325 ret = vmx_setup_l1d_flush(l1tf);
326 mutex_unlock(&vmx_l1d_flush_mutex);
327 return ret;
328 }
329
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 return sprintf(s, "???\n");
334
335 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 .set = vmentry_l1d_flush_set,
340 .get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347 u32 msr, int type);
348
349 void vmx_vmexit(void);
350
351 #define vmx_insn_failed(fmt...) \
352 do { \
353 WARN_ONCE(1, fmt); \
354 pr_warn_ratelimited(fmt); \
355 } while (0)
356
vmread_error(unsigned long field,bool fault)357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359 if (fault)
360 kvm_spurious_fault();
361 else
362 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364
vmwrite_error(unsigned long field,unsigned long value)365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370
vmclear_error(struct vmcs * vmcs,u64 phys_addr)371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384 ext, vpid, gva);
385 }
386
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390 ext, eptp, gpa);
391 }
392
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398 */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400
401 /*
402 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403 * can find which vCPU should be waken up.
404 */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413
414 #define VMX_SEGMENT_FIELD(seg) \
415 [VCPU_SREG_##seg] = { \
416 .selector = GUEST_##seg##_SELECTOR, \
417 .base = GUEST_##seg##_BASE, \
418 .limit = GUEST_##seg##_LIMIT, \
419 .ar_bytes = GUEST_##seg##_AR_BYTES, \
420 }
421
422 static const struct kvm_vmx_segment_field {
423 unsigned selector;
424 unsigned base;
425 unsigned limit;
426 unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428 VMX_SEGMENT_FIELD(CS),
429 VMX_SEGMENT_FIELD(DS),
430 VMX_SEGMENT_FIELD(ES),
431 VMX_SEGMENT_FIELD(FS),
432 VMX_SEGMENT_FIELD(GS),
433 VMX_SEGMENT_FIELD(SS),
434 VMX_SEGMENT_FIELD(TR),
435 VMX_SEGMENT_FIELD(LDTR),
436 };
437
438 u64 host_efer;
439 static unsigned long host_idt_base;
440
441 /*
442 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443 * will emulate SYSCALL in legacy mode if the vendor string in guest
444 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445 * support this emulation, IA32_STAR must always be included in
446 * vmx_msr_index[], even in i386 builds.
447 */
448 const u32 vmx_msr_index[] = {
449 #ifdef CONFIG_X86_64
450 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
451 #endif
452 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
453 };
454
455 #if IS_ENABLED(CONFIG_HYPERV)
456 static bool __read_mostly enlightened_vmcs = true;
457 module_param(enlightened_vmcs, bool, 0444);
458
459 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)460 static void check_ept_pointer_match(struct kvm *kvm)
461 {
462 struct kvm_vcpu *vcpu;
463 u64 tmp_eptp = INVALID_PAGE;
464 int i;
465
466 kvm_for_each_vcpu(i, vcpu, kvm) {
467 if (!VALID_PAGE(tmp_eptp)) {
468 tmp_eptp = to_vmx(vcpu)->ept_pointer;
469 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
470 to_kvm_vmx(kvm)->ept_pointers_match
471 = EPT_POINTERS_MISMATCH;
472 return;
473 }
474 }
475
476 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
477 }
478
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)479 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
480 void *data)
481 {
482 struct kvm_tlb_range *range = data;
483
484 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
485 range->pages);
486 }
487
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)488 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
489 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
490 {
491 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
492
493 /*
494 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
495 * of the base of EPT PML4 table, strip off EPT configuration
496 * information.
497 */
498 if (range)
499 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
500 kvm_fill_hv_flush_list_func, (void *)range);
501 else
502 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
503 }
504
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)505 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
506 struct kvm_tlb_range *range)
507 {
508 struct kvm_vcpu *vcpu;
509 int ret = 0, i;
510
511 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
512
513 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
514 check_ept_pointer_match(kvm);
515
516 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
517 kvm_for_each_vcpu(i, vcpu, kvm) {
518 /* If ept_pointer is invalid pointer, bypass flush request. */
519 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
520 ret |= __hv_remote_flush_tlb_with_range(
521 kvm, vcpu, range);
522 }
523 } else {
524 ret = __hv_remote_flush_tlb_with_range(kvm,
525 kvm_get_vcpu(kvm, 0), range);
526 }
527
528 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
529 return ret;
530 }
hv_remote_flush_tlb(struct kvm * kvm)531 static int hv_remote_flush_tlb(struct kvm *kvm)
532 {
533 return hv_remote_flush_tlb_with_range(kvm, NULL);
534 }
535
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)536 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
537 {
538 struct hv_enlightened_vmcs *evmcs;
539 struct hv_partition_assist_pg **p_hv_pa_pg =
540 &vcpu->kvm->arch.hyperv.hv_pa_pg;
541 /*
542 * Synthetic VM-Exit is not enabled in current code and so All
543 * evmcs in singe VM shares same assist page.
544 */
545 if (!*p_hv_pa_pg)
546 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
547
548 if (!*p_hv_pa_pg)
549 return -ENOMEM;
550
551 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
552
553 evmcs->partition_assist_page =
554 __pa(*p_hv_pa_pg);
555 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
557
558 return 0;
559 }
560
561 #endif /* IS_ENABLED(CONFIG_HYPERV) */
562
563 /*
564 * Comment's format: document - errata name - stepping - processor name.
565 * Refer from
566 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
567 */
568 static u32 vmx_preemption_cpu_tfms[] = {
569 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
570 0x000206E6,
571 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
572 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
573 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
574 0x00020652,
575 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020655,
577 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
578 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
579 /*
580 * 320767.pdf - AAP86 - B1 -
581 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
582 */
583 0x000106E5,
584 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
585 0x000106A0,
586 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
587 0x000106A1,
588 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
589 0x000106A4,
590 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
591 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
592 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
593 0x000106A5,
594 /* Xeon E3-1220 V2 */
595 0x000306A8,
596 };
597
cpu_has_broken_vmx_preemption_timer(void)598 static inline bool cpu_has_broken_vmx_preemption_timer(void)
599 {
600 u32 eax = cpuid_eax(0x00000001), i;
601
602 /* Clear the reserved bits */
603 eax &= ~(0x3U << 14 | 0xfU << 28);
604 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
605 if (eax == vmx_preemption_cpu_tfms[i])
606 return true;
607
608 return false;
609 }
610
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)611 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
612 {
613 return flexpriority_enabled && lapic_in_kernel(vcpu);
614 }
615
report_flexpriority(void)616 static inline bool report_flexpriority(void)
617 {
618 return flexpriority_enabled;
619 }
620
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)621 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
622 {
623 int i;
624
625 for (i = 0; i < vmx->nmsrs; ++i)
626 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
627 return i;
628 return -1;
629 }
630
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)631 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
632 {
633 int i;
634
635 i = __find_msr_index(vmx, msr);
636 if (i >= 0)
637 return &vmx->guest_msrs[i];
638 return NULL;
639 }
640
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)641 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
642 {
643 vmcs_clear(loaded_vmcs->vmcs);
644 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
645 vmcs_clear(loaded_vmcs->shadow_vmcs);
646 loaded_vmcs->cpu = -1;
647 loaded_vmcs->launched = 0;
648 }
649
650 #ifdef CONFIG_KEXEC_CORE
651 /*
652 * This bitmap is used to indicate whether the vmclear
653 * operation is enabled on all cpus. All disabled by
654 * default.
655 */
656 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
657
crash_enable_local_vmclear(int cpu)658 static inline void crash_enable_local_vmclear(int cpu)
659 {
660 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
661 }
662
crash_disable_local_vmclear(int cpu)663 static inline void crash_disable_local_vmclear(int cpu)
664 {
665 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
666 }
667
crash_local_vmclear_enabled(int cpu)668 static inline int crash_local_vmclear_enabled(int cpu)
669 {
670 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
671 }
672
crash_vmclear_local_loaded_vmcss(void)673 static void crash_vmclear_local_loaded_vmcss(void)
674 {
675 int cpu = raw_smp_processor_id();
676 struct loaded_vmcs *v;
677
678 if (!crash_local_vmclear_enabled(cpu))
679 return;
680
681 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
682 loaded_vmcss_on_cpu_link)
683 vmcs_clear(v->vmcs);
684 }
685 #else
crash_enable_local_vmclear(int cpu)686 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)687 static inline void crash_disable_local_vmclear(int cpu) { }
688 #endif /* CONFIG_KEXEC_CORE */
689
__loaded_vmcs_clear(void * arg)690 static void __loaded_vmcs_clear(void *arg)
691 {
692 struct loaded_vmcs *loaded_vmcs = arg;
693 int cpu = raw_smp_processor_id();
694
695 if (loaded_vmcs->cpu != cpu)
696 return; /* vcpu migration can race with cpu offline */
697 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 per_cpu(current_vmcs, cpu) = NULL;
699 crash_disable_local_vmclear(cpu);
700 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
701
702 /*
703 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
704 * is before setting loaded_vmcs->vcpu to -1 which is done in
705 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
706 * then adds the vmcs into percpu list before it is deleted.
707 */
708 smp_wmb();
709
710 loaded_vmcs_init(loaded_vmcs);
711 crash_enable_local_vmclear(cpu);
712 }
713
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
715 {
716 int cpu = loaded_vmcs->cpu;
717
718 if (cpu != -1)
719 smp_call_function_single(cpu,
720 __loaded_vmcs_clear, loaded_vmcs, 1);
721 }
722
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)723 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
724 unsigned field)
725 {
726 bool ret;
727 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
728
729 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
730 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
731 vmx->segment_cache.bitmask = 0;
732 }
733 ret = vmx->segment_cache.bitmask & mask;
734 vmx->segment_cache.bitmask |= mask;
735 return ret;
736 }
737
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)738 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
739 {
740 u16 *p = &vmx->segment_cache.seg[seg].selector;
741
742 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
743 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
744 return *p;
745 }
746
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)747 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
748 {
749 ulong *p = &vmx->segment_cache.seg[seg].base;
750
751 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
752 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
753 return *p;
754 }
755
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)756 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
757 {
758 u32 *p = &vmx->segment_cache.seg[seg].limit;
759
760 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
761 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
762 return *p;
763 }
764
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)765 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
766 {
767 u32 *p = &vmx->segment_cache.seg[seg].ar;
768
769 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
770 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
771 return *p;
772 }
773
update_exception_bitmap(struct kvm_vcpu * vcpu)774 void update_exception_bitmap(struct kvm_vcpu *vcpu)
775 {
776 u32 eb;
777
778 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
779 (1u << DB_VECTOR) | (1u << AC_VECTOR);
780 /*
781 * Guest access to VMware backdoor ports could legitimately
782 * trigger #GP because of TSS I/O permission bitmap.
783 * We intercept those #GP and allow access to them anyway
784 * as VMware does.
785 */
786 if (enable_vmware_backdoor)
787 eb |= (1u << GP_VECTOR);
788 if ((vcpu->guest_debug &
789 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
790 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
791 eb |= 1u << BP_VECTOR;
792 if (to_vmx(vcpu)->rmode.vm86_active)
793 eb = ~0;
794 if (enable_ept)
795 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
796
797 /* When we are running a nested L2 guest and L1 specified for it a
798 * certain exception bitmap, we must trap the same exceptions and pass
799 * them to L1. When running L2, we will only handle the exceptions
800 * specified above if L1 did not want them.
801 */
802 if (is_guest_mode(vcpu))
803 eb |= get_vmcs12(vcpu)->exception_bitmap;
804
805 vmcs_write32(EXCEPTION_BITMAP, eb);
806 }
807
808 /*
809 * Check if MSR is intercepted for currently loaded MSR bitmap.
810 */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
812 {
813 unsigned long *msr_bitmap;
814 int f = sizeof(unsigned long);
815
816 if (!cpu_has_vmx_msr_bitmap())
817 return true;
818
819 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
820
821 if (msr <= 0x1fff) {
822 return !!test_bit(msr, msr_bitmap + 0x800 / f);
823 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
824 msr &= 0x1fff;
825 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
826 }
827
828 return true;
829 }
830
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)831 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
832 unsigned long entry, unsigned long exit)
833 {
834 vm_entry_controls_clearbit(vmx, entry);
835 vm_exit_controls_clearbit(vmx, exit);
836 }
837
find_msr(struct vmx_msrs * m,unsigned int msr)838 static int find_msr(struct vmx_msrs *m, unsigned int msr)
839 {
840 unsigned int i;
841
842 for (i = 0; i < m->nr; ++i) {
843 if (m->val[i].index == msr)
844 return i;
845 }
846 return -ENOENT;
847 }
848
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)849 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
850 {
851 int i;
852 struct msr_autoload *m = &vmx->msr_autoload;
853
854 switch (msr) {
855 case MSR_EFER:
856 if (cpu_has_load_ia32_efer()) {
857 clear_atomic_switch_msr_special(vmx,
858 VM_ENTRY_LOAD_IA32_EFER,
859 VM_EXIT_LOAD_IA32_EFER);
860 return;
861 }
862 break;
863 case MSR_CORE_PERF_GLOBAL_CTRL:
864 if (cpu_has_load_perf_global_ctrl()) {
865 clear_atomic_switch_msr_special(vmx,
866 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
867 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
868 return;
869 }
870 break;
871 }
872 i = find_msr(&m->guest, msr);
873 if (i < 0)
874 goto skip_guest;
875 --m->guest.nr;
876 m->guest.val[i] = m->guest.val[m->guest.nr];
877 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
878
879 skip_guest:
880 i = find_msr(&m->host, msr);
881 if (i < 0)
882 return;
883
884 --m->host.nr;
885 m->host.val[i] = m->host.val[m->host.nr];
886 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
887 }
888
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)889 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
890 unsigned long entry, unsigned long exit,
891 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
892 u64 guest_val, u64 host_val)
893 {
894 vmcs_write64(guest_val_vmcs, guest_val);
895 if (host_val_vmcs != HOST_IA32_EFER)
896 vmcs_write64(host_val_vmcs, host_val);
897 vm_entry_controls_setbit(vmx, entry);
898 vm_exit_controls_setbit(vmx, exit);
899 }
900
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)901 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
902 u64 guest_val, u64 host_val, bool entry_only)
903 {
904 int i, j = 0;
905 struct msr_autoload *m = &vmx->msr_autoload;
906
907 switch (msr) {
908 case MSR_EFER:
909 if (cpu_has_load_ia32_efer()) {
910 add_atomic_switch_msr_special(vmx,
911 VM_ENTRY_LOAD_IA32_EFER,
912 VM_EXIT_LOAD_IA32_EFER,
913 GUEST_IA32_EFER,
914 HOST_IA32_EFER,
915 guest_val, host_val);
916 return;
917 }
918 break;
919 case MSR_CORE_PERF_GLOBAL_CTRL:
920 if (cpu_has_load_perf_global_ctrl()) {
921 add_atomic_switch_msr_special(vmx,
922 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
924 GUEST_IA32_PERF_GLOBAL_CTRL,
925 HOST_IA32_PERF_GLOBAL_CTRL,
926 guest_val, host_val);
927 return;
928 }
929 break;
930 case MSR_IA32_PEBS_ENABLE:
931 /* PEBS needs a quiescent period after being disabled (to write
932 * a record). Disabling PEBS through VMX MSR swapping doesn't
933 * provide that period, so a CPU could write host's record into
934 * guest's memory.
935 */
936 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
937 }
938
939 i = find_msr(&m->guest, msr);
940 if (!entry_only)
941 j = find_msr(&m->host, msr);
942
943 if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
944 (j < 0 && m->host.nr == NR_AUTOLOAD_MSRS)) {
945 printk_once(KERN_WARNING "Not enough msr switch entries. "
946 "Can't add msr %x\n", msr);
947 return;
948 }
949 if (i < 0) {
950 i = m->guest.nr++;
951 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
952 }
953 m->guest.val[i].index = msr;
954 m->guest.val[i].value = guest_val;
955
956 if (entry_only)
957 return;
958
959 if (j < 0) {
960 j = m->host.nr++;
961 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
962 }
963 m->host.val[j].index = msr;
964 m->host.val[j].value = host_val;
965 }
966
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
968 {
969 u64 guest_efer = vmx->vcpu.arch.efer;
970 u64 ignore_bits = 0;
971
972 /* Shadow paging assumes NX to be available. */
973 if (!enable_ept)
974 guest_efer |= EFER_NX;
975
976 /*
977 * LMA and LME handled by hardware; SCE meaningless outside long mode.
978 */
979 ignore_bits |= EFER_SCE;
980 #ifdef CONFIG_X86_64
981 ignore_bits |= EFER_LMA | EFER_LME;
982 /* SCE is meaningful only in long mode on Intel */
983 if (guest_efer & EFER_LMA)
984 ignore_bits &= ~(u64)EFER_SCE;
985 #endif
986
987 /*
988 * On EPT, we can't emulate NX, so we must switch EFER atomically.
989 * On CPUs that support "load IA32_EFER", always switch EFER
990 * atomically, since it's faster than switching it manually.
991 */
992 if (cpu_has_load_ia32_efer() ||
993 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
994 if (!(guest_efer & EFER_LMA))
995 guest_efer &= ~EFER_LME;
996 if (guest_efer != host_efer)
997 add_atomic_switch_msr(vmx, MSR_EFER,
998 guest_efer, host_efer, false);
999 else
1000 clear_atomic_switch_msr(vmx, MSR_EFER);
1001 return false;
1002 } else {
1003 clear_atomic_switch_msr(vmx, MSR_EFER);
1004
1005 guest_efer &= ~ignore_bits;
1006 guest_efer |= host_efer & ignore_bits;
1007
1008 vmx->guest_msrs[efer_offset].data = guest_efer;
1009 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1010
1011 return true;
1012 }
1013 }
1014
1015 #ifdef CONFIG_X86_32
1016 /*
1017 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1018 * VMCS rather than the segment table. KVM uses this helper to figure
1019 * out the current bases to poke them into the VMCS before entry.
1020 */
segment_base(u16 selector)1021 static unsigned long segment_base(u16 selector)
1022 {
1023 struct desc_struct *table;
1024 unsigned long v;
1025
1026 if (!(selector & ~SEGMENT_RPL_MASK))
1027 return 0;
1028
1029 table = get_current_gdt_ro();
1030
1031 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1032 u16 ldt_selector = kvm_read_ldt();
1033
1034 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1035 return 0;
1036
1037 table = (struct desc_struct *)segment_base(ldt_selector);
1038 }
1039 v = get_desc_base(&table[selector >> 3]);
1040 return v;
1041 }
1042 #endif
1043
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1044 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1045 {
1046 u32 i;
1047
1048 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1049 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1050 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1051 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1052 for (i = 0; i < addr_range; i++) {
1053 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1054 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1055 }
1056 }
1057
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1058 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1059 {
1060 u32 i;
1061
1062 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1063 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1064 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1065 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1066 for (i = 0; i < addr_range; i++) {
1067 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1068 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1069 }
1070 }
1071
pt_guest_enter(struct vcpu_vmx * vmx)1072 static void pt_guest_enter(struct vcpu_vmx *vmx)
1073 {
1074 if (pt_mode == PT_MODE_SYSTEM)
1075 return;
1076
1077 /*
1078 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1079 * Save host state before VM entry.
1080 */
1081 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1082 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1083 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1084 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1085 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1086 }
1087 }
1088
pt_guest_exit(struct vcpu_vmx * vmx)1089 static void pt_guest_exit(struct vcpu_vmx *vmx)
1090 {
1091 if (pt_mode == PT_MODE_SYSTEM)
1092 return;
1093
1094 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1095 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1096 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1097 }
1098
1099 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1100 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1101 }
1102
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1103 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1104 unsigned long fs_base, unsigned long gs_base)
1105 {
1106 if (unlikely(fs_sel != host->fs_sel)) {
1107 if (!(fs_sel & 7))
1108 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1109 else
1110 vmcs_write16(HOST_FS_SELECTOR, 0);
1111 host->fs_sel = fs_sel;
1112 }
1113 if (unlikely(gs_sel != host->gs_sel)) {
1114 if (!(gs_sel & 7))
1115 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1116 else
1117 vmcs_write16(HOST_GS_SELECTOR, 0);
1118 host->gs_sel = gs_sel;
1119 }
1120 if (unlikely(fs_base != host->fs_base)) {
1121 vmcs_writel(HOST_FS_BASE, fs_base);
1122 host->fs_base = fs_base;
1123 }
1124 if (unlikely(gs_base != host->gs_base)) {
1125 vmcs_writel(HOST_GS_BASE, gs_base);
1126 host->gs_base = gs_base;
1127 }
1128 }
1129
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1130 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1131 {
1132 struct vcpu_vmx *vmx = to_vmx(vcpu);
1133 struct vmcs_host_state *host_state;
1134 #ifdef CONFIG_X86_64
1135 int cpu = raw_smp_processor_id();
1136 #endif
1137 unsigned long fs_base, gs_base;
1138 u16 fs_sel, gs_sel;
1139 int i;
1140
1141 vmx->req_immediate_exit = false;
1142
1143 /*
1144 * Note that guest MSRs to be saved/restored can also be changed
1145 * when guest state is loaded. This happens when guest transitions
1146 * to/from long-mode by setting MSR_EFER.LMA.
1147 */
1148 if (!vmx->guest_msrs_ready) {
1149 vmx->guest_msrs_ready = true;
1150 for (i = 0; i < vmx->save_nmsrs; ++i)
1151 kvm_set_shared_msr(vmx->guest_msrs[i].index,
1152 vmx->guest_msrs[i].data,
1153 vmx->guest_msrs[i].mask);
1154
1155 }
1156 if (vmx->guest_state_loaded)
1157 return;
1158
1159 host_state = &vmx->loaded_vmcs->host_state;
1160
1161 /*
1162 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1163 * allow segment selectors with cpl > 0 or ti == 1.
1164 */
1165 host_state->ldt_sel = kvm_read_ldt();
1166
1167 #ifdef CONFIG_X86_64
1168 savesegment(ds, host_state->ds_sel);
1169 savesegment(es, host_state->es_sel);
1170
1171 gs_base = cpu_kernelmode_gs_base(cpu);
1172 if (likely(is_64bit_mm(current->mm))) {
1173 save_fsgs_for_kvm();
1174 fs_sel = current->thread.fsindex;
1175 gs_sel = current->thread.gsindex;
1176 fs_base = current->thread.fsbase;
1177 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1178 } else {
1179 savesegment(fs, fs_sel);
1180 savesegment(gs, gs_sel);
1181 fs_base = read_msr(MSR_FS_BASE);
1182 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1183 }
1184
1185 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1186 #else
1187 savesegment(fs, fs_sel);
1188 savesegment(gs, gs_sel);
1189 fs_base = segment_base(fs_sel);
1190 gs_base = segment_base(gs_sel);
1191 #endif
1192
1193 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1194 vmx->guest_state_loaded = true;
1195 }
1196
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1197 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1198 {
1199 struct vmcs_host_state *host_state;
1200
1201 if (!vmx->guest_state_loaded)
1202 return;
1203
1204 host_state = &vmx->loaded_vmcs->host_state;
1205
1206 ++vmx->vcpu.stat.host_state_reload;
1207
1208 #ifdef CONFIG_X86_64
1209 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1210 #endif
1211 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1212 kvm_load_ldt(host_state->ldt_sel);
1213 #ifdef CONFIG_X86_64
1214 load_gs_index(host_state->gs_sel);
1215 #else
1216 loadsegment(gs, host_state->gs_sel);
1217 #endif
1218 }
1219 if (host_state->fs_sel & 7)
1220 loadsegment(fs, host_state->fs_sel);
1221 #ifdef CONFIG_X86_64
1222 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1223 loadsegment(ds, host_state->ds_sel);
1224 loadsegment(es, host_state->es_sel);
1225 }
1226 #endif
1227 invalidate_tss_limit();
1228 #ifdef CONFIG_X86_64
1229 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1230 #endif
1231 load_fixmap_gdt(raw_smp_processor_id());
1232 vmx->guest_state_loaded = false;
1233 vmx->guest_msrs_ready = false;
1234 }
1235
1236 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1237 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1238 {
1239 preempt_disable();
1240 if (vmx->guest_state_loaded)
1241 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1242 preempt_enable();
1243 return vmx->msr_guest_kernel_gs_base;
1244 }
1245
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1246 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1247 {
1248 preempt_disable();
1249 if (vmx->guest_state_loaded)
1250 wrmsrl(MSR_KERNEL_GS_BASE, data);
1251 preempt_enable();
1252 vmx->msr_guest_kernel_gs_base = data;
1253 }
1254 #endif
1255
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)1256 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1257 {
1258 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1259 struct pi_desc old, new;
1260 unsigned int dest;
1261
1262 /*
1263 * In case of hot-plug or hot-unplug, we may have to undo
1264 * vmx_vcpu_pi_put even if there is no assigned device. And we
1265 * always keep PI.NDST up to date for simplicity: it makes the
1266 * code easier, and CPU migration is not a fast path.
1267 */
1268 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1269 return;
1270
1271 /*
1272 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1273 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1274 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1275 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1276 * correctly.
1277 */
1278 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1279 pi_clear_sn(pi_desc);
1280 goto after_clear_sn;
1281 }
1282
1283 /* The full case. */
1284 do {
1285 old.control = new.control = pi_desc->control;
1286
1287 dest = cpu_physical_id(cpu);
1288
1289 if (x2apic_enabled())
1290 new.ndst = dest;
1291 else
1292 new.ndst = (dest << 8) & 0xFF00;
1293
1294 new.sn = 0;
1295 } while (cmpxchg64(&pi_desc->control, old.control,
1296 new.control) != old.control);
1297
1298 after_clear_sn:
1299
1300 /*
1301 * Clear SN before reading the bitmap. The VT-d firmware
1302 * writes the bitmap and reads SN atomically (5.2.3 in the
1303 * spec), so it doesn't really have a memory barrier that
1304 * pairs with this, but we cannot do that and we need one.
1305 */
1306 smp_mb__after_atomic();
1307
1308 if (!pi_is_pir_empty(pi_desc))
1309 pi_set_on(pi_desc);
1310 }
1311
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1312 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1313 {
1314 struct vcpu_vmx *vmx = to_vmx(vcpu);
1315 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1316
1317 if (!already_loaded) {
1318 loaded_vmcs_clear(vmx->loaded_vmcs);
1319 local_irq_disable();
1320 crash_disable_local_vmclear(cpu);
1321
1322 /*
1323 * Read loaded_vmcs->cpu should be before fetching
1324 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1325 * See the comments in __loaded_vmcs_clear().
1326 */
1327 smp_rmb();
1328
1329 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1330 &per_cpu(loaded_vmcss_on_cpu, cpu));
1331 crash_enable_local_vmclear(cpu);
1332 local_irq_enable();
1333 }
1334
1335 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1336 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1337 vmcs_load(vmx->loaded_vmcs->vmcs);
1338 indirect_branch_prediction_barrier();
1339 }
1340
1341 if (!already_loaded) {
1342 void *gdt = get_current_gdt_ro();
1343 unsigned long sysenter_esp;
1344
1345 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1346
1347 /*
1348 * Linux uses per-cpu TSS and GDT, so set these when switching
1349 * processors. See 22.2.4.
1350 */
1351 vmcs_writel(HOST_TR_BASE,
1352 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1353 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1354
1355 /*
1356 * VM exits change the host TR limit to 0x67 after a VM
1357 * exit. This is okay, since 0x67 covers everything except
1358 * the IO bitmap and have have code to handle the IO bitmap
1359 * being lost after a VM exit.
1360 */
1361 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1362
1363 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1364 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1365
1366 vmx->loaded_vmcs->cpu = cpu;
1367 }
1368
1369 /* Setup TSC multiplier */
1370 if (kvm_has_tsc_control &&
1371 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1372 decache_tsc_multiplier(vmx);
1373 }
1374
1375 /*
1376 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1377 * vcpu mutex is already taken.
1378 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1379 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1380 {
1381 struct vcpu_vmx *vmx = to_vmx(vcpu);
1382
1383 vmx_vcpu_load_vmcs(vcpu, cpu);
1384
1385 vmx_vcpu_pi_load(vcpu, cpu);
1386
1387 vmx->host_pkru = read_pkru();
1388 vmx->host_debugctlmsr = get_debugctlmsr();
1389 }
1390
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)1391 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1392 {
1393 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1394
1395 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1396 !irq_remapping_cap(IRQ_POSTING_CAP) ||
1397 !kvm_vcpu_apicv_active(vcpu))
1398 return;
1399
1400 /* Set SN when the vCPU is preempted */
1401 if (vcpu->preempted)
1402 pi_set_sn(pi_desc);
1403 }
1404
vmx_vcpu_put(struct kvm_vcpu * vcpu)1405 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1406 {
1407 vmx_vcpu_pi_put(vcpu);
1408
1409 vmx_prepare_switch_to_host(to_vmx(vcpu));
1410 }
1411
emulation_required(struct kvm_vcpu * vcpu)1412 static bool emulation_required(struct kvm_vcpu *vcpu)
1413 {
1414 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1415 }
1416
1417 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1418
vmx_get_rflags(struct kvm_vcpu * vcpu)1419 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1420 {
1421 unsigned long rflags, save_rflags;
1422
1423 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1424 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1425 rflags = vmcs_readl(GUEST_RFLAGS);
1426 if (to_vmx(vcpu)->rmode.vm86_active) {
1427 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1428 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1429 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1430 }
1431 to_vmx(vcpu)->rflags = rflags;
1432 }
1433 return to_vmx(vcpu)->rflags;
1434 }
1435
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1436 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1437 {
1438 unsigned long old_rflags = vmx_get_rflags(vcpu);
1439
1440 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1441 to_vmx(vcpu)->rflags = rflags;
1442 if (to_vmx(vcpu)->rmode.vm86_active) {
1443 to_vmx(vcpu)->rmode.save_rflags = rflags;
1444 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1445 }
1446 vmcs_writel(GUEST_RFLAGS, rflags);
1447
1448 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1449 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1450 }
1451
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1452 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1453 {
1454 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1455 int ret = 0;
1456
1457 if (interruptibility & GUEST_INTR_STATE_STI)
1458 ret |= KVM_X86_SHADOW_INT_STI;
1459 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1460 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1461
1462 return ret;
1463 }
1464
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1465 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1466 {
1467 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468 u32 interruptibility = interruptibility_old;
1469
1470 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1471
1472 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1473 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1474 else if (mask & KVM_X86_SHADOW_INT_STI)
1475 interruptibility |= GUEST_INTR_STATE_STI;
1476
1477 if ((interruptibility != interruptibility_old))
1478 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1479 }
1480
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1481 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1482 {
1483 struct vcpu_vmx *vmx = to_vmx(vcpu);
1484 unsigned long value;
1485
1486 /*
1487 * Any MSR write that attempts to change bits marked reserved will
1488 * case a #GP fault.
1489 */
1490 if (data & vmx->pt_desc.ctl_bitmask)
1491 return 1;
1492
1493 /*
1494 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1495 * result in a #GP unless the same write also clears TraceEn.
1496 */
1497 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1498 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1499 return 1;
1500
1501 /*
1502 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1503 * and FabricEn would cause #GP, if
1504 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1505 */
1506 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1507 !(data & RTIT_CTL_FABRIC_EN) &&
1508 !intel_pt_validate_cap(vmx->pt_desc.caps,
1509 PT_CAP_single_range_output))
1510 return 1;
1511
1512 /*
1513 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1514 * utilize encodings marked reserved will casue a #GP fault.
1515 */
1516 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1517 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1518 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1519 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1520 return 1;
1521 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1522 PT_CAP_cycle_thresholds);
1523 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1524 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1525 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1526 return 1;
1527 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1528 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1529 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1530 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1531 return 1;
1532
1533 /*
1534 * If ADDRx_CFG is reserved or the encodings is >2 will
1535 * cause a #GP fault.
1536 */
1537 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1538 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1539 return 1;
1540 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1541 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1542 return 1;
1543 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1544 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1545 return 1;
1546 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1547 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1548 return 1;
1549
1550 return 0;
1551 }
1552
skip_emulated_instruction(struct kvm_vcpu * vcpu)1553 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1554 {
1555 unsigned long rip;
1556
1557 /*
1558 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1559 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1560 * set when EPT misconfig occurs. In practice, real hardware updates
1561 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1562 * (namely Hyper-V) don't set it due to it being undefined behavior,
1563 * i.e. we end up advancing IP with some random value.
1564 */
1565 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1566 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1567 rip = kvm_rip_read(vcpu);
1568 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1569 kvm_rip_write(vcpu, rip);
1570 } else {
1571 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1572 return 0;
1573 }
1574
1575 /* skipping an emulated instruction also counts */
1576 vmx_set_interrupt_shadow(vcpu, 0);
1577
1578 return 1;
1579 }
1580
vmx_clear_hlt(struct kvm_vcpu * vcpu)1581 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1582 {
1583 /*
1584 * Ensure that we clear the HLT state in the VMCS. We don't need to
1585 * explicitly skip the instruction because if the HLT state is set,
1586 * then the instruction is already executing and RIP has already been
1587 * advanced.
1588 */
1589 if (kvm_hlt_in_guest(vcpu->kvm) &&
1590 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1591 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1592 }
1593
vmx_queue_exception(struct kvm_vcpu * vcpu)1594 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1595 {
1596 struct vcpu_vmx *vmx = to_vmx(vcpu);
1597 unsigned nr = vcpu->arch.exception.nr;
1598 bool has_error_code = vcpu->arch.exception.has_error_code;
1599 u32 error_code = vcpu->arch.exception.error_code;
1600 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1601
1602 kvm_deliver_exception_payload(vcpu);
1603
1604 if (has_error_code) {
1605 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1606 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1607 }
1608
1609 if (vmx->rmode.vm86_active) {
1610 int inc_eip = 0;
1611 if (kvm_exception_is_soft(nr))
1612 inc_eip = vcpu->arch.event_exit_inst_len;
1613 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1614 return;
1615 }
1616
1617 WARN_ON_ONCE(vmx->emulation_required);
1618
1619 if (kvm_exception_is_soft(nr)) {
1620 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1621 vmx->vcpu.arch.event_exit_inst_len);
1622 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1623 } else
1624 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1625
1626 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1627
1628 vmx_clear_hlt(vcpu);
1629 }
1630
vmx_rdtscp_supported(void)1631 static bool vmx_rdtscp_supported(void)
1632 {
1633 return cpu_has_vmx_rdtscp();
1634 }
1635
vmx_invpcid_supported(void)1636 static bool vmx_invpcid_supported(void)
1637 {
1638 return cpu_has_vmx_invpcid();
1639 }
1640
1641 /*
1642 * Swap MSR entry in host/guest MSR entry array.
1643 */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)1644 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1645 {
1646 struct shared_msr_entry tmp;
1647
1648 tmp = vmx->guest_msrs[to];
1649 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1650 vmx->guest_msrs[from] = tmp;
1651 }
1652
1653 /*
1654 * Set up the vmcs to automatically save and restore system
1655 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1656 * mode, as fiddling with msrs is very expensive.
1657 */
setup_msrs(struct vcpu_vmx * vmx)1658 static void setup_msrs(struct vcpu_vmx *vmx)
1659 {
1660 int save_nmsrs, index;
1661
1662 save_nmsrs = 0;
1663 #ifdef CONFIG_X86_64
1664 /*
1665 * The SYSCALL MSRs are only needed on long mode guests, and only
1666 * when EFER.SCE is set.
1667 */
1668 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1669 index = __find_msr_index(vmx, MSR_STAR);
1670 if (index >= 0)
1671 move_msr_up(vmx, index, save_nmsrs++);
1672 index = __find_msr_index(vmx, MSR_LSTAR);
1673 if (index >= 0)
1674 move_msr_up(vmx, index, save_nmsrs++);
1675 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1676 if (index >= 0)
1677 move_msr_up(vmx, index, save_nmsrs++);
1678 }
1679 #endif
1680 index = __find_msr_index(vmx, MSR_EFER);
1681 if (index >= 0 && update_transition_efer(vmx, index))
1682 move_msr_up(vmx, index, save_nmsrs++);
1683 index = __find_msr_index(vmx, MSR_TSC_AUX);
1684 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1685 move_msr_up(vmx, index, save_nmsrs++);
1686
1687 vmx->save_nmsrs = save_nmsrs;
1688 vmx->guest_msrs_ready = false;
1689
1690 if (cpu_has_vmx_msr_bitmap())
1691 vmx_update_msr_bitmap(&vmx->vcpu);
1692 }
1693
vmx_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1694 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1695 {
1696 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1697
1698 if (is_guest_mode(vcpu) &&
1699 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1700 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1701
1702 return vcpu->arch.tsc_offset;
1703 }
1704
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1705 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1706 {
1707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708 u64 g_tsc_offset = 0;
1709
1710 /*
1711 * We're here if L1 chose not to trap WRMSR to TSC. According
1712 * to the spec, this should set L1's TSC; The offset that L1
1713 * set for L2 remains unchanged, and still needs to be added
1714 * to the newly set TSC to get L2's TSC.
1715 */
1716 if (is_guest_mode(vcpu) &&
1717 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1718 g_tsc_offset = vmcs12->tsc_offset;
1719
1720 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1721 vcpu->arch.tsc_offset - g_tsc_offset,
1722 offset);
1723 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1724 return offset + g_tsc_offset;
1725 }
1726
1727 /*
1728 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1729 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1730 * all guests if the "nested" module option is off, and can also be disabled
1731 * for a single guest by disabling its VMX cpuid bit.
1732 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1733 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1734 {
1735 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1736 }
1737
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1738 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1739 uint64_t val)
1740 {
1741 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1742
1743 return !(val & ~valid_bits);
1744 }
1745
vmx_get_msr_feature(struct kvm_msr_entry * msr)1746 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1747 {
1748 switch (msr->index) {
1749 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1750 if (!nested)
1751 return 1;
1752 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1753 default:
1754 return 1;
1755 }
1756
1757 return 0;
1758 }
1759
1760 /*
1761 * Reads an msr value (of 'msr_index') into 'pdata'.
1762 * Returns 0 on success, non-0 otherwise.
1763 * Assumes vcpu_load() was already called.
1764 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1766 {
1767 struct vcpu_vmx *vmx = to_vmx(vcpu);
1768 struct shared_msr_entry *msr;
1769 u32 index;
1770
1771 switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1773 case MSR_FS_BASE:
1774 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1775 break;
1776 case MSR_GS_BASE:
1777 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1778 break;
1779 case MSR_KERNEL_GS_BASE:
1780 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781 break;
1782 #endif
1783 case MSR_EFER:
1784 return kvm_get_msr_common(vcpu, msr_info);
1785 case MSR_IA32_UMWAIT_CONTROL:
1786 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1787 return 1;
1788
1789 msr_info->data = vmx->msr_ia32_umwait_control;
1790 break;
1791 case MSR_IA32_SPEC_CTRL:
1792 if (!msr_info->host_initiated &&
1793 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1794 return 1;
1795
1796 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1797 break;
1798 case MSR_IA32_SYSENTER_CS:
1799 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1800 break;
1801 case MSR_IA32_SYSENTER_EIP:
1802 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1803 break;
1804 case MSR_IA32_SYSENTER_ESP:
1805 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1806 break;
1807 case MSR_IA32_BNDCFGS:
1808 if (!kvm_mpx_supported() ||
1809 (!msr_info->host_initiated &&
1810 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1811 return 1;
1812 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1813 break;
1814 case MSR_IA32_MCG_EXT_CTL:
1815 if (!msr_info->host_initiated &&
1816 !(vmx->msr_ia32_feature_control &
1817 FEATURE_CONTROL_LMCE))
1818 return 1;
1819 msr_info->data = vcpu->arch.mcg_ext_ctl;
1820 break;
1821 case MSR_IA32_FEATURE_CONTROL:
1822 msr_info->data = vmx->msr_ia32_feature_control;
1823 break;
1824 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1825 if (!nested_vmx_allowed(vcpu))
1826 return 1;
1827 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1828 &msr_info->data);
1829 case MSR_IA32_XSS:
1830 if (!vmx_xsaves_supported() ||
1831 (!msr_info->host_initiated &&
1832 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1833 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1834 return 1;
1835 msr_info->data = vcpu->arch.ia32_xss;
1836 break;
1837 case MSR_IA32_RTIT_CTL:
1838 if (pt_mode != PT_MODE_HOST_GUEST)
1839 return 1;
1840 msr_info->data = vmx->pt_desc.guest.ctl;
1841 break;
1842 case MSR_IA32_RTIT_STATUS:
1843 if (pt_mode != PT_MODE_HOST_GUEST)
1844 return 1;
1845 msr_info->data = vmx->pt_desc.guest.status;
1846 break;
1847 case MSR_IA32_RTIT_CR3_MATCH:
1848 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1849 !intel_pt_validate_cap(vmx->pt_desc.caps,
1850 PT_CAP_cr3_filtering))
1851 return 1;
1852 msr_info->data = vmx->pt_desc.guest.cr3_match;
1853 break;
1854 case MSR_IA32_RTIT_OUTPUT_BASE:
1855 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1856 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1857 PT_CAP_topa_output) &&
1858 !intel_pt_validate_cap(vmx->pt_desc.caps,
1859 PT_CAP_single_range_output)))
1860 return 1;
1861 msr_info->data = vmx->pt_desc.guest.output_base;
1862 break;
1863 case MSR_IA32_RTIT_OUTPUT_MASK:
1864 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1865 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1866 PT_CAP_topa_output) &&
1867 !intel_pt_validate_cap(vmx->pt_desc.caps,
1868 PT_CAP_single_range_output)))
1869 return 1;
1870 msr_info->data = vmx->pt_desc.guest.output_mask;
1871 break;
1872 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1873 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1874 if ((pt_mode != PT_MODE_HOST_GUEST) ||
1875 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1876 PT_CAP_num_address_ranges)))
1877 return 1;
1878 if (index % 2)
1879 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1880 else
1881 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1882 break;
1883 case MSR_TSC_AUX:
1884 if (!msr_info->host_initiated &&
1885 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1886 return 1;
1887 /* Else, falls through */
1888 default:
1889 msr = find_msr_entry(vmx, msr_info->index);
1890 if (msr) {
1891 msr_info->data = msr->data;
1892 break;
1893 }
1894 return kvm_get_msr_common(vcpu, msr_info);
1895 }
1896
1897 return 0;
1898 }
1899
1900 /*
1901 * Writes msr value into into the appropriate "register".
1902 * Returns 0 on success, non-0 otherwise.
1903 * Assumes vcpu_load() was already called.
1904 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1905 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1906 {
1907 struct vcpu_vmx *vmx = to_vmx(vcpu);
1908 struct shared_msr_entry *msr;
1909 int ret = 0;
1910 u32 msr_index = msr_info->index;
1911 u64 data = msr_info->data;
1912 u32 index;
1913
1914 switch (msr_index) {
1915 case MSR_EFER:
1916 ret = kvm_set_msr_common(vcpu, msr_info);
1917 break;
1918 #ifdef CONFIG_X86_64
1919 case MSR_FS_BASE:
1920 vmx_segment_cache_clear(vmx);
1921 vmcs_writel(GUEST_FS_BASE, data);
1922 break;
1923 case MSR_GS_BASE:
1924 vmx_segment_cache_clear(vmx);
1925 vmcs_writel(GUEST_GS_BASE, data);
1926 break;
1927 case MSR_KERNEL_GS_BASE:
1928 vmx_write_guest_kernel_gs_base(vmx, data);
1929 break;
1930 #endif
1931 case MSR_IA32_SYSENTER_CS:
1932 if (is_guest_mode(vcpu))
1933 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1934 vmcs_write32(GUEST_SYSENTER_CS, data);
1935 break;
1936 case MSR_IA32_SYSENTER_EIP:
1937 if (is_guest_mode(vcpu))
1938 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1939 vmcs_writel(GUEST_SYSENTER_EIP, data);
1940 break;
1941 case MSR_IA32_SYSENTER_ESP:
1942 if (is_guest_mode(vcpu))
1943 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1944 vmcs_writel(GUEST_SYSENTER_ESP, data);
1945 break;
1946 case MSR_IA32_DEBUGCTLMSR:
1947 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1948 VM_EXIT_SAVE_DEBUG_CONTROLS)
1949 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1950
1951 ret = kvm_set_msr_common(vcpu, msr_info);
1952 break;
1953
1954 case MSR_IA32_BNDCFGS:
1955 if (!kvm_mpx_supported() ||
1956 (!msr_info->host_initiated &&
1957 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1958 return 1;
1959 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1960 (data & MSR_IA32_BNDCFGS_RSVD))
1961 return 1;
1962 vmcs_write64(GUEST_BNDCFGS, data);
1963 break;
1964 case MSR_IA32_UMWAIT_CONTROL:
1965 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1966 return 1;
1967
1968 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
1969 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1970 return 1;
1971
1972 vmx->msr_ia32_umwait_control = data;
1973 break;
1974 case MSR_IA32_SPEC_CTRL:
1975 if (!msr_info->host_initiated &&
1976 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1977 return 1;
1978
1979 /* The STIBP bit doesn't fault even if it's not advertised */
1980 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1981 return 1;
1982
1983 vmx->spec_ctrl = data;
1984
1985 if (!data)
1986 break;
1987
1988 /*
1989 * For non-nested:
1990 * When it's written (to non-zero) for the first time, pass
1991 * it through.
1992 *
1993 * For nested:
1994 * The handling of the MSR bitmap for L2 guests is done in
1995 * nested_vmx_merge_msr_bitmap. We should not touch the
1996 * vmcs02.msr_bitmap here since it gets completely overwritten
1997 * in the merging. We update the vmcs01 here for L1 as well
1998 * since it will end up touching the MSR anyway now.
1999 */
2000 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2001 MSR_IA32_SPEC_CTRL,
2002 MSR_TYPE_RW);
2003 break;
2004 case MSR_IA32_PRED_CMD:
2005 if (!msr_info->host_initiated &&
2006 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2007 return 1;
2008
2009 if (data & ~PRED_CMD_IBPB)
2010 return 1;
2011
2012 if (!data)
2013 break;
2014
2015 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2016
2017 /*
2018 * For non-nested:
2019 * When it's written (to non-zero) for the first time, pass
2020 * it through.
2021 *
2022 * For nested:
2023 * The handling of the MSR bitmap for L2 guests is done in
2024 * nested_vmx_merge_msr_bitmap. We should not touch the
2025 * vmcs02.msr_bitmap here since it gets completely overwritten
2026 * in the merging.
2027 */
2028 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2029 MSR_TYPE_W);
2030 break;
2031 case MSR_IA32_CR_PAT:
2032 if (!kvm_pat_valid(data))
2033 return 1;
2034
2035 if (is_guest_mode(vcpu) &&
2036 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2037 get_vmcs12(vcpu)->guest_ia32_pat = data;
2038
2039 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2040 vmcs_write64(GUEST_IA32_PAT, data);
2041 vcpu->arch.pat = data;
2042 break;
2043 }
2044 ret = kvm_set_msr_common(vcpu, msr_info);
2045 break;
2046 case MSR_IA32_TSC_ADJUST:
2047 ret = kvm_set_msr_common(vcpu, msr_info);
2048 break;
2049 case MSR_IA32_MCG_EXT_CTL:
2050 if ((!msr_info->host_initiated &&
2051 !(to_vmx(vcpu)->msr_ia32_feature_control &
2052 FEATURE_CONTROL_LMCE)) ||
2053 (data & ~MCG_EXT_CTL_LMCE_EN))
2054 return 1;
2055 vcpu->arch.mcg_ext_ctl = data;
2056 break;
2057 case MSR_IA32_FEATURE_CONTROL:
2058 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2059 (to_vmx(vcpu)->msr_ia32_feature_control &
2060 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2061 return 1;
2062 vmx->msr_ia32_feature_control = data;
2063 if (msr_info->host_initiated && data == 0)
2064 vmx_leave_nested(vcpu);
2065 break;
2066 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2067 if (!msr_info->host_initiated)
2068 return 1; /* they are read-only */
2069 if (!nested_vmx_allowed(vcpu))
2070 return 1;
2071 return vmx_set_vmx_msr(vcpu, msr_index, data);
2072 case MSR_IA32_XSS:
2073 if (!vmx_xsaves_supported() ||
2074 (!msr_info->host_initiated &&
2075 !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2076 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2077 return 1;
2078 /*
2079 * The only supported bit as of Skylake is bit 8, but
2080 * it is not supported on KVM.
2081 */
2082 if (data != 0)
2083 return 1;
2084 vcpu->arch.ia32_xss = data;
2085 if (vcpu->arch.ia32_xss != host_xss)
2086 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2087 vcpu->arch.ia32_xss, host_xss, false);
2088 else
2089 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2090 break;
2091 case MSR_IA32_RTIT_CTL:
2092 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2093 vmx_rtit_ctl_check(vcpu, data) ||
2094 vmx->nested.vmxon)
2095 return 1;
2096 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2097 vmx->pt_desc.guest.ctl = data;
2098 pt_update_intercept_for_msr(vmx);
2099 break;
2100 case MSR_IA32_RTIT_STATUS:
2101 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2102 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2103 (data & MSR_IA32_RTIT_STATUS_MASK))
2104 return 1;
2105 vmx->pt_desc.guest.status = data;
2106 break;
2107 case MSR_IA32_RTIT_CR3_MATCH:
2108 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2109 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2110 !intel_pt_validate_cap(vmx->pt_desc.caps,
2111 PT_CAP_cr3_filtering))
2112 return 1;
2113 vmx->pt_desc.guest.cr3_match = data;
2114 break;
2115 case MSR_IA32_RTIT_OUTPUT_BASE:
2116 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2117 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2118 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2119 PT_CAP_topa_output) &&
2120 !intel_pt_validate_cap(vmx->pt_desc.caps,
2121 PT_CAP_single_range_output)) ||
2122 (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2123 return 1;
2124 vmx->pt_desc.guest.output_base = data;
2125 break;
2126 case MSR_IA32_RTIT_OUTPUT_MASK:
2127 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2128 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2129 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2130 PT_CAP_topa_output) &&
2131 !intel_pt_validate_cap(vmx->pt_desc.caps,
2132 PT_CAP_single_range_output)))
2133 return 1;
2134 vmx->pt_desc.guest.output_mask = data;
2135 break;
2136 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2137 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2138 if ((pt_mode != PT_MODE_HOST_GUEST) ||
2139 (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2140 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2141 PT_CAP_num_address_ranges)))
2142 return 1;
2143 if (index % 2)
2144 vmx->pt_desc.guest.addr_b[index / 2] = data;
2145 else
2146 vmx->pt_desc.guest.addr_a[index / 2] = data;
2147 break;
2148 case MSR_TSC_AUX:
2149 if (!msr_info->host_initiated &&
2150 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2151 return 1;
2152 /* Check reserved bit, higher 32 bits should be zero */
2153 if ((data >> 32) != 0)
2154 return 1;
2155 /* Else, falls through */
2156 default:
2157 msr = find_msr_entry(vmx, msr_index);
2158 if (msr) {
2159 u64 old_msr_data = msr->data;
2160 msr->data = data;
2161 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2162 preempt_disable();
2163 ret = kvm_set_shared_msr(msr->index, msr->data,
2164 msr->mask);
2165 preempt_enable();
2166 if (ret)
2167 msr->data = old_msr_data;
2168 }
2169 break;
2170 }
2171 ret = kvm_set_msr_common(vcpu, msr_info);
2172 }
2173
2174 return ret;
2175 }
2176
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2177 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2178 {
2179 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2180 switch (reg) {
2181 case VCPU_REGS_RSP:
2182 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2183 break;
2184 case VCPU_REGS_RIP:
2185 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2186 break;
2187 case VCPU_EXREG_PDPTR:
2188 if (enable_ept)
2189 ept_save_pdptrs(vcpu);
2190 break;
2191 default:
2192 break;
2193 }
2194 }
2195
cpu_has_kvm_support(void)2196 static __init int cpu_has_kvm_support(void)
2197 {
2198 return cpu_has_vmx();
2199 }
2200
vmx_disabled_by_bios(void)2201 static __init int vmx_disabled_by_bios(void)
2202 {
2203 u64 msr;
2204
2205 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2206 if (msr & FEATURE_CONTROL_LOCKED) {
2207 /* launched w/ TXT and VMX disabled */
2208 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2209 && tboot_enabled())
2210 return 1;
2211 /* launched w/o TXT and VMX only enabled w/ TXT */
2212 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2213 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2214 && !tboot_enabled()) {
2215 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2216 "activate TXT before enabling KVM\n");
2217 return 1;
2218 }
2219 /* launched w/o TXT and VMX disabled */
2220 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2221 && !tboot_enabled())
2222 return 1;
2223 }
2224
2225 return 0;
2226 }
2227
kvm_cpu_vmxon(u64 addr)2228 static void kvm_cpu_vmxon(u64 addr)
2229 {
2230 cr4_set_bits(X86_CR4_VMXE);
2231 intel_pt_handle_vmx(1);
2232
2233 asm volatile ("vmxon %0" : : "m"(addr));
2234 }
2235
hardware_enable(void)2236 static int hardware_enable(void)
2237 {
2238 int cpu = raw_smp_processor_id();
2239 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2240 u64 old, test_bits;
2241
2242 if (cr4_read_shadow() & X86_CR4_VMXE)
2243 return -EBUSY;
2244
2245 /*
2246 * This can happen if we hot-added a CPU but failed to allocate
2247 * VP assist page for it.
2248 */
2249 if (static_branch_unlikely(&enable_evmcs) &&
2250 !hv_get_vp_assist_page(cpu))
2251 return -EFAULT;
2252
2253 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2254 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2255 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2256
2257 /*
2258 * Now we can enable the vmclear operation in kdump
2259 * since the loaded_vmcss_on_cpu list on this cpu
2260 * has been initialized.
2261 *
2262 * Though the cpu is not in VMX operation now, there
2263 * is no problem to enable the vmclear operation
2264 * for the loaded_vmcss_on_cpu list is empty!
2265 */
2266 crash_enable_local_vmclear(cpu);
2267
2268 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2269
2270 test_bits = FEATURE_CONTROL_LOCKED;
2271 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2272 if (tboot_enabled())
2273 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2274
2275 if ((old & test_bits) != test_bits) {
2276 /* enable and lock */
2277 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2278 }
2279 kvm_cpu_vmxon(phys_addr);
2280 if (enable_ept)
2281 ept_sync_global();
2282
2283 return 0;
2284 }
2285
vmclear_local_loaded_vmcss(void)2286 static void vmclear_local_loaded_vmcss(void)
2287 {
2288 int cpu = raw_smp_processor_id();
2289 struct loaded_vmcs *v, *n;
2290
2291 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2292 loaded_vmcss_on_cpu_link)
2293 __loaded_vmcs_clear(v);
2294 }
2295
2296
2297 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2298 * tricks.
2299 */
kvm_cpu_vmxoff(void)2300 static void kvm_cpu_vmxoff(void)
2301 {
2302 asm volatile (__ex("vmxoff"));
2303
2304 intel_pt_handle_vmx(0);
2305 cr4_clear_bits(X86_CR4_VMXE);
2306 }
2307
hardware_disable(void)2308 static void hardware_disable(void)
2309 {
2310 vmclear_local_loaded_vmcss();
2311 kvm_cpu_vmxoff();
2312 }
2313
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2314 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2315 u32 msr, u32 *result)
2316 {
2317 u32 vmx_msr_low, vmx_msr_high;
2318 u32 ctl = ctl_min | ctl_opt;
2319
2320 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2321
2322 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2323 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2324
2325 /* Ensure minimum (required) set of control bits are supported. */
2326 if (ctl_min & ~ctl)
2327 return -EIO;
2328
2329 *result = ctl;
2330 return 0;
2331 }
2332
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2333 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2334 struct vmx_capability *vmx_cap)
2335 {
2336 u32 vmx_msr_low, vmx_msr_high;
2337 u32 min, opt, min2, opt2;
2338 u32 _pin_based_exec_control = 0;
2339 u32 _cpu_based_exec_control = 0;
2340 u32 _cpu_based_2nd_exec_control = 0;
2341 u32 _vmexit_control = 0;
2342 u32 _vmentry_control = 0;
2343
2344 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2345 min = CPU_BASED_HLT_EXITING |
2346 #ifdef CONFIG_X86_64
2347 CPU_BASED_CR8_LOAD_EXITING |
2348 CPU_BASED_CR8_STORE_EXITING |
2349 #endif
2350 CPU_BASED_CR3_LOAD_EXITING |
2351 CPU_BASED_CR3_STORE_EXITING |
2352 CPU_BASED_UNCOND_IO_EXITING |
2353 CPU_BASED_MOV_DR_EXITING |
2354 CPU_BASED_USE_TSC_OFFSETING |
2355 CPU_BASED_MWAIT_EXITING |
2356 CPU_BASED_MONITOR_EXITING |
2357 CPU_BASED_INVLPG_EXITING |
2358 CPU_BASED_RDPMC_EXITING;
2359
2360 opt = CPU_BASED_TPR_SHADOW |
2361 CPU_BASED_USE_MSR_BITMAPS |
2362 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2363 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2364 &_cpu_based_exec_control) < 0)
2365 return -EIO;
2366 #ifdef CONFIG_X86_64
2367 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2368 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2369 ~CPU_BASED_CR8_STORE_EXITING;
2370 #endif
2371 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2372 min2 = 0;
2373 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2374 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2375 SECONDARY_EXEC_WBINVD_EXITING |
2376 SECONDARY_EXEC_ENABLE_VPID |
2377 SECONDARY_EXEC_ENABLE_EPT |
2378 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2379 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2380 SECONDARY_EXEC_DESC |
2381 SECONDARY_EXEC_RDTSCP |
2382 SECONDARY_EXEC_ENABLE_INVPCID |
2383 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2384 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2385 SECONDARY_EXEC_SHADOW_VMCS |
2386 SECONDARY_EXEC_XSAVES |
2387 SECONDARY_EXEC_RDSEED_EXITING |
2388 SECONDARY_EXEC_RDRAND_EXITING |
2389 SECONDARY_EXEC_ENABLE_PML |
2390 SECONDARY_EXEC_TSC_SCALING |
2391 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2392 SECONDARY_EXEC_PT_USE_GPA |
2393 SECONDARY_EXEC_PT_CONCEAL_VMX |
2394 SECONDARY_EXEC_ENABLE_VMFUNC |
2395 SECONDARY_EXEC_ENCLS_EXITING;
2396 if (adjust_vmx_controls(min2, opt2,
2397 MSR_IA32_VMX_PROCBASED_CTLS2,
2398 &_cpu_based_2nd_exec_control) < 0)
2399 return -EIO;
2400 }
2401 #ifndef CONFIG_X86_64
2402 if (!(_cpu_based_2nd_exec_control &
2403 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2404 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2405 #endif
2406
2407 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2408 _cpu_based_2nd_exec_control &= ~(
2409 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2410 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2412
2413 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2414 &vmx_cap->ept, &vmx_cap->vpid);
2415
2416 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2417 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2418 enabled */
2419 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2420 CPU_BASED_CR3_STORE_EXITING |
2421 CPU_BASED_INVLPG_EXITING);
2422 } else if (vmx_cap->ept) {
2423 vmx_cap->ept = 0;
2424 pr_warn_once("EPT CAP should not exist if not support "
2425 "1-setting enable EPT VM-execution control\n");
2426 }
2427 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2428 vmx_cap->vpid) {
2429 vmx_cap->vpid = 0;
2430 pr_warn_once("VPID CAP should not exist if not support "
2431 "1-setting enable VPID VM-execution control\n");
2432 }
2433
2434 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2435 #ifdef CONFIG_X86_64
2436 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2437 #endif
2438 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2439 VM_EXIT_LOAD_IA32_PAT |
2440 VM_EXIT_LOAD_IA32_EFER |
2441 VM_EXIT_CLEAR_BNDCFGS |
2442 VM_EXIT_PT_CONCEAL_PIP |
2443 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2444 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2445 &_vmexit_control) < 0)
2446 return -EIO;
2447
2448 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2449 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2450 PIN_BASED_VMX_PREEMPTION_TIMER;
2451 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2452 &_pin_based_exec_control) < 0)
2453 return -EIO;
2454
2455 if (cpu_has_broken_vmx_preemption_timer())
2456 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2457 if (!(_cpu_based_2nd_exec_control &
2458 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2459 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2460
2461 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2462 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2463 VM_ENTRY_LOAD_IA32_PAT |
2464 VM_ENTRY_LOAD_IA32_EFER |
2465 VM_ENTRY_LOAD_BNDCFGS |
2466 VM_ENTRY_PT_CONCEAL_PIP |
2467 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2468 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2469 &_vmentry_control) < 0)
2470 return -EIO;
2471
2472 /*
2473 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2474 * can't be used due to an errata where VM Exit may incorrectly clear
2475 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2476 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2477 */
2478 if (boot_cpu_data.x86 == 0x6) {
2479 switch (boot_cpu_data.x86_model) {
2480 case 26: /* AAK155 */
2481 case 30: /* AAP115 */
2482 case 37: /* AAT100 */
2483 case 44: /* BC86,AAY89,BD102 */
2484 case 46: /* BA97 */
2485 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2486 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2487 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2488 "does not work properly. Using workaround\n");
2489 break;
2490 default:
2491 break;
2492 }
2493 }
2494
2495
2496 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2497
2498 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2499 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2500 return -EIO;
2501
2502 #ifdef CONFIG_X86_64
2503 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2504 if (vmx_msr_high & (1u<<16))
2505 return -EIO;
2506 #endif
2507
2508 /* Require Write-Back (WB) memory type for VMCS accesses. */
2509 if (((vmx_msr_high >> 18) & 15) != 6)
2510 return -EIO;
2511
2512 vmcs_conf->size = vmx_msr_high & 0x1fff;
2513 vmcs_conf->order = get_order(vmcs_conf->size);
2514 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2515
2516 vmcs_conf->revision_id = vmx_msr_low;
2517
2518 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2519 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2520 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2521 vmcs_conf->vmexit_ctrl = _vmexit_control;
2522 vmcs_conf->vmentry_ctrl = _vmentry_control;
2523
2524 if (static_branch_unlikely(&enable_evmcs))
2525 evmcs_sanitize_exec_ctrls(vmcs_conf);
2526
2527 return 0;
2528 }
2529
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2530 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2531 {
2532 int node = cpu_to_node(cpu);
2533 struct page *pages;
2534 struct vmcs *vmcs;
2535
2536 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2537 if (!pages)
2538 return NULL;
2539 vmcs = page_address(pages);
2540 memset(vmcs, 0, vmcs_config.size);
2541
2542 /* KVM supports Enlightened VMCS v1 only */
2543 if (static_branch_unlikely(&enable_evmcs))
2544 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2545 else
2546 vmcs->hdr.revision_id = vmcs_config.revision_id;
2547
2548 if (shadow)
2549 vmcs->hdr.shadow_vmcs = 1;
2550 return vmcs;
2551 }
2552
free_vmcs(struct vmcs * vmcs)2553 void free_vmcs(struct vmcs *vmcs)
2554 {
2555 free_pages((unsigned long)vmcs, vmcs_config.order);
2556 }
2557
2558 /*
2559 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2560 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2561 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2562 {
2563 if (!loaded_vmcs->vmcs)
2564 return;
2565 loaded_vmcs_clear(loaded_vmcs);
2566 free_vmcs(loaded_vmcs->vmcs);
2567 loaded_vmcs->vmcs = NULL;
2568 if (loaded_vmcs->msr_bitmap)
2569 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2570 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2571 }
2572
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2573 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2574 {
2575 loaded_vmcs->vmcs = alloc_vmcs(false);
2576 if (!loaded_vmcs->vmcs)
2577 return -ENOMEM;
2578
2579 loaded_vmcs->shadow_vmcs = NULL;
2580 loaded_vmcs->hv_timer_soft_disabled = false;
2581 loaded_vmcs_init(loaded_vmcs);
2582
2583 if (cpu_has_vmx_msr_bitmap()) {
2584 loaded_vmcs->msr_bitmap = (unsigned long *)
2585 __get_free_page(GFP_KERNEL_ACCOUNT);
2586 if (!loaded_vmcs->msr_bitmap)
2587 goto out_vmcs;
2588 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2589
2590 if (IS_ENABLED(CONFIG_HYPERV) &&
2591 static_branch_unlikely(&enable_evmcs) &&
2592 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2593 struct hv_enlightened_vmcs *evmcs =
2594 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2595
2596 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2597 }
2598 }
2599
2600 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2601 memset(&loaded_vmcs->controls_shadow, 0,
2602 sizeof(struct vmcs_controls_shadow));
2603
2604 return 0;
2605
2606 out_vmcs:
2607 free_loaded_vmcs(loaded_vmcs);
2608 return -ENOMEM;
2609 }
2610
free_kvm_area(void)2611 static void free_kvm_area(void)
2612 {
2613 int cpu;
2614
2615 for_each_possible_cpu(cpu) {
2616 free_vmcs(per_cpu(vmxarea, cpu));
2617 per_cpu(vmxarea, cpu) = NULL;
2618 }
2619 }
2620
alloc_kvm_area(void)2621 static __init int alloc_kvm_area(void)
2622 {
2623 int cpu;
2624
2625 for_each_possible_cpu(cpu) {
2626 struct vmcs *vmcs;
2627
2628 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2629 if (!vmcs) {
2630 free_kvm_area();
2631 return -ENOMEM;
2632 }
2633
2634 /*
2635 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2636 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2637 * revision_id reported by MSR_IA32_VMX_BASIC.
2638 *
2639 * However, even though not explicitly documented by
2640 * TLFS, VMXArea passed as VMXON argument should
2641 * still be marked with revision_id reported by
2642 * physical CPU.
2643 */
2644 if (static_branch_unlikely(&enable_evmcs))
2645 vmcs->hdr.revision_id = vmcs_config.revision_id;
2646
2647 per_cpu(vmxarea, cpu) = vmcs;
2648 }
2649 return 0;
2650 }
2651
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2652 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2653 struct kvm_segment *save)
2654 {
2655 if (!emulate_invalid_guest_state) {
2656 /*
2657 * CS and SS RPL should be equal during guest entry according
2658 * to VMX spec, but in reality it is not always so. Since vcpu
2659 * is in the middle of the transition from real mode to
2660 * protected mode it is safe to assume that RPL 0 is a good
2661 * default value.
2662 */
2663 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2664 save->selector &= ~SEGMENT_RPL_MASK;
2665 save->dpl = save->selector & SEGMENT_RPL_MASK;
2666 save->s = 1;
2667 }
2668 vmx_set_segment(vcpu, save, seg);
2669 }
2670
enter_pmode(struct kvm_vcpu * vcpu)2671 static void enter_pmode(struct kvm_vcpu *vcpu)
2672 {
2673 unsigned long flags;
2674 struct vcpu_vmx *vmx = to_vmx(vcpu);
2675
2676 /*
2677 * Update real mode segment cache. It may be not up-to-date if sement
2678 * register was written while vcpu was in a guest mode.
2679 */
2680 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2681 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2682 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2683 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2684 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2685 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2686
2687 vmx->rmode.vm86_active = 0;
2688
2689 vmx_segment_cache_clear(vmx);
2690
2691 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2692
2693 flags = vmcs_readl(GUEST_RFLAGS);
2694 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2695 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2696 vmcs_writel(GUEST_RFLAGS, flags);
2697
2698 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2699 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2700
2701 update_exception_bitmap(vcpu);
2702
2703 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2704 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2705 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2706 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2707 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2708 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2709 }
2710
fix_rmode_seg(int seg,struct kvm_segment * save)2711 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2712 {
2713 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2714 struct kvm_segment var = *save;
2715
2716 var.dpl = 0x3;
2717 if (seg == VCPU_SREG_CS)
2718 var.type = 0x3;
2719
2720 if (!emulate_invalid_guest_state) {
2721 var.selector = var.base >> 4;
2722 var.base = var.base & 0xffff0;
2723 var.limit = 0xffff;
2724 var.g = 0;
2725 var.db = 0;
2726 var.present = 1;
2727 var.s = 1;
2728 var.l = 0;
2729 var.unusable = 0;
2730 var.type = 0x3;
2731 var.avl = 0;
2732 if (save->base & 0xf)
2733 printk_once(KERN_WARNING "kvm: segment base is not "
2734 "paragraph aligned when entering "
2735 "protected mode (seg=%d)", seg);
2736 }
2737
2738 vmcs_write16(sf->selector, var.selector);
2739 vmcs_writel(sf->base, var.base);
2740 vmcs_write32(sf->limit, var.limit);
2741 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2742 }
2743
enter_rmode(struct kvm_vcpu * vcpu)2744 static void enter_rmode(struct kvm_vcpu *vcpu)
2745 {
2746 unsigned long flags;
2747 struct vcpu_vmx *vmx = to_vmx(vcpu);
2748 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2749
2750 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2751 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2752 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2753 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2754 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2755 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2756 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2757
2758 vmx->rmode.vm86_active = 1;
2759
2760 /*
2761 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2762 * vcpu. Warn the user that an update is overdue.
2763 */
2764 if (!kvm_vmx->tss_addr)
2765 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2766 "called before entering vcpu\n");
2767
2768 vmx_segment_cache_clear(vmx);
2769
2770 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2771 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2772 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2773
2774 flags = vmcs_readl(GUEST_RFLAGS);
2775 vmx->rmode.save_rflags = flags;
2776
2777 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2778
2779 vmcs_writel(GUEST_RFLAGS, flags);
2780 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2781 update_exception_bitmap(vcpu);
2782
2783 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2784 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2785 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2786 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2787 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2788 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2789
2790 kvm_mmu_reset_context(vcpu);
2791 }
2792
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2793 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2794 {
2795 struct vcpu_vmx *vmx = to_vmx(vcpu);
2796 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2797
2798 if (!msr)
2799 return;
2800
2801 vcpu->arch.efer = efer;
2802 if (efer & EFER_LMA) {
2803 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2804 msr->data = efer;
2805 } else {
2806 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2807
2808 msr->data = efer & ~EFER_LME;
2809 }
2810 setup_msrs(vmx);
2811 }
2812
2813 #ifdef CONFIG_X86_64
2814
enter_lmode(struct kvm_vcpu * vcpu)2815 static void enter_lmode(struct kvm_vcpu *vcpu)
2816 {
2817 u32 guest_tr_ar;
2818
2819 vmx_segment_cache_clear(to_vmx(vcpu));
2820
2821 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2822 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2823 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2824 __func__);
2825 vmcs_write32(GUEST_TR_AR_BYTES,
2826 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2827 | VMX_AR_TYPE_BUSY_64_TSS);
2828 }
2829 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2830 }
2831
exit_lmode(struct kvm_vcpu * vcpu)2832 static void exit_lmode(struct kvm_vcpu *vcpu)
2833 {
2834 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2835 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2836 }
2837
2838 #endif
2839
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)2840 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2841 {
2842 int vpid = to_vmx(vcpu)->vpid;
2843
2844 if (!vpid_sync_vcpu_addr(vpid, addr))
2845 vpid_sync_context(vpid);
2846
2847 /*
2848 * If VPIDs are not supported or enabled, then the above is a no-op.
2849 * But we don't really need a TLB flush in that case anyway, because
2850 * each VM entry/exit includes an implicit flush when VPID is 0.
2851 */
2852 }
2853
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2854 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2855 {
2856 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2857
2858 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2859 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2860 }
2861
vmx_decache_cr3(struct kvm_vcpu * vcpu)2862 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2863 {
2864 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2865 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2866 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2867 }
2868
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2869 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2870 {
2871 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2872
2873 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2874 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2875 }
2876
ept_load_pdptrs(struct kvm_vcpu * vcpu)2877 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2878 {
2879 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2880
2881 if (!test_bit(VCPU_EXREG_PDPTR,
2882 (unsigned long *)&vcpu->arch.regs_dirty))
2883 return;
2884
2885 if (is_pae_paging(vcpu)) {
2886 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2887 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2888 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2889 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2890 }
2891 }
2892
ept_save_pdptrs(struct kvm_vcpu * vcpu)2893 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2894 {
2895 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2896
2897 if (is_pae_paging(vcpu)) {
2898 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2899 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2900 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2901 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2902 }
2903
2904 __set_bit(VCPU_EXREG_PDPTR,
2905 (unsigned long *)&vcpu->arch.regs_avail);
2906 __set_bit(VCPU_EXREG_PDPTR,
2907 (unsigned long *)&vcpu->arch.regs_dirty);
2908 }
2909
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)2910 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2911 unsigned long cr0,
2912 struct kvm_vcpu *vcpu)
2913 {
2914 struct vcpu_vmx *vmx = to_vmx(vcpu);
2915
2916 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2917 vmx_decache_cr3(vcpu);
2918 if (!(cr0 & X86_CR0_PG)) {
2919 /* From paging/starting to nonpaging */
2920 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2921 CPU_BASED_CR3_STORE_EXITING);
2922 vcpu->arch.cr0 = cr0;
2923 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2924 } else if (!is_paging(vcpu)) {
2925 /* From nonpaging to paging */
2926 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2927 CPU_BASED_CR3_STORE_EXITING);
2928 vcpu->arch.cr0 = cr0;
2929 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2930 }
2931
2932 if (!(cr0 & X86_CR0_WP))
2933 *hw_cr0 &= ~X86_CR0_WP;
2934 }
2935
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2936 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2937 {
2938 struct vcpu_vmx *vmx = to_vmx(vcpu);
2939 unsigned long hw_cr0;
2940
2941 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2942 if (enable_unrestricted_guest)
2943 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2944 else {
2945 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2946
2947 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2948 enter_pmode(vcpu);
2949
2950 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2951 enter_rmode(vcpu);
2952 }
2953
2954 #ifdef CONFIG_X86_64
2955 if (vcpu->arch.efer & EFER_LME) {
2956 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2957 enter_lmode(vcpu);
2958 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2959 exit_lmode(vcpu);
2960 }
2961 #endif
2962
2963 if (enable_ept && !enable_unrestricted_guest)
2964 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2965
2966 vmcs_writel(CR0_READ_SHADOW, cr0);
2967 vmcs_writel(GUEST_CR0, hw_cr0);
2968 vcpu->arch.cr0 = cr0;
2969
2970 /* depends on vcpu->arch.cr0 to be set to a new value */
2971 vmx->emulation_required = emulation_required(vcpu);
2972 }
2973
get_ept_level(struct kvm_vcpu * vcpu)2974 static int get_ept_level(struct kvm_vcpu *vcpu)
2975 {
2976 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2977 return 5;
2978 return 4;
2979 }
2980
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa)2981 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2982 {
2983 u64 eptp = VMX_EPTP_MT_WB;
2984
2985 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2986
2987 if (enable_ept_ad_bits &&
2988 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2989 eptp |= VMX_EPTP_AD_ENABLE_BIT;
2990 eptp |= (root_hpa & PAGE_MASK);
2991
2992 return eptp;
2993 }
2994
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)2995 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2996 {
2997 struct kvm *kvm = vcpu->kvm;
2998 unsigned long guest_cr3;
2999 u64 eptp;
3000
3001 guest_cr3 = cr3;
3002 if (enable_ept) {
3003 eptp = construct_eptp(vcpu, cr3);
3004 vmcs_write64(EPT_POINTER, eptp);
3005
3006 if (kvm_x86_ops->tlb_remote_flush) {
3007 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3008 to_vmx(vcpu)->ept_pointer = eptp;
3009 to_kvm_vmx(kvm)->ept_pointers_match
3010 = EPT_POINTERS_CHECK;
3011 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3012 }
3013
3014 if (enable_unrestricted_guest || is_paging(vcpu) ||
3015 is_guest_mode(vcpu))
3016 guest_cr3 = kvm_read_cr3(vcpu);
3017 else
3018 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3019 ept_load_pdptrs(vcpu);
3020 }
3021
3022 vmcs_writel(GUEST_CR3, guest_cr3);
3023 }
3024
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3025 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3026 {
3027 struct vcpu_vmx *vmx = to_vmx(vcpu);
3028 /*
3029 * Pass through host's Machine Check Enable value to hw_cr4, which
3030 * is in force while we are in guest mode. Do not let guests control
3031 * this bit, even if host CR4.MCE == 0.
3032 */
3033 unsigned long hw_cr4;
3034
3035 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3036 if (enable_unrestricted_guest)
3037 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3038 else if (vmx->rmode.vm86_active)
3039 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3040 else
3041 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3042
3043 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3044 if (cr4 & X86_CR4_UMIP) {
3045 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3046 hw_cr4 &= ~X86_CR4_UMIP;
3047 } else if (!is_guest_mode(vcpu) ||
3048 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3049 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3050 }
3051 }
3052
3053 if (cr4 & X86_CR4_VMXE) {
3054 /*
3055 * To use VMXON (and later other VMX instructions), a guest
3056 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3057 * So basically the check on whether to allow nested VMX
3058 * is here. We operate under the default treatment of SMM,
3059 * so VMX cannot be enabled under SMM.
3060 */
3061 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3062 return 1;
3063 }
3064
3065 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3066 return 1;
3067
3068 vcpu->arch.cr4 = cr4;
3069
3070 if (!enable_unrestricted_guest) {
3071 if (enable_ept) {
3072 if (!is_paging(vcpu)) {
3073 hw_cr4 &= ~X86_CR4_PAE;
3074 hw_cr4 |= X86_CR4_PSE;
3075 } else if (!(cr4 & X86_CR4_PAE)) {
3076 hw_cr4 &= ~X86_CR4_PAE;
3077 }
3078 }
3079
3080 /*
3081 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3082 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3083 * to be manually disabled when guest switches to non-paging
3084 * mode.
3085 *
3086 * If !enable_unrestricted_guest, the CPU is always running
3087 * with CR0.PG=1 and CR4 needs to be modified.
3088 * If enable_unrestricted_guest, the CPU automatically
3089 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3090 */
3091 if (!is_paging(vcpu))
3092 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3093 }
3094
3095 vmcs_writel(CR4_READ_SHADOW, cr4);
3096 vmcs_writel(GUEST_CR4, hw_cr4);
3097 return 0;
3098 }
3099
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3100 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3101 {
3102 struct vcpu_vmx *vmx = to_vmx(vcpu);
3103 u32 ar;
3104
3105 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3106 *var = vmx->rmode.segs[seg];
3107 if (seg == VCPU_SREG_TR
3108 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3109 return;
3110 var->base = vmx_read_guest_seg_base(vmx, seg);
3111 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3112 return;
3113 }
3114 var->base = vmx_read_guest_seg_base(vmx, seg);
3115 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3116 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3117 ar = vmx_read_guest_seg_ar(vmx, seg);
3118 var->unusable = (ar >> 16) & 1;
3119 var->type = ar & 15;
3120 var->s = (ar >> 4) & 1;
3121 var->dpl = (ar >> 5) & 3;
3122 /*
3123 * Some userspaces do not preserve unusable property. Since usable
3124 * segment has to be present according to VMX spec we can use present
3125 * property to amend userspace bug by making unusable segment always
3126 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3127 * segment as unusable.
3128 */
3129 var->present = !var->unusable;
3130 var->avl = (ar >> 12) & 1;
3131 var->l = (ar >> 13) & 1;
3132 var->db = (ar >> 14) & 1;
3133 var->g = (ar >> 15) & 1;
3134 }
3135
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3136 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3137 {
3138 struct kvm_segment s;
3139
3140 if (to_vmx(vcpu)->rmode.vm86_active) {
3141 vmx_get_segment(vcpu, &s, seg);
3142 return s.base;
3143 }
3144 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3145 }
3146
vmx_get_cpl(struct kvm_vcpu * vcpu)3147 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3148 {
3149 struct vcpu_vmx *vmx = to_vmx(vcpu);
3150
3151 if (unlikely(vmx->rmode.vm86_active))
3152 return 0;
3153 else {
3154 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3155 return VMX_AR_DPL(ar);
3156 }
3157 }
3158
vmx_segment_access_rights(struct kvm_segment * var)3159 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3160 {
3161 u32 ar;
3162
3163 if (var->unusable || !var->present)
3164 ar = 1 << 16;
3165 else {
3166 ar = var->type & 15;
3167 ar |= (var->s & 1) << 4;
3168 ar |= (var->dpl & 3) << 5;
3169 ar |= (var->present & 1) << 7;
3170 ar |= (var->avl & 1) << 12;
3171 ar |= (var->l & 1) << 13;
3172 ar |= (var->db & 1) << 14;
3173 ar |= (var->g & 1) << 15;
3174 }
3175
3176 return ar;
3177 }
3178
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3179 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3180 {
3181 struct vcpu_vmx *vmx = to_vmx(vcpu);
3182 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3183
3184 vmx_segment_cache_clear(vmx);
3185
3186 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3187 vmx->rmode.segs[seg] = *var;
3188 if (seg == VCPU_SREG_TR)
3189 vmcs_write16(sf->selector, var->selector);
3190 else if (var->s)
3191 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3192 goto out;
3193 }
3194
3195 vmcs_writel(sf->base, var->base);
3196 vmcs_write32(sf->limit, var->limit);
3197 vmcs_write16(sf->selector, var->selector);
3198
3199 /*
3200 * Fix the "Accessed" bit in AR field of segment registers for older
3201 * qemu binaries.
3202 * IA32 arch specifies that at the time of processor reset the
3203 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3204 * is setting it to 0 in the userland code. This causes invalid guest
3205 * state vmexit when "unrestricted guest" mode is turned on.
3206 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3207 * tree. Newer qemu binaries with that qemu fix would not need this
3208 * kvm hack.
3209 */
3210 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3211 var->type |= 0x1; /* Accessed */
3212
3213 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3214
3215 out:
3216 vmx->emulation_required = emulation_required(vcpu);
3217 }
3218
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3219 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3220 {
3221 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3222
3223 *db = (ar >> 14) & 1;
3224 *l = (ar >> 13) & 1;
3225 }
3226
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3227 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3228 {
3229 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3230 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3231 }
3232
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3233 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3234 {
3235 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3236 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3237 }
3238
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3239 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3240 {
3241 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3242 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3243 }
3244
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3245 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3246 {
3247 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3248 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3249 }
3250
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3251 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3252 {
3253 struct kvm_segment var;
3254 u32 ar;
3255
3256 vmx_get_segment(vcpu, &var, seg);
3257 var.dpl = 0x3;
3258 if (seg == VCPU_SREG_CS)
3259 var.type = 0x3;
3260 ar = vmx_segment_access_rights(&var);
3261
3262 if (var.base != (var.selector << 4))
3263 return false;
3264 if (var.limit != 0xffff)
3265 return false;
3266 if (ar != 0xf3)
3267 return false;
3268
3269 return true;
3270 }
3271
code_segment_valid(struct kvm_vcpu * vcpu)3272 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3273 {
3274 struct kvm_segment cs;
3275 unsigned int cs_rpl;
3276
3277 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3278 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3279
3280 if (cs.unusable)
3281 return false;
3282 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3283 return false;
3284 if (!cs.s)
3285 return false;
3286 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3287 if (cs.dpl > cs_rpl)
3288 return false;
3289 } else {
3290 if (cs.dpl != cs_rpl)
3291 return false;
3292 }
3293 if (!cs.present)
3294 return false;
3295
3296 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3297 return true;
3298 }
3299
stack_segment_valid(struct kvm_vcpu * vcpu)3300 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3301 {
3302 struct kvm_segment ss;
3303 unsigned int ss_rpl;
3304
3305 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3306 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3307
3308 if (ss.unusable)
3309 return true;
3310 if (ss.type != 3 && ss.type != 7)
3311 return false;
3312 if (!ss.s)
3313 return false;
3314 if (ss.dpl != ss_rpl) /* DPL != RPL */
3315 return false;
3316 if (!ss.present)
3317 return false;
3318
3319 return true;
3320 }
3321
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3322 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3323 {
3324 struct kvm_segment var;
3325 unsigned int rpl;
3326
3327 vmx_get_segment(vcpu, &var, seg);
3328 rpl = var.selector & SEGMENT_RPL_MASK;
3329
3330 if (var.unusable)
3331 return true;
3332 if (!var.s)
3333 return false;
3334 if (!var.present)
3335 return false;
3336 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3337 if (var.dpl < rpl) /* DPL < RPL */
3338 return false;
3339 }
3340
3341 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3342 * rights flags
3343 */
3344 return true;
3345 }
3346
tr_valid(struct kvm_vcpu * vcpu)3347 static bool tr_valid(struct kvm_vcpu *vcpu)
3348 {
3349 struct kvm_segment tr;
3350
3351 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3352
3353 if (tr.unusable)
3354 return false;
3355 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3356 return false;
3357 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3358 return false;
3359 if (!tr.present)
3360 return false;
3361
3362 return true;
3363 }
3364
ldtr_valid(struct kvm_vcpu * vcpu)3365 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3366 {
3367 struct kvm_segment ldtr;
3368
3369 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3370
3371 if (ldtr.unusable)
3372 return true;
3373 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3374 return false;
3375 if (ldtr.type != 2)
3376 return false;
3377 if (!ldtr.present)
3378 return false;
3379
3380 return true;
3381 }
3382
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3383 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3384 {
3385 struct kvm_segment cs, ss;
3386
3387 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3388 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3389
3390 return ((cs.selector & SEGMENT_RPL_MASK) ==
3391 (ss.selector & SEGMENT_RPL_MASK));
3392 }
3393
3394 /*
3395 * Check if guest state is valid. Returns true if valid, false if
3396 * not.
3397 * We assume that registers are always usable
3398 */
guest_state_valid(struct kvm_vcpu * vcpu)3399 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3400 {
3401 if (enable_unrestricted_guest)
3402 return true;
3403
3404 /* real mode guest state checks */
3405 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3406 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3407 return false;
3408 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3409 return false;
3410 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3411 return false;
3412 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3413 return false;
3414 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3415 return false;
3416 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3417 return false;
3418 } else {
3419 /* protected mode guest state checks */
3420 if (!cs_ss_rpl_check(vcpu))
3421 return false;
3422 if (!code_segment_valid(vcpu))
3423 return false;
3424 if (!stack_segment_valid(vcpu))
3425 return false;
3426 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3427 return false;
3428 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3429 return false;
3430 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3431 return false;
3432 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3433 return false;
3434 if (!tr_valid(vcpu))
3435 return false;
3436 if (!ldtr_valid(vcpu))
3437 return false;
3438 }
3439 /* TODO:
3440 * - Add checks on RIP
3441 * - Add checks on RFLAGS
3442 */
3443
3444 return true;
3445 }
3446
init_rmode_tss(struct kvm * kvm)3447 static int init_rmode_tss(struct kvm *kvm)
3448 {
3449 gfn_t fn;
3450 u16 data = 0;
3451 int idx, r;
3452
3453 idx = srcu_read_lock(&kvm->srcu);
3454 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3455 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3456 if (r < 0)
3457 goto out;
3458 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3459 r = kvm_write_guest_page(kvm, fn++, &data,
3460 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3461 if (r < 0)
3462 goto out;
3463 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3464 if (r < 0)
3465 goto out;
3466 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3467 if (r < 0)
3468 goto out;
3469 data = ~0;
3470 r = kvm_write_guest_page(kvm, fn, &data,
3471 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3472 sizeof(u8));
3473 out:
3474 srcu_read_unlock(&kvm->srcu, idx);
3475 return r;
3476 }
3477
init_rmode_identity_map(struct kvm * kvm)3478 static int init_rmode_identity_map(struct kvm *kvm)
3479 {
3480 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3481 int i, idx, r = 0;
3482 kvm_pfn_t identity_map_pfn;
3483 u32 tmp;
3484
3485 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3486 mutex_lock(&kvm->slots_lock);
3487
3488 if (likely(kvm_vmx->ept_identity_pagetable_done))
3489 goto out2;
3490
3491 if (!kvm_vmx->ept_identity_map_addr)
3492 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3493 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3494
3495 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3496 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3497 if (r < 0)
3498 goto out2;
3499
3500 idx = srcu_read_lock(&kvm->srcu);
3501 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3502 if (r < 0)
3503 goto out;
3504 /* Set up identity-mapping pagetable for EPT in real mode */
3505 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3506 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3507 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3508 r = kvm_write_guest_page(kvm, identity_map_pfn,
3509 &tmp, i * sizeof(tmp), sizeof(tmp));
3510 if (r < 0)
3511 goto out;
3512 }
3513 kvm_vmx->ept_identity_pagetable_done = true;
3514
3515 out:
3516 srcu_read_unlock(&kvm->srcu, idx);
3517
3518 out2:
3519 mutex_unlock(&kvm->slots_lock);
3520 return r;
3521 }
3522
seg_setup(int seg)3523 static void seg_setup(int seg)
3524 {
3525 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3526 unsigned int ar;
3527
3528 vmcs_write16(sf->selector, 0);
3529 vmcs_writel(sf->base, 0);
3530 vmcs_write32(sf->limit, 0xffff);
3531 ar = 0x93;
3532 if (seg == VCPU_SREG_CS)
3533 ar |= 0x08; /* code segment */
3534
3535 vmcs_write32(sf->ar_bytes, ar);
3536 }
3537
alloc_apic_access_page(struct kvm * kvm)3538 static int alloc_apic_access_page(struct kvm *kvm)
3539 {
3540 struct page *page;
3541 int r = 0;
3542
3543 mutex_lock(&kvm->slots_lock);
3544 if (kvm->arch.apic_access_page_done)
3545 goto out;
3546 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3547 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3548 if (r)
3549 goto out;
3550
3551 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3552 if (is_error_page(page)) {
3553 r = -EFAULT;
3554 goto out;
3555 }
3556
3557 /*
3558 * Do not pin the page in memory, so that memory hot-unplug
3559 * is able to migrate it.
3560 */
3561 put_page(page);
3562 kvm->arch.apic_access_page_done = true;
3563 out:
3564 mutex_unlock(&kvm->slots_lock);
3565 return r;
3566 }
3567
allocate_vpid(void)3568 int allocate_vpid(void)
3569 {
3570 int vpid;
3571
3572 if (!enable_vpid)
3573 return 0;
3574 spin_lock(&vmx_vpid_lock);
3575 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3576 if (vpid < VMX_NR_VPIDS)
3577 __set_bit(vpid, vmx_vpid_bitmap);
3578 else
3579 vpid = 0;
3580 spin_unlock(&vmx_vpid_lock);
3581 return vpid;
3582 }
3583
free_vpid(int vpid)3584 void free_vpid(int vpid)
3585 {
3586 if (!enable_vpid || vpid == 0)
3587 return;
3588 spin_lock(&vmx_vpid_lock);
3589 __clear_bit(vpid, vmx_vpid_bitmap);
3590 spin_unlock(&vmx_vpid_lock);
3591 }
3592
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)3593 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3594 u32 msr, int type)
3595 {
3596 int f = sizeof(unsigned long);
3597
3598 if (!cpu_has_vmx_msr_bitmap())
3599 return;
3600
3601 if (static_branch_unlikely(&enable_evmcs))
3602 evmcs_touch_msr_bitmap();
3603
3604 /*
3605 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3606 * have the write-low and read-high bitmap offsets the wrong way round.
3607 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3608 */
3609 if (msr <= 0x1fff) {
3610 if (type & MSR_TYPE_R)
3611 /* read-low */
3612 __clear_bit(msr, msr_bitmap + 0x000 / f);
3613
3614 if (type & MSR_TYPE_W)
3615 /* write-low */
3616 __clear_bit(msr, msr_bitmap + 0x800 / f);
3617
3618 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3619 msr &= 0x1fff;
3620 if (type & MSR_TYPE_R)
3621 /* read-high */
3622 __clear_bit(msr, msr_bitmap + 0x400 / f);
3623
3624 if (type & MSR_TYPE_W)
3625 /* write-high */
3626 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3627
3628 }
3629 }
3630
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)3631 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3632 u32 msr, int type)
3633 {
3634 int f = sizeof(unsigned long);
3635
3636 if (!cpu_has_vmx_msr_bitmap())
3637 return;
3638
3639 if (static_branch_unlikely(&enable_evmcs))
3640 evmcs_touch_msr_bitmap();
3641
3642 /*
3643 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3644 * have the write-low and read-high bitmap offsets the wrong way round.
3645 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3646 */
3647 if (msr <= 0x1fff) {
3648 if (type & MSR_TYPE_R)
3649 /* read-low */
3650 __set_bit(msr, msr_bitmap + 0x000 / f);
3651
3652 if (type & MSR_TYPE_W)
3653 /* write-low */
3654 __set_bit(msr, msr_bitmap + 0x800 / f);
3655
3656 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3657 msr &= 0x1fff;
3658 if (type & MSR_TYPE_R)
3659 /* read-high */
3660 __set_bit(msr, msr_bitmap + 0x400 / f);
3661
3662 if (type & MSR_TYPE_W)
3663 /* write-high */
3664 __set_bit(msr, msr_bitmap + 0xc00 / f);
3665
3666 }
3667 }
3668
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)3669 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3670 u32 msr, int type, bool value)
3671 {
3672 if (value)
3673 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3674 else
3675 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3676 }
3677
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3678 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3679 {
3680 u8 mode = 0;
3681
3682 if (cpu_has_secondary_exec_ctrls() &&
3683 (secondary_exec_controls_get(to_vmx(vcpu)) &
3684 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3685 mode |= MSR_BITMAP_MODE_X2APIC;
3686 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3687 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3688 }
3689
3690 return mode;
3691 }
3692
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)3693 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3694 u8 mode)
3695 {
3696 int msr;
3697
3698 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3699 unsigned word = msr / BITS_PER_LONG;
3700 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3701 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3702 }
3703
3704 if (mode & MSR_BITMAP_MODE_X2APIC) {
3705 /*
3706 * TPR reads and writes can be virtualized even if virtual interrupt
3707 * delivery is not in use.
3708 */
3709 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3710 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3711 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3712 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3713 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3714 }
3715 }
3716 }
3717
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3718 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3719 {
3720 struct vcpu_vmx *vmx = to_vmx(vcpu);
3721 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3722 u8 mode = vmx_msr_bitmap_mode(vcpu);
3723 u8 changed = mode ^ vmx->msr_bitmap_mode;
3724
3725 if (!changed)
3726 return;
3727
3728 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3729 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3730
3731 vmx->msr_bitmap_mode = mode;
3732 }
3733
pt_update_intercept_for_msr(struct vcpu_vmx * vmx)3734 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3735 {
3736 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3737 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3738 u32 i;
3739
3740 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3741 MSR_TYPE_RW, flag);
3742 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3743 MSR_TYPE_RW, flag);
3744 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3745 MSR_TYPE_RW, flag);
3746 vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3747 MSR_TYPE_RW, flag);
3748 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3749 vmx_set_intercept_for_msr(msr_bitmap,
3750 MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3751 vmx_set_intercept_for_msr(msr_bitmap,
3752 MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3753 }
3754 }
3755
vmx_get_enable_apicv(struct kvm_vcpu * vcpu)3756 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3757 {
3758 return enable_apicv;
3759 }
3760
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3761 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3762 {
3763 struct vcpu_vmx *vmx = to_vmx(vcpu);
3764 void *vapic_page;
3765 u32 vppr;
3766 int rvi;
3767
3768 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3769 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3770 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3771 return false;
3772
3773 rvi = vmx_get_rvi();
3774
3775 vapic_page = vmx->nested.virtual_apic_map.hva;
3776 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3777
3778 return ((rvi & 0xf0) > (vppr & 0xf0));
3779 }
3780
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)3781 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3782 bool nested)
3783 {
3784 #ifdef CONFIG_SMP
3785 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3786
3787 if (vcpu->mode == IN_GUEST_MODE) {
3788 /*
3789 * The vector of interrupt to be delivered to vcpu had
3790 * been set in PIR before this function.
3791 *
3792 * Following cases will be reached in this block, and
3793 * we always send a notification event in all cases as
3794 * explained below.
3795 *
3796 * Case 1: vcpu keeps in non-root mode. Sending a
3797 * notification event posts the interrupt to vcpu.
3798 *
3799 * Case 2: vcpu exits to root mode and is still
3800 * runnable. PIR will be synced to vIRR before the
3801 * next vcpu entry. Sending a notification event in
3802 * this case has no effect, as vcpu is not in root
3803 * mode.
3804 *
3805 * Case 3: vcpu exits to root mode and is blocked.
3806 * vcpu_block() has already synced PIR to vIRR and
3807 * never blocks vcpu if vIRR is not cleared. Therefore,
3808 * a blocked vcpu here does not wait for any requested
3809 * interrupts in PIR, and sending a notification event
3810 * which has no effect is safe here.
3811 */
3812
3813 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3814 return true;
3815 }
3816 #endif
3817 return false;
3818 }
3819
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3820 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3821 int vector)
3822 {
3823 struct vcpu_vmx *vmx = to_vmx(vcpu);
3824
3825 if (is_guest_mode(vcpu) &&
3826 vector == vmx->nested.posted_intr_nv) {
3827 /*
3828 * If a posted intr is not recognized by hardware,
3829 * we will accomplish it in the next vmentry.
3830 */
3831 vmx->nested.pi_pending = true;
3832 kvm_make_request(KVM_REQ_EVENT, vcpu);
3833 /* the PIR and ON have been set by L1. */
3834 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3835 kvm_vcpu_kick(vcpu);
3836 return 0;
3837 }
3838 return -1;
3839 }
3840 /*
3841 * Send interrupt to vcpu via posted interrupt way.
3842 * 1. If target vcpu is running(non-root mode), send posted interrupt
3843 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3844 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3845 * interrupt from PIR in next vmentry.
3846 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3847 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3848 {
3849 struct vcpu_vmx *vmx = to_vmx(vcpu);
3850 int r;
3851
3852 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3853 if (!r)
3854 return;
3855
3856 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3857 return;
3858
3859 /* If a previous notification has sent the IPI, nothing to do. */
3860 if (pi_test_and_set_on(&vmx->pi_desc))
3861 return;
3862
3863 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3864 kvm_vcpu_kick(vcpu);
3865 }
3866
3867 /*
3868 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3869 * will not change in the lifetime of the guest.
3870 * Note that host-state that does change is set elsewhere. E.g., host-state
3871 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3872 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)3873 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3874 {
3875 u32 low32, high32;
3876 unsigned long tmpl;
3877 unsigned long cr0, cr3, cr4;
3878
3879 cr0 = read_cr0();
3880 WARN_ON(cr0 & X86_CR0_TS);
3881 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
3882
3883 /*
3884 * Save the most likely value for this task's CR3 in the VMCS.
3885 * We can't use __get_current_cr3_fast() because we're not atomic.
3886 */
3887 cr3 = __read_cr3();
3888 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
3889 vmx->loaded_vmcs->host_state.cr3 = cr3;
3890
3891 /* Save the most likely value for this task's CR4 in the VMCS. */
3892 cr4 = cr4_read_shadow();
3893 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
3894 vmx->loaded_vmcs->host_state.cr4 = cr4;
3895
3896 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3897 #ifdef CONFIG_X86_64
3898 /*
3899 * Load null selectors, so we can avoid reloading them in
3900 * vmx_prepare_switch_to_host(), in case userspace uses
3901 * the null selectors too (the expected case).
3902 */
3903 vmcs_write16(HOST_DS_SELECTOR, 0);
3904 vmcs_write16(HOST_ES_SELECTOR, 0);
3905 #else
3906 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3907 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3908 #endif
3909 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3910 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3911
3912 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
3913
3914 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3915
3916 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3917 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3918 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3919 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3920
3921 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3922 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3923 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3924 }
3925
3926 if (cpu_has_load_ia32_efer())
3927 vmcs_write64(HOST_IA32_EFER, host_efer);
3928 }
3929
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)3930 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3931 {
3932 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3933 if (enable_ept)
3934 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3935 if (is_guest_mode(&vmx->vcpu))
3936 vmx->vcpu.arch.cr4_guest_owned_bits &=
3937 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3938 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3939 }
3940
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)3941 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3942 {
3943 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3944
3945 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3946 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3947
3948 if (!enable_vnmi)
3949 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3950
3951 if (!enable_preemption_timer)
3952 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3953
3954 return pin_based_exec_ctrl;
3955 }
3956
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)3957 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3958 {
3959 struct vcpu_vmx *vmx = to_vmx(vcpu);
3960
3961 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3962 if (cpu_has_secondary_exec_ctrls()) {
3963 if (kvm_vcpu_apicv_active(vcpu))
3964 secondary_exec_controls_setbit(vmx,
3965 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3966 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3967 else
3968 secondary_exec_controls_clearbit(vmx,
3969 SECONDARY_EXEC_APIC_REGISTER_VIRT |
3970 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3971 }
3972
3973 if (cpu_has_vmx_msr_bitmap())
3974 vmx_update_msr_bitmap(vcpu);
3975 }
3976
vmx_exec_control(struct vcpu_vmx * vmx)3977 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3978 {
3979 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3980
3981 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3982 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3983
3984 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3985 exec_control &= ~CPU_BASED_TPR_SHADOW;
3986 #ifdef CONFIG_X86_64
3987 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3988 CPU_BASED_CR8_LOAD_EXITING;
3989 #endif
3990 }
3991 if (!enable_ept)
3992 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3993 CPU_BASED_CR3_LOAD_EXITING |
3994 CPU_BASED_INVLPG_EXITING;
3995 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3996 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3997 CPU_BASED_MONITOR_EXITING);
3998 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3999 exec_control &= ~CPU_BASED_HLT_EXITING;
4000 return exec_control;
4001 }
4002
4003
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4004 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4005 {
4006 struct kvm_vcpu *vcpu = &vmx->vcpu;
4007
4008 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4009
4010 if (pt_mode == PT_MODE_SYSTEM)
4011 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4012 if (!cpu_need_virtualize_apic_accesses(vcpu))
4013 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4014 if (vmx->vpid == 0)
4015 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4016 if (!enable_ept) {
4017 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4018 enable_unrestricted_guest = 0;
4019 }
4020 if (!enable_unrestricted_guest)
4021 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4022 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4023 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4024 if (!kvm_vcpu_apicv_active(vcpu))
4025 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4026 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4027 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4028
4029 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4030 * in vmx_set_cr4. */
4031 exec_control &= ~SECONDARY_EXEC_DESC;
4032
4033 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4034 (handle_vmptrld).
4035 We can NOT enable shadow_vmcs here because we don't have yet
4036 a current VMCS12
4037 */
4038 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4039
4040 if (!enable_pml)
4041 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4042
4043 if (vmx_xsaves_supported()) {
4044 /* Exposing XSAVES only when XSAVE is exposed */
4045 bool xsaves_enabled =
4046 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4047 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4048
4049 if (!xsaves_enabled)
4050 exec_control &= ~SECONDARY_EXEC_XSAVES;
4051
4052 if (nested) {
4053 if (xsaves_enabled)
4054 vmx->nested.msrs.secondary_ctls_high |=
4055 SECONDARY_EXEC_XSAVES;
4056 else
4057 vmx->nested.msrs.secondary_ctls_high &=
4058 ~SECONDARY_EXEC_XSAVES;
4059 }
4060 }
4061
4062 if (vmx_rdtscp_supported()) {
4063 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4064 if (!rdtscp_enabled)
4065 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4066
4067 if (nested) {
4068 if (rdtscp_enabled)
4069 vmx->nested.msrs.secondary_ctls_high |=
4070 SECONDARY_EXEC_RDTSCP;
4071 else
4072 vmx->nested.msrs.secondary_ctls_high &=
4073 ~SECONDARY_EXEC_RDTSCP;
4074 }
4075 }
4076
4077 if (vmx_invpcid_supported()) {
4078 /* Exposing INVPCID only when PCID is exposed */
4079 bool invpcid_enabled =
4080 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4081 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4082
4083 if (!invpcid_enabled) {
4084 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4085 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4086 }
4087
4088 if (nested) {
4089 if (invpcid_enabled)
4090 vmx->nested.msrs.secondary_ctls_high |=
4091 SECONDARY_EXEC_ENABLE_INVPCID;
4092 else
4093 vmx->nested.msrs.secondary_ctls_high &=
4094 ~SECONDARY_EXEC_ENABLE_INVPCID;
4095 }
4096 }
4097
4098 if (vmx_rdrand_supported()) {
4099 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4100 if (rdrand_enabled)
4101 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4102
4103 if (nested) {
4104 if (rdrand_enabled)
4105 vmx->nested.msrs.secondary_ctls_high |=
4106 SECONDARY_EXEC_RDRAND_EXITING;
4107 else
4108 vmx->nested.msrs.secondary_ctls_high &=
4109 ~SECONDARY_EXEC_RDRAND_EXITING;
4110 }
4111 }
4112
4113 if (vmx_rdseed_supported()) {
4114 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4115 if (rdseed_enabled)
4116 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4117
4118 if (nested) {
4119 if (rdseed_enabled)
4120 vmx->nested.msrs.secondary_ctls_high |=
4121 SECONDARY_EXEC_RDSEED_EXITING;
4122 else
4123 vmx->nested.msrs.secondary_ctls_high &=
4124 ~SECONDARY_EXEC_RDSEED_EXITING;
4125 }
4126 }
4127
4128 if (vmx_waitpkg_supported()) {
4129 bool waitpkg_enabled =
4130 guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4131
4132 if (!waitpkg_enabled)
4133 exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4134
4135 if (nested) {
4136 if (waitpkg_enabled)
4137 vmx->nested.msrs.secondary_ctls_high |=
4138 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4139 else
4140 vmx->nested.msrs.secondary_ctls_high &=
4141 ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4142 }
4143 }
4144
4145 vmx->secondary_exec_control = exec_control;
4146 }
4147
ept_set_mmio_spte_mask(void)4148 static void ept_set_mmio_spte_mask(void)
4149 {
4150 /*
4151 * EPT Misconfigurations can be generated if the value of bits 2:0
4152 * of an EPT paging-structure entry is 110b (write/execute).
4153 */
4154 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4155 VMX_EPT_MISCONFIG_WX_VALUE, 0);
4156 }
4157
4158 #define VMX_XSS_EXIT_BITMAP 0
4159
4160 /*
4161 * Sets up the vmcs for emulated real mode.
4162 */
vmx_vcpu_setup(struct vcpu_vmx * vmx)4163 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4164 {
4165 int i;
4166
4167 if (nested)
4168 nested_vmx_vcpu_setup();
4169
4170 if (cpu_has_vmx_msr_bitmap())
4171 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4172
4173 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4174
4175 /* Control */
4176 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4177 vmx->hv_deadline_tsc = -1;
4178
4179 exec_controls_set(vmx, vmx_exec_control(vmx));
4180
4181 if (cpu_has_secondary_exec_ctrls()) {
4182 vmx_compute_secondary_exec_control(vmx);
4183 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4184 }
4185
4186 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4187 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4188 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4189 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4190 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4191
4192 vmcs_write16(GUEST_INTR_STATUS, 0);
4193
4194 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4195 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4196 }
4197
4198 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4199 vmcs_write32(PLE_GAP, ple_gap);
4200 vmx->ple_window = ple_window;
4201 vmx->ple_window_dirty = true;
4202 }
4203
4204 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4205 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4206 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4207
4208 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4209 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4210 vmx_set_constant_host_state(vmx);
4211 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4212 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4213
4214 if (cpu_has_vmx_vmfunc())
4215 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4216
4217 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4218 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4219 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4220 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4221 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4222
4223 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4224 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4225
4226 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4227 u32 index = vmx_msr_index[i];
4228 u32 data_low, data_high;
4229 int j = vmx->nmsrs;
4230
4231 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4232 continue;
4233 if (wrmsr_safe(index, data_low, data_high) < 0)
4234 continue;
4235 vmx->guest_msrs[j].index = i;
4236 vmx->guest_msrs[j].data = 0;
4237 vmx->guest_msrs[j].mask = -1ull;
4238 ++vmx->nmsrs;
4239 }
4240
4241 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4242
4243 /* 22.2.1, 20.8.1 */
4244 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4245
4246 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4247 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4248
4249 set_cr4_guest_host_mask(vmx);
4250
4251 if (vmx_xsaves_supported())
4252 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4253
4254 if (enable_pml) {
4255 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4256 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4257 }
4258
4259 if (cpu_has_vmx_encls_vmexit())
4260 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4261
4262 if (pt_mode == PT_MODE_HOST_GUEST) {
4263 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4264 /* Bit[6~0] are forced to 1, writes are ignored. */
4265 vmx->pt_desc.guest.output_mask = 0x7F;
4266 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4267 }
4268 }
4269
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4270 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4271 {
4272 struct vcpu_vmx *vmx = to_vmx(vcpu);
4273 struct msr_data apic_base_msr;
4274 u64 cr0;
4275
4276 vmx->rmode.vm86_active = 0;
4277 vmx->spec_ctrl = 0;
4278
4279 vmx->msr_ia32_umwait_control = 0;
4280
4281 vcpu->arch.microcode_version = 0x100000000ULL;
4282 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4283 vmx->hv_deadline_tsc = -1;
4284 kvm_set_cr8(vcpu, 0);
4285
4286 if (!init_event) {
4287 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4288 MSR_IA32_APICBASE_ENABLE;
4289 if (kvm_vcpu_is_reset_bsp(vcpu))
4290 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4291 apic_base_msr.host_initiated = true;
4292 kvm_set_apic_base(vcpu, &apic_base_msr);
4293 }
4294
4295 vmx_segment_cache_clear(vmx);
4296
4297 seg_setup(VCPU_SREG_CS);
4298 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4299 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4300
4301 seg_setup(VCPU_SREG_DS);
4302 seg_setup(VCPU_SREG_ES);
4303 seg_setup(VCPU_SREG_FS);
4304 seg_setup(VCPU_SREG_GS);
4305 seg_setup(VCPU_SREG_SS);
4306
4307 vmcs_write16(GUEST_TR_SELECTOR, 0);
4308 vmcs_writel(GUEST_TR_BASE, 0);
4309 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4310 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4311
4312 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4313 vmcs_writel(GUEST_LDTR_BASE, 0);
4314 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4315 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4316
4317 if (!init_event) {
4318 vmcs_write32(GUEST_SYSENTER_CS, 0);
4319 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4320 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4321 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4322 }
4323
4324 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4325 kvm_rip_write(vcpu, 0xfff0);
4326
4327 vmcs_writel(GUEST_GDTR_BASE, 0);
4328 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4329
4330 vmcs_writel(GUEST_IDTR_BASE, 0);
4331 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4332
4333 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4334 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4335 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4336 if (kvm_mpx_supported())
4337 vmcs_write64(GUEST_BNDCFGS, 0);
4338
4339 setup_msrs(vmx);
4340
4341 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4342
4343 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4344 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4345 if (cpu_need_tpr_shadow(vcpu))
4346 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4347 __pa(vcpu->arch.apic->regs));
4348 vmcs_write32(TPR_THRESHOLD, 0);
4349 }
4350
4351 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4352
4353 if (vmx->vpid != 0)
4354 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4355
4356 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4357 vmx->vcpu.arch.cr0 = cr0;
4358 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4359 vmx_set_cr4(vcpu, 0);
4360 vmx_set_efer(vcpu, 0);
4361
4362 update_exception_bitmap(vcpu);
4363
4364 vpid_sync_context(vmx->vpid);
4365 if (init_event)
4366 vmx_clear_hlt(vcpu);
4367 }
4368
enable_irq_window(struct kvm_vcpu * vcpu)4369 static void enable_irq_window(struct kvm_vcpu *vcpu)
4370 {
4371 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4372 }
4373
enable_nmi_window(struct kvm_vcpu * vcpu)4374 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4375 {
4376 if (!enable_vnmi ||
4377 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4378 enable_irq_window(vcpu);
4379 return;
4380 }
4381
4382 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4383 }
4384
vmx_inject_irq(struct kvm_vcpu * vcpu)4385 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4386 {
4387 struct vcpu_vmx *vmx = to_vmx(vcpu);
4388 uint32_t intr;
4389 int irq = vcpu->arch.interrupt.nr;
4390
4391 trace_kvm_inj_virq(irq);
4392
4393 ++vcpu->stat.irq_injections;
4394 if (vmx->rmode.vm86_active) {
4395 int inc_eip = 0;
4396 if (vcpu->arch.interrupt.soft)
4397 inc_eip = vcpu->arch.event_exit_inst_len;
4398 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4399 return;
4400 }
4401 intr = irq | INTR_INFO_VALID_MASK;
4402 if (vcpu->arch.interrupt.soft) {
4403 intr |= INTR_TYPE_SOFT_INTR;
4404 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4405 vmx->vcpu.arch.event_exit_inst_len);
4406 } else
4407 intr |= INTR_TYPE_EXT_INTR;
4408 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4409
4410 vmx_clear_hlt(vcpu);
4411 }
4412
vmx_inject_nmi(struct kvm_vcpu * vcpu)4413 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4414 {
4415 struct vcpu_vmx *vmx = to_vmx(vcpu);
4416
4417 if (!enable_vnmi) {
4418 /*
4419 * Tracking the NMI-blocked state in software is built upon
4420 * finding the next open IRQ window. This, in turn, depends on
4421 * well-behaving guests: They have to keep IRQs disabled at
4422 * least as long as the NMI handler runs. Otherwise we may
4423 * cause NMI nesting, maybe breaking the guest. But as this is
4424 * highly unlikely, we can live with the residual risk.
4425 */
4426 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4427 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4428 }
4429
4430 ++vcpu->stat.nmi_injections;
4431 vmx->loaded_vmcs->nmi_known_unmasked = false;
4432
4433 if (vmx->rmode.vm86_active) {
4434 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4435 return;
4436 }
4437
4438 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4439 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4440
4441 vmx_clear_hlt(vcpu);
4442 }
4443
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4444 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4445 {
4446 struct vcpu_vmx *vmx = to_vmx(vcpu);
4447 bool masked;
4448
4449 if (!enable_vnmi)
4450 return vmx->loaded_vmcs->soft_vnmi_blocked;
4451 if (vmx->loaded_vmcs->nmi_known_unmasked)
4452 return false;
4453 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4454 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4455 return masked;
4456 }
4457
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4458 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4459 {
4460 struct vcpu_vmx *vmx = to_vmx(vcpu);
4461
4462 if (!enable_vnmi) {
4463 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4464 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4465 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4466 }
4467 } else {
4468 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4469 if (masked)
4470 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4471 GUEST_INTR_STATE_NMI);
4472 else
4473 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4474 GUEST_INTR_STATE_NMI);
4475 }
4476 }
4477
vmx_nmi_allowed(struct kvm_vcpu * vcpu)4478 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4479 {
4480 if (to_vmx(vcpu)->nested.nested_run_pending)
4481 return 0;
4482
4483 if (!enable_vnmi &&
4484 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4485 return 0;
4486
4487 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4488 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4489 | GUEST_INTR_STATE_NMI));
4490 }
4491
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)4492 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4493 {
4494 return (!to_vmx(vcpu)->nested.nested_run_pending &&
4495 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4496 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4497 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4498 }
4499
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4500 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4501 {
4502 int ret;
4503
4504 if (enable_unrestricted_guest)
4505 return 0;
4506
4507 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4508 PAGE_SIZE * 3);
4509 if (ret)
4510 return ret;
4511 to_kvm_vmx(kvm)->tss_addr = addr;
4512 return init_rmode_tss(kvm);
4513 }
4514
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4515 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4516 {
4517 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4518 return 0;
4519 }
4520
rmode_exception(struct kvm_vcpu * vcpu,int vec)4521 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4522 {
4523 switch (vec) {
4524 case BP_VECTOR:
4525 /*
4526 * Update instruction length as we may reinject the exception
4527 * from user space while in guest debugging mode.
4528 */
4529 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4530 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4531 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4532 return false;
4533 /* fall through */
4534 case DB_VECTOR:
4535 if (vcpu->guest_debug &
4536 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4537 return false;
4538 /* fall through */
4539 case DE_VECTOR:
4540 case OF_VECTOR:
4541 case BR_VECTOR:
4542 case UD_VECTOR:
4543 case DF_VECTOR:
4544 case SS_VECTOR:
4545 case GP_VECTOR:
4546 case MF_VECTOR:
4547 return true;
4548 break;
4549 }
4550 return false;
4551 }
4552
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4553 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4554 int vec, u32 err_code)
4555 {
4556 /*
4557 * Instruction with address size override prefix opcode 0x67
4558 * Cause the #SS fault with 0 error code in VM86 mode.
4559 */
4560 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4561 if (kvm_emulate_instruction(vcpu, 0)) {
4562 if (vcpu->arch.halt_request) {
4563 vcpu->arch.halt_request = 0;
4564 return kvm_vcpu_halt(vcpu);
4565 }
4566 return 1;
4567 }
4568 return 0;
4569 }
4570
4571 /*
4572 * Forward all other exceptions that are valid in real mode.
4573 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4574 * the required debugging infrastructure rework.
4575 */
4576 kvm_queue_exception(vcpu, vec);
4577 return 1;
4578 }
4579
4580 /*
4581 * Trigger machine check on the host. We assume all the MSRs are already set up
4582 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4583 * We pass a fake environment to the machine check handler because we want
4584 * the guest to be always treated like user space, no matter what context
4585 * it used internally.
4586 */
kvm_machine_check(void)4587 static void kvm_machine_check(void)
4588 {
4589 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4590 struct pt_regs regs = {
4591 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4592 .flags = X86_EFLAGS_IF,
4593 };
4594
4595 do_machine_check(®s, 0);
4596 #endif
4597 }
4598
handle_machine_check(struct kvm_vcpu * vcpu)4599 static int handle_machine_check(struct kvm_vcpu *vcpu)
4600 {
4601 /* handled by vmx_vcpu_run() */
4602 return 1;
4603 }
4604
handle_exception_nmi(struct kvm_vcpu * vcpu)4605 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4606 {
4607 struct vcpu_vmx *vmx = to_vmx(vcpu);
4608 struct kvm_run *kvm_run = vcpu->run;
4609 u32 intr_info, ex_no, error_code;
4610 unsigned long cr2, rip, dr6;
4611 u32 vect_info;
4612
4613 vect_info = vmx->idt_vectoring_info;
4614 intr_info = vmx->exit_intr_info;
4615
4616 if (is_machine_check(intr_info) || is_nmi(intr_info))
4617 return 1; /* handled by handle_exception_nmi_irqoff() */
4618
4619 if (is_invalid_opcode(intr_info))
4620 return handle_ud(vcpu);
4621
4622 error_code = 0;
4623 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4624 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4625
4626 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4627 WARN_ON_ONCE(!enable_vmware_backdoor);
4628
4629 /*
4630 * VMware backdoor emulation on #GP interception only handles
4631 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4632 * error code on #GP.
4633 */
4634 if (error_code) {
4635 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4636 return 1;
4637 }
4638 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4639 }
4640
4641 /*
4642 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4643 * MMIO, it is better to report an internal error.
4644 * See the comments in vmx_handle_exit.
4645 */
4646 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4647 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4648 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4649 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4650 vcpu->run->internal.ndata = 3;
4651 vcpu->run->internal.data[0] = vect_info;
4652 vcpu->run->internal.data[1] = intr_info;
4653 vcpu->run->internal.data[2] = error_code;
4654 return 0;
4655 }
4656
4657 if (is_page_fault(intr_info)) {
4658 cr2 = vmcs_readl(EXIT_QUALIFICATION);
4659 /* EPT won't cause page fault directly */
4660 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4661 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4662 }
4663
4664 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4665
4666 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4667 return handle_rmode_exception(vcpu, ex_no, error_code);
4668
4669 switch (ex_no) {
4670 case AC_VECTOR:
4671 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4672 return 1;
4673 case DB_VECTOR:
4674 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4675 if (!(vcpu->guest_debug &
4676 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4677 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4678 vcpu->arch.dr6 |= dr6 | DR6_RTM;
4679 if (is_icebp(intr_info))
4680 WARN_ON(!skip_emulated_instruction(vcpu));
4681
4682 kvm_queue_exception(vcpu, DB_VECTOR);
4683 return 1;
4684 }
4685 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4686 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4687 /* fall through */
4688 case BP_VECTOR:
4689 /*
4690 * Update instruction length as we may reinject #BP from
4691 * user space while in guest debugging mode. Reading it for
4692 * #DB as well causes no harm, it is not used in that case.
4693 */
4694 vmx->vcpu.arch.event_exit_inst_len =
4695 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4696 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4697 rip = kvm_rip_read(vcpu);
4698 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4699 kvm_run->debug.arch.exception = ex_no;
4700 break;
4701 default:
4702 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4703 kvm_run->ex.exception = ex_no;
4704 kvm_run->ex.error_code = error_code;
4705 break;
4706 }
4707 return 0;
4708 }
4709
handle_external_interrupt(struct kvm_vcpu * vcpu)4710 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4711 {
4712 ++vcpu->stat.irq_exits;
4713 return 1;
4714 }
4715
handle_triple_fault(struct kvm_vcpu * vcpu)4716 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4717 {
4718 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4719 vcpu->mmio_needed = 0;
4720 return 0;
4721 }
4722
handle_io(struct kvm_vcpu * vcpu)4723 static int handle_io(struct kvm_vcpu *vcpu)
4724 {
4725 unsigned long exit_qualification;
4726 int size, in, string;
4727 unsigned port;
4728
4729 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4730 string = (exit_qualification & 16) != 0;
4731
4732 ++vcpu->stat.io_exits;
4733
4734 if (string)
4735 return kvm_emulate_instruction(vcpu, 0);
4736
4737 port = exit_qualification >> 16;
4738 size = (exit_qualification & 7) + 1;
4739 in = (exit_qualification & 8) != 0;
4740
4741 return kvm_fast_pio(vcpu, size, port, in);
4742 }
4743
4744 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4745 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4746 {
4747 /*
4748 * Patch in the VMCALL instruction:
4749 */
4750 hypercall[0] = 0x0f;
4751 hypercall[1] = 0x01;
4752 hypercall[2] = 0xc1;
4753 }
4754
4755 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)4756 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4757 {
4758 if (is_guest_mode(vcpu)) {
4759 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4760 unsigned long orig_val = val;
4761
4762 /*
4763 * We get here when L2 changed cr0 in a way that did not change
4764 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4765 * but did change L0 shadowed bits. So we first calculate the
4766 * effective cr0 value that L1 would like to write into the
4767 * hardware. It consists of the L2-owned bits from the new
4768 * value combined with the L1-owned bits from L1's guest_cr0.
4769 */
4770 val = (val & ~vmcs12->cr0_guest_host_mask) |
4771 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4772
4773 if (!nested_guest_cr0_valid(vcpu, val))
4774 return 1;
4775
4776 if (kvm_set_cr0(vcpu, val))
4777 return 1;
4778 vmcs_writel(CR0_READ_SHADOW, orig_val);
4779 return 0;
4780 } else {
4781 if (to_vmx(vcpu)->nested.vmxon &&
4782 !nested_host_cr0_valid(vcpu, val))
4783 return 1;
4784
4785 return kvm_set_cr0(vcpu, val);
4786 }
4787 }
4788
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)4789 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4790 {
4791 if (is_guest_mode(vcpu)) {
4792 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4793 unsigned long orig_val = val;
4794
4795 /* analogously to handle_set_cr0 */
4796 val = (val & ~vmcs12->cr4_guest_host_mask) |
4797 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4798 if (kvm_set_cr4(vcpu, val))
4799 return 1;
4800 vmcs_writel(CR4_READ_SHADOW, orig_val);
4801 return 0;
4802 } else
4803 return kvm_set_cr4(vcpu, val);
4804 }
4805
handle_desc(struct kvm_vcpu * vcpu)4806 static int handle_desc(struct kvm_vcpu *vcpu)
4807 {
4808 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4809 return kvm_emulate_instruction(vcpu, 0);
4810 }
4811
handle_cr(struct kvm_vcpu * vcpu)4812 static int handle_cr(struct kvm_vcpu *vcpu)
4813 {
4814 unsigned long exit_qualification, val;
4815 int cr;
4816 int reg;
4817 int err;
4818 int ret;
4819
4820 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4821 cr = exit_qualification & 15;
4822 reg = (exit_qualification >> 8) & 15;
4823 switch ((exit_qualification >> 4) & 3) {
4824 case 0: /* mov to cr */
4825 val = kvm_register_readl(vcpu, reg);
4826 trace_kvm_cr_write(cr, val);
4827 switch (cr) {
4828 case 0:
4829 err = handle_set_cr0(vcpu, val);
4830 return kvm_complete_insn_gp(vcpu, err);
4831 case 3:
4832 WARN_ON_ONCE(enable_unrestricted_guest);
4833 err = kvm_set_cr3(vcpu, val);
4834 return kvm_complete_insn_gp(vcpu, err);
4835 case 4:
4836 err = handle_set_cr4(vcpu, val);
4837 return kvm_complete_insn_gp(vcpu, err);
4838 case 8: {
4839 u8 cr8_prev = kvm_get_cr8(vcpu);
4840 u8 cr8 = (u8)val;
4841 err = kvm_set_cr8(vcpu, cr8);
4842 ret = kvm_complete_insn_gp(vcpu, err);
4843 if (lapic_in_kernel(vcpu))
4844 return ret;
4845 if (cr8_prev <= cr8)
4846 return ret;
4847 /*
4848 * TODO: we might be squashing a
4849 * KVM_GUESTDBG_SINGLESTEP-triggered
4850 * KVM_EXIT_DEBUG here.
4851 */
4852 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4853 return 0;
4854 }
4855 }
4856 break;
4857 case 2: /* clts */
4858 WARN_ONCE(1, "Guest should always own CR0.TS");
4859 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4860 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4861 return kvm_skip_emulated_instruction(vcpu);
4862 case 1: /*mov from cr*/
4863 switch (cr) {
4864 case 3:
4865 WARN_ON_ONCE(enable_unrestricted_guest);
4866 val = kvm_read_cr3(vcpu);
4867 kvm_register_write(vcpu, reg, val);
4868 trace_kvm_cr_read(cr, val);
4869 return kvm_skip_emulated_instruction(vcpu);
4870 case 8:
4871 val = kvm_get_cr8(vcpu);
4872 kvm_register_write(vcpu, reg, val);
4873 trace_kvm_cr_read(cr, val);
4874 return kvm_skip_emulated_instruction(vcpu);
4875 }
4876 break;
4877 case 3: /* lmsw */
4878 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4879 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4880 kvm_lmsw(vcpu, val);
4881
4882 return kvm_skip_emulated_instruction(vcpu);
4883 default:
4884 break;
4885 }
4886 vcpu->run->exit_reason = 0;
4887 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4888 (int)(exit_qualification >> 4) & 3, cr);
4889 return 0;
4890 }
4891
handle_dr(struct kvm_vcpu * vcpu)4892 static int handle_dr(struct kvm_vcpu *vcpu)
4893 {
4894 unsigned long exit_qualification;
4895 int dr, dr7, reg;
4896
4897 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4898 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4899
4900 /* First, if DR does not exist, trigger UD */
4901 if (!kvm_require_dr(vcpu, dr))
4902 return 1;
4903
4904 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4905 if (!kvm_require_cpl(vcpu, 0))
4906 return 1;
4907 dr7 = vmcs_readl(GUEST_DR7);
4908 if (dr7 & DR7_GD) {
4909 /*
4910 * As the vm-exit takes precedence over the debug trap, we
4911 * need to emulate the latter, either for the host or the
4912 * guest debugging itself.
4913 */
4914 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4915 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4916 vcpu->run->debug.arch.dr7 = dr7;
4917 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4918 vcpu->run->debug.arch.exception = DB_VECTOR;
4919 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4920 return 0;
4921 } else {
4922 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4923 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4924 kvm_queue_exception(vcpu, DB_VECTOR);
4925 return 1;
4926 }
4927 }
4928
4929 if (vcpu->guest_debug == 0) {
4930 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4931
4932 /*
4933 * No more DR vmexits; force a reload of the debug registers
4934 * and reenter on this instruction. The next vmexit will
4935 * retrieve the full state of the debug registers.
4936 */
4937 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4938 return 1;
4939 }
4940
4941 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4942 if (exit_qualification & TYPE_MOV_FROM_DR) {
4943 unsigned long val;
4944
4945 if (kvm_get_dr(vcpu, dr, &val))
4946 return 1;
4947 kvm_register_write(vcpu, reg, val);
4948 } else
4949 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4950 return 1;
4951
4952 return kvm_skip_emulated_instruction(vcpu);
4953 }
4954
vmx_get_dr6(struct kvm_vcpu * vcpu)4955 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4956 {
4957 return vcpu->arch.dr6;
4958 }
4959
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)4960 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4961 {
4962 }
4963
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)4964 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4965 {
4966 get_debugreg(vcpu->arch.db[0], 0);
4967 get_debugreg(vcpu->arch.db[1], 1);
4968 get_debugreg(vcpu->arch.db[2], 2);
4969 get_debugreg(vcpu->arch.db[3], 3);
4970 get_debugreg(vcpu->arch.dr6, 6);
4971 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4972
4973 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4974 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4975 }
4976
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)4977 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4978 {
4979 vmcs_writel(GUEST_DR7, val);
4980 }
4981
handle_cpuid(struct kvm_vcpu * vcpu)4982 static int handle_cpuid(struct kvm_vcpu *vcpu)
4983 {
4984 return kvm_emulate_cpuid(vcpu);
4985 }
4986
handle_rdmsr(struct kvm_vcpu * vcpu)4987 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4988 {
4989 return kvm_emulate_rdmsr(vcpu);
4990 }
4991
handle_wrmsr(struct kvm_vcpu * vcpu)4992 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4993 {
4994 return kvm_emulate_wrmsr(vcpu);
4995 }
4996
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)4997 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4998 {
4999 kvm_apic_update_ppr(vcpu);
5000 return 1;
5001 }
5002
handle_interrupt_window(struct kvm_vcpu * vcpu)5003 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5004 {
5005 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
5006
5007 kvm_make_request(KVM_REQ_EVENT, vcpu);
5008
5009 ++vcpu->stat.irq_window_exits;
5010 return 1;
5011 }
5012
handle_halt(struct kvm_vcpu * vcpu)5013 static int handle_halt(struct kvm_vcpu *vcpu)
5014 {
5015 return kvm_emulate_halt(vcpu);
5016 }
5017
handle_vmcall(struct kvm_vcpu * vcpu)5018 static int handle_vmcall(struct kvm_vcpu *vcpu)
5019 {
5020 return kvm_emulate_hypercall(vcpu);
5021 }
5022
handle_invd(struct kvm_vcpu * vcpu)5023 static int handle_invd(struct kvm_vcpu *vcpu)
5024 {
5025 return kvm_emulate_instruction(vcpu, 0);
5026 }
5027
handle_invlpg(struct kvm_vcpu * vcpu)5028 static int handle_invlpg(struct kvm_vcpu *vcpu)
5029 {
5030 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5031
5032 kvm_mmu_invlpg(vcpu, exit_qualification);
5033 return kvm_skip_emulated_instruction(vcpu);
5034 }
5035
handle_rdpmc(struct kvm_vcpu * vcpu)5036 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5037 {
5038 int err;
5039
5040 err = kvm_rdpmc(vcpu);
5041 return kvm_complete_insn_gp(vcpu, err);
5042 }
5043
handle_wbinvd(struct kvm_vcpu * vcpu)5044 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5045 {
5046 return kvm_emulate_wbinvd(vcpu);
5047 }
5048
handle_xsetbv(struct kvm_vcpu * vcpu)5049 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5050 {
5051 u64 new_bv = kvm_read_edx_eax(vcpu);
5052 u32 index = kvm_rcx_read(vcpu);
5053
5054 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5055 return kvm_skip_emulated_instruction(vcpu);
5056 return 1;
5057 }
5058
handle_apic_access(struct kvm_vcpu * vcpu)5059 static int handle_apic_access(struct kvm_vcpu *vcpu)
5060 {
5061 if (likely(fasteoi)) {
5062 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5063 int access_type, offset;
5064
5065 access_type = exit_qualification & APIC_ACCESS_TYPE;
5066 offset = exit_qualification & APIC_ACCESS_OFFSET;
5067 /*
5068 * Sane guest uses MOV to write EOI, with written value
5069 * not cared. So make a short-circuit here by avoiding
5070 * heavy instruction emulation.
5071 */
5072 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5073 (offset == APIC_EOI)) {
5074 kvm_lapic_set_eoi(vcpu);
5075 return kvm_skip_emulated_instruction(vcpu);
5076 }
5077 }
5078 return kvm_emulate_instruction(vcpu, 0);
5079 }
5080
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5081 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5082 {
5083 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5084 int vector = exit_qualification & 0xff;
5085
5086 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5087 kvm_apic_set_eoi_accelerated(vcpu, vector);
5088 return 1;
5089 }
5090
handle_apic_write(struct kvm_vcpu * vcpu)5091 static int handle_apic_write(struct kvm_vcpu *vcpu)
5092 {
5093 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5094 u32 offset = exit_qualification & 0xfff;
5095
5096 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5097 kvm_apic_write_nodecode(vcpu, offset);
5098 return 1;
5099 }
5100
handle_task_switch(struct kvm_vcpu * vcpu)5101 static int handle_task_switch(struct kvm_vcpu *vcpu)
5102 {
5103 struct vcpu_vmx *vmx = to_vmx(vcpu);
5104 unsigned long exit_qualification;
5105 bool has_error_code = false;
5106 u32 error_code = 0;
5107 u16 tss_selector;
5108 int reason, type, idt_v, idt_index;
5109
5110 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5111 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5112 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5113
5114 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5115
5116 reason = (u32)exit_qualification >> 30;
5117 if (reason == TASK_SWITCH_GATE && idt_v) {
5118 switch (type) {
5119 case INTR_TYPE_NMI_INTR:
5120 vcpu->arch.nmi_injected = false;
5121 vmx_set_nmi_mask(vcpu, true);
5122 break;
5123 case INTR_TYPE_EXT_INTR:
5124 case INTR_TYPE_SOFT_INTR:
5125 kvm_clear_interrupt_queue(vcpu);
5126 break;
5127 case INTR_TYPE_HARD_EXCEPTION:
5128 if (vmx->idt_vectoring_info &
5129 VECTORING_INFO_DELIVER_CODE_MASK) {
5130 has_error_code = true;
5131 error_code =
5132 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5133 }
5134 /* fall through */
5135 case INTR_TYPE_SOFT_EXCEPTION:
5136 kvm_clear_exception_queue(vcpu);
5137 break;
5138 default:
5139 break;
5140 }
5141 }
5142 tss_selector = exit_qualification;
5143
5144 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5145 type != INTR_TYPE_EXT_INTR &&
5146 type != INTR_TYPE_NMI_INTR))
5147 WARN_ON(!skip_emulated_instruction(vcpu));
5148
5149 /*
5150 * TODO: What about debug traps on tss switch?
5151 * Are we supposed to inject them and update dr6?
5152 */
5153 return kvm_task_switch(vcpu, tss_selector,
5154 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5155 reason, has_error_code, error_code);
5156 }
5157
handle_ept_violation(struct kvm_vcpu * vcpu)5158 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5159 {
5160 unsigned long exit_qualification;
5161 gpa_t gpa;
5162 u64 error_code;
5163
5164 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5165
5166 /*
5167 * EPT violation happened while executing iret from NMI,
5168 * "blocked by NMI" bit has to be set before next VM entry.
5169 * There are errata that may cause this bit to not be set:
5170 * AAK134, BY25.
5171 */
5172 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5173 enable_vnmi &&
5174 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5175 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5176
5177 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5178 trace_kvm_page_fault(gpa, exit_qualification);
5179
5180 /* Is it a read fault? */
5181 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5182 ? PFERR_USER_MASK : 0;
5183 /* Is it a write fault? */
5184 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5185 ? PFERR_WRITE_MASK : 0;
5186 /* Is it a fetch fault? */
5187 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5188 ? PFERR_FETCH_MASK : 0;
5189 /* ept page table entry is present? */
5190 error_code |= (exit_qualification &
5191 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5192 EPT_VIOLATION_EXECUTABLE))
5193 ? PFERR_PRESENT_MASK : 0;
5194
5195 error_code |= (exit_qualification & 0x100) != 0 ?
5196 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5197
5198 vcpu->arch.exit_qualification = exit_qualification;
5199 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5200 }
5201
handle_ept_misconfig(struct kvm_vcpu * vcpu)5202 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5203 {
5204 gpa_t gpa;
5205
5206 /*
5207 * A nested guest cannot optimize MMIO vmexits, because we have an
5208 * nGPA here instead of the required GPA.
5209 */
5210 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5211 if (!is_guest_mode(vcpu) &&
5212 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5213 trace_kvm_fast_mmio(gpa);
5214 return kvm_skip_emulated_instruction(vcpu);
5215 }
5216
5217 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5218 }
5219
handle_nmi_window(struct kvm_vcpu * vcpu)5220 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5221 {
5222 WARN_ON_ONCE(!enable_vnmi);
5223 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5224 ++vcpu->stat.nmi_window_exits;
5225 kvm_make_request(KVM_REQ_EVENT, vcpu);
5226
5227 return 1;
5228 }
5229
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5230 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5231 {
5232 struct vcpu_vmx *vmx = to_vmx(vcpu);
5233 bool intr_window_requested;
5234 unsigned count = 130;
5235
5236 /*
5237 * We should never reach the point where we are emulating L2
5238 * due to invalid guest state as that means we incorrectly
5239 * allowed a nested VMEntry with an invalid vmcs12.
5240 */
5241 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5242
5243 intr_window_requested = exec_controls_get(vmx) &
5244 CPU_BASED_VIRTUAL_INTR_PENDING;
5245
5246 while (vmx->emulation_required && count-- != 0) {
5247 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5248 return handle_interrupt_window(&vmx->vcpu);
5249
5250 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5251 return 1;
5252
5253 if (!kvm_emulate_instruction(vcpu, 0))
5254 return 0;
5255
5256 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5257 vcpu->arch.exception.pending) {
5258 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5259 vcpu->run->internal.suberror =
5260 KVM_INTERNAL_ERROR_EMULATION;
5261 vcpu->run->internal.ndata = 0;
5262 return 0;
5263 }
5264
5265 if (vcpu->arch.halt_request) {
5266 vcpu->arch.halt_request = 0;
5267 return kvm_vcpu_halt(vcpu);
5268 }
5269
5270 /*
5271 * Note, return 1 and not 0, vcpu_run() is responsible for
5272 * morphing the pending signal into the proper return code.
5273 */
5274 if (signal_pending(current))
5275 return 1;
5276
5277 if (need_resched())
5278 schedule();
5279 }
5280
5281 return 1;
5282 }
5283
grow_ple_window(struct kvm_vcpu * vcpu)5284 static void grow_ple_window(struct kvm_vcpu *vcpu)
5285 {
5286 struct vcpu_vmx *vmx = to_vmx(vcpu);
5287 unsigned int old = vmx->ple_window;
5288
5289 vmx->ple_window = __grow_ple_window(old, ple_window,
5290 ple_window_grow,
5291 ple_window_max);
5292
5293 if (vmx->ple_window != old) {
5294 vmx->ple_window_dirty = true;
5295 trace_kvm_ple_window_update(vcpu->vcpu_id,
5296 vmx->ple_window, old);
5297 }
5298 }
5299
shrink_ple_window(struct kvm_vcpu * vcpu)5300 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5301 {
5302 struct vcpu_vmx *vmx = to_vmx(vcpu);
5303 unsigned int old = vmx->ple_window;
5304
5305 vmx->ple_window = __shrink_ple_window(old, ple_window,
5306 ple_window_shrink,
5307 ple_window);
5308
5309 if (vmx->ple_window != old) {
5310 vmx->ple_window_dirty = true;
5311 trace_kvm_ple_window_update(vcpu->vcpu_id,
5312 vmx->ple_window, old);
5313 }
5314 }
5315
5316 /*
5317 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5318 */
wakeup_handler(void)5319 static void wakeup_handler(void)
5320 {
5321 struct kvm_vcpu *vcpu;
5322 int cpu = smp_processor_id();
5323
5324 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5325 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5326 blocked_vcpu_list) {
5327 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5328
5329 if (pi_test_on(pi_desc) == 1)
5330 kvm_vcpu_kick(vcpu);
5331 }
5332 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5333 }
5334
vmx_enable_tdp(void)5335 static void vmx_enable_tdp(void)
5336 {
5337 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5338 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5339 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5340 0ull, VMX_EPT_EXECUTABLE_MASK,
5341 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5342 VMX_EPT_RWX_MASK, 0ull);
5343
5344 ept_set_mmio_spte_mask();
5345 kvm_enable_tdp();
5346 }
5347
5348 /*
5349 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5350 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5351 */
handle_pause(struct kvm_vcpu * vcpu)5352 static int handle_pause(struct kvm_vcpu *vcpu)
5353 {
5354 if (!kvm_pause_in_guest(vcpu->kvm))
5355 grow_ple_window(vcpu);
5356
5357 /*
5358 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5359 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5360 * never set PAUSE_EXITING and just set PLE if supported,
5361 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5362 */
5363 kvm_vcpu_on_spin(vcpu, true);
5364 return kvm_skip_emulated_instruction(vcpu);
5365 }
5366
handle_nop(struct kvm_vcpu * vcpu)5367 static int handle_nop(struct kvm_vcpu *vcpu)
5368 {
5369 return kvm_skip_emulated_instruction(vcpu);
5370 }
5371
handle_mwait(struct kvm_vcpu * vcpu)5372 static int handle_mwait(struct kvm_vcpu *vcpu)
5373 {
5374 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5375 return handle_nop(vcpu);
5376 }
5377
handle_invalid_op(struct kvm_vcpu * vcpu)5378 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5379 {
5380 kvm_queue_exception(vcpu, UD_VECTOR);
5381 return 1;
5382 }
5383
handle_monitor_trap(struct kvm_vcpu * vcpu)5384 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5385 {
5386 return 1;
5387 }
5388
handle_monitor(struct kvm_vcpu * vcpu)5389 static int handle_monitor(struct kvm_vcpu *vcpu)
5390 {
5391 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5392 return handle_nop(vcpu);
5393 }
5394
handle_invpcid(struct kvm_vcpu * vcpu)5395 static int handle_invpcid(struct kvm_vcpu *vcpu)
5396 {
5397 u32 vmx_instruction_info;
5398 unsigned long type;
5399 bool pcid_enabled;
5400 gva_t gva;
5401 struct x86_exception e;
5402 unsigned i;
5403 unsigned long roots_to_free = 0;
5404 struct {
5405 u64 pcid;
5406 u64 gla;
5407 } operand;
5408
5409 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5410 kvm_queue_exception(vcpu, UD_VECTOR);
5411 return 1;
5412 }
5413
5414 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5415 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5416
5417 if (type > 3) {
5418 kvm_inject_gp(vcpu, 0);
5419 return 1;
5420 }
5421
5422 /* According to the Intel instruction reference, the memory operand
5423 * is read even if it isn't needed (e.g., for type==all)
5424 */
5425 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5426 vmx_instruction_info, false,
5427 sizeof(operand), &gva))
5428 return 1;
5429
5430 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5431 kvm_inject_page_fault(vcpu, &e);
5432 return 1;
5433 }
5434
5435 if (operand.pcid >> 12 != 0) {
5436 kvm_inject_gp(vcpu, 0);
5437 return 1;
5438 }
5439
5440 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5441
5442 switch (type) {
5443 case INVPCID_TYPE_INDIV_ADDR:
5444 if ((!pcid_enabled && (operand.pcid != 0)) ||
5445 is_noncanonical_address(operand.gla, vcpu)) {
5446 kvm_inject_gp(vcpu, 0);
5447 return 1;
5448 }
5449 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5450 return kvm_skip_emulated_instruction(vcpu);
5451
5452 case INVPCID_TYPE_SINGLE_CTXT:
5453 if (!pcid_enabled && (operand.pcid != 0)) {
5454 kvm_inject_gp(vcpu, 0);
5455 return 1;
5456 }
5457
5458 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5459 kvm_mmu_sync_roots(vcpu);
5460 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5461 }
5462
5463 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5464 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5465 == operand.pcid)
5466 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5467
5468 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5469 /*
5470 * If neither the current cr3 nor any of the prev_roots use the
5471 * given PCID, then nothing needs to be done here because a
5472 * resync will happen anyway before switching to any other CR3.
5473 */
5474
5475 return kvm_skip_emulated_instruction(vcpu);
5476
5477 case INVPCID_TYPE_ALL_NON_GLOBAL:
5478 /*
5479 * Currently, KVM doesn't mark global entries in the shadow
5480 * page tables, so a non-global flush just degenerates to a
5481 * global flush. If needed, we could optimize this later by
5482 * keeping track of global entries in shadow page tables.
5483 */
5484
5485 /* fall-through */
5486 case INVPCID_TYPE_ALL_INCL_GLOBAL:
5487 kvm_mmu_unload(vcpu);
5488 return kvm_skip_emulated_instruction(vcpu);
5489
5490 default:
5491 BUG(); /* We have already checked above that type <= 3 */
5492 }
5493 }
5494
handle_pml_full(struct kvm_vcpu * vcpu)5495 static int handle_pml_full(struct kvm_vcpu *vcpu)
5496 {
5497 unsigned long exit_qualification;
5498
5499 trace_kvm_pml_full(vcpu->vcpu_id);
5500
5501 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5502
5503 /*
5504 * PML buffer FULL happened while executing iret from NMI,
5505 * "blocked by NMI" bit has to be set before next VM entry.
5506 */
5507 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5508 enable_vnmi &&
5509 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5510 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5511 GUEST_INTR_STATE_NMI);
5512
5513 /*
5514 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5515 * here.., and there's no userspace involvement needed for PML.
5516 */
5517 return 1;
5518 }
5519
handle_preemption_timer(struct kvm_vcpu * vcpu)5520 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5521 {
5522 struct vcpu_vmx *vmx = to_vmx(vcpu);
5523
5524 if (!vmx->req_immediate_exit &&
5525 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5526 kvm_lapic_expired_hv_timer(vcpu);
5527
5528 return 1;
5529 }
5530
5531 /*
5532 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5533 * are overwritten by nested_vmx_setup() when nested=1.
5534 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5535 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5536 {
5537 kvm_queue_exception(vcpu, UD_VECTOR);
5538 return 1;
5539 }
5540
handle_encls(struct kvm_vcpu * vcpu)5541 static int handle_encls(struct kvm_vcpu *vcpu)
5542 {
5543 /*
5544 * SGX virtualization is not yet supported. There is no software
5545 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5546 * to prevent the guest from executing ENCLS.
5547 */
5548 kvm_queue_exception(vcpu, UD_VECTOR);
5549 return 1;
5550 }
5551
5552 /*
5553 * The exit handlers return 1 if the exit was handled fully and guest execution
5554 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5555 * to be done to userspace and return 0.
5556 */
5557 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5558 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5559 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5560 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5561 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5562 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5563 [EXIT_REASON_CR_ACCESS] = handle_cr,
5564 [EXIT_REASON_DR_ACCESS] = handle_dr,
5565 [EXIT_REASON_CPUID] = handle_cpuid,
5566 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5567 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5568 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5569 [EXIT_REASON_HLT] = handle_halt,
5570 [EXIT_REASON_INVD] = handle_invd,
5571 [EXIT_REASON_INVLPG] = handle_invlpg,
5572 [EXIT_REASON_RDPMC] = handle_rdpmc,
5573 [EXIT_REASON_VMCALL] = handle_vmcall,
5574 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5575 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5576 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5577 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5578 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5579 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5580 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5581 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5582 [EXIT_REASON_VMON] = handle_vmx_instruction,
5583 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5584 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5585 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5586 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5587 [EXIT_REASON_WBINVD] = handle_wbinvd,
5588 [EXIT_REASON_XSETBV] = handle_xsetbv,
5589 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5590 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5591 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5592 [EXIT_REASON_LDTR_TR] = handle_desc,
5593 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5594 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5595 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5596 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5597 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5598 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5599 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5600 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5601 [EXIT_REASON_RDRAND] = handle_invalid_op,
5602 [EXIT_REASON_RDSEED] = handle_invalid_op,
5603 [EXIT_REASON_PML_FULL] = handle_pml_full,
5604 [EXIT_REASON_INVPCID] = handle_invpcid,
5605 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5606 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5607 [EXIT_REASON_ENCLS] = handle_encls,
5608 };
5609
5610 static const int kvm_vmx_max_exit_handlers =
5611 ARRAY_SIZE(kvm_vmx_exit_handlers);
5612
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)5613 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5614 {
5615 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5616 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5617 }
5618
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5619 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5620 {
5621 if (vmx->pml_pg) {
5622 __free_page(vmx->pml_pg);
5623 vmx->pml_pg = NULL;
5624 }
5625 }
5626
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5627 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5628 {
5629 struct vcpu_vmx *vmx = to_vmx(vcpu);
5630 u64 *pml_buf;
5631 u16 pml_idx;
5632
5633 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5634
5635 /* Do nothing if PML buffer is empty */
5636 if (pml_idx == (PML_ENTITY_NUM - 1))
5637 return;
5638
5639 /* PML index always points to next available PML buffer entity */
5640 if (pml_idx >= PML_ENTITY_NUM)
5641 pml_idx = 0;
5642 else
5643 pml_idx++;
5644
5645 pml_buf = page_address(vmx->pml_pg);
5646 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5647 u64 gpa;
5648
5649 gpa = pml_buf[pml_idx];
5650 WARN_ON(gpa & (PAGE_SIZE - 1));
5651 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5652 }
5653
5654 /* reset PML index */
5655 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5656 }
5657
5658 /*
5659 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5660 * Called before reporting dirty_bitmap to userspace.
5661 */
kvm_flush_pml_buffers(struct kvm * kvm)5662 static void kvm_flush_pml_buffers(struct kvm *kvm)
5663 {
5664 int i;
5665 struct kvm_vcpu *vcpu;
5666 /*
5667 * We only need to kick vcpu out of guest mode here, as PML buffer
5668 * is flushed at beginning of all VMEXITs, and it's obvious that only
5669 * vcpus running in guest are possible to have unflushed GPAs in PML
5670 * buffer.
5671 */
5672 kvm_for_each_vcpu(i, vcpu, kvm)
5673 kvm_vcpu_kick(vcpu);
5674 }
5675
vmx_dump_sel(char * name,uint32_t sel)5676 static void vmx_dump_sel(char *name, uint32_t sel)
5677 {
5678 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5679 name, vmcs_read16(sel),
5680 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5681 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5682 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5683 }
5684
vmx_dump_dtsel(char * name,uint32_t limit)5685 static void vmx_dump_dtsel(char *name, uint32_t limit)
5686 {
5687 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5688 name, vmcs_read32(limit),
5689 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5690 }
5691
dump_vmcs(void)5692 void dump_vmcs(void)
5693 {
5694 u32 vmentry_ctl, vmexit_ctl;
5695 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5696 unsigned long cr4;
5697 u64 efer;
5698 int i, n;
5699
5700 if (!dump_invalid_vmcs) {
5701 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5702 return;
5703 }
5704
5705 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5706 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5707 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5708 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5709 cr4 = vmcs_readl(GUEST_CR4);
5710 efer = vmcs_read64(GUEST_IA32_EFER);
5711 secondary_exec_control = 0;
5712 if (cpu_has_secondary_exec_ctrls())
5713 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5714
5715 pr_err("*** Guest State ***\n");
5716 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5717 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5718 vmcs_readl(CR0_GUEST_HOST_MASK));
5719 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5720 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5721 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5722 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5723 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5724 {
5725 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5726 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5727 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5728 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5729 }
5730 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5731 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5732 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5733 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5734 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5735 vmcs_readl(GUEST_SYSENTER_ESP),
5736 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5737 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5738 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5739 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5740 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5741 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5742 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5743 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5744 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5745 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5746 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5747 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5748 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5749 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5750 efer, vmcs_read64(GUEST_IA32_PAT));
5751 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5752 vmcs_read64(GUEST_IA32_DEBUGCTL),
5753 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5754 if (cpu_has_load_perf_global_ctrl() &&
5755 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5756 pr_err("PerfGlobCtl = 0x%016llx\n",
5757 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5758 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5759 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5760 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5761 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5762 vmcs_read32(GUEST_ACTIVITY_STATE));
5763 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5764 pr_err("InterruptStatus = %04x\n",
5765 vmcs_read16(GUEST_INTR_STATUS));
5766
5767 pr_err("*** Host State ***\n");
5768 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5769 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5770 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5771 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5772 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5773 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5774 vmcs_read16(HOST_TR_SELECTOR));
5775 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5776 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5777 vmcs_readl(HOST_TR_BASE));
5778 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5779 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5780 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5781 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5782 vmcs_readl(HOST_CR4));
5783 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5784 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5785 vmcs_read32(HOST_IA32_SYSENTER_CS),
5786 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5787 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5788 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5789 vmcs_read64(HOST_IA32_EFER),
5790 vmcs_read64(HOST_IA32_PAT));
5791 if (cpu_has_load_perf_global_ctrl() &&
5792 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5793 pr_err("PerfGlobCtl = 0x%016llx\n",
5794 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5795
5796 pr_err("*** Control State ***\n");
5797 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5798 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5799 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5800 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5801 vmcs_read32(EXCEPTION_BITMAP),
5802 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5803 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5804 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5805 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5806 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5807 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5808 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5809 vmcs_read32(VM_EXIT_INTR_INFO),
5810 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5811 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5812 pr_err(" reason=%08x qualification=%016lx\n",
5813 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5814 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5815 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5816 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5817 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5818 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5819 pr_err("TSC Multiplier = 0x%016llx\n",
5820 vmcs_read64(TSC_MULTIPLIER));
5821 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5822 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5823 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5824 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5825 }
5826 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5827 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5828 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5829 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5830 }
5831 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5832 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5833 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5834 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5835 n = vmcs_read32(CR3_TARGET_COUNT);
5836 for (i = 0; i + 1 < n; i += 4)
5837 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5838 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5839 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5840 if (i < n)
5841 pr_err("CR3 target%u=%016lx\n",
5842 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5843 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5844 pr_err("PLE Gap=%08x Window=%08x\n",
5845 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5846 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5847 pr_err("Virtual processor ID = 0x%04x\n",
5848 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5849 }
5850
5851 /*
5852 * The guest has exited. See if we can fix it or if we need userspace
5853 * assistance.
5854 */
vmx_handle_exit(struct kvm_vcpu * vcpu)5855 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5856 {
5857 struct vcpu_vmx *vmx = to_vmx(vcpu);
5858 u32 exit_reason = vmx->exit_reason;
5859 u32 vectoring_info = vmx->idt_vectoring_info;
5860
5861 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5862
5863 /*
5864 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5865 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5866 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5867 * mode as if vcpus is in root mode, the PML buffer must has been
5868 * flushed already.
5869 */
5870 if (enable_pml)
5871 vmx_flush_pml_buffer(vcpu);
5872
5873 /* If guest state is invalid, start emulating */
5874 if (vmx->emulation_required)
5875 return handle_invalid_guest_state(vcpu);
5876
5877 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5878 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5879
5880 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5881 dump_vmcs();
5882 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5883 vcpu->run->fail_entry.hardware_entry_failure_reason
5884 = exit_reason;
5885 return 0;
5886 }
5887
5888 if (unlikely(vmx->fail)) {
5889 dump_vmcs();
5890 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5891 vcpu->run->fail_entry.hardware_entry_failure_reason
5892 = vmcs_read32(VM_INSTRUCTION_ERROR);
5893 return 0;
5894 }
5895
5896 /*
5897 * Note:
5898 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5899 * delivery event since it indicates guest is accessing MMIO.
5900 * The vm-exit can be triggered again after return to guest that
5901 * will cause infinite loop.
5902 */
5903 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5904 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5905 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5906 exit_reason != EXIT_REASON_PML_FULL &&
5907 exit_reason != EXIT_REASON_TASK_SWITCH)) {
5908 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5909 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5910 vcpu->run->internal.ndata = 3;
5911 vcpu->run->internal.data[0] = vectoring_info;
5912 vcpu->run->internal.data[1] = exit_reason;
5913 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5914 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5915 vcpu->run->internal.ndata++;
5916 vcpu->run->internal.data[3] =
5917 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5918 }
5919 return 0;
5920 }
5921
5922 if (unlikely(!enable_vnmi &&
5923 vmx->loaded_vmcs->soft_vnmi_blocked)) {
5924 if (vmx_interrupt_allowed(vcpu)) {
5925 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5926 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5927 vcpu->arch.nmi_pending) {
5928 /*
5929 * This CPU don't support us in finding the end of an
5930 * NMI-blocked window if the guest runs with IRQs
5931 * disabled. So we pull the trigger after 1 s of
5932 * futile waiting, but inform the user about this.
5933 */
5934 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5935 "state on VCPU %d after 1 s timeout\n",
5936 __func__, vcpu->vcpu_id);
5937 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5938 }
5939 }
5940
5941 if (exit_reason < kvm_vmx_max_exit_handlers
5942 && kvm_vmx_exit_handlers[exit_reason])
5943 return kvm_vmx_exit_handlers[exit_reason](vcpu);
5944 else {
5945 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5946 exit_reason);
5947 dump_vmcs();
5948 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5949 vcpu->run->internal.suberror =
5950 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5951 vcpu->run->internal.ndata = 1;
5952 vcpu->run->internal.data[0] = exit_reason;
5953 return 0;
5954 }
5955 }
5956
5957 /*
5958 * Software based L1D cache flush which is used when microcode providing
5959 * the cache control MSR is not loaded.
5960 *
5961 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5962 * flush it is required to read in 64 KiB because the replacement algorithm
5963 * is not exactly LRU. This could be sized at runtime via topology
5964 * information but as all relevant affected CPUs have 32KiB L1D cache size
5965 * there is no point in doing so.
5966 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)5967 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5968 {
5969 int size = PAGE_SIZE << L1D_CACHE_ORDER;
5970
5971 /*
5972 * This code is only executed when the the flush mode is 'cond' or
5973 * 'always'
5974 */
5975 if (static_branch_likely(&vmx_l1d_flush_cond)) {
5976 bool flush_l1d;
5977
5978 /*
5979 * Clear the per-vcpu flush bit, it gets set again
5980 * either from vcpu_run() or from one of the unsafe
5981 * VMEXIT handlers.
5982 */
5983 flush_l1d = vcpu->arch.l1tf_flush_l1d;
5984 vcpu->arch.l1tf_flush_l1d = false;
5985
5986 /*
5987 * Clear the per-cpu flush bit, it gets set again from
5988 * the interrupt handlers.
5989 */
5990 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5991 kvm_clear_cpu_l1tf_flush_l1d();
5992
5993 if (!flush_l1d)
5994 return;
5995 }
5996
5997 vcpu->stat.l1d_flush++;
5998
5999 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6000 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6001 return;
6002 }
6003
6004 asm volatile(
6005 /* First ensure the pages are in the TLB */
6006 "xorl %%eax, %%eax\n"
6007 ".Lpopulate_tlb:\n\t"
6008 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6009 "addl $4096, %%eax\n\t"
6010 "cmpl %%eax, %[size]\n\t"
6011 "jne .Lpopulate_tlb\n\t"
6012 "xorl %%eax, %%eax\n\t"
6013 "cpuid\n\t"
6014 /* Now fill the cache */
6015 "xorl %%eax, %%eax\n"
6016 ".Lfill_cache:\n"
6017 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6018 "addl $64, %%eax\n\t"
6019 "cmpl %%eax, %[size]\n\t"
6020 "jne .Lfill_cache\n\t"
6021 "lfence\n"
6022 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6023 [size] "r" (size)
6024 : "eax", "ebx", "ecx", "edx");
6025 }
6026
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6027 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6028 {
6029 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6030
6031 if (is_guest_mode(vcpu) &&
6032 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6033 return;
6034
6035 if (irr == -1 || tpr < irr) {
6036 vmcs_write32(TPR_THRESHOLD, 0);
6037 return;
6038 }
6039
6040 vmcs_write32(TPR_THRESHOLD, irr);
6041 }
6042
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6043 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6044 {
6045 struct vcpu_vmx *vmx = to_vmx(vcpu);
6046 u32 sec_exec_control;
6047
6048 if (!lapic_in_kernel(vcpu))
6049 return;
6050
6051 if (!flexpriority_enabled &&
6052 !cpu_has_vmx_virtualize_x2apic_mode())
6053 return;
6054
6055 /* Postpone execution until vmcs01 is the current VMCS. */
6056 if (is_guest_mode(vcpu)) {
6057 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6058 return;
6059 }
6060
6061 sec_exec_control = secondary_exec_controls_get(vmx);
6062 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6063 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6064
6065 switch (kvm_get_apic_mode(vcpu)) {
6066 case LAPIC_MODE_INVALID:
6067 WARN_ONCE(true, "Invalid local APIC state");
6068 case LAPIC_MODE_DISABLED:
6069 break;
6070 case LAPIC_MODE_XAPIC:
6071 if (flexpriority_enabled) {
6072 sec_exec_control |=
6073 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6074 vmx_flush_tlb(vcpu, true);
6075 }
6076 break;
6077 case LAPIC_MODE_X2APIC:
6078 if (cpu_has_vmx_virtualize_x2apic_mode())
6079 sec_exec_control |=
6080 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6081 break;
6082 }
6083 secondary_exec_controls_set(vmx, sec_exec_control);
6084
6085 vmx_update_msr_bitmap(vcpu);
6086 }
6087
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)6088 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6089 {
6090 if (!is_guest_mode(vcpu)) {
6091 vmcs_write64(APIC_ACCESS_ADDR, hpa);
6092 vmx_flush_tlb(vcpu, true);
6093 }
6094 }
6095
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6096 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6097 {
6098 u16 status;
6099 u8 old;
6100
6101 if (max_isr == -1)
6102 max_isr = 0;
6103
6104 status = vmcs_read16(GUEST_INTR_STATUS);
6105 old = status >> 8;
6106 if (max_isr != old) {
6107 status &= 0xff;
6108 status |= max_isr << 8;
6109 vmcs_write16(GUEST_INTR_STATUS, status);
6110 }
6111 }
6112
vmx_set_rvi(int vector)6113 static void vmx_set_rvi(int vector)
6114 {
6115 u16 status;
6116 u8 old;
6117
6118 if (vector == -1)
6119 vector = 0;
6120
6121 status = vmcs_read16(GUEST_INTR_STATUS);
6122 old = (u8)status & 0xff;
6123 if ((u8)vector != old) {
6124 status &= ~0xff;
6125 status |= (u8)vector;
6126 vmcs_write16(GUEST_INTR_STATUS, status);
6127 }
6128 }
6129
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6130 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6131 {
6132 /*
6133 * When running L2, updating RVI is only relevant when
6134 * vmcs12 virtual-interrupt-delivery enabled.
6135 * However, it can be enabled only when L1 also
6136 * intercepts external-interrupts and in that case
6137 * we should not update vmcs02 RVI but instead intercept
6138 * interrupt. Therefore, do nothing when running L2.
6139 */
6140 if (!is_guest_mode(vcpu))
6141 vmx_set_rvi(max_irr);
6142 }
6143
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6144 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6145 {
6146 struct vcpu_vmx *vmx = to_vmx(vcpu);
6147 int max_irr;
6148 bool max_irr_updated;
6149
6150 WARN_ON(!vcpu->arch.apicv_active);
6151 if (pi_test_on(&vmx->pi_desc)) {
6152 pi_clear_on(&vmx->pi_desc);
6153 /*
6154 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6155 * But on x86 this is just a compiler barrier anyway.
6156 */
6157 smp_mb__after_atomic();
6158 max_irr_updated =
6159 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6160
6161 /*
6162 * If we are running L2 and L1 has a new pending interrupt
6163 * which can be injected, we should re-evaluate
6164 * what should be done with this new L1 interrupt.
6165 * If L1 intercepts external-interrupts, we should
6166 * exit from L2 to L1. Otherwise, interrupt should be
6167 * delivered directly to L2.
6168 */
6169 if (is_guest_mode(vcpu) && max_irr_updated) {
6170 if (nested_exit_on_intr(vcpu))
6171 kvm_vcpu_exiting_guest_mode(vcpu);
6172 else
6173 kvm_make_request(KVM_REQ_EVENT, vcpu);
6174 }
6175 } else {
6176 max_irr = kvm_lapic_find_highest_irr(vcpu);
6177 }
6178 vmx_hwapic_irr_update(vcpu, max_irr);
6179 return max_irr;
6180 }
6181
vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)6182 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6183 {
6184 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6185
6186 return pi_test_on(pi_desc) ||
6187 (pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6188 }
6189
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6190 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6191 {
6192 if (!kvm_vcpu_apicv_active(vcpu))
6193 return;
6194
6195 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6196 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6197 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6198 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6199 }
6200
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6201 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6202 {
6203 struct vcpu_vmx *vmx = to_vmx(vcpu);
6204
6205 pi_clear_on(&vmx->pi_desc);
6206 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6207 }
6208
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6209 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6210 {
6211 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6212
6213 /* if exit due to PF check for async PF */
6214 if (is_page_fault(vmx->exit_intr_info))
6215 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6216
6217 /* Handle machine checks before interrupts are enabled */
6218 if (is_machine_check(vmx->exit_intr_info))
6219 kvm_machine_check();
6220
6221 /* We need to handle NMIs before interrupts are enabled */
6222 if (is_nmi(vmx->exit_intr_info)) {
6223 kvm_before_interrupt(&vmx->vcpu);
6224 asm("int $2");
6225 kvm_after_interrupt(&vmx->vcpu);
6226 }
6227 }
6228
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6229 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6230 {
6231 unsigned int vector;
6232 unsigned long entry;
6233 #ifdef CONFIG_X86_64
6234 unsigned long tmp;
6235 #endif
6236 gate_desc *desc;
6237 u32 intr_info;
6238
6239 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6240 if (WARN_ONCE(!is_external_intr(intr_info),
6241 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6242 return;
6243
6244 vector = intr_info & INTR_INFO_VECTOR_MASK;
6245 desc = (gate_desc *)host_idt_base + vector;
6246 entry = gate_offset(desc);
6247
6248 kvm_before_interrupt(vcpu);
6249
6250 asm volatile(
6251 #ifdef CONFIG_X86_64
6252 "mov %%" _ASM_SP ", %[sp]\n\t"
6253 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6254 "push $%c[ss]\n\t"
6255 "push %[sp]\n\t"
6256 #endif
6257 "pushf\n\t"
6258 __ASM_SIZE(push) " $%c[cs]\n\t"
6259 CALL_NOSPEC
6260 :
6261 #ifdef CONFIG_X86_64
6262 [sp]"=&r"(tmp),
6263 #endif
6264 ASM_CALL_CONSTRAINT
6265 :
6266 THUNK_TARGET(entry),
6267 [ss]"i"(__KERNEL_DS),
6268 [cs]"i"(__KERNEL_CS)
6269 );
6270
6271 kvm_after_interrupt(vcpu);
6272 }
6273 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6274
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6275 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6276 {
6277 struct vcpu_vmx *vmx = to_vmx(vcpu);
6278
6279 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6280 handle_external_interrupt_irqoff(vcpu);
6281 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6282 handle_exception_nmi_irqoff(vmx);
6283 }
6284
vmx_has_emulated_msr(int index)6285 static bool vmx_has_emulated_msr(int index)
6286 {
6287 switch (index) {
6288 case MSR_IA32_SMBASE:
6289 /*
6290 * We cannot do SMM unless we can run the guest in big
6291 * real mode.
6292 */
6293 return enable_unrestricted_guest || emulate_invalid_guest_state;
6294 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6295 return nested;
6296 case MSR_AMD64_VIRT_SPEC_CTRL:
6297 /* This is AMD only. */
6298 return false;
6299 default:
6300 return true;
6301 }
6302 }
6303
vmx_pt_supported(void)6304 static bool vmx_pt_supported(void)
6305 {
6306 return pt_mode == PT_MODE_HOST_GUEST;
6307 }
6308
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6309 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6310 {
6311 u32 exit_intr_info;
6312 bool unblock_nmi;
6313 u8 vector;
6314 bool idtv_info_valid;
6315
6316 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6317
6318 if (enable_vnmi) {
6319 if (vmx->loaded_vmcs->nmi_known_unmasked)
6320 return;
6321 /*
6322 * Can't use vmx->exit_intr_info since we're not sure what
6323 * the exit reason is.
6324 */
6325 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6326 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6327 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6328 /*
6329 * SDM 3: 27.7.1.2 (September 2008)
6330 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6331 * a guest IRET fault.
6332 * SDM 3: 23.2.2 (September 2008)
6333 * Bit 12 is undefined in any of the following cases:
6334 * If the VM exit sets the valid bit in the IDT-vectoring
6335 * information field.
6336 * If the VM exit is due to a double fault.
6337 */
6338 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6339 vector != DF_VECTOR && !idtv_info_valid)
6340 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6341 GUEST_INTR_STATE_NMI);
6342 else
6343 vmx->loaded_vmcs->nmi_known_unmasked =
6344 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6345 & GUEST_INTR_STATE_NMI);
6346 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6347 vmx->loaded_vmcs->vnmi_blocked_time +=
6348 ktime_to_ns(ktime_sub(ktime_get(),
6349 vmx->loaded_vmcs->entry_time));
6350 }
6351
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6352 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6353 u32 idt_vectoring_info,
6354 int instr_len_field,
6355 int error_code_field)
6356 {
6357 u8 vector;
6358 int type;
6359 bool idtv_info_valid;
6360
6361 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6362
6363 vcpu->arch.nmi_injected = false;
6364 kvm_clear_exception_queue(vcpu);
6365 kvm_clear_interrupt_queue(vcpu);
6366
6367 if (!idtv_info_valid)
6368 return;
6369
6370 kvm_make_request(KVM_REQ_EVENT, vcpu);
6371
6372 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6373 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6374
6375 switch (type) {
6376 case INTR_TYPE_NMI_INTR:
6377 vcpu->arch.nmi_injected = true;
6378 /*
6379 * SDM 3: 27.7.1.2 (September 2008)
6380 * Clear bit "block by NMI" before VM entry if a NMI
6381 * delivery faulted.
6382 */
6383 vmx_set_nmi_mask(vcpu, false);
6384 break;
6385 case INTR_TYPE_SOFT_EXCEPTION:
6386 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6387 /* fall through */
6388 case INTR_TYPE_HARD_EXCEPTION:
6389 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6390 u32 err = vmcs_read32(error_code_field);
6391 kvm_requeue_exception_e(vcpu, vector, err);
6392 } else
6393 kvm_requeue_exception(vcpu, vector);
6394 break;
6395 case INTR_TYPE_SOFT_INTR:
6396 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6397 /* fall through */
6398 case INTR_TYPE_EXT_INTR:
6399 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6400 break;
6401 default:
6402 break;
6403 }
6404 }
6405
vmx_complete_interrupts(struct vcpu_vmx * vmx)6406 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6407 {
6408 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6409 VM_EXIT_INSTRUCTION_LEN,
6410 IDT_VECTORING_ERROR_CODE);
6411 }
6412
vmx_cancel_injection(struct kvm_vcpu * vcpu)6413 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6414 {
6415 __vmx_complete_interrupts(vcpu,
6416 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6417 VM_ENTRY_INSTRUCTION_LEN,
6418 VM_ENTRY_EXCEPTION_ERROR_CODE);
6419
6420 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6421 }
6422
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6423 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6424 {
6425 int i, nr_msrs;
6426 struct perf_guest_switch_msr *msrs;
6427
6428 msrs = perf_guest_get_msrs(&nr_msrs);
6429
6430 if (!msrs)
6431 return;
6432
6433 for (i = 0; i < nr_msrs; i++)
6434 if (msrs[i].host == msrs[i].guest)
6435 clear_atomic_switch_msr(vmx, msrs[i].msr);
6436 else
6437 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6438 msrs[i].host, false);
6439 }
6440
atomic_switch_umwait_control_msr(struct vcpu_vmx * vmx)6441 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6442 {
6443 u32 host_umwait_control;
6444
6445 if (!vmx_has_waitpkg(vmx))
6446 return;
6447
6448 host_umwait_control = get_umwait_control_msr();
6449
6450 if (vmx->msr_ia32_umwait_control != host_umwait_control)
6451 add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6452 vmx->msr_ia32_umwait_control,
6453 host_umwait_control, false);
6454 else
6455 clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6456 }
6457
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6458 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6459 {
6460 struct vcpu_vmx *vmx = to_vmx(vcpu);
6461 u64 tscl;
6462 u32 delta_tsc;
6463
6464 if (vmx->req_immediate_exit) {
6465 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6466 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6467 } else if (vmx->hv_deadline_tsc != -1) {
6468 tscl = rdtsc();
6469 if (vmx->hv_deadline_tsc > tscl)
6470 /* set_hv_timer ensures the delta fits in 32-bits */
6471 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6472 cpu_preemption_timer_multi);
6473 else
6474 delta_tsc = 0;
6475
6476 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6477 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6478 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6479 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6480 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6481 }
6482 }
6483
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6484 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6485 {
6486 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6487 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6488 vmcs_writel(HOST_RSP, host_rsp);
6489 }
6490 }
6491
6492 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6493
vmx_vcpu_run(struct kvm_vcpu * vcpu)6494 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6495 {
6496 struct vcpu_vmx *vmx = to_vmx(vcpu);
6497 unsigned long cr3, cr4;
6498
6499 /* Record the guest's net vcpu time for enforced NMI injections. */
6500 if (unlikely(!enable_vnmi &&
6501 vmx->loaded_vmcs->soft_vnmi_blocked))
6502 vmx->loaded_vmcs->entry_time = ktime_get();
6503
6504 /* Don't enter VMX if guest state is invalid, let the exit handler
6505 start emulation until we arrive back to a valid state */
6506 if (vmx->emulation_required)
6507 return;
6508
6509 if (vmx->ple_window_dirty) {
6510 vmx->ple_window_dirty = false;
6511 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6512 }
6513
6514 if (vmx->nested.need_vmcs12_to_shadow_sync)
6515 nested_sync_vmcs12_to_shadow(vcpu);
6516
6517 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6518 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6519 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6520 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6521
6522 cr3 = __get_current_cr3_fast();
6523 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6524 vmcs_writel(HOST_CR3, cr3);
6525 vmx->loaded_vmcs->host_state.cr3 = cr3;
6526 }
6527
6528 cr4 = cr4_read_shadow();
6529 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6530 vmcs_writel(HOST_CR4, cr4);
6531 vmx->loaded_vmcs->host_state.cr4 = cr4;
6532 }
6533
6534 /* When single-stepping over STI and MOV SS, we must clear the
6535 * corresponding interruptibility bits in the guest state. Otherwise
6536 * vmentry fails as it then expects bit 14 (BS) in pending debug
6537 * exceptions being set, but that's not correct for the guest debugging
6538 * case. */
6539 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6540 vmx_set_interrupt_shadow(vcpu, 0);
6541
6542 kvm_load_guest_xcr0(vcpu);
6543
6544 if (static_cpu_has(X86_FEATURE_PKU) &&
6545 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6546 vcpu->arch.pkru != vmx->host_pkru)
6547 __write_pkru(vcpu->arch.pkru);
6548
6549 pt_guest_enter(vmx);
6550
6551 atomic_switch_perf_msrs(vmx);
6552 atomic_switch_umwait_control_msr(vmx);
6553
6554 if (enable_preemption_timer)
6555 vmx_update_hv_timer(vcpu);
6556
6557 if (lapic_in_kernel(vcpu) &&
6558 vcpu->arch.apic->lapic_timer.timer_advance_ns)
6559 kvm_wait_lapic_expire(vcpu);
6560
6561 /*
6562 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6563 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6564 * is no need to worry about the conditional branch over the wrmsr
6565 * being speculatively taken.
6566 */
6567 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6568
6569 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6570 if (static_branch_unlikely(&vmx_l1d_should_flush))
6571 vmx_l1d_flush(vcpu);
6572 else if (static_branch_unlikely(&mds_user_clear))
6573 mds_clear_cpu_buffers();
6574
6575 if (vcpu->arch.cr2 != read_cr2())
6576 write_cr2(vcpu->arch.cr2);
6577
6578 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6579 vmx->loaded_vmcs->launched);
6580
6581 vcpu->arch.cr2 = read_cr2();
6582
6583 /*
6584 * We do not use IBRS in the kernel. If this vCPU has used the
6585 * SPEC_CTRL MSR it may have left it on; save the value and
6586 * turn it off. This is much more efficient than blindly adding
6587 * it to the atomic save/restore list. Especially as the former
6588 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6589 *
6590 * For non-nested case:
6591 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6592 * save it.
6593 *
6594 * For nested case:
6595 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6596 * save it.
6597 */
6598 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6599 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6600
6601 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6602
6603 /* All fields are clean at this point */
6604 if (static_branch_unlikely(&enable_evmcs))
6605 current_evmcs->hv_clean_fields |=
6606 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6607
6608 if (static_branch_unlikely(&enable_evmcs))
6609 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6610
6611 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6612 if (vmx->host_debugctlmsr)
6613 update_debugctlmsr(vmx->host_debugctlmsr);
6614
6615 #ifndef CONFIG_X86_64
6616 /*
6617 * The sysexit path does not restore ds/es, so we must set them to
6618 * a reasonable value ourselves.
6619 *
6620 * We can't defer this to vmx_prepare_switch_to_host() since that
6621 * function may be executed in interrupt context, which saves and
6622 * restore segments around it, nullifying its effect.
6623 */
6624 loadsegment(ds, __USER_DS);
6625 loadsegment(es, __USER_DS);
6626 #endif
6627
6628 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6629 | (1 << VCPU_EXREG_RFLAGS)
6630 | (1 << VCPU_EXREG_PDPTR)
6631 | (1 << VCPU_EXREG_SEGMENTS)
6632 | (1 << VCPU_EXREG_CR3));
6633 vcpu->arch.regs_dirty = 0;
6634
6635 pt_guest_exit(vmx);
6636
6637 /*
6638 * eager fpu is enabled if PKEY is supported and CR4 is switched
6639 * back on host, so it is safe to read guest PKRU from current
6640 * XSAVE.
6641 */
6642 if (static_cpu_has(X86_FEATURE_PKU) &&
6643 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6644 vcpu->arch.pkru = rdpkru();
6645 if (vcpu->arch.pkru != vmx->host_pkru)
6646 __write_pkru(vmx->host_pkru);
6647 }
6648
6649 kvm_put_guest_xcr0(vcpu);
6650
6651 vmx->nested.nested_run_pending = 0;
6652 vmx->idt_vectoring_info = 0;
6653
6654 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6655 if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6656 kvm_machine_check();
6657
6658 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6659 return;
6660
6661 vmx->loaded_vmcs->launched = 1;
6662 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6663
6664 vmx_recover_nmi_blocking(vmx);
6665 vmx_complete_interrupts(vmx);
6666 }
6667
vmx_vm_alloc(void)6668 static struct kvm *vmx_vm_alloc(void)
6669 {
6670 struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6671 GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6672 PAGE_KERNEL);
6673 return &kvm_vmx->kvm;
6674 }
6675
vmx_vm_free(struct kvm * kvm)6676 static void vmx_vm_free(struct kvm *kvm)
6677 {
6678 kfree(kvm->arch.hyperv.hv_pa_pg);
6679 vfree(to_kvm_vmx(kvm));
6680 }
6681
vmx_free_vcpu(struct kvm_vcpu * vcpu)6682 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6683 {
6684 struct vcpu_vmx *vmx = to_vmx(vcpu);
6685
6686 if (enable_pml)
6687 vmx_destroy_pml_buffer(vmx);
6688 free_vpid(vmx->vpid);
6689 nested_vmx_free_vcpu(vcpu);
6690 free_loaded_vmcs(vmx->loaded_vmcs);
6691 kfree(vmx->guest_msrs);
6692 kvm_vcpu_uninit(vcpu);
6693 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6694 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6695 kmem_cache_free(kvm_vcpu_cache, vmx);
6696 }
6697
vmx_create_vcpu(struct kvm * kvm,unsigned int id)6698 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6699 {
6700 int err;
6701 struct vcpu_vmx *vmx;
6702 unsigned long *msr_bitmap;
6703 int cpu;
6704
6705 BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6706 "struct kvm_vcpu must be at offset 0 for arch usercopy region");
6707
6708 vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6709 if (!vmx)
6710 return ERR_PTR(-ENOMEM);
6711
6712 vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6713 GFP_KERNEL_ACCOUNT);
6714 if (!vmx->vcpu.arch.user_fpu) {
6715 printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6716 err = -ENOMEM;
6717 goto free_partial_vcpu;
6718 }
6719
6720 vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6721 GFP_KERNEL_ACCOUNT);
6722 if (!vmx->vcpu.arch.guest_fpu) {
6723 printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6724 err = -ENOMEM;
6725 goto free_user_fpu;
6726 }
6727
6728 vmx->vpid = allocate_vpid();
6729
6730 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6731 if (err)
6732 goto free_vcpu;
6733
6734 err = -ENOMEM;
6735
6736 /*
6737 * If PML is turned on, failure on enabling PML just results in failure
6738 * of creating the vcpu, therefore we can simplify PML logic (by
6739 * avoiding dealing with cases, such as enabling PML partially on vcpus
6740 * for the guest, etc.
6741 */
6742 if (enable_pml) {
6743 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6744 if (!vmx->pml_pg)
6745 goto uninit_vcpu;
6746 }
6747
6748 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6749 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6750 > PAGE_SIZE);
6751
6752 if (!vmx->guest_msrs)
6753 goto free_pml;
6754
6755 err = alloc_loaded_vmcs(&vmx->vmcs01);
6756 if (err < 0)
6757 goto free_msrs;
6758
6759 msr_bitmap = vmx->vmcs01.msr_bitmap;
6760 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6761 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6762 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6763 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6764 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6765 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6766 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6767 if (kvm_cstate_in_guest(kvm)) {
6768 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6769 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6770 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6771 vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6772 }
6773 vmx->msr_bitmap_mode = 0;
6774
6775 vmx->loaded_vmcs = &vmx->vmcs01;
6776 cpu = get_cpu();
6777 vmx_vcpu_load(&vmx->vcpu, cpu);
6778 vmx->vcpu.cpu = cpu;
6779 vmx_vcpu_setup(vmx);
6780 vmx_vcpu_put(&vmx->vcpu);
6781 put_cpu();
6782 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6783 err = alloc_apic_access_page(kvm);
6784 if (err)
6785 goto free_vmcs;
6786 }
6787
6788 if (enable_ept && !enable_unrestricted_guest) {
6789 err = init_rmode_identity_map(kvm);
6790 if (err)
6791 goto free_vmcs;
6792 }
6793
6794 if (nested)
6795 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6796 vmx_capability.ept,
6797 kvm_vcpu_apicv_active(&vmx->vcpu));
6798 else
6799 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6800
6801 vmx->nested.posted_intr_nv = -1;
6802 vmx->nested.current_vmptr = -1ull;
6803
6804 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6805
6806 /*
6807 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6808 * or POSTED_INTR_WAKEUP_VECTOR.
6809 */
6810 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6811 vmx->pi_desc.sn = 1;
6812
6813 vmx->ept_pointer = INVALID_PAGE;
6814
6815 return &vmx->vcpu;
6816
6817 free_vmcs:
6818 free_loaded_vmcs(vmx->loaded_vmcs);
6819 free_msrs:
6820 kfree(vmx->guest_msrs);
6821 free_pml:
6822 vmx_destroy_pml_buffer(vmx);
6823 uninit_vcpu:
6824 kvm_vcpu_uninit(&vmx->vcpu);
6825 free_vcpu:
6826 free_vpid(vmx->vpid);
6827 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6828 free_user_fpu:
6829 kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6830 free_partial_vcpu:
6831 kmem_cache_free(kvm_vcpu_cache, vmx);
6832 return ERR_PTR(err);
6833 }
6834
6835 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6836 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6837
vmx_vm_init(struct kvm * kvm)6838 static int vmx_vm_init(struct kvm *kvm)
6839 {
6840 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6841
6842 if (!ple_gap)
6843 kvm->arch.pause_in_guest = true;
6844
6845 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6846 switch (l1tf_mitigation) {
6847 case L1TF_MITIGATION_OFF:
6848 case L1TF_MITIGATION_FLUSH_NOWARN:
6849 /* 'I explicitly don't care' is set */
6850 break;
6851 case L1TF_MITIGATION_FLUSH:
6852 case L1TF_MITIGATION_FLUSH_NOSMT:
6853 case L1TF_MITIGATION_FULL:
6854 /*
6855 * Warn upon starting the first VM in a potentially
6856 * insecure environment.
6857 */
6858 if (sched_smt_active())
6859 pr_warn_once(L1TF_MSG_SMT);
6860 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6861 pr_warn_once(L1TF_MSG_L1D);
6862 break;
6863 case L1TF_MITIGATION_FULL_FORCE:
6864 /* Flush is enforced */
6865 break;
6866 }
6867 }
6868 return 0;
6869 }
6870
vmx_check_processor_compat(void)6871 static int __init vmx_check_processor_compat(void)
6872 {
6873 struct vmcs_config vmcs_conf;
6874 struct vmx_capability vmx_cap;
6875
6876 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6877 return -EIO;
6878 if (nested)
6879 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6880 enable_apicv);
6881 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6882 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6883 smp_processor_id());
6884 return -EIO;
6885 }
6886 return 0;
6887 }
6888
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)6889 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6890 {
6891 u8 cache;
6892 u64 ipat = 0;
6893
6894 /* For VT-d and EPT combination
6895 * 1. MMIO: always map as UC
6896 * 2. EPT with VT-d:
6897 * a. VT-d without snooping control feature: can't guarantee the
6898 * result, try to trust guest.
6899 * b. VT-d with snooping control feature: snooping control feature of
6900 * VT-d engine can guarantee the cache correctness. Just set it
6901 * to WB to keep consistent with host. So the same as item 3.
6902 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6903 * consistent with host MTRR
6904 */
6905 if (is_mmio) {
6906 cache = MTRR_TYPE_UNCACHABLE;
6907 goto exit;
6908 }
6909
6910 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6911 ipat = VMX_EPT_IPAT_BIT;
6912 cache = MTRR_TYPE_WRBACK;
6913 goto exit;
6914 }
6915
6916 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6917 ipat = VMX_EPT_IPAT_BIT;
6918 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6919 cache = MTRR_TYPE_WRBACK;
6920 else
6921 cache = MTRR_TYPE_UNCACHABLE;
6922 goto exit;
6923 }
6924
6925 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6926
6927 exit:
6928 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6929 }
6930
vmx_get_lpage_level(void)6931 static int vmx_get_lpage_level(void)
6932 {
6933 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6934 return PT_DIRECTORY_LEVEL;
6935 else
6936 /* For shadow and EPT supported 1GB page */
6937 return PT_PDPE_LEVEL;
6938 }
6939
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)6940 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6941 {
6942 /*
6943 * These bits in the secondary execution controls field
6944 * are dynamic, the others are mostly based on the hypervisor
6945 * architecture and the guest's CPUID. Do not touch the
6946 * dynamic bits.
6947 */
6948 u32 mask =
6949 SECONDARY_EXEC_SHADOW_VMCS |
6950 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6951 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6952 SECONDARY_EXEC_DESC;
6953
6954 u32 new_ctl = vmx->secondary_exec_control;
6955 u32 cur_ctl = secondary_exec_controls_get(vmx);
6956
6957 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6958 }
6959
6960 /*
6961 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6962 * (indicating "allowed-1") if they are supported in the guest's CPUID.
6963 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)6964 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6965 {
6966 struct vcpu_vmx *vmx = to_vmx(vcpu);
6967 struct kvm_cpuid_entry2 *entry;
6968
6969 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6970 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6971
6972 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
6973 if (entry && (entry->_reg & (_cpuid_mask))) \
6974 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
6975 } while (0)
6976
6977 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6978 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
6979 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
6980 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
6981 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
6982 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
6983 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
6984 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
6985 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
6986 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
6987 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6988 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
6989 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
6990 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
6991 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
6992
6993 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6994 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
6995 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
6996 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
6997 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
6998 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
6999
7000 #undef cr4_fixed1_update
7001 }
7002
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7003 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7004 {
7005 struct vcpu_vmx *vmx = to_vmx(vcpu);
7006
7007 if (kvm_mpx_supported()) {
7008 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7009
7010 if (mpx_enabled) {
7011 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7012 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7013 } else {
7014 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7015 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7016 }
7017 }
7018 }
7019
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7020 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7021 {
7022 struct vcpu_vmx *vmx = to_vmx(vcpu);
7023 struct kvm_cpuid_entry2 *best = NULL;
7024 int i;
7025
7026 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7027 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7028 if (!best)
7029 return;
7030 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7031 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7032 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7033 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7034 }
7035
7036 /* Get the number of configurable Address Ranges for filtering */
7037 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7038 PT_CAP_num_address_ranges);
7039
7040 /* Initialize and clear the no dependency bits */
7041 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7042 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7043
7044 /*
7045 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7046 * will inject an #GP
7047 */
7048 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7049 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7050
7051 /*
7052 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7053 * PSBFreq can be set
7054 */
7055 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7056 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7057 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7058
7059 /*
7060 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7061 * MTCFreq can be set
7062 */
7063 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7064 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7065 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7066
7067 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7068 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7069 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7070 RTIT_CTL_PTW_EN);
7071
7072 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7073 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7074 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7075
7076 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7077 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7078 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7079
7080 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7081 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7082 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7083
7084 /* unmask address range configure area */
7085 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7086 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7087 }
7088
vmx_cpuid_update(struct kvm_vcpu * vcpu)7089 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7090 {
7091 struct vcpu_vmx *vmx = to_vmx(vcpu);
7092
7093 if (cpu_has_secondary_exec_ctrls()) {
7094 vmx_compute_secondary_exec_control(vmx);
7095 vmcs_set_secondary_exec_control(vmx);
7096 }
7097
7098 if (nested_vmx_allowed(vcpu))
7099 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7100 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7101 else
7102 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7103 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7104
7105 if (nested_vmx_allowed(vcpu)) {
7106 nested_vmx_cr_fixed1_bits_update(vcpu);
7107 nested_vmx_entry_exit_ctls_update(vcpu);
7108 }
7109
7110 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7111 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7112 update_intel_pt_cfg(vcpu);
7113 }
7114
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)7115 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7116 {
7117 if (func == 1 && nested)
7118 entry->ecx |= bit(X86_FEATURE_VMX);
7119 }
7120
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7121 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7122 {
7123 to_vmx(vcpu)->req_immediate_exit = true;
7124 }
7125
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)7126 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7127 struct x86_instruction_info *info,
7128 enum x86_intercept_stage stage)
7129 {
7130 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7131 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7132
7133 /*
7134 * RDPID causes #UD if disabled through secondary execution controls.
7135 * Because it is marked as EmulateOnUD, we need to intercept it here.
7136 */
7137 if (info->intercept == x86_intercept_rdtscp &&
7138 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7139 ctxt->exception.vector = UD_VECTOR;
7140 ctxt->exception.error_code_valid = false;
7141 return X86EMUL_PROPAGATE_FAULT;
7142 }
7143
7144 /* TODO: check more intercepts... */
7145 return X86EMUL_CONTINUE;
7146 }
7147
7148 #ifdef CONFIG_X86_64
7149 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7150 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7151 u64 divisor, u64 *result)
7152 {
7153 u64 low = a << shift, high = a >> (64 - shift);
7154
7155 /* To avoid the overflow on divq */
7156 if (high >= divisor)
7157 return 1;
7158
7159 /* Low hold the result, high hold rem which is discarded */
7160 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7161 "rm" (divisor), "0" (low), "1" (high));
7162 *result = low;
7163
7164 return 0;
7165 }
7166
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7167 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7168 bool *expired)
7169 {
7170 struct vcpu_vmx *vmx;
7171 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7172 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7173
7174 if (kvm_mwait_in_guest(vcpu->kvm) ||
7175 kvm_can_post_timer_interrupt(vcpu))
7176 return -EOPNOTSUPP;
7177
7178 vmx = to_vmx(vcpu);
7179 tscl = rdtsc();
7180 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7181 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7182 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7183 ktimer->timer_advance_ns);
7184
7185 if (delta_tsc > lapic_timer_advance_cycles)
7186 delta_tsc -= lapic_timer_advance_cycles;
7187 else
7188 delta_tsc = 0;
7189
7190 /* Convert to host delta tsc if tsc scaling is enabled */
7191 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7192 delta_tsc && u64_shl_div_u64(delta_tsc,
7193 kvm_tsc_scaling_ratio_frac_bits,
7194 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7195 return -ERANGE;
7196
7197 /*
7198 * If the delta tsc can't fit in the 32 bit after the multi shift,
7199 * we can't use the preemption timer.
7200 * It's possible that it fits on later vmentries, but checking
7201 * on every vmentry is costly so we just use an hrtimer.
7202 */
7203 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7204 return -ERANGE;
7205
7206 vmx->hv_deadline_tsc = tscl + delta_tsc;
7207 *expired = !delta_tsc;
7208 return 0;
7209 }
7210
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7211 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7212 {
7213 to_vmx(vcpu)->hv_deadline_tsc = -1;
7214 }
7215 #endif
7216
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7217 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7218 {
7219 if (!kvm_pause_in_guest(vcpu->kvm))
7220 shrink_ple_window(vcpu);
7221 }
7222
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7223 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7224 struct kvm_memory_slot *slot)
7225 {
7226 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7227 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7228 }
7229
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7230 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7231 struct kvm_memory_slot *slot)
7232 {
7233 kvm_mmu_slot_set_dirty(kvm, slot);
7234 }
7235
vmx_flush_log_dirty(struct kvm * kvm)7236 static void vmx_flush_log_dirty(struct kvm *kvm)
7237 {
7238 kvm_flush_pml_buffers(kvm);
7239 }
7240
vmx_write_pml_buffer(struct kvm_vcpu * vcpu)7241 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7242 {
7243 struct vmcs12 *vmcs12;
7244 struct vcpu_vmx *vmx = to_vmx(vcpu);
7245 gpa_t gpa, dst;
7246
7247 if (is_guest_mode(vcpu)) {
7248 WARN_ON_ONCE(vmx->nested.pml_full);
7249
7250 /*
7251 * Check if PML is enabled for the nested guest.
7252 * Whether eptp bit 6 is set is already checked
7253 * as part of A/D emulation.
7254 */
7255 vmcs12 = get_vmcs12(vcpu);
7256 if (!nested_cpu_has_pml(vmcs12))
7257 return 0;
7258
7259 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7260 vmx->nested.pml_full = true;
7261 return 1;
7262 }
7263
7264 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7265 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7266
7267 if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7268 offset_in_page(dst), sizeof(gpa)))
7269 return 0;
7270
7271 vmcs12->guest_pml_index--;
7272 }
7273
7274 return 0;
7275 }
7276
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7277 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7278 struct kvm_memory_slot *memslot,
7279 gfn_t offset, unsigned long mask)
7280 {
7281 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7282 }
7283
__pi_post_block(struct kvm_vcpu * vcpu)7284 static void __pi_post_block(struct kvm_vcpu *vcpu)
7285 {
7286 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7287 struct pi_desc old, new;
7288 unsigned int dest;
7289
7290 do {
7291 old.control = new.control = pi_desc->control;
7292 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7293 "Wakeup handler not enabled while the VCPU is blocked\n");
7294
7295 dest = cpu_physical_id(vcpu->cpu);
7296
7297 if (x2apic_enabled())
7298 new.ndst = dest;
7299 else
7300 new.ndst = (dest << 8) & 0xFF00;
7301
7302 /* set 'NV' to 'notification vector' */
7303 new.nv = POSTED_INTR_VECTOR;
7304 } while (cmpxchg64(&pi_desc->control, old.control,
7305 new.control) != old.control);
7306
7307 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7308 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7309 list_del(&vcpu->blocked_vcpu_list);
7310 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7311 vcpu->pre_pcpu = -1;
7312 }
7313 }
7314
7315 /*
7316 * This routine does the following things for vCPU which is going
7317 * to be blocked if VT-d PI is enabled.
7318 * - Store the vCPU to the wakeup list, so when interrupts happen
7319 * we can find the right vCPU to wake up.
7320 * - Change the Posted-interrupt descriptor as below:
7321 * 'NDST' <-- vcpu->pre_pcpu
7322 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7323 * - If 'ON' is set during this process, which means at least one
7324 * interrupt is posted for this vCPU, we cannot block it, in
7325 * this case, return 1, otherwise, return 0.
7326 *
7327 */
pi_pre_block(struct kvm_vcpu * vcpu)7328 static int pi_pre_block(struct kvm_vcpu *vcpu)
7329 {
7330 unsigned int dest;
7331 struct pi_desc old, new;
7332 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7333
7334 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7335 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7336 !kvm_vcpu_apicv_active(vcpu))
7337 return 0;
7338
7339 WARN_ON(irqs_disabled());
7340 local_irq_disable();
7341 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7342 vcpu->pre_pcpu = vcpu->cpu;
7343 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7344 list_add_tail(&vcpu->blocked_vcpu_list,
7345 &per_cpu(blocked_vcpu_on_cpu,
7346 vcpu->pre_pcpu));
7347 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7348 }
7349
7350 do {
7351 old.control = new.control = pi_desc->control;
7352
7353 WARN((pi_desc->sn == 1),
7354 "Warning: SN field of posted-interrupts "
7355 "is set before blocking\n");
7356
7357 /*
7358 * Since vCPU can be preempted during this process,
7359 * vcpu->cpu could be different with pre_pcpu, we
7360 * need to set pre_pcpu as the destination of wakeup
7361 * notification event, then we can find the right vCPU
7362 * to wakeup in wakeup handler if interrupts happen
7363 * when the vCPU is in blocked state.
7364 */
7365 dest = cpu_physical_id(vcpu->pre_pcpu);
7366
7367 if (x2apic_enabled())
7368 new.ndst = dest;
7369 else
7370 new.ndst = (dest << 8) & 0xFF00;
7371
7372 /* set 'NV' to 'wakeup vector' */
7373 new.nv = POSTED_INTR_WAKEUP_VECTOR;
7374 } while (cmpxchg64(&pi_desc->control, old.control,
7375 new.control) != old.control);
7376
7377 /* We should not block the vCPU if an interrupt is posted for it. */
7378 if (pi_test_on(pi_desc) == 1)
7379 __pi_post_block(vcpu);
7380
7381 local_irq_enable();
7382 return (vcpu->pre_pcpu == -1);
7383 }
7384
vmx_pre_block(struct kvm_vcpu * vcpu)7385 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7386 {
7387 if (pi_pre_block(vcpu))
7388 return 1;
7389
7390 if (kvm_lapic_hv_timer_in_use(vcpu))
7391 kvm_lapic_switch_to_sw_timer(vcpu);
7392
7393 return 0;
7394 }
7395
pi_post_block(struct kvm_vcpu * vcpu)7396 static void pi_post_block(struct kvm_vcpu *vcpu)
7397 {
7398 if (vcpu->pre_pcpu == -1)
7399 return;
7400
7401 WARN_ON(irqs_disabled());
7402 local_irq_disable();
7403 __pi_post_block(vcpu);
7404 local_irq_enable();
7405 }
7406
vmx_post_block(struct kvm_vcpu * vcpu)7407 static void vmx_post_block(struct kvm_vcpu *vcpu)
7408 {
7409 if (kvm_x86_ops->set_hv_timer)
7410 kvm_lapic_switch_to_hv_timer(vcpu);
7411
7412 pi_post_block(vcpu);
7413 }
7414
7415 /*
7416 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7417 *
7418 * @kvm: kvm
7419 * @host_irq: host irq of the interrupt
7420 * @guest_irq: gsi of the interrupt
7421 * @set: set or unset PI
7422 * returns 0 on success, < 0 on failure
7423 */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)7424 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7425 uint32_t guest_irq, bool set)
7426 {
7427 struct kvm_kernel_irq_routing_entry *e;
7428 struct kvm_irq_routing_table *irq_rt;
7429 struct kvm_lapic_irq irq;
7430 struct kvm_vcpu *vcpu;
7431 struct vcpu_data vcpu_info;
7432 int idx, ret = 0;
7433
7434 if (!kvm_arch_has_assigned_device(kvm) ||
7435 !irq_remapping_cap(IRQ_POSTING_CAP) ||
7436 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
7437 return 0;
7438
7439 idx = srcu_read_lock(&kvm->irq_srcu);
7440 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7441 if (guest_irq >= irq_rt->nr_rt_entries ||
7442 hlist_empty(&irq_rt->map[guest_irq])) {
7443 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7444 guest_irq, irq_rt->nr_rt_entries);
7445 goto out;
7446 }
7447
7448 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7449 if (e->type != KVM_IRQ_ROUTING_MSI)
7450 continue;
7451 /*
7452 * VT-d PI cannot support posting multicast/broadcast
7453 * interrupts to a vCPU, we still use interrupt remapping
7454 * for these kind of interrupts.
7455 *
7456 * For lowest-priority interrupts, we only support
7457 * those with single CPU as the destination, e.g. user
7458 * configures the interrupts via /proc/irq or uses
7459 * irqbalance to make the interrupts single-CPU.
7460 *
7461 * We will support full lowest-priority interrupt later.
7462 *
7463 * In addition, we can only inject generic interrupts using
7464 * the PI mechanism, refuse to route others through it.
7465 */
7466
7467 kvm_set_msi_irq(kvm, e, &irq);
7468 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7469 !kvm_irq_is_postable(&irq)) {
7470 /*
7471 * Make sure the IRTE is in remapped mode if
7472 * we don't handle it in posted mode.
7473 */
7474 ret = irq_set_vcpu_affinity(host_irq, NULL);
7475 if (ret < 0) {
7476 printk(KERN_INFO
7477 "failed to back to remapped mode, irq: %u\n",
7478 host_irq);
7479 goto out;
7480 }
7481
7482 continue;
7483 }
7484
7485 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7486 vcpu_info.vector = irq.vector;
7487
7488 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7489 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7490
7491 if (set)
7492 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7493 else
7494 ret = irq_set_vcpu_affinity(host_irq, NULL);
7495
7496 if (ret < 0) {
7497 printk(KERN_INFO "%s: failed to update PI IRTE\n",
7498 __func__);
7499 goto out;
7500 }
7501 }
7502
7503 ret = 0;
7504 out:
7505 srcu_read_unlock(&kvm->irq_srcu, idx);
7506 return ret;
7507 }
7508
vmx_setup_mce(struct kvm_vcpu * vcpu)7509 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7510 {
7511 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7512 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7513 FEATURE_CONTROL_LMCE;
7514 else
7515 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7516 ~FEATURE_CONTROL_LMCE;
7517 }
7518
vmx_smi_allowed(struct kvm_vcpu * vcpu)7519 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7520 {
7521 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7522 if (to_vmx(vcpu)->nested.nested_run_pending)
7523 return 0;
7524 return 1;
7525 }
7526
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7527 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7528 {
7529 struct vcpu_vmx *vmx = to_vmx(vcpu);
7530
7531 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7532 if (vmx->nested.smm.guest_mode)
7533 nested_vmx_vmexit(vcpu, -1, 0, 0);
7534
7535 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7536 vmx->nested.vmxon = false;
7537 vmx_clear_hlt(vcpu);
7538 return 0;
7539 }
7540
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7541 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7542 {
7543 struct vcpu_vmx *vmx = to_vmx(vcpu);
7544 int ret;
7545
7546 if (vmx->nested.smm.vmxon) {
7547 vmx->nested.vmxon = true;
7548 vmx->nested.smm.vmxon = false;
7549 }
7550
7551 if (vmx->nested.smm.guest_mode) {
7552 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7553 if (ret)
7554 return ret;
7555
7556 vmx->nested.smm.guest_mode = false;
7557 }
7558 return 0;
7559 }
7560
enable_smi_window(struct kvm_vcpu * vcpu)7561 static int enable_smi_window(struct kvm_vcpu *vcpu)
7562 {
7563 return 0;
7564 }
7565
vmx_need_emulation_on_page_fault(struct kvm_vcpu * vcpu)7566 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7567 {
7568 return false;
7569 }
7570
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7571 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7572 {
7573 return to_vmx(vcpu)->nested.vmxon;
7574 }
7575
hardware_setup(void)7576 static __init int hardware_setup(void)
7577 {
7578 unsigned long host_bndcfgs;
7579 struct desc_ptr dt;
7580 int r, i;
7581
7582 rdmsrl_safe(MSR_EFER, &host_efer);
7583
7584 store_idt(&dt);
7585 host_idt_base = dt.address;
7586
7587 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7588 kvm_define_shared_msr(i, vmx_msr_index[i]);
7589
7590 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7591 return -EIO;
7592
7593 if (boot_cpu_has(X86_FEATURE_NX))
7594 kvm_enable_efer_bits(EFER_NX);
7595
7596 if (boot_cpu_has(X86_FEATURE_MPX)) {
7597 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7598 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7599 }
7600
7601 if (boot_cpu_has(X86_FEATURE_XSAVES))
7602 rdmsrl(MSR_IA32_XSS, host_xss);
7603
7604 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7605 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7606 enable_vpid = 0;
7607
7608 if (!cpu_has_vmx_ept() ||
7609 !cpu_has_vmx_ept_4levels() ||
7610 !cpu_has_vmx_ept_mt_wb() ||
7611 !cpu_has_vmx_invept_global())
7612 enable_ept = 0;
7613
7614 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7615 enable_ept_ad_bits = 0;
7616
7617 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7618 enable_unrestricted_guest = 0;
7619
7620 if (!cpu_has_vmx_flexpriority())
7621 flexpriority_enabled = 0;
7622
7623 if (!cpu_has_virtual_nmis())
7624 enable_vnmi = 0;
7625
7626 /*
7627 * set_apic_access_page_addr() is used to reload apic access
7628 * page upon invalidation. No need to do anything if not
7629 * using the APIC_ACCESS_ADDR VMCS field.
7630 */
7631 if (!flexpriority_enabled)
7632 kvm_x86_ops->set_apic_access_page_addr = NULL;
7633
7634 if (!cpu_has_vmx_tpr_shadow())
7635 kvm_x86_ops->update_cr8_intercept = NULL;
7636
7637 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7638 kvm_disable_largepages();
7639
7640 #if IS_ENABLED(CONFIG_HYPERV)
7641 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7642 && enable_ept) {
7643 kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7644 kvm_x86_ops->tlb_remote_flush_with_range =
7645 hv_remote_flush_tlb_with_range;
7646 }
7647 #endif
7648
7649 if (!cpu_has_vmx_ple()) {
7650 ple_gap = 0;
7651 ple_window = 0;
7652 ple_window_grow = 0;
7653 ple_window_max = 0;
7654 ple_window_shrink = 0;
7655 }
7656
7657 if (!cpu_has_vmx_apicv()) {
7658 enable_apicv = 0;
7659 kvm_x86_ops->sync_pir_to_irr = NULL;
7660 }
7661
7662 if (cpu_has_vmx_tsc_scaling()) {
7663 kvm_has_tsc_control = true;
7664 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7665 kvm_tsc_scaling_ratio_frac_bits = 48;
7666 }
7667
7668 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7669
7670 if (enable_ept)
7671 vmx_enable_tdp();
7672 else
7673 kvm_disable_tdp();
7674
7675 /*
7676 * Only enable PML when hardware supports PML feature, and both EPT
7677 * and EPT A/D bit features are enabled -- PML depends on them to work.
7678 */
7679 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7680 enable_pml = 0;
7681
7682 if (!enable_pml) {
7683 kvm_x86_ops->slot_enable_log_dirty = NULL;
7684 kvm_x86_ops->slot_disable_log_dirty = NULL;
7685 kvm_x86_ops->flush_log_dirty = NULL;
7686 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7687 }
7688
7689 if (!cpu_has_vmx_preemption_timer())
7690 enable_preemption_timer = false;
7691
7692 if (enable_preemption_timer) {
7693 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7694 u64 vmx_msr;
7695
7696 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7697 cpu_preemption_timer_multi =
7698 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7699
7700 if (tsc_khz)
7701 use_timer_freq = (u64)tsc_khz * 1000;
7702 use_timer_freq >>= cpu_preemption_timer_multi;
7703
7704 /*
7705 * KVM "disables" the preemption timer by setting it to its max
7706 * value. Don't use the timer if it might cause spurious exits
7707 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7708 */
7709 if (use_timer_freq > 0xffffffffu / 10)
7710 enable_preemption_timer = false;
7711 }
7712
7713 if (!enable_preemption_timer) {
7714 kvm_x86_ops->set_hv_timer = NULL;
7715 kvm_x86_ops->cancel_hv_timer = NULL;
7716 kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7717 }
7718
7719 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7720
7721 kvm_mce_cap_supported |= MCG_LMCE_P;
7722
7723 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7724 return -EINVAL;
7725 if (!enable_ept || !cpu_has_vmx_intel_pt())
7726 pt_mode = PT_MODE_SYSTEM;
7727
7728 if (nested) {
7729 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7730 vmx_capability.ept, enable_apicv);
7731
7732 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7733 if (r)
7734 return r;
7735 }
7736
7737 r = alloc_kvm_area();
7738 if (r)
7739 nested_vmx_hardware_unsetup();
7740 return r;
7741 }
7742
hardware_unsetup(void)7743 static __exit void hardware_unsetup(void)
7744 {
7745 if (nested)
7746 nested_vmx_hardware_unsetup();
7747
7748 free_kvm_area();
7749 }
7750
7751 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7752 .cpu_has_kvm_support = cpu_has_kvm_support,
7753 .disabled_by_bios = vmx_disabled_by_bios,
7754 .hardware_setup = hardware_setup,
7755 .hardware_unsetup = hardware_unsetup,
7756 .check_processor_compatibility = vmx_check_processor_compat,
7757 .hardware_enable = hardware_enable,
7758 .hardware_disable = hardware_disable,
7759 .cpu_has_accelerated_tpr = report_flexpriority,
7760 .has_emulated_msr = vmx_has_emulated_msr,
7761
7762 .vm_init = vmx_vm_init,
7763 .vm_alloc = vmx_vm_alloc,
7764 .vm_free = vmx_vm_free,
7765
7766 .vcpu_create = vmx_create_vcpu,
7767 .vcpu_free = vmx_free_vcpu,
7768 .vcpu_reset = vmx_vcpu_reset,
7769
7770 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7771 .vcpu_load = vmx_vcpu_load,
7772 .vcpu_put = vmx_vcpu_put,
7773
7774 .update_bp_intercept = update_exception_bitmap,
7775 .get_msr_feature = vmx_get_msr_feature,
7776 .get_msr = vmx_get_msr,
7777 .set_msr = vmx_set_msr,
7778 .get_segment_base = vmx_get_segment_base,
7779 .get_segment = vmx_get_segment,
7780 .set_segment = vmx_set_segment,
7781 .get_cpl = vmx_get_cpl,
7782 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7783 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7784 .decache_cr3 = vmx_decache_cr3,
7785 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7786 .set_cr0 = vmx_set_cr0,
7787 .set_cr3 = vmx_set_cr3,
7788 .set_cr4 = vmx_set_cr4,
7789 .set_efer = vmx_set_efer,
7790 .get_idt = vmx_get_idt,
7791 .set_idt = vmx_set_idt,
7792 .get_gdt = vmx_get_gdt,
7793 .set_gdt = vmx_set_gdt,
7794 .get_dr6 = vmx_get_dr6,
7795 .set_dr6 = vmx_set_dr6,
7796 .set_dr7 = vmx_set_dr7,
7797 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7798 .cache_reg = vmx_cache_reg,
7799 .get_rflags = vmx_get_rflags,
7800 .set_rflags = vmx_set_rflags,
7801
7802 .tlb_flush = vmx_flush_tlb,
7803 .tlb_flush_gva = vmx_flush_tlb_gva,
7804
7805 .run = vmx_vcpu_run,
7806 .handle_exit = vmx_handle_exit,
7807 .skip_emulated_instruction = skip_emulated_instruction,
7808 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7809 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7810 .patch_hypercall = vmx_patch_hypercall,
7811 .set_irq = vmx_inject_irq,
7812 .set_nmi = vmx_inject_nmi,
7813 .queue_exception = vmx_queue_exception,
7814 .cancel_injection = vmx_cancel_injection,
7815 .interrupt_allowed = vmx_interrupt_allowed,
7816 .nmi_allowed = vmx_nmi_allowed,
7817 .get_nmi_mask = vmx_get_nmi_mask,
7818 .set_nmi_mask = vmx_set_nmi_mask,
7819 .enable_nmi_window = enable_nmi_window,
7820 .enable_irq_window = enable_irq_window,
7821 .update_cr8_intercept = update_cr8_intercept,
7822 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7823 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7824 .get_enable_apicv = vmx_get_enable_apicv,
7825 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7826 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7827 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7828 .hwapic_irr_update = vmx_hwapic_irr_update,
7829 .hwapic_isr_update = vmx_hwapic_isr_update,
7830 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7831 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7832 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7833 .dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7834
7835 .set_tss_addr = vmx_set_tss_addr,
7836 .set_identity_map_addr = vmx_set_identity_map_addr,
7837 .get_tdp_level = get_ept_level,
7838 .get_mt_mask = vmx_get_mt_mask,
7839
7840 .get_exit_info = vmx_get_exit_info,
7841
7842 .get_lpage_level = vmx_get_lpage_level,
7843
7844 .cpuid_update = vmx_cpuid_update,
7845
7846 .rdtscp_supported = vmx_rdtscp_supported,
7847 .invpcid_supported = vmx_invpcid_supported,
7848
7849 .set_supported_cpuid = vmx_set_supported_cpuid,
7850
7851 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7852
7853 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7854 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7855
7856 .set_tdp_cr3 = vmx_set_cr3,
7857
7858 .check_intercept = vmx_check_intercept,
7859 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7860 .mpx_supported = vmx_mpx_supported,
7861 .xsaves_supported = vmx_xsaves_supported,
7862 .umip_emulated = vmx_umip_emulated,
7863 .pt_supported = vmx_pt_supported,
7864
7865 .request_immediate_exit = vmx_request_immediate_exit,
7866
7867 .sched_in = vmx_sched_in,
7868
7869 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7870 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7871 .flush_log_dirty = vmx_flush_log_dirty,
7872 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7873 .write_log_dirty = vmx_write_pml_buffer,
7874
7875 .pre_block = vmx_pre_block,
7876 .post_block = vmx_post_block,
7877
7878 .pmu_ops = &intel_pmu_ops,
7879
7880 .update_pi_irte = vmx_update_pi_irte,
7881
7882 #ifdef CONFIG_X86_64
7883 .set_hv_timer = vmx_set_hv_timer,
7884 .cancel_hv_timer = vmx_cancel_hv_timer,
7885 #endif
7886
7887 .setup_mce = vmx_setup_mce,
7888
7889 .smi_allowed = vmx_smi_allowed,
7890 .pre_enter_smm = vmx_pre_enter_smm,
7891 .pre_leave_smm = vmx_pre_leave_smm,
7892 .enable_smi_window = enable_smi_window,
7893
7894 .check_nested_events = NULL,
7895 .get_nested_state = NULL,
7896 .set_nested_state = NULL,
7897 .get_vmcs12_pages = NULL,
7898 .nested_enable_evmcs = NULL,
7899 .nested_get_evmcs_version = NULL,
7900 .need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7901 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7902 };
7903
vmx_cleanup_l1d_flush(void)7904 static void vmx_cleanup_l1d_flush(void)
7905 {
7906 if (vmx_l1d_flush_pages) {
7907 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7908 vmx_l1d_flush_pages = NULL;
7909 }
7910 /* Restore state so sysfs ignores VMX */
7911 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7912 }
7913
vmx_exit(void)7914 static void vmx_exit(void)
7915 {
7916 #ifdef CONFIG_KEXEC_CORE
7917 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7918 synchronize_rcu();
7919 #endif
7920
7921 kvm_exit();
7922
7923 #if IS_ENABLED(CONFIG_HYPERV)
7924 if (static_branch_unlikely(&enable_evmcs)) {
7925 int cpu;
7926 struct hv_vp_assist_page *vp_ap;
7927 /*
7928 * Reset everything to support using non-enlightened VMCS
7929 * access later (e.g. when we reload the module with
7930 * enlightened_vmcs=0)
7931 */
7932 for_each_online_cpu(cpu) {
7933 vp_ap = hv_get_vp_assist_page(cpu);
7934
7935 if (!vp_ap)
7936 continue;
7937
7938 vp_ap->nested_control.features.directhypercall = 0;
7939 vp_ap->current_nested_vmcs = 0;
7940 vp_ap->enlighten_vmentry = 0;
7941 }
7942
7943 static_branch_disable(&enable_evmcs);
7944 }
7945 #endif
7946 vmx_cleanup_l1d_flush();
7947 }
7948 module_exit(vmx_exit);
7949
vmx_init(void)7950 static int __init vmx_init(void)
7951 {
7952 int r;
7953
7954 #if IS_ENABLED(CONFIG_HYPERV)
7955 /*
7956 * Enlightened VMCS usage should be recommended and the host needs
7957 * to support eVMCS v1 or above. We can also disable eVMCS support
7958 * with module parameter.
7959 */
7960 if (enlightened_vmcs &&
7961 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7962 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7963 KVM_EVMCS_VERSION) {
7964 int cpu;
7965
7966 /* Check that we have assist pages on all online CPUs */
7967 for_each_online_cpu(cpu) {
7968 if (!hv_get_vp_assist_page(cpu)) {
7969 enlightened_vmcs = false;
7970 break;
7971 }
7972 }
7973
7974 if (enlightened_vmcs) {
7975 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7976 static_branch_enable(&enable_evmcs);
7977 }
7978
7979 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7980 vmx_x86_ops.enable_direct_tlbflush
7981 = hv_enable_direct_tlbflush;
7982
7983 } else {
7984 enlightened_vmcs = false;
7985 }
7986 #endif
7987
7988 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7989 __alignof__(struct vcpu_vmx), THIS_MODULE);
7990 if (r)
7991 return r;
7992
7993 /*
7994 * Must be called after kvm_init() so enable_ept is properly set
7995 * up. Hand the parameter mitigation value in which was stored in
7996 * the pre module init parser. If no parameter was given, it will
7997 * contain 'auto' which will be turned into the default 'cond'
7998 * mitigation mode.
7999 */
8000 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8001 if (r) {
8002 vmx_exit();
8003 return r;
8004 }
8005
8006 #ifdef CONFIG_KEXEC_CORE
8007 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8008 crash_vmclear_local_loaded_vmcss);
8009 #endif
8010 vmx_check_vmcs12_offsets();
8011
8012 return 0;
8013 }
8014 module_init(vmx_init);
8015