1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/io.h>
40 #include <asm/irq_remapping.h>
41 #include <asm/kexec.h>
42 #include <asm/perf_event.h>
43 #include <asm/mce.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "irq.h"
55 #include "kvm_cache_regs.h"
56 #include "lapic.h"
57 #include "mmu.h"
58 #include "nested.h"
59 #include "pmu.h"
60 #include "trace.h"
61 #include "vmcs.h"
62 #include "vmcs12.h"
63 #include "vmx.h"
64 #include "x86.h"
65
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
68
69 #ifdef MODULE
70 static const struct x86_cpu_id vmx_cpu_id[] = {
71 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
72 {}
73 };
74 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
75 #endif
76
77 bool __read_mostly enable_vpid = 1;
78 module_param_named(vpid, enable_vpid, bool, 0444);
79
80 static bool __read_mostly enable_vnmi = 1;
81 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
82
83 bool __read_mostly flexpriority_enabled = 1;
84 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
85
86 bool __read_mostly enable_ept = 1;
87 module_param_named(ept, enable_ept, bool, S_IRUGO);
88
89 bool __read_mostly enable_unrestricted_guest = 1;
90 module_param_named(unrestricted_guest,
91 enable_unrestricted_guest, bool, S_IRUGO);
92
93 bool __read_mostly enable_ept_ad_bits = 1;
94 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
95
96 static bool __read_mostly emulate_invalid_guest_state = true;
97 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
98
99 static bool __read_mostly fasteoi = 1;
100 module_param(fasteoi, bool, S_IRUGO);
101
102 bool __read_mostly enable_apicv = 1;
103 module_param(enable_apicv, bool, S_IRUGO);
104
105 /*
106 * If nested=1, nested virtualization is supported, i.e., guests may use
107 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
108 * use VMX instructions.
109 */
110 static bool __read_mostly nested = 1;
111 module_param(nested, bool, S_IRUGO);
112
113 bool __read_mostly enable_pml = 1;
114 module_param_named(pml, enable_pml, bool, S_IRUGO);
115
116 static bool __read_mostly dump_invalid_vmcs = 0;
117 module_param(dump_invalid_vmcs, bool, 0644);
118
119 #define MSR_BITMAP_MODE_X2APIC 1
120 #define MSR_BITMAP_MODE_X2APIC_APICV 2
121
122 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
123
124 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
125 static int __read_mostly cpu_preemption_timer_multi;
126 static bool __read_mostly enable_preemption_timer = 1;
127 #ifdef CONFIG_X86_64
128 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
129 #endif
130
131 extern bool __read_mostly allow_smaller_maxphyaddr;
132 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
133
134 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
135 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136 #define KVM_VM_CR0_ALWAYS_ON \
137 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
138 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
139
140 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
141 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
142 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
143
144 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
145
146 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
147 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
148 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
149 RTIT_STATUS_BYTECNT))
150
151 /*
152 * List of MSRs that can be directly passed to the guest.
153 * In addition to these x2apic and PT MSRs are handled specially.
154 */
155 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
156 MSR_IA32_SPEC_CTRL,
157 MSR_IA32_PRED_CMD,
158 MSR_IA32_TSC,
159 MSR_FS_BASE,
160 MSR_GS_BASE,
161 MSR_KERNEL_GS_BASE,
162 MSR_IA32_SYSENTER_CS,
163 MSR_IA32_SYSENTER_ESP,
164 MSR_IA32_SYSENTER_EIP,
165 MSR_CORE_C1_RES,
166 MSR_CORE_C3_RESIDENCY,
167 MSR_CORE_C6_RESIDENCY,
168 MSR_CORE_C7_RESIDENCY,
169 };
170
171 /*
172 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
173 * ple_gap: upper bound on the amount of time between two successive
174 * executions of PAUSE in a loop. Also indicate if ple enabled.
175 * According to test, this time is usually smaller than 128 cycles.
176 * ple_window: upper bound on the amount of time a guest is allowed to execute
177 * in a PAUSE loop. Tests indicate that most spinlocks are held for
178 * less than 2^12 cycles
179 * Time is measured based on a counter that runs at the same rate as the TSC,
180 * refer SDM volume 3b section 21.6.13 & 22.1.3.
181 */
182 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
183 module_param(ple_gap, uint, 0444);
184
185 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
186 module_param(ple_window, uint, 0444);
187
188 /* Default doubles per-vcpu window every exit. */
189 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
190 module_param(ple_window_grow, uint, 0444);
191
192 /* Default resets per-vcpu window every exit to ple_window. */
193 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
194 module_param(ple_window_shrink, uint, 0444);
195
196 /* Default is to compute the maximum so we can never overflow. */
197 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
198 module_param(ple_window_max, uint, 0444);
199
200 /* Default is SYSTEM mode, 1 for host-guest mode */
201 int __read_mostly pt_mode = PT_MODE_SYSTEM;
202 module_param(pt_mode, int, S_IRUGO);
203
204 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
205 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
206 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
207
208 /* Storage for pre module init parameter parsing */
209 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
210
211 static const struct {
212 const char *option;
213 bool for_parse;
214 } vmentry_l1d_param[] = {
215 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
216 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
217 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
218 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
219 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
220 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
221 };
222
223 #define L1D_CACHE_ORDER 4
224 static void *vmx_l1d_flush_pages;
225
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)226 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
227 {
228 struct page *page;
229 unsigned int i;
230
231 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
232 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
233 return 0;
234 }
235
236 if (!enable_ept) {
237 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
238 return 0;
239 }
240
241 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
242 u64 msr;
243
244 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
245 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
246 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
247 return 0;
248 }
249 }
250
251 /* If set to auto use the default l1tf mitigation method */
252 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
253 switch (l1tf_mitigation) {
254 case L1TF_MITIGATION_OFF:
255 l1tf = VMENTER_L1D_FLUSH_NEVER;
256 break;
257 case L1TF_MITIGATION_FLUSH_NOWARN:
258 case L1TF_MITIGATION_FLUSH:
259 case L1TF_MITIGATION_FLUSH_NOSMT:
260 l1tf = VMENTER_L1D_FLUSH_COND;
261 break;
262 case L1TF_MITIGATION_FULL:
263 case L1TF_MITIGATION_FULL_FORCE:
264 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
265 break;
266 }
267 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
268 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
269 }
270
271 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
272 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
273 /*
274 * This allocation for vmx_l1d_flush_pages is not tied to a VM
275 * lifetime and so should not be charged to a memcg.
276 */
277 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
278 if (!page)
279 return -ENOMEM;
280 vmx_l1d_flush_pages = page_address(page);
281
282 /*
283 * Initialize each page with a different pattern in
284 * order to protect against KSM in the nested
285 * virtualization case.
286 */
287 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
288 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
289 PAGE_SIZE);
290 }
291 }
292
293 l1tf_vmx_mitigation = l1tf;
294
295 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
296 static_branch_enable(&vmx_l1d_should_flush);
297 else
298 static_branch_disable(&vmx_l1d_should_flush);
299
300 if (l1tf == VMENTER_L1D_FLUSH_COND)
301 static_branch_enable(&vmx_l1d_flush_cond);
302 else
303 static_branch_disable(&vmx_l1d_flush_cond);
304 return 0;
305 }
306
vmentry_l1d_flush_parse(const char * s)307 static int vmentry_l1d_flush_parse(const char *s)
308 {
309 unsigned int i;
310
311 if (s) {
312 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
313 if (vmentry_l1d_param[i].for_parse &&
314 sysfs_streq(s, vmentry_l1d_param[i].option))
315 return i;
316 }
317 }
318 return -EINVAL;
319 }
320
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)321 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
322 {
323 int l1tf, ret;
324
325 l1tf = vmentry_l1d_flush_parse(s);
326 if (l1tf < 0)
327 return l1tf;
328
329 if (!boot_cpu_has(X86_BUG_L1TF))
330 return 0;
331
332 /*
333 * Has vmx_init() run already? If not then this is the pre init
334 * parameter parsing. In that case just store the value and let
335 * vmx_init() do the proper setup after enable_ept has been
336 * established.
337 */
338 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
339 vmentry_l1d_flush_param = l1tf;
340 return 0;
341 }
342
343 mutex_lock(&vmx_l1d_flush_mutex);
344 ret = vmx_setup_l1d_flush(l1tf);
345 mutex_unlock(&vmx_l1d_flush_mutex);
346 return ret;
347 }
348
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)349 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
350 {
351 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
352 return sprintf(s, "???\n");
353
354 return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
355 }
356
357 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
358 .set = vmentry_l1d_flush_set,
359 .get = vmentry_l1d_flush_get,
360 };
361 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
362
363 static u32 vmx_segment_access_rights(struct kvm_segment *var);
364 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
365 u32 msr, int type);
366
367 void vmx_vmexit(void);
368
369 #define vmx_insn_failed(fmt...) \
370 do { \
371 WARN_ONCE(1, fmt); \
372 pr_warn_ratelimited(fmt); \
373 } while (0)
374
vmread_error(unsigned long field,bool fault)375 asmlinkage void vmread_error(unsigned long field, bool fault)
376 {
377 if (fault)
378 kvm_spurious_fault();
379 else
380 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
381 }
382
vmwrite_error(unsigned long field,unsigned long value)383 noinline void vmwrite_error(unsigned long field, unsigned long value)
384 {
385 vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
386 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
387 }
388
vmclear_error(struct vmcs * vmcs,u64 phys_addr)389 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
390 {
391 vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
392 }
393
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)394 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
395 {
396 vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
397 }
398
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)399 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
400 {
401 vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
402 ext, vpid, gva);
403 }
404
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)405 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
406 {
407 vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
408 ext, eptp, gpa);
409 }
410
411 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
412 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
413 /*
414 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
415 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
416 */
417 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
418
419 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
420 static DEFINE_SPINLOCK(vmx_vpid_lock);
421
422 struct vmcs_config vmcs_config;
423 struct vmx_capability vmx_capability;
424
425 #define VMX_SEGMENT_FIELD(seg) \
426 [VCPU_SREG_##seg] = { \
427 .selector = GUEST_##seg##_SELECTOR, \
428 .base = GUEST_##seg##_BASE, \
429 .limit = GUEST_##seg##_LIMIT, \
430 .ar_bytes = GUEST_##seg##_AR_BYTES, \
431 }
432
433 static const struct kvm_vmx_segment_field {
434 unsigned selector;
435 unsigned base;
436 unsigned limit;
437 unsigned ar_bytes;
438 } kvm_vmx_segment_fields[] = {
439 VMX_SEGMENT_FIELD(CS),
440 VMX_SEGMENT_FIELD(DS),
441 VMX_SEGMENT_FIELD(ES),
442 VMX_SEGMENT_FIELD(FS),
443 VMX_SEGMENT_FIELD(GS),
444 VMX_SEGMENT_FIELD(SS),
445 VMX_SEGMENT_FIELD(TR),
446 VMX_SEGMENT_FIELD(LDTR),
447 };
448
vmx_segment_cache_clear(struct vcpu_vmx * vmx)449 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
450 {
451 vmx->segment_cache.bitmask = 0;
452 }
453
454 static unsigned long host_idt_base;
455
456 /*
457 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
458 * will emulate SYSCALL in legacy mode if the vendor string in guest
459 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
460 * support this emulation, IA32_STAR must always be included in
461 * vmx_uret_msrs_list[], even in i386 builds.
462 */
463 static const u32 vmx_uret_msrs_list[] = {
464 #ifdef CONFIG_X86_64
465 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
466 #endif
467 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
468 MSR_IA32_TSX_CTRL,
469 };
470
471 #if IS_ENABLED(CONFIG_HYPERV)
472 static bool __read_mostly enlightened_vmcs = true;
473 module_param(enlightened_vmcs, bool, 0444);
474
475 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)476 static void check_ept_pointer_match(struct kvm *kvm)
477 {
478 struct kvm_vcpu *vcpu;
479 u64 tmp_eptp = INVALID_PAGE;
480 int i;
481
482 kvm_for_each_vcpu(i, vcpu, kvm) {
483 if (!VALID_PAGE(tmp_eptp)) {
484 tmp_eptp = to_vmx(vcpu)->ept_pointer;
485 } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
486 to_kvm_vmx(kvm)->ept_pointers_match
487 = EPT_POINTERS_MISMATCH;
488 return;
489 }
490 }
491
492 to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
493 }
494
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)495 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
496 void *data)
497 {
498 struct kvm_tlb_range *range = data;
499
500 return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
501 range->pages);
502 }
503
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)504 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
505 struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
506 {
507 u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
508
509 /*
510 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
511 * of the base of EPT PML4 table, strip off EPT configuration
512 * information.
513 */
514 if (range)
515 return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
516 kvm_fill_hv_flush_list_func, (void *)range);
517 else
518 return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
519 }
520
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)521 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
522 struct kvm_tlb_range *range)
523 {
524 struct kvm_vcpu *vcpu;
525 int ret = 0, i;
526
527 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
528
529 if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
530 check_ept_pointer_match(kvm);
531
532 if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
533 kvm_for_each_vcpu(i, vcpu, kvm) {
534 /* If ept_pointer is invalid pointer, bypass flush request. */
535 if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
536 ret |= __hv_remote_flush_tlb_with_range(
537 kvm, vcpu, range);
538 }
539 } else {
540 ret = __hv_remote_flush_tlb_with_range(kvm,
541 kvm_get_vcpu(kvm, 0), range);
542 }
543
544 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
545 return ret;
546 }
hv_remote_flush_tlb(struct kvm * kvm)547 static int hv_remote_flush_tlb(struct kvm *kvm)
548 {
549 return hv_remote_flush_tlb_with_range(kvm, NULL);
550 }
551
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)552 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
553 {
554 struct hv_enlightened_vmcs *evmcs;
555 struct hv_partition_assist_pg **p_hv_pa_pg =
556 &vcpu->kvm->arch.hyperv.hv_pa_pg;
557 /*
558 * Synthetic VM-Exit is not enabled in current code and so All
559 * evmcs in singe VM shares same assist page.
560 */
561 if (!*p_hv_pa_pg)
562 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
563
564 if (!*p_hv_pa_pg)
565 return -ENOMEM;
566
567 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
568
569 evmcs->partition_assist_page =
570 __pa(*p_hv_pa_pg);
571 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
572 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
573
574 return 0;
575 }
576
577 #endif /* IS_ENABLED(CONFIG_HYPERV) */
578
579 /*
580 * Comment's format: document - errata name - stepping - processor name.
581 * Refer from
582 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
583 */
584 static u32 vmx_preemption_cpu_tfms[] = {
585 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
586 0x000206E6,
587 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
588 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
589 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
590 0x00020652,
591 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
592 0x00020655,
593 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
594 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
595 /*
596 * 320767.pdf - AAP86 - B1 -
597 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
598 */
599 0x000106E5,
600 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
601 0x000106A0,
602 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
603 0x000106A1,
604 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
605 0x000106A4,
606 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
607 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
608 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
609 0x000106A5,
610 /* Xeon E3-1220 V2 */
611 0x000306A8,
612 };
613
cpu_has_broken_vmx_preemption_timer(void)614 static inline bool cpu_has_broken_vmx_preemption_timer(void)
615 {
616 u32 eax = cpuid_eax(0x00000001), i;
617
618 /* Clear the reserved bits */
619 eax &= ~(0x3U << 14 | 0xfU << 28);
620 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
621 if (eax == vmx_preemption_cpu_tfms[i])
622 return true;
623
624 return false;
625 }
626
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)627 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
628 {
629 return flexpriority_enabled && lapic_in_kernel(vcpu);
630 }
631
report_flexpriority(void)632 static inline bool report_flexpriority(void)
633 {
634 return flexpriority_enabled;
635 }
636
possible_passthrough_msr_slot(u32 msr)637 static int possible_passthrough_msr_slot(u32 msr)
638 {
639 u32 i;
640
641 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
642 if (vmx_possible_passthrough_msrs[i] == msr)
643 return i;
644
645 return -ENOENT;
646 }
647
is_valid_passthrough_msr(u32 msr)648 static bool is_valid_passthrough_msr(u32 msr)
649 {
650 bool r;
651
652 switch (msr) {
653 case 0x800 ... 0x8ff:
654 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
655 return true;
656 case MSR_IA32_RTIT_STATUS:
657 case MSR_IA32_RTIT_OUTPUT_BASE:
658 case MSR_IA32_RTIT_OUTPUT_MASK:
659 case MSR_IA32_RTIT_CR3_MATCH:
660 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
661 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
662 return true;
663 }
664
665 r = possible_passthrough_msr_slot(msr) != -ENOENT;
666
667 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
668
669 return r;
670 }
671
__vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)672 static inline int __vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
673 {
674 int i;
675
676 for (i = 0; i < vmx->nr_uret_msrs; ++i)
677 if (vmx_uret_msrs_list[vmx->guest_uret_msrs[i].slot] == msr)
678 return i;
679 return -1;
680 }
681
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)682 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
683 {
684 int i;
685
686 i = __vmx_find_uret_msr(vmx, msr);
687 if (i >= 0)
688 return &vmx->guest_uret_msrs[i];
689 return NULL;
690 }
691
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)692 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
693 struct vmx_uret_msr *msr, u64 data)
694 {
695 int ret = 0;
696
697 u64 old_msr_data = msr->data;
698 msr->data = data;
699 if (msr - vmx->guest_uret_msrs < vmx->nr_active_uret_msrs) {
700 preempt_disable();
701 ret = kvm_set_user_return_msr(msr->slot, msr->data, msr->mask);
702 preempt_enable();
703 if (ret)
704 msr->data = old_msr_data;
705 }
706 return ret;
707 }
708
709 #ifdef CONFIG_KEXEC_CORE
crash_vmclear_local_loaded_vmcss(void)710 static void crash_vmclear_local_loaded_vmcss(void)
711 {
712 int cpu = raw_smp_processor_id();
713 struct loaded_vmcs *v;
714
715 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
716 loaded_vmcss_on_cpu_link)
717 vmcs_clear(v->vmcs);
718 }
719 #endif /* CONFIG_KEXEC_CORE */
720
__loaded_vmcs_clear(void * arg)721 static void __loaded_vmcs_clear(void *arg)
722 {
723 struct loaded_vmcs *loaded_vmcs = arg;
724 int cpu = raw_smp_processor_id();
725
726 if (loaded_vmcs->cpu != cpu)
727 return; /* vcpu migration can race with cpu offline */
728 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
729 per_cpu(current_vmcs, cpu) = NULL;
730
731 vmcs_clear(loaded_vmcs->vmcs);
732 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
733 vmcs_clear(loaded_vmcs->shadow_vmcs);
734
735 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
736
737 /*
738 * Ensure all writes to loaded_vmcs, including deleting it from its
739 * current percpu list, complete before setting loaded_vmcs->vcpu to
740 * -1, otherwise a different cpu can see vcpu == -1 first and add
741 * loaded_vmcs to its percpu list before it's deleted from this cpu's
742 * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
743 */
744 smp_wmb();
745
746 loaded_vmcs->cpu = -1;
747 loaded_vmcs->launched = 0;
748 }
749
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)750 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
751 {
752 int cpu = loaded_vmcs->cpu;
753
754 if (cpu != -1)
755 smp_call_function_single(cpu,
756 __loaded_vmcs_clear, loaded_vmcs, 1);
757 }
758
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)759 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
760 unsigned field)
761 {
762 bool ret;
763 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
764
765 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
766 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
767 vmx->segment_cache.bitmask = 0;
768 }
769 ret = vmx->segment_cache.bitmask & mask;
770 vmx->segment_cache.bitmask |= mask;
771 return ret;
772 }
773
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)774 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
775 {
776 u16 *p = &vmx->segment_cache.seg[seg].selector;
777
778 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
779 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
780 return *p;
781 }
782
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)783 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
784 {
785 ulong *p = &vmx->segment_cache.seg[seg].base;
786
787 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
788 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
789 return *p;
790 }
791
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)792 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
793 {
794 u32 *p = &vmx->segment_cache.seg[seg].limit;
795
796 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
797 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
798 return *p;
799 }
800
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)801 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
802 {
803 u32 *p = &vmx->segment_cache.seg[seg].ar;
804
805 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
806 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
807 return *p;
808 }
809
update_exception_bitmap(struct kvm_vcpu * vcpu)810 void update_exception_bitmap(struct kvm_vcpu *vcpu)
811 {
812 u32 eb;
813
814 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
815 (1u << DB_VECTOR) | (1u << AC_VECTOR);
816 /*
817 * Guest access to VMware backdoor ports could legitimately
818 * trigger #GP because of TSS I/O permission bitmap.
819 * We intercept those #GP and allow access to them anyway
820 * as VMware does.
821 */
822 if (enable_vmware_backdoor)
823 eb |= (1u << GP_VECTOR);
824 if ((vcpu->guest_debug &
825 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
826 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
827 eb |= 1u << BP_VECTOR;
828 if (to_vmx(vcpu)->rmode.vm86_active)
829 eb = ~0;
830 if (!vmx_need_pf_intercept(vcpu))
831 eb &= ~(1u << PF_VECTOR);
832
833 /* When we are running a nested L2 guest and L1 specified for it a
834 * certain exception bitmap, we must trap the same exceptions and pass
835 * them to L1. When running L2, we will only handle the exceptions
836 * specified above if L1 did not want them.
837 */
838 if (is_guest_mode(vcpu))
839 eb |= get_vmcs12(vcpu)->exception_bitmap;
840 else {
841 /*
842 * If EPT is enabled, #PF is only trapped if MAXPHYADDR is mismatched
843 * between guest and host. In that case we only care about present
844 * faults. For vmcs02, however, PFEC_MASK and PFEC_MATCH are set in
845 * prepare_vmcs02_rare.
846 */
847 bool selective_pf_trap = enable_ept && (eb & (1u << PF_VECTOR));
848 int mask = selective_pf_trap ? PFERR_PRESENT_MASK : 0;
849 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
850 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, mask);
851 }
852
853 vmcs_write32(EXCEPTION_BITMAP, eb);
854 }
855
856 /*
857 * Check if MSR is intercepted for currently loaded MSR bitmap.
858 */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)859 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
860 {
861 unsigned long *msr_bitmap;
862 int f = sizeof(unsigned long);
863
864 if (!cpu_has_vmx_msr_bitmap())
865 return true;
866
867 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
868
869 if (msr <= 0x1fff) {
870 return !!test_bit(msr, msr_bitmap + 0x800 / f);
871 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
872 msr &= 0x1fff;
873 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
874 }
875
876 return true;
877 }
878
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)879 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
880 unsigned long entry, unsigned long exit)
881 {
882 vm_entry_controls_clearbit(vmx, entry);
883 vm_exit_controls_clearbit(vmx, exit);
884 }
885
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)886 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
887 {
888 unsigned int i;
889
890 for (i = 0; i < m->nr; ++i) {
891 if (m->val[i].index == msr)
892 return i;
893 }
894 return -ENOENT;
895 }
896
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)897 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
898 {
899 int i;
900 struct msr_autoload *m = &vmx->msr_autoload;
901
902 switch (msr) {
903 case MSR_EFER:
904 if (cpu_has_load_ia32_efer()) {
905 clear_atomic_switch_msr_special(vmx,
906 VM_ENTRY_LOAD_IA32_EFER,
907 VM_EXIT_LOAD_IA32_EFER);
908 return;
909 }
910 break;
911 case MSR_CORE_PERF_GLOBAL_CTRL:
912 if (cpu_has_load_perf_global_ctrl()) {
913 clear_atomic_switch_msr_special(vmx,
914 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
915 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
916 return;
917 }
918 break;
919 }
920 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
921 if (i < 0)
922 goto skip_guest;
923 --m->guest.nr;
924 m->guest.val[i] = m->guest.val[m->guest.nr];
925 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
926
927 skip_guest:
928 i = vmx_find_loadstore_msr_slot(&m->host, msr);
929 if (i < 0)
930 return;
931
932 --m->host.nr;
933 m->host.val[i] = m->host.val[m->host.nr];
934 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
935 }
936
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)937 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
938 unsigned long entry, unsigned long exit,
939 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
940 u64 guest_val, u64 host_val)
941 {
942 vmcs_write64(guest_val_vmcs, guest_val);
943 if (host_val_vmcs != HOST_IA32_EFER)
944 vmcs_write64(host_val_vmcs, host_val);
945 vm_entry_controls_setbit(vmx, entry);
946 vm_exit_controls_setbit(vmx, exit);
947 }
948
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)949 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
950 u64 guest_val, u64 host_val, bool entry_only)
951 {
952 int i, j = 0;
953 struct msr_autoload *m = &vmx->msr_autoload;
954
955 switch (msr) {
956 case MSR_EFER:
957 if (cpu_has_load_ia32_efer()) {
958 add_atomic_switch_msr_special(vmx,
959 VM_ENTRY_LOAD_IA32_EFER,
960 VM_EXIT_LOAD_IA32_EFER,
961 GUEST_IA32_EFER,
962 HOST_IA32_EFER,
963 guest_val, host_val);
964 return;
965 }
966 break;
967 case MSR_CORE_PERF_GLOBAL_CTRL:
968 if (cpu_has_load_perf_global_ctrl()) {
969 add_atomic_switch_msr_special(vmx,
970 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
971 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
972 GUEST_IA32_PERF_GLOBAL_CTRL,
973 HOST_IA32_PERF_GLOBAL_CTRL,
974 guest_val, host_val);
975 return;
976 }
977 break;
978 case MSR_IA32_PEBS_ENABLE:
979 /* PEBS needs a quiescent period after being disabled (to write
980 * a record). Disabling PEBS through VMX MSR swapping doesn't
981 * provide that period, so a CPU could write host's record into
982 * guest's memory.
983 */
984 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
985 }
986
987 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
988 if (!entry_only)
989 j = vmx_find_loadstore_msr_slot(&m->host, msr);
990
991 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
992 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
993 printk_once(KERN_WARNING "Not enough msr switch entries. "
994 "Can't add msr %x\n", msr);
995 return;
996 }
997 if (i < 0) {
998 i = m->guest.nr++;
999 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1000 }
1001 m->guest.val[i].index = msr;
1002 m->guest.val[i].value = guest_val;
1003
1004 if (entry_only)
1005 return;
1006
1007 if (j < 0) {
1008 j = m->host.nr++;
1009 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1010 }
1011 m->host.val[j].index = msr;
1012 m->host.val[j].value = host_val;
1013 }
1014
update_transition_efer(struct vcpu_vmx * vmx)1015 static bool update_transition_efer(struct vcpu_vmx *vmx)
1016 {
1017 u64 guest_efer = vmx->vcpu.arch.efer;
1018 u64 ignore_bits = 0;
1019 int i;
1020
1021 /* Shadow paging assumes NX to be available. */
1022 if (!enable_ept)
1023 guest_efer |= EFER_NX;
1024
1025 /*
1026 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1027 */
1028 ignore_bits |= EFER_SCE;
1029 #ifdef CONFIG_X86_64
1030 ignore_bits |= EFER_LMA | EFER_LME;
1031 /* SCE is meaningful only in long mode on Intel */
1032 if (guest_efer & EFER_LMA)
1033 ignore_bits &= ~(u64)EFER_SCE;
1034 #endif
1035
1036 /*
1037 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1038 * On CPUs that support "load IA32_EFER", always switch EFER
1039 * atomically, since it's faster than switching it manually.
1040 */
1041 if (cpu_has_load_ia32_efer() ||
1042 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1043 if (!(guest_efer & EFER_LMA))
1044 guest_efer &= ~EFER_LME;
1045 if (guest_efer != host_efer)
1046 add_atomic_switch_msr(vmx, MSR_EFER,
1047 guest_efer, host_efer, false);
1048 else
1049 clear_atomic_switch_msr(vmx, MSR_EFER);
1050 return false;
1051 }
1052
1053 i = __vmx_find_uret_msr(vmx, MSR_EFER);
1054 if (i < 0)
1055 return false;
1056
1057 clear_atomic_switch_msr(vmx, MSR_EFER);
1058
1059 guest_efer &= ~ignore_bits;
1060 guest_efer |= host_efer & ignore_bits;
1061
1062 vmx->guest_uret_msrs[i].data = guest_efer;
1063 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1064
1065 return true;
1066 }
1067
1068 #ifdef CONFIG_X86_32
1069 /*
1070 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1071 * VMCS rather than the segment table. KVM uses this helper to figure
1072 * out the current bases to poke them into the VMCS before entry.
1073 */
segment_base(u16 selector)1074 static unsigned long segment_base(u16 selector)
1075 {
1076 struct desc_struct *table;
1077 unsigned long v;
1078
1079 if (!(selector & ~SEGMENT_RPL_MASK))
1080 return 0;
1081
1082 table = get_current_gdt_ro();
1083
1084 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1085 u16 ldt_selector = kvm_read_ldt();
1086
1087 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1088 return 0;
1089
1090 table = (struct desc_struct *)segment_base(ldt_selector);
1091 }
1092 v = get_desc_base(&table[selector >> 3]);
1093 return v;
1094 }
1095 #endif
1096
pt_can_write_msr(struct vcpu_vmx * vmx)1097 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1098 {
1099 return vmx_pt_mode_is_host_guest() &&
1100 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1101 }
1102
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1103 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1104 {
1105 /* The base must be 128-byte aligned and a legal physical address. */
1106 return !kvm_vcpu_is_illegal_gpa(vcpu, base) && !(base & 0x7f);
1107 }
1108
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1109 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1110 {
1111 u32 i;
1112
1113 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1114 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1115 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1116 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1117 for (i = 0; i < addr_range; i++) {
1118 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1119 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1120 }
1121 }
1122
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1123 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1124 {
1125 u32 i;
1126
1127 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1128 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1129 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1130 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1131 for (i = 0; i < addr_range; i++) {
1132 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1133 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1134 }
1135 }
1136
pt_guest_enter(struct vcpu_vmx * vmx)1137 static void pt_guest_enter(struct vcpu_vmx *vmx)
1138 {
1139 if (vmx_pt_mode_is_system())
1140 return;
1141
1142 /*
1143 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1144 * Save host state before VM entry.
1145 */
1146 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1147 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1148 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1149 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1150 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1151 }
1152 }
1153
pt_guest_exit(struct vcpu_vmx * vmx)1154 static void pt_guest_exit(struct vcpu_vmx *vmx)
1155 {
1156 if (vmx_pt_mode_is_system())
1157 return;
1158
1159 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1160 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1161 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1162 }
1163
1164 /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1165 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1166 }
1167
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1168 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1169 unsigned long fs_base, unsigned long gs_base)
1170 {
1171 if (unlikely(fs_sel != host->fs_sel)) {
1172 if (!(fs_sel & 7))
1173 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1174 else
1175 vmcs_write16(HOST_FS_SELECTOR, 0);
1176 host->fs_sel = fs_sel;
1177 }
1178 if (unlikely(gs_sel != host->gs_sel)) {
1179 if (!(gs_sel & 7))
1180 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1181 else
1182 vmcs_write16(HOST_GS_SELECTOR, 0);
1183 host->gs_sel = gs_sel;
1184 }
1185 if (unlikely(fs_base != host->fs_base)) {
1186 vmcs_writel(HOST_FS_BASE, fs_base);
1187 host->fs_base = fs_base;
1188 }
1189 if (unlikely(gs_base != host->gs_base)) {
1190 vmcs_writel(HOST_GS_BASE, gs_base);
1191 host->gs_base = gs_base;
1192 }
1193 }
1194
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1195 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1196 {
1197 struct vcpu_vmx *vmx = to_vmx(vcpu);
1198 struct vmcs_host_state *host_state;
1199 #ifdef CONFIG_X86_64
1200 int cpu = raw_smp_processor_id();
1201 #endif
1202 unsigned long fs_base, gs_base;
1203 u16 fs_sel, gs_sel;
1204 int i;
1205
1206 vmx->req_immediate_exit = false;
1207
1208 /*
1209 * Note that guest MSRs to be saved/restored can also be changed
1210 * when guest state is loaded. This happens when guest transitions
1211 * to/from long-mode by setting MSR_EFER.LMA.
1212 */
1213 if (!vmx->guest_uret_msrs_loaded) {
1214 vmx->guest_uret_msrs_loaded = true;
1215 for (i = 0; i < vmx->nr_active_uret_msrs; ++i)
1216 kvm_set_user_return_msr(vmx->guest_uret_msrs[i].slot,
1217 vmx->guest_uret_msrs[i].data,
1218 vmx->guest_uret_msrs[i].mask);
1219
1220 }
1221
1222 if (vmx->nested.need_vmcs12_to_shadow_sync)
1223 nested_sync_vmcs12_to_shadow(vcpu);
1224
1225 if (vmx->guest_state_loaded)
1226 return;
1227
1228 host_state = &vmx->loaded_vmcs->host_state;
1229
1230 /*
1231 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1232 * allow segment selectors with cpl > 0 or ti == 1.
1233 */
1234 host_state->ldt_sel = kvm_read_ldt();
1235
1236 #ifdef CONFIG_X86_64
1237 savesegment(ds, host_state->ds_sel);
1238 savesegment(es, host_state->es_sel);
1239
1240 gs_base = cpu_kernelmode_gs_base(cpu);
1241 if (likely(is_64bit_mm(current->mm))) {
1242 current_save_fsgs();
1243 fs_sel = current->thread.fsindex;
1244 gs_sel = current->thread.gsindex;
1245 fs_base = current->thread.fsbase;
1246 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1247 } else {
1248 savesegment(fs, fs_sel);
1249 savesegment(gs, gs_sel);
1250 fs_base = read_msr(MSR_FS_BASE);
1251 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1252 }
1253
1254 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1255 #else
1256 savesegment(fs, fs_sel);
1257 savesegment(gs, gs_sel);
1258 fs_base = segment_base(fs_sel);
1259 gs_base = segment_base(gs_sel);
1260 #endif
1261
1262 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1263 vmx->guest_state_loaded = true;
1264 }
1265
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1266 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1267 {
1268 struct vmcs_host_state *host_state;
1269
1270 if (!vmx->guest_state_loaded)
1271 return;
1272
1273 host_state = &vmx->loaded_vmcs->host_state;
1274
1275 ++vmx->vcpu.stat.host_state_reload;
1276
1277 #ifdef CONFIG_X86_64
1278 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1279 #endif
1280 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1281 kvm_load_ldt(host_state->ldt_sel);
1282 #ifdef CONFIG_X86_64
1283 load_gs_index(host_state->gs_sel);
1284 #else
1285 loadsegment(gs, host_state->gs_sel);
1286 #endif
1287 }
1288 if (host_state->fs_sel & 7)
1289 loadsegment(fs, host_state->fs_sel);
1290 #ifdef CONFIG_X86_64
1291 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1292 loadsegment(ds, host_state->ds_sel);
1293 loadsegment(es, host_state->es_sel);
1294 }
1295 #endif
1296 invalidate_tss_limit();
1297 #ifdef CONFIG_X86_64
1298 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1299 #endif
1300 load_fixmap_gdt(raw_smp_processor_id());
1301 vmx->guest_state_loaded = false;
1302 vmx->guest_uret_msrs_loaded = false;
1303 }
1304
1305 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1306 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1307 {
1308 preempt_disable();
1309 if (vmx->guest_state_loaded)
1310 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1311 preempt_enable();
1312 return vmx->msr_guest_kernel_gs_base;
1313 }
1314
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1315 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1316 {
1317 preempt_disable();
1318 if (vmx->guest_state_loaded)
1319 wrmsrl(MSR_KERNEL_GS_BASE, data);
1320 preempt_enable();
1321 vmx->msr_guest_kernel_gs_base = data;
1322 }
1323 #endif
1324
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1325 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1326 struct loaded_vmcs *buddy)
1327 {
1328 struct vcpu_vmx *vmx = to_vmx(vcpu);
1329 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1330 struct vmcs *prev;
1331
1332 if (!already_loaded) {
1333 loaded_vmcs_clear(vmx->loaded_vmcs);
1334 local_irq_disable();
1335
1336 /*
1337 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1338 * this cpu's percpu list, otherwise it may not yet be deleted
1339 * from its previous cpu's percpu list. Pairs with the
1340 * smb_wmb() in __loaded_vmcs_clear().
1341 */
1342 smp_rmb();
1343
1344 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1345 &per_cpu(loaded_vmcss_on_cpu, cpu));
1346 local_irq_enable();
1347 }
1348
1349 prev = per_cpu(current_vmcs, cpu);
1350 if (prev != vmx->loaded_vmcs->vmcs) {
1351 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1352 vmcs_load(vmx->loaded_vmcs->vmcs);
1353
1354 /*
1355 * No indirect branch prediction barrier needed when switching
1356 * the active VMCS within a guest, e.g. on nested VM-Enter.
1357 * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1358 */
1359 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1360 indirect_branch_prediction_barrier();
1361 }
1362
1363 if (!already_loaded) {
1364 void *gdt = get_current_gdt_ro();
1365 unsigned long sysenter_esp;
1366
1367 /*
1368 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1369 * TLB entries from its previous association with the vCPU.
1370 */
1371 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1372
1373 /*
1374 * Linux uses per-cpu TSS and GDT, so set these when switching
1375 * processors. See 22.2.4.
1376 */
1377 vmcs_writel(HOST_TR_BASE,
1378 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1379 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1380
1381 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1382 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1383
1384 vmx->loaded_vmcs->cpu = cpu;
1385 }
1386
1387 /* Setup TSC multiplier */
1388 if (kvm_has_tsc_control &&
1389 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1390 decache_tsc_multiplier(vmx);
1391 }
1392
1393 /*
1394 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1395 * vcpu mutex is already taken.
1396 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1397 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1398 {
1399 struct vcpu_vmx *vmx = to_vmx(vcpu);
1400
1401 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1402
1403 vmx_vcpu_pi_load(vcpu, cpu);
1404
1405 vmx->host_debugctlmsr = get_debugctlmsr();
1406 }
1407
vmx_vcpu_put(struct kvm_vcpu * vcpu)1408 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1409 {
1410 vmx_vcpu_pi_put(vcpu);
1411
1412 vmx_prepare_switch_to_host(to_vmx(vcpu));
1413 }
1414
emulation_required(struct kvm_vcpu * vcpu)1415 static bool emulation_required(struct kvm_vcpu *vcpu)
1416 {
1417 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1418 }
1419
vmx_get_rflags(struct kvm_vcpu * vcpu)1420 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1421 {
1422 struct vcpu_vmx *vmx = to_vmx(vcpu);
1423 unsigned long rflags, save_rflags;
1424
1425 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1426 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1427 rflags = vmcs_readl(GUEST_RFLAGS);
1428 if (vmx->rmode.vm86_active) {
1429 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1430 save_rflags = vmx->rmode.save_rflags;
1431 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1432 }
1433 vmx->rflags = rflags;
1434 }
1435 return vmx->rflags;
1436 }
1437
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1438 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1439 {
1440 struct vcpu_vmx *vmx = to_vmx(vcpu);
1441 unsigned long old_rflags;
1442
1443 if (is_unrestricted_guest(vcpu)) {
1444 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1445 vmx->rflags = rflags;
1446 vmcs_writel(GUEST_RFLAGS, rflags);
1447 return;
1448 }
1449
1450 old_rflags = vmx_get_rflags(vcpu);
1451 vmx->rflags = rflags;
1452 if (vmx->rmode.vm86_active) {
1453 vmx->rmode.save_rflags = rflags;
1454 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1455 }
1456 vmcs_writel(GUEST_RFLAGS, rflags);
1457
1458 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1459 vmx->emulation_required = emulation_required(vcpu);
1460 }
1461
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1462 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1463 {
1464 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1465 int ret = 0;
1466
1467 if (interruptibility & GUEST_INTR_STATE_STI)
1468 ret |= KVM_X86_SHADOW_INT_STI;
1469 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1470 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1471
1472 return ret;
1473 }
1474
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1475 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1476 {
1477 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1478 u32 interruptibility = interruptibility_old;
1479
1480 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1481
1482 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1483 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1484 else if (mask & KVM_X86_SHADOW_INT_STI)
1485 interruptibility |= GUEST_INTR_STATE_STI;
1486
1487 if ((interruptibility != interruptibility_old))
1488 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1489 }
1490
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1491 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1492 {
1493 struct vcpu_vmx *vmx = to_vmx(vcpu);
1494 unsigned long value;
1495
1496 /*
1497 * Any MSR write that attempts to change bits marked reserved will
1498 * case a #GP fault.
1499 */
1500 if (data & vmx->pt_desc.ctl_bitmask)
1501 return 1;
1502
1503 /*
1504 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1505 * result in a #GP unless the same write also clears TraceEn.
1506 */
1507 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1508 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1509 return 1;
1510
1511 /*
1512 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1513 * and FabricEn would cause #GP, if
1514 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1515 */
1516 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1517 !(data & RTIT_CTL_FABRIC_EN) &&
1518 !intel_pt_validate_cap(vmx->pt_desc.caps,
1519 PT_CAP_single_range_output))
1520 return 1;
1521
1522 /*
1523 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1524 * utilize encodings marked reserved will casue a #GP fault.
1525 */
1526 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1527 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1528 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1529 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1530 return 1;
1531 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1532 PT_CAP_cycle_thresholds);
1533 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1534 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1535 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1536 return 1;
1537 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1538 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1539 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1540 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1541 return 1;
1542
1543 /*
1544 * If ADDRx_CFG is reserved or the encodings is >2 will
1545 * cause a #GP fault.
1546 */
1547 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1548 if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1549 return 1;
1550 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1551 if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1552 return 1;
1553 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1554 if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1555 return 1;
1556 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1557 if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1558 return 1;
1559
1560 return 0;
1561 }
1562
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,void * insn,int insn_len)1563 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1564 {
1565 return true;
1566 }
1567
skip_emulated_instruction(struct kvm_vcpu * vcpu)1568 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1569 {
1570 unsigned long rip, orig_rip;
1571
1572 /*
1573 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1574 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1575 * set when EPT misconfig occurs. In practice, real hardware updates
1576 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1577 * (namely Hyper-V) don't set it due to it being undefined behavior,
1578 * i.e. we end up advancing IP with some random value.
1579 */
1580 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1581 to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1582 orig_rip = kvm_rip_read(vcpu);
1583 rip = orig_rip + vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1584 #ifdef CONFIG_X86_64
1585 /*
1586 * We need to mask out the high 32 bits of RIP if not in 64-bit
1587 * mode, but just finding out that we are in 64-bit mode is
1588 * quite expensive. Only do it if there was a carry.
1589 */
1590 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1591 rip = (u32)rip;
1592 #endif
1593 kvm_rip_write(vcpu, rip);
1594 } else {
1595 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1596 return 0;
1597 }
1598
1599 /* skipping an emulated instruction also counts */
1600 vmx_set_interrupt_shadow(vcpu, 0);
1601
1602 return 1;
1603 }
1604
1605 /*
1606 * Recognizes a pending MTF VM-exit and records the nested state for later
1607 * delivery.
1608 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1609 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1610 {
1611 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1612 struct vcpu_vmx *vmx = to_vmx(vcpu);
1613
1614 if (!is_guest_mode(vcpu))
1615 return;
1616
1617 /*
1618 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1619 * T-bit traps. As instruction emulation is completed (i.e. at the
1620 * instruction boundary), any #DB exception pending delivery must be a
1621 * debug-trap. Record the pending MTF state to be delivered in
1622 * vmx_check_nested_events().
1623 */
1624 if (nested_cpu_has_mtf(vmcs12) &&
1625 (!vcpu->arch.exception.pending ||
1626 vcpu->arch.exception.nr == DB_VECTOR))
1627 vmx->nested.mtf_pending = true;
1628 else
1629 vmx->nested.mtf_pending = false;
1630 }
1631
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1632 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1633 {
1634 vmx_update_emulated_instruction(vcpu);
1635 return skip_emulated_instruction(vcpu);
1636 }
1637
vmx_clear_hlt(struct kvm_vcpu * vcpu)1638 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1639 {
1640 /*
1641 * Ensure that we clear the HLT state in the VMCS. We don't need to
1642 * explicitly skip the instruction because if the HLT state is set,
1643 * then the instruction is already executing and RIP has already been
1644 * advanced.
1645 */
1646 if (kvm_hlt_in_guest(vcpu->kvm) &&
1647 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1648 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1649 }
1650
vmx_queue_exception(struct kvm_vcpu * vcpu)1651 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1652 {
1653 struct vcpu_vmx *vmx = to_vmx(vcpu);
1654 unsigned nr = vcpu->arch.exception.nr;
1655 bool has_error_code = vcpu->arch.exception.has_error_code;
1656 u32 error_code = vcpu->arch.exception.error_code;
1657 u32 intr_info = nr | INTR_INFO_VALID_MASK;
1658
1659 kvm_deliver_exception_payload(vcpu);
1660
1661 if (has_error_code) {
1662 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1663 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1664 }
1665
1666 if (vmx->rmode.vm86_active) {
1667 int inc_eip = 0;
1668 if (kvm_exception_is_soft(nr))
1669 inc_eip = vcpu->arch.event_exit_inst_len;
1670 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1671 return;
1672 }
1673
1674 WARN_ON_ONCE(vmx->emulation_required);
1675
1676 if (kvm_exception_is_soft(nr)) {
1677 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1678 vmx->vcpu.arch.event_exit_inst_len);
1679 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1680 } else
1681 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1682
1683 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1684
1685 vmx_clear_hlt(vcpu);
1686 }
1687
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr)1688 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr)
1689 {
1690 struct vmx_uret_msr tmp;
1691 int from, to;
1692
1693 from = __vmx_find_uret_msr(vmx, msr);
1694 if (from < 0)
1695 return;
1696 to = vmx->nr_active_uret_msrs++;
1697
1698 tmp = vmx->guest_uret_msrs[to];
1699 vmx->guest_uret_msrs[to] = vmx->guest_uret_msrs[from];
1700 vmx->guest_uret_msrs[from] = tmp;
1701 }
1702
1703 /*
1704 * Set up the vmcs to automatically save and restore system
1705 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1706 * mode, as fiddling with msrs is very expensive.
1707 */
setup_msrs(struct vcpu_vmx * vmx)1708 static void setup_msrs(struct vcpu_vmx *vmx)
1709 {
1710 vmx->guest_uret_msrs_loaded = false;
1711 vmx->nr_active_uret_msrs = 0;
1712 #ifdef CONFIG_X86_64
1713 /*
1714 * The SYSCALL MSRs are only needed on long mode guests, and only
1715 * when EFER.SCE is set.
1716 */
1717 if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1718 vmx_setup_uret_msr(vmx, MSR_STAR);
1719 vmx_setup_uret_msr(vmx, MSR_LSTAR);
1720 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK);
1721 }
1722 #endif
1723 if (update_transition_efer(vmx))
1724 vmx_setup_uret_msr(vmx, MSR_EFER);
1725
1726 if (guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1727 vmx_setup_uret_msr(vmx, MSR_TSC_AUX);
1728
1729 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL);
1730
1731 if (cpu_has_vmx_msr_bitmap())
1732 vmx_update_msr_bitmap(&vmx->vcpu);
1733 }
1734
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1735 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1736 {
1737 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1738 u64 g_tsc_offset = 0;
1739
1740 /*
1741 * We're here if L1 chose not to trap WRMSR to TSC. According
1742 * to the spec, this should set L1's TSC; The offset that L1
1743 * set for L2 remains unchanged, and still needs to be added
1744 * to the newly set TSC to get L2's TSC.
1745 */
1746 if (is_guest_mode(vcpu) &&
1747 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING))
1748 g_tsc_offset = vmcs12->tsc_offset;
1749
1750 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1751 vcpu->arch.tsc_offset - g_tsc_offset,
1752 offset);
1753 vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1754 return offset + g_tsc_offset;
1755 }
1756
1757 /*
1758 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1759 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1760 * all guests if the "nested" module option is off, and can also be disabled
1761 * for a single guest by disabling its VMX cpuid bit.
1762 */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1763 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1764 {
1765 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1766 }
1767
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1768 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1769 uint64_t val)
1770 {
1771 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1772
1773 return !(val & ~valid_bits);
1774 }
1775
vmx_get_msr_feature(struct kvm_msr_entry * msr)1776 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1777 {
1778 switch (msr->index) {
1779 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1780 if (!nested)
1781 return 1;
1782 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1783 case MSR_IA32_PERF_CAPABILITIES:
1784 msr->data = vmx_get_perf_capabilities();
1785 return 0;
1786 default:
1787 return KVM_MSR_RET_INVALID;
1788 }
1789 }
1790
1791 /*
1792 * Reads an msr value (of 'msr_index') into 'pdata'.
1793 * Returns 0 on success, non-0 otherwise.
1794 * Assumes vcpu_load() was already called.
1795 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1796 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1797 {
1798 struct vcpu_vmx *vmx = to_vmx(vcpu);
1799 struct vmx_uret_msr *msr;
1800 u32 index;
1801
1802 switch (msr_info->index) {
1803 #ifdef CONFIG_X86_64
1804 case MSR_FS_BASE:
1805 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1806 break;
1807 case MSR_GS_BASE:
1808 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1809 break;
1810 case MSR_KERNEL_GS_BASE:
1811 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1812 break;
1813 #endif
1814 case MSR_EFER:
1815 return kvm_get_msr_common(vcpu, msr_info);
1816 case MSR_IA32_TSX_CTRL:
1817 if (!msr_info->host_initiated &&
1818 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1819 return 1;
1820 goto find_uret_msr;
1821 case MSR_IA32_UMWAIT_CONTROL:
1822 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1823 return 1;
1824
1825 msr_info->data = vmx->msr_ia32_umwait_control;
1826 break;
1827 case MSR_IA32_SPEC_CTRL:
1828 if (!msr_info->host_initiated &&
1829 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1830 return 1;
1831
1832 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1833 break;
1834 case MSR_IA32_SYSENTER_CS:
1835 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1836 break;
1837 case MSR_IA32_SYSENTER_EIP:
1838 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1839 break;
1840 case MSR_IA32_SYSENTER_ESP:
1841 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1842 break;
1843 case MSR_IA32_BNDCFGS:
1844 if (!kvm_mpx_supported() ||
1845 (!msr_info->host_initiated &&
1846 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1847 return 1;
1848 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1849 break;
1850 case MSR_IA32_MCG_EXT_CTL:
1851 if (!msr_info->host_initiated &&
1852 !(vmx->msr_ia32_feature_control &
1853 FEAT_CTL_LMCE_ENABLED))
1854 return 1;
1855 msr_info->data = vcpu->arch.mcg_ext_ctl;
1856 break;
1857 case MSR_IA32_FEAT_CTL:
1858 msr_info->data = vmx->msr_ia32_feature_control;
1859 break;
1860 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1861 if (!nested_vmx_allowed(vcpu))
1862 return 1;
1863 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1864 &msr_info->data))
1865 return 1;
1866 /*
1867 * Enlightened VMCS v1 doesn't have certain fields, but buggy
1868 * Hyper-V versions are still trying to use corresponding
1869 * features when they are exposed. Filter out the essential
1870 * minimum.
1871 */
1872 if (!msr_info->host_initiated &&
1873 vmx->nested.enlightened_vmcs_enabled)
1874 nested_evmcs_filter_control_msr(msr_info->index,
1875 &msr_info->data);
1876 break;
1877 case MSR_IA32_RTIT_CTL:
1878 if (!vmx_pt_mode_is_host_guest())
1879 return 1;
1880 msr_info->data = vmx->pt_desc.guest.ctl;
1881 break;
1882 case MSR_IA32_RTIT_STATUS:
1883 if (!vmx_pt_mode_is_host_guest())
1884 return 1;
1885 msr_info->data = vmx->pt_desc.guest.status;
1886 break;
1887 case MSR_IA32_RTIT_CR3_MATCH:
1888 if (!vmx_pt_mode_is_host_guest() ||
1889 !intel_pt_validate_cap(vmx->pt_desc.caps,
1890 PT_CAP_cr3_filtering))
1891 return 1;
1892 msr_info->data = vmx->pt_desc.guest.cr3_match;
1893 break;
1894 case MSR_IA32_RTIT_OUTPUT_BASE:
1895 if (!vmx_pt_mode_is_host_guest() ||
1896 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1897 PT_CAP_topa_output) &&
1898 !intel_pt_validate_cap(vmx->pt_desc.caps,
1899 PT_CAP_single_range_output)))
1900 return 1;
1901 msr_info->data = vmx->pt_desc.guest.output_base;
1902 break;
1903 case MSR_IA32_RTIT_OUTPUT_MASK:
1904 if (!vmx_pt_mode_is_host_guest() ||
1905 (!intel_pt_validate_cap(vmx->pt_desc.caps,
1906 PT_CAP_topa_output) &&
1907 !intel_pt_validate_cap(vmx->pt_desc.caps,
1908 PT_CAP_single_range_output)))
1909 return 1;
1910 msr_info->data = vmx->pt_desc.guest.output_mask;
1911 break;
1912 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1913 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1914 if (!vmx_pt_mode_is_host_guest() ||
1915 (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1916 PT_CAP_num_address_ranges)))
1917 return 1;
1918 if (index % 2)
1919 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1920 else
1921 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1922 break;
1923 case MSR_TSC_AUX:
1924 if (!msr_info->host_initiated &&
1925 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1926 return 1;
1927 goto find_uret_msr;
1928 default:
1929 find_uret_msr:
1930 msr = vmx_find_uret_msr(vmx, msr_info->index);
1931 if (msr) {
1932 msr_info->data = msr->data;
1933 break;
1934 }
1935 return kvm_get_msr_common(vcpu, msr_info);
1936 }
1937
1938 return 0;
1939 }
1940
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)1941 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1942 u64 data)
1943 {
1944 #ifdef CONFIG_X86_64
1945 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1946 return (u32)data;
1947 #endif
1948 return (unsigned long)data;
1949 }
1950
1951 /*
1952 * Writes msr value into the appropriate "register".
1953 * Returns 0 on success, non-0 otherwise.
1954 * Assumes vcpu_load() was already called.
1955 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1956 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1957 {
1958 struct vcpu_vmx *vmx = to_vmx(vcpu);
1959 struct vmx_uret_msr *msr;
1960 int ret = 0;
1961 u32 msr_index = msr_info->index;
1962 u64 data = msr_info->data;
1963 u32 index;
1964
1965 switch (msr_index) {
1966 case MSR_EFER:
1967 ret = kvm_set_msr_common(vcpu, msr_info);
1968 break;
1969 #ifdef CONFIG_X86_64
1970 case MSR_FS_BASE:
1971 vmx_segment_cache_clear(vmx);
1972 vmcs_writel(GUEST_FS_BASE, data);
1973 break;
1974 case MSR_GS_BASE:
1975 vmx_segment_cache_clear(vmx);
1976 vmcs_writel(GUEST_GS_BASE, data);
1977 break;
1978 case MSR_KERNEL_GS_BASE:
1979 vmx_write_guest_kernel_gs_base(vmx, data);
1980 break;
1981 #endif
1982 case MSR_IA32_SYSENTER_CS:
1983 if (is_guest_mode(vcpu))
1984 get_vmcs12(vcpu)->guest_sysenter_cs = data;
1985 vmcs_write32(GUEST_SYSENTER_CS, data);
1986 break;
1987 case MSR_IA32_SYSENTER_EIP:
1988 if (is_guest_mode(vcpu)) {
1989 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1990 get_vmcs12(vcpu)->guest_sysenter_eip = data;
1991 }
1992 vmcs_writel(GUEST_SYSENTER_EIP, data);
1993 break;
1994 case MSR_IA32_SYSENTER_ESP:
1995 if (is_guest_mode(vcpu)) {
1996 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1997 get_vmcs12(vcpu)->guest_sysenter_esp = data;
1998 }
1999 vmcs_writel(GUEST_SYSENTER_ESP, data);
2000 break;
2001 case MSR_IA32_DEBUGCTLMSR:
2002 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2003 VM_EXIT_SAVE_DEBUG_CONTROLS)
2004 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2005
2006 ret = kvm_set_msr_common(vcpu, msr_info);
2007 break;
2008
2009 case MSR_IA32_BNDCFGS:
2010 if (!kvm_mpx_supported() ||
2011 (!msr_info->host_initiated &&
2012 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2013 return 1;
2014 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2015 (data & MSR_IA32_BNDCFGS_RSVD))
2016 return 1;
2017 vmcs_write64(GUEST_BNDCFGS, data);
2018 break;
2019 case MSR_IA32_UMWAIT_CONTROL:
2020 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2021 return 1;
2022
2023 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2024 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2025 return 1;
2026
2027 vmx->msr_ia32_umwait_control = data;
2028 break;
2029 case MSR_IA32_SPEC_CTRL:
2030 if (!msr_info->host_initiated &&
2031 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2032 return 1;
2033
2034 if (kvm_spec_ctrl_test_value(data))
2035 return 1;
2036
2037 vmx->spec_ctrl = data;
2038 if (!data)
2039 break;
2040
2041 /*
2042 * For non-nested:
2043 * When it's written (to non-zero) for the first time, pass
2044 * it through.
2045 *
2046 * For nested:
2047 * The handling of the MSR bitmap for L2 guests is done in
2048 * nested_vmx_prepare_msr_bitmap. We should not touch the
2049 * vmcs02.msr_bitmap here since it gets completely overwritten
2050 * in the merging. We update the vmcs01 here for L1 as well
2051 * since it will end up touching the MSR anyway now.
2052 */
2053 vmx_disable_intercept_for_msr(vcpu,
2054 MSR_IA32_SPEC_CTRL,
2055 MSR_TYPE_RW);
2056 break;
2057 case MSR_IA32_TSX_CTRL:
2058 if (!msr_info->host_initiated &&
2059 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2060 return 1;
2061 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2062 return 1;
2063 goto find_uret_msr;
2064 case MSR_IA32_PRED_CMD:
2065 if (!msr_info->host_initiated &&
2066 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2067 return 1;
2068
2069 if (data & ~PRED_CMD_IBPB)
2070 return 1;
2071 if (!boot_cpu_has(X86_FEATURE_SPEC_CTRL))
2072 return 1;
2073 if (!data)
2074 break;
2075
2076 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2077
2078 /*
2079 * For non-nested:
2080 * When it's written (to non-zero) for the first time, pass
2081 * it through.
2082 *
2083 * For nested:
2084 * The handling of the MSR bitmap for L2 guests is done in
2085 * nested_vmx_prepare_msr_bitmap. We should not touch the
2086 * vmcs02.msr_bitmap here since it gets completely overwritten
2087 * in the merging.
2088 */
2089 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2090 break;
2091 case MSR_IA32_CR_PAT:
2092 if (!kvm_pat_valid(data))
2093 return 1;
2094
2095 if (is_guest_mode(vcpu) &&
2096 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2097 get_vmcs12(vcpu)->guest_ia32_pat = data;
2098
2099 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2100 vmcs_write64(GUEST_IA32_PAT, data);
2101 vcpu->arch.pat = data;
2102 break;
2103 }
2104 ret = kvm_set_msr_common(vcpu, msr_info);
2105 break;
2106 case MSR_IA32_TSC_ADJUST:
2107 ret = kvm_set_msr_common(vcpu, msr_info);
2108 break;
2109 case MSR_IA32_MCG_EXT_CTL:
2110 if ((!msr_info->host_initiated &&
2111 !(to_vmx(vcpu)->msr_ia32_feature_control &
2112 FEAT_CTL_LMCE_ENABLED)) ||
2113 (data & ~MCG_EXT_CTL_LMCE_EN))
2114 return 1;
2115 vcpu->arch.mcg_ext_ctl = data;
2116 break;
2117 case MSR_IA32_FEAT_CTL:
2118 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2119 (to_vmx(vcpu)->msr_ia32_feature_control &
2120 FEAT_CTL_LOCKED && !msr_info->host_initiated))
2121 return 1;
2122 vmx->msr_ia32_feature_control = data;
2123 if (msr_info->host_initiated && data == 0)
2124 vmx_leave_nested(vcpu);
2125 break;
2126 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2127 if (!msr_info->host_initiated)
2128 return 1; /* they are read-only */
2129 if (!nested_vmx_allowed(vcpu))
2130 return 1;
2131 return vmx_set_vmx_msr(vcpu, msr_index, data);
2132 case MSR_IA32_RTIT_CTL:
2133 if (!vmx_pt_mode_is_host_guest() ||
2134 vmx_rtit_ctl_check(vcpu, data) ||
2135 vmx->nested.vmxon)
2136 return 1;
2137 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2138 vmx->pt_desc.guest.ctl = data;
2139 pt_update_intercept_for_msr(vcpu);
2140 break;
2141 case MSR_IA32_RTIT_STATUS:
2142 if (!pt_can_write_msr(vmx))
2143 return 1;
2144 if (data & MSR_IA32_RTIT_STATUS_MASK)
2145 return 1;
2146 vmx->pt_desc.guest.status = data;
2147 break;
2148 case MSR_IA32_RTIT_CR3_MATCH:
2149 if (!pt_can_write_msr(vmx))
2150 return 1;
2151 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2152 PT_CAP_cr3_filtering))
2153 return 1;
2154 vmx->pt_desc.guest.cr3_match = data;
2155 break;
2156 case MSR_IA32_RTIT_OUTPUT_BASE:
2157 if (!pt_can_write_msr(vmx))
2158 return 1;
2159 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2160 PT_CAP_topa_output) &&
2161 !intel_pt_validate_cap(vmx->pt_desc.caps,
2162 PT_CAP_single_range_output))
2163 return 1;
2164 if (!pt_output_base_valid(vcpu, data))
2165 return 1;
2166 vmx->pt_desc.guest.output_base = data;
2167 break;
2168 case MSR_IA32_RTIT_OUTPUT_MASK:
2169 if (!pt_can_write_msr(vmx))
2170 return 1;
2171 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2172 PT_CAP_topa_output) &&
2173 !intel_pt_validate_cap(vmx->pt_desc.caps,
2174 PT_CAP_single_range_output))
2175 return 1;
2176 vmx->pt_desc.guest.output_mask = data;
2177 break;
2178 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2179 if (!pt_can_write_msr(vmx))
2180 return 1;
2181 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2182 if (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2183 PT_CAP_num_address_ranges))
2184 return 1;
2185 if (is_noncanonical_address(data, vcpu))
2186 return 1;
2187 if (index % 2)
2188 vmx->pt_desc.guest.addr_b[index / 2] = data;
2189 else
2190 vmx->pt_desc.guest.addr_a[index / 2] = data;
2191 break;
2192 case MSR_TSC_AUX:
2193 if (!msr_info->host_initiated &&
2194 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2195 return 1;
2196 /* Check reserved bit, higher 32 bits should be zero */
2197 if ((data >> 32) != 0)
2198 return 1;
2199 goto find_uret_msr;
2200
2201 default:
2202 find_uret_msr:
2203 msr = vmx_find_uret_msr(vmx, msr_index);
2204 if (msr)
2205 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2206 else
2207 ret = kvm_set_msr_common(vcpu, msr_info);
2208 }
2209
2210 return ret;
2211 }
2212
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2213 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2214 {
2215 unsigned long guest_owned_bits;
2216
2217 kvm_register_mark_available(vcpu, reg);
2218
2219 switch (reg) {
2220 case VCPU_REGS_RSP:
2221 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2222 break;
2223 case VCPU_REGS_RIP:
2224 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2225 break;
2226 case VCPU_EXREG_PDPTR:
2227 if (enable_ept)
2228 ept_save_pdptrs(vcpu);
2229 break;
2230 case VCPU_EXREG_CR0:
2231 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2232
2233 vcpu->arch.cr0 &= ~guest_owned_bits;
2234 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2235 break;
2236 case VCPU_EXREG_CR3:
2237 if (is_unrestricted_guest(vcpu) ||
2238 (enable_ept && is_paging(vcpu)))
2239 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2240 break;
2241 case VCPU_EXREG_CR4:
2242 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2243
2244 vcpu->arch.cr4 &= ~guest_owned_bits;
2245 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2246 break;
2247 default:
2248 WARN_ON_ONCE(1);
2249 break;
2250 }
2251 }
2252
cpu_has_kvm_support(void)2253 static __init int cpu_has_kvm_support(void)
2254 {
2255 return cpu_has_vmx();
2256 }
2257
vmx_disabled_by_bios(void)2258 static __init int vmx_disabled_by_bios(void)
2259 {
2260 return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2261 !boot_cpu_has(X86_FEATURE_VMX);
2262 }
2263
kvm_cpu_vmxon(u64 vmxon_pointer)2264 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2265 {
2266 u64 msr;
2267
2268 cr4_set_bits(X86_CR4_VMXE);
2269 intel_pt_handle_vmx(1);
2270
2271 asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2272 _ASM_EXTABLE(1b, %l[fault])
2273 : : [vmxon_pointer] "m"(vmxon_pointer)
2274 : : fault);
2275 return 0;
2276
2277 fault:
2278 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2279 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2280 intel_pt_handle_vmx(0);
2281 cr4_clear_bits(X86_CR4_VMXE);
2282
2283 return -EFAULT;
2284 }
2285
hardware_enable(void)2286 static int hardware_enable(void)
2287 {
2288 int cpu = raw_smp_processor_id();
2289 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2290 int r;
2291
2292 if (cr4_read_shadow() & X86_CR4_VMXE)
2293 return -EBUSY;
2294
2295 /*
2296 * This can happen if we hot-added a CPU but failed to allocate
2297 * VP assist page for it.
2298 */
2299 if (static_branch_unlikely(&enable_evmcs) &&
2300 !hv_get_vp_assist_page(cpu))
2301 return -EFAULT;
2302
2303 r = kvm_cpu_vmxon(phys_addr);
2304 if (r)
2305 return r;
2306
2307 if (enable_ept)
2308 ept_sync_global();
2309
2310 return 0;
2311 }
2312
vmclear_local_loaded_vmcss(void)2313 static void vmclear_local_loaded_vmcss(void)
2314 {
2315 int cpu = raw_smp_processor_id();
2316 struct loaded_vmcs *v, *n;
2317
2318 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2319 loaded_vmcss_on_cpu_link)
2320 __loaded_vmcs_clear(v);
2321 }
2322
2323
2324 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2325 * tricks.
2326 */
kvm_cpu_vmxoff(void)2327 static void kvm_cpu_vmxoff(void)
2328 {
2329 asm volatile (__ex("vmxoff"));
2330
2331 intel_pt_handle_vmx(0);
2332 cr4_clear_bits(X86_CR4_VMXE);
2333 }
2334
hardware_disable(void)2335 static void hardware_disable(void)
2336 {
2337 vmclear_local_loaded_vmcss();
2338 kvm_cpu_vmxoff();
2339 }
2340
2341 /*
2342 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2343 * directly instead of going through cpu_has(), to ensure KVM is trapping
2344 * ENCLS whenever it's supported in hardware. It does not matter whether
2345 * the host OS supports or has enabled SGX.
2346 */
cpu_has_sgx(void)2347 static bool cpu_has_sgx(void)
2348 {
2349 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2350 }
2351
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2352 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2353 u32 msr, u32 *result)
2354 {
2355 u32 vmx_msr_low, vmx_msr_high;
2356 u32 ctl = ctl_min | ctl_opt;
2357
2358 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2359
2360 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2361 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2362
2363 /* Ensure minimum (required) set of control bits are supported. */
2364 if (ctl_min & ~ctl)
2365 return -EIO;
2366
2367 *result = ctl;
2368 return 0;
2369 }
2370
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2371 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2372 struct vmx_capability *vmx_cap)
2373 {
2374 u32 vmx_msr_low, vmx_msr_high;
2375 u32 min, opt, min2, opt2;
2376 u32 _pin_based_exec_control = 0;
2377 u32 _cpu_based_exec_control = 0;
2378 u32 _cpu_based_2nd_exec_control = 0;
2379 u32 _vmexit_control = 0;
2380 u32 _vmentry_control = 0;
2381
2382 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2383 min = CPU_BASED_HLT_EXITING |
2384 #ifdef CONFIG_X86_64
2385 CPU_BASED_CR8_LOAD_EXITING |
2386 CPU_BASED_CR8_STORE_EXITING |
2387 #endif
2388 CPU_BASED_CR3_LOAD_EXITING |
2389 CPU_BASED_CR3_STORE_EXITING |
2390 CPU_BASED_UNCOND_IO_EXITING |
2391 CPU_BASED_MOV_DR_EXITING |
2392 CPU_BASED_USE_TSC_OFFSETTING |
2393 CPU_BASED_MWAIT_EXITING |
2394 CPU_BASED_MONITOR_EXITING |
2395 CPU_BASED_INVLPG_EXITING |
2396 CPU_BASED_RDPMC_EXITING;
2397
2398 opt = CPU_BASED_TPR_SHADOW |
2399 CPU_BASED_USE_MSR_BITMAPS |
2400 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2401 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2402 &_cpu_based_exec_control) < 0)
2403 return -EIO;
2404 #ifdef CONFIG_X86_64
2405 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2406 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2407 ~CPU_BASED_CR8_STORE_EXITING;
2408 #endif
2409 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2410 min2 = 0;
2411 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2412 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2413 SECONDARY_EXEC_WBINVD_EXITING |
2414 SECONDARY_EXEC_ENABLE_VPID |
2415 SECONDARY_EXEC_ENABLE_EPT |
2416 SECONDARY_EXEC_UNRESTRICTED_GUEST |
2417 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2418 SECONDARY_EXEC_DESC |
2419 SECONDARY_EXEC_ENABLE_RDTSCP |
2420 SECONDARY_EXEC_ENABLE_INVPCID |
2421 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2422 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2423 SECONDARY_EXEC_SHADOW_VMCS |
2424 SECONDARY_EXEC_XSAVES |
2425 SECONDARY_EXEC_RDSEED_EXITING |
2426 SECONDARY_EXEC_RDRAND_EXITING |
2427 SECONDARY_EXEC_ENABLE_PML |
2428 SECONDARY_EXEC_TSC_SCALING |
2429 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2430 SECONDARY_EXEC_PT_USE_GPA |
2431 SECONDARY_EXEC_PT_CONCEAL_VMX |
2432 SECONDARY_EXEC_ENABLE_VMFUNC;
2433 if (cpu_has_sgx())
2434 opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2435 if (adjust_vmx_controls(min2, opt2,
2436 MSR_IA32_VMX_PROCBASED_CTLS2,
2437 &_cpu_based_2nd_exec_control) < 0)
2438 return -EIO;
2439 }
2440 #ifndef CONFIG_X86_64
2441 if (!(_cpu_based_2nd_exec_control &
2442 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2443 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2444 #endif
2445
2446 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2447 _cpu_based_2nd_exec_control &= ~(
2448 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2449 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2450 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2451
2452 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2453 &vmx_cap->ept, &vmx_cap->vpid);
2454
2455 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2456 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2457 enabled */
2458 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2459 CPU_BASED_CR3_STORE_EXITING |
2460 CPU_BASED_INVLPG_EXITING);
2461 } else if (vmx_cap->ept) {
2462 vmx_cap->ept = 0;
2463 pr_warn_once("EPT CAP should not exist if not support "
2464 "1-setting enable EPT VM-execution control\n");
2465 }
2466 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2467 vmx_cap->vpid) {
2468 vmx_cap->vpid = 0;
2469 pr_warn_once("VPID CAP should not exist if not support "
2470 "1-setting enable VPID VM-execution control\n");
2471 }
2472
2473 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2474 #ifdef CONFIG_X86_64
2475 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2476 #endif
2477 opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2478 VM_EXIT_LOAD_IA32_PAT |
2479 VM_EXIT_LOAD_IA32_EFER |
2480 VM_EXIT_CLEAR_BNDCFGS |
2481 VM_EXIT_PT_CONCEAL_PIP |
2482 VM_EXIT_CLEAR_IA32_RTIT_CTL;
2483 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2484 &_vmexit_control) < 0)
2485 return -EIO;
2486
2487 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2488 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2489 PIN_BASED_VMX_PREEMPTION_TIMER;
2490 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2491 &_pin_based_exec_control) < 0)
2492 return -EIO;
2493
2494 if (cpu_has_broken_vmx_preemption_timer())
2495 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2496 if (!(_cpu_based_2nd_exec_control &
2497 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2498 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2499
2500 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2501 opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2502 VM_ENTRY_LOAD_IA32_PAT |
2503 VM_ENTRY_LOAD_IA32_EFER |
2504 VM_ENTRY_LOAD_BNDCFGS |
2505 VM_ENTRY_PT_CONCEAL_PIP |
2506 VM_ENTRY_LOAD_IA32_RTIT_CTL;
2507 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2508 &_vmentry_control) < 0)
2509 return -EIO;
2510
2511 /*
2512 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2513 * can't be used due to an errata where VM Exit may incorrectly clear
2514 * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
2515 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2516 */
2517 if (boot_cpu_data.x86 == 0x6) {
2518 switch (boot_cpu_data.x86_model) {
2519 case 26: /* AAK155 */
2520 case 30: /* AAP115 */
2521 case 37: /* AAT100 */
2522 case 44: /* BC86,AAY89,BD102 */
2523 case 46: /* BA97 */
2524 _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2525 _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2526 pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2527 "does not work properly. Using workaround\n");
2528 break;
2529 default:
2530 break;
2531 }
2532 }
2533
2534
2535 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2536
2537 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2538 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2539 return -EIO;
2540
2541 #ifdef CONFIG_X86_64
2542 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2543 if (vmx_msr_high & (1u<<16))
2544 return -EIO;
2545 #endif
2546
2547 /* Require Write-Back (WB) memory type for VMCS accesses. */
2548 if (((vmx_msr_high >> 18) & 15) != 6)
2549 return -EIO;
2550
2551 vmcs_conf->size = vmx_msr_high & 0x1fff;
2552 vmcs_conf->order = get_order(vmcs_conf->size);
2553 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2554
2555 vmcs_conf->revision_id = vmx_msr_low;
2556
2557 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2558 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2559 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2560 vmcs_conf->vmexit_ctrl = _vmexit_control;
2561 vmcs_conf->vmentry_ctrl = _vmentry_control;
2562
2563 #if IS_ENABLED(CONFIG_HYPERV)
2564 if (enlightened_vmcs)
2565 evmcs_sanitize_exec_ctrls(vmcs_conf);
2566 #endif
2567
2568 return 0;
2569 }
2570
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2571 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2572 {
2573 int node = cpu_to_node(cpu);
2574 struct page *pages;
2575 struct vmcs *vmcs;
2576
2577 pages = __alloc_pages_node(node, flags, vmcs_config.order);
2578 if (!pages)
2579 return NULL;
2580 vmcs = page_address(pages);
2581 memset(vmcs, 0, vmcs_config.size);
2582
2583 /* KVM supports Enlightened VMCS v1 only */
2584 if (static_branch_unlikely(&enable_evmcs))
2585 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2586 else
2587 vmcs->hdr.revision_id = vmcs_config.revision_id;
2588
2589 if (shadow)
2590 vmcs->hdr.shadow_vmcs = 1;
2591 return vmcs;
2592 }
2593
free_vmcs(struct vmcs * vmcs)2594 void free_vmcs(struct vmcs *vmcs)
2595 {
2596 free_pages((unsigned long)vmcs, vmcs_config.order);
2597 }
2598
2599 /*
2600 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2601 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2602 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2603 {
2604 if (!loaded_vmcs->vmcs)
2605 return;
2606 loaded_vmcs_clear(loaded_vmcs);
2607 free_vmcs(loaded_vmcs->vmcs);
2608 loaded_vmcs->vmcs = NULL;
2609 if (loaded_vmcs->msr_bitmap)
2610 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2611 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2612 }
2613
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2614 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2615 {
2616 loaded_vmcs->vmcs = alloc_vmcs(false);
2617 if (!loaded_vmcs->vmcs)
2618 return -ENOMEM;
2619
2620 vmcs_clear(loaded_vmcs->vmcs);
2621
2622 loaded_vmcs->shadow_vmcs = NULL;
2623 loaded_vmcs->hv_timer_soft_disabled = false;
2624 loaded_vmcs->cpu = -1;
2625 loaded_vmcs->launched = 0;
2626
2627 if (cpu_has_vmx_msr_bitmap()) {
2628 loaded_vmcs->msr_bitmap = (unsigned long *)
2629 __get_free_page(GFP_KERNEL_ACCOUNT);
2630 if (!loaded_vmcs->msr_bitmap)
2631 goto out_vmcs;
2632 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2633
2634 if (IS_ENABLED(CONFIG_HYPERV) &&
2635 static_branch_unlikely(&enable_evmcs) &&
2636 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2637 struct hv_enlightened_vmcs *evmcs =
2638 (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2639
2640 evmcs->hv_enlightenments_control.msr_bitmap = 1;
2641 }
2642 }
2643
2644 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2645 memset(&loaded_vmcs->controls_shadow, 0,
2646 sizeof(struct vmcs_controls_shadow));
2647
2648 return 0;
2649
2650 out_vmcs:
2651 free_loaded_vmcs(loaded_vmcs);
2652 return -ENOMEM;
2653 }
2654
free_kvm_area(void)2655 static void free_kvm_area(void)
2656 {
2657 int cpu;
2658
2659 for_each_possible_cpu(cpu) {
2660 free_vmcs(per_cpu(vmxarea, cpu));
2661 per_cpu(vmxarea, cpu) = NULL;
2662 }
2663 }
2664
alloc_kvm_area(void)2665 static __init int alloc_kvm_area(void)
2666 {
2667 int cpu;
2668
2669 for_each_possible_cpu(cpu) {
2670 struct vmcs *vmcs;
2671
2672 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2673 if (!vmcs) {
2674 free_kvm_area();
2675 return -ENOMEM;
2676 }
2677
2678 /*
2679 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2680 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2681 * revision_id reported by MSR_IA32_VMX_BASIC.
2682 *
2683 * However, even though not explicitly documented by
2684 * TLFS, VMXArea passed as VMXON argument should
2685 * still be marked with revision_id reported by
2686 * physical CPU.
2687 */
2688 if (static_branch_unlikely(&enable_evmcs))
2689 vmcs->hdr.revision_id = vmcs_config.revision_id;
2690
2691 per_cpu(vmxarea, cpu) = vmcs;
2692 }
2693 return 0;
2694 }
2695
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2696 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2697 struct kvm_segment *save)
2698 {
2699 if (!emulate_invalid_guest_state) {
2700 /*
2701 * CS and SS RPL should be equal during guest entry according
2702 * to VMX spec, but in reality it is not always so. Since vcpu
2703 * is in the middle of the transition from real mode to
2704 * protected mode it is safe to assume that RPL 0 is a good
2705 * default value.
2706 */
2707 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2708 save->selector &= ~SEGMENT_RPL_MASK;
2709 save->dpl = save->selector & SEGMENT_RPL_MASK;
2710 save->s = 1;
2711 }
2712 vmx_set_segment(vcpu, save, seg);
2713 }
2714
enter_pmode(struct kvm_vcpu * vcpu)2715 static void enter_pmode(struct kvm_vcpu *vcpu)
2716 {
2717 unsigned long flags;
2718 struct vcpu_vmx *vmx = to_vmx(vcpu);
2719
2720 /*
2721 * Update real mode segment cache. It may be not up-to-date if sement
2722 * register was written while vcpu was in a guest mode.
2723 */
2724 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2725 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2726 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2727 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2728 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2729 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2730
2731 vmx->rmode.vm86_active = 0;
2732
2733 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2734
2735 flags = vmcs_readl(GUEST_RFLAGS);
2736 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2737 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2738 vmcs_writel(GUEST_RFLAGS, flags);
2739
2740 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2741 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2742
2743 update_exception_bitmap(vcpu);
2744
2745 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2746 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2747 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2748 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2749 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2750 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2751 }
2752
fix_rmode_seg(int seg,struct kvm_segment * save)2753 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2754 {
2755 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2756 struct kvm_segment var = *save;
2757
2758 var.dpl = 0x3;
2759 if (seg == VCPU_SREG_CS)
2760 var.type = 0x3;
2761
2762 if (!emulate_invalid_guest_state) {
2763 var.selector = var.base >> 4;
2764 var.base = var.base & 0xffff0;
2765 var.limit = 0xffff;
2766 var.g = 0;
2767 var.db = 0;
2768 var.present = 1;
2769 var.s = 1;
2770 var.l = 0;
2771 var.unusable = 0;
2772 var.type = 0x3;
2773 var.avl = 0;
2774 if (save->base & 0xf)
2775 printk_once(KERN_WARNING "kvm: segment base is not "
2776 "paragraph aligned when entering "
2777 "protected mode (seg=%d)", seg);
2778 }
2779
2780 vmcs_write16(sf->selector, var.selector);
2781 vmcs_writel(sf->base, var.base);
2782 vmcs_write32(sf->limit, var.limit);
2783 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2784 }
2785
enter_rmode(struct kvm_vcpu * vcpu)2786 static void enter_rmode(struct kvm_vcpu *vcpu)
2787 {
2788 unsigned long flags;
2789 struct vcpu_vmx *vmx = to_vmx(vcpu);
2790 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2791
2792 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2793 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2794 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2795 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2796 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2797 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2798 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2799
2800 vmx->rmode.vm86_active = 1;
2801
2802 /*
2803 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2804 * vcpu. Warn the user that an update is overdue.
2805 */
2806 if (!kvm_vmx->tss_addr)
2807 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2808 "called before entering vcpu\n");
2809
2810 vmx_segment_cache_clear(vmx);
2811
2812 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2813 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2814 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2815
2816 flags = vmcs_readl(GUEST_RFLAGS);
2817 vmx->rmode.save_rflags = flags;
2818
2819 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2820
2821 vmcs_writel(GUEST_RFLAGS, flags);
2822 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2823 update_exception_bitmap(vcpu);
2824
2825 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2826 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2827 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2828 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2829 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2830 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2831
2832 kvm_mmu_reset_context(vcpu);
2833 }
2834
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2835 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2836 {
2837 struct vcpu_vmx *vmx = to_vmx(vcpu);
2838 struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2839
2840 /* Nothing to do if hardware doesn't support EFER. */
2841 if (!msr)
2842 return 0;
2843
2844 vcpu->arch.efer = efer;
2845 if (efer & EFER_LMA) {
2846 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2847 msr->data = efer;
2848 } else {
2849 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2850
2851 msr->data = efer & ~EFER_LME;
2852 }
2853 setup_msrs(vmx);
2854 return 0;
2855 }
2856
2857 #ifdef CONFIG_X86_64
2858
enter_lmode(struct kvm_vcpu * vcpu)2859 static void enter_lmode(struct kvm_vcpu *vcpu)
2860 {
2861 u32 guest_tr_ar;
2862
2863 vmx_segment_cache_clear(to_vmx(vcpu));
2864
2865 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2866 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2867 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2868 __func__);
2869 vmcs_write32(GUEST_TR_AR_BYTES,
2870 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2871 | VMX_AR_TYPE_BUSY_64_TSS);
2872 }
2873 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2874 }
2875
exit_lmode(struct kvm_vcpu * vcpu)2876 static void exit_lmode(struct kvm_vcpu *vcpu)
2877 {
2878 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2879 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2880 }
2881
2882 #endif
2883
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)2884 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2885 {
2886 struct vcpu_vmx *vmx = to_vmx(vcpu);
2887
2888 /*
2889 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2890 * the CPU is not required to invalidate guest-physical mappings on
2891 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
2892 * associated with the root EPT structure and not any particular VPID
2893 * (INVVPID also isn't required to invalidate guest-physical mappings).
2894 */
2895 if (enable_ept) {
2896 ept_sync_global();
2897 } else if (enable_vpid) {
2898 if (cpu_has_vmx_invvpid_global()) {
2899 vpid_sync_vcpu_global();
2900 } else {
2901 vpid_sync_vcpu_single(vmx->vpid);
2902 vpid_sync_vcpu_single(vmx->nested.vpid02);
2903 }
2904 }
2905 }
2906
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)2907 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2908 {
2909 struct kvm_mmu *mmu = vcpu->arch.mmu;
2910 u64 root_hpa = mmu->root_hpa;
2911
2912 /* No flush required if the current context is invalid. */
2913 if (!VALID_PAGE(root_hpa))
2914 return;
2915
2916 if (enable_ept)
2917 ept_sync_context(construct_eptp(vcpu, root_hpa,
2918 mmu->shadow_root_level));
2919 else if (!is_guest_mode(vcpu))
2920 vpid_sync_context(to_vmx(vcpu)->vpid);
2921 else
2922 vpid_sync_context(nested_get_vpid02(vcpu));
2923 }
2924
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)2925 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2926 {
2927 /*
2928 * vpid_sync_vcpu_addr() is a nop if vmx->vpid==0, see the comment in
2929 * vmx_flush_tlb_guest() for an explanation of why this is ok.
2930 */
2931 vpid_sync_vcpu_addr(to_vmx(vcpu)->vpid, addr);
2932 }
2933
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)2934 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2935 {
2936 /*
2937 * vpid_sync_context() is a nop if vmx->vpid==0, e.g. if enable_vpid==0
2938 * or a vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit
2939 * are required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2940 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2941 * i.e. no explicit INVVPID is necessary.
2942 */
2943 vpid_sync_context(to_vmx(vcpu)->vpid);
2944 }
2945
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)2946 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2947 {
2948 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2949
2950 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2951 return;
2952
2953 if (is_pae_paging(vcpu)) {
2954 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2955 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2956 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2957 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2958 }
2959 }
2960
ept_save_pdptrs(struct kvm_vcpu * vcpu)2961 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2962 {
2963 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2964
2965 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2966 return;
2967
2968 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2969 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2970 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2971 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2972
2973 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2974 }
2975
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)2976 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2977 unsigned long cr0,
2978 struct kvm_vcpu *vcpu)
2979 {
2980 struct vcpu_vmx *vmx = to_vmx(vcpu);
2981
2982 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
2983 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
2984 if (!(cr0 & X86_CR0_PG)) {
2985 /* From paging/starting to nonpaging */
2986 exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2987 CPU_BASED_CR3_STORE_EXITING);
2988 vcpu->arch.cr0 = cr0;
2989 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2990 } else if (!is_paging(vcpu)) {
2991 /* From nonpaging to paging */
2992 exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2993 CPU_BASED_CR3_STORE_EXITING);
2994 vcpu->arch.cr0 = cr0;
2995 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2996 }
2997
2998 if (!(cr0 & X86_CR0_WP))
2999 *hw_cr0 &= ~X86_CR0_WP;
3000 }
3001
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3002 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3003 {
3004 struct vcpu_vmx *vmx = to_vmx(vcpu);
3005 unsigned long hw_cr0;
3006
3007 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3008 if (is_unrestricted_guest(vcpu))
3009 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3010 else {
3011 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3012
3013 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3014 enter_pmode(vcpu);
3015
3016 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3017 enter_rmode(vcpu);
3018 }
3019
3020 #ifdef CONFIG_X86_64
3021 if (vcpu->arch.efer & EFER_LME) {
3022 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3023 enter_lmode(vcpu);
3024 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3025 exit_lmode(vcpu);
3026 }
3027 #endif
3028
3029 if (enable_ept && !is_unrestricted_guest(vcpu))
3030 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3031
3032 vmcs_writel(CR0_READ_SHADOW, cr0);
3033 vmcs_writel(GUEST_CR0, hw_cr0);
3034 vcpu->arch.cr0 = cr0;
3035 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3036
3037 /* depends on vcpu->arch.cr0 to be set to a new value */
3038 vmx->emulation_required = emulation_required(vcpu);
3039 }
3040
vmx_get_max_tdp_level(void)3041 static int vmx_get_max_tdp_level(void)
3042 {
3043 if (cpu_has_vmx_ept_5levels())
3044 return 5;
3045 return 4;
3046 }
3047
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa,int root_level)3048 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa,
3049 int root_level)
3050 {
3051 u64 eptp = VMX_EPTP_MT_WB;
3052
3053 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3054
3055 if (enable_ept_ad_bits &&
3056 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3057 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3058 eptp |= (root_hpa & PAGE_MASK);
3059
3060 return eptp;
3061 }
3062
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,unsigned long pgd,int pgd_level)3063 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, unsigned long pgd,
3064 int pgd_level)
3065 {
3066 struct kvm *kvm = vcpu->kvm;
3067 bool update_guest_cr3 = true;
3068 unsigned long guest_cr3;
3069 u64 eptp;
3070
3071 if (enable_ept) {
3072 eptp = construct_eptp(vcpu, pgd, pgd_level);
3073 vmcs_write64(EPT_POINTER, eptp);
3074
3075 if (kvm_x86_ops.tlb_remote_flush) {
3076 spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3077 to_vmx(vcpu)->ept_pointer = eptp;
3078 to_kvm_vmx(kvm)->ept_pointers_match
3079 = EPT_POINTERS_CHECK;
3080 spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3081 }
3082
3083 if (!enable_unrestricted_guest && !is_paging(vcpu))
3084 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3085 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3086 guest_cr3 = vcpu->arch.cr3;
3087 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3088 update_guest_cr3 = false;
3089 vmx_ept_load_pdptrs(vcpu);
3090 } else {
3091 guest_cr3 = pgd;
3092 }
3093
3094 if (update_guest_cr3)
3095 vmcs_writel(GUEST_CR3, guest_cr3);
3096 }
3097
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3098 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3099 {
3100 struct vcpu_vmx *vmx = to_vmx(vcpu);
3101 /*
3102 * Pass through host's Machine Check Enable value to hw_cr4, which
3103 * is in force while we are in guest mode. Do not let guests control
3104 * this bit, even if host CR4.MCE == 0.
3105 */
3106 unsigned long hw_cr4;
3107
3108 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3109 if (is_unrestricted_guest(vcpu))
3110 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3111 else if (vmx->rmode.vm86_active)
3112 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3113 else
3114 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3115
3116 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3117 if (cr4 & X86_CR4_UMIP) {
3118 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3119 hw_cr4 &= ~X86_CR4_UMIP;
3120 } else if (!is_guest_mode(vcpu) ||
3121 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3122 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3123 }
3124 }
3125
3126 if (cr4 & X86_CR4_VMXE) {
3127 /*
3128 * To use VMXON (and later other VMX instructions), a guest
3129 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3130 * So basically the check on whether to allow nested VMX
3131 * is here. We operate under the default treatment of SMM,
3132 * so VMX cannot be enabled under SMM.
3133 */
3134 if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3135 return 1;
3136 }
3137
3138 if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3139 return 1;
3140
3141 vcpu->arch.cr4 = cr4;
3142 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3143
3144 if (!is_unrestricted_guest(vcpu)) {
3145 if (enable_ept) {
3146 if (!is_paging(vcpu)) {
3147 hw_cr4 &= ~X86_CR4_PAE;
3148 hw_cr4 |= X86_CR4_PSE;
3149 } else if (!(cr4 & X86_CR4_PAE)) {
3150 hw_cr4 &= ~X86_CR4_PAE;
3151 }
3152 }
3153
3154 /*
3155 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3156 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3157 * to be manually disabled when guest switches to non-paging
3158 * mode.
3159 *
3160 * If !enable_unrestricted_guest, the CPU is always running
3161 * with CR0.PG=1 and CR4 needs to be modified.
3162 * If enable_unrestricted_guest, the CPU automatically
3163 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3164 */
3165 if (!is_paging(vcpu))
3166 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3167 }
3168
3169 vmcs_writel(CR4_READ_SHADOW, cr4);
3170 vmcs_writel(GUEST_CR4, hw_cr4);
3171 return 0;
3172 }
3173
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3174 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3175 {
3176 struct vcpu_vmx *vmx = to_vmx(vcpu);
3177 u32 ar;
3178
3179 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3180 *var = vmx->rmode.segs[seg];
3181 if (seg == VCPU_SREG_TR
3182 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3183 return;
3184 var->base = vmx_read_guest_seg_base(vmx, seg);
3185 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3186 return;
3187 }
3188 var->base = vmx_read_guest_seg_base(vmx, seg);
3189 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3190 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3191 ar = vmx_read_guest_seg_ar(vmx, seg);
3192 var->unusable = (ar >> 16) & 1;
3193 var->type = ar & 15;
3194 var->s = (ar >> 4) & 1;
3195 var->dpl = (ar >> 5) & 3;
3196 /*
3197 * Some userspaces do not preserve unusable property. Since usable
3198 * segment has to be present according to VMX spec we can use present
3199 * property to amend userspace bug by making unusable segment always
3200 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3201 * segment as unusable.
3202 */
3203 var->present = !var->unusable;
3204 var->avl = (ar >> 12) & 1;
3205 var->l = (ar >> 13) & 1;
3206 var->db = (ar >> 14) & 1;
3207 var->g = (ar >> 15) & 1;
3208 }
3209
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3210 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3211 {
3212 struct kvm_segment s;
3213
3214 if (to_vmx(vcpu)->rmode.vm86_active) {
3215 vmx_get_segment(vcpu, &s, seg);
3216 return s.base;
3217 }
3218 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3219 }
3220
vmx_get_cpl(struct kvm_vcpu * vcpu)3221 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3222 {
3223 struct vcpu_vmx *vmx = to_vmx(vcpu);
3224
3225 if (unlikely(vmx->rmode.vm86_active))
3226 return 0;
3227 else {
3228 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3229 return VMX_AR_DPL(ar);
3230 }
3231 }
3232
vmx_segment_access_rights(struct kvm_segment * var)3233 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3234 {
3235 u32 ar;
3236
3237 if (var->unusable || !var->present)
3238 ar = 1 << 16;
3239 else {
3240 ar = var->type & 15;
3241 ar |= (var->s & 1) << 4;
3242 ar |= (var->dpl & 3) << 5;
3243 ar |= (var->present & 1) << 7;
3244 ar |= (var->avl & 1) << 12;
3245 ar |= (var->l & 1) << 13;
3246 ar |= (var->db & 1) << 14;
3247 ar |= (var->g & 1) << 15;
3248 }
3249
3250 return ar;
3251 }
3252
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3253 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3254 {
3255 struct vcpu_vmx *vmx = to_vmx(vcpu);
3256 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3257
3258 vmx_segment_cache_clear(vmx);
3259
3260 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3261 vmx->rmode.segs[seg] = *var;
3262 if (seg == VCPU_SREG_TR)
3263 vmcs_write16(sf->selector, var->selector);
3264 else if (var->s)
3265 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3266 goto out;
3267 }
3268
3269 vmcs_writel(sf->base, var->base);
3270 vmcs_write32(sf->limit, var->limit);
3271 vmcs_write16(sf->selector, var->selector);
3272
3273 /*
3274 * Fix the "Accessed" bit in AR field of segment registers for older
3275 * qemu binaries.
3276 * IA32 arch specifies that at the time of processor reset the
3277 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3278 * is setting it to 0 in the userland code. This causes invalid guest
3279 * state vmexit when "unrestricted guest" mode is turned on.
3280 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3281 * tree. Newer qemu binaries with that qemu fix would not need this
3282 * kvm hack.
3283 */
3284 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3285 var->type |= 0x1; /* Accessed */
3286
3287 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3288
3289 out:
3290 vmx->emulation_required = emulation_required(vcpu);
3291 }
3292
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3293 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3294 {
3295 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3296
3297 *db = (ar >> 14) & 1;
3298 *l = (ar >> 13) & 1;
3299 }
3300
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3301 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3302 {
3303 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3304 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3305 }
3306
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3307 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3308 {
3309 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3310 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3311 }
3312
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3313 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3314 {
3315 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3316 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3317 }
3318
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3319 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3320 {
3321 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3322 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3323 }
3324
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3325 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3326 {
3327 struct kvm_segment var;
3328 u32 ar;
3329
3330 vmx_get_segment(vcpu, &var, seg);
3331 var.dpl = 0x3;
3332 if (seg == VCPU_SREG_CS)
3333 var.type = 0x3;
3334 ar = vmx_segment_access_rights(&var);
3335
3336 if (var.base != (var.selector << 4))
3337 return false;
3338 if (var.limit != 0xffff)
3339 return false;
3340 if (ar != 0xf3)
3341 return false;
3342
3343 return true;
3344 }
3345
code_segment_valid(struct kvm_vcpu * vcpu)3346 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3347 {
3348 struct kvm_segment cs;
3349 unsigned int cs_rpl;
3350
3351 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3352 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3353
3354 if (cs.unusable)
3355 return false;
3356 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3357 return false;
3358 if (!cs.s)
3359 return false;
3360 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3361 if (cs.dpl > cs_rpl)
3362 return false;
3363 } else {
3364 if (cs.dpl != cs_rpl)
3365 return false;
3366 }
3367 if (!cs.present)
3368 return false;
3369
3370 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3371 return true;
3372 }
3373
stack_segment_valid(struct kvm_vcpu * vcpu)3374 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3375 {
3376 struct kvm_segment ss;
3377 unsigned int ss_rpl;
3378
3379 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3380 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3381
3382 if (ss.unusable)
3383 return true;
3384 if (ss.type != 3 && ss.type != 7)
3385 return false;
3386 if (!ss.s)
3387 return false;
3388 if (ss.dpl != ss_rpl) /* DPL != RPL */
3389 return false;
3390 if (!ss.present)
3391 return false;
3392
3393 return true;
3394 }
3395
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3396 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3397 {
3398 struct kvm_segment var;
3399 unsigned int rpl;
3400
3401 vmx_get_segment(vcpu, &var, seg);
3402 rpl = var.selector & SEGMENT_RPL_MASK;
3403
3404 if (var.unusable)
3405 return true;
3406 if (!var.s)
3407 return false;
3408 if (!var.present)
3409 return false;
3410 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3411 if (var.dpl < rpl) /* DPL < RPL */
3412 return false;
3413 }
3414
3415 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3416 * rights flags
3417 */
3418 return true;
3419 }
3420
tr_valid(struct kvm_vcpu * vcpu)3421 static bool tr_valid(struct kvm_vcpu *vcpu)
3422 {
3423 struct kvm_segment tr;
3424
3425 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3426
3427 if (tr.unusable)
3428 return false;
3429 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3430 return false;
3431 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3432 return false;
3433 if (!tr.present)
3434 return false;
3435
3436 return true;
3437 }
3438
ldtr_valid(struct kvm_vcpu * vcpu)3439 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3440 {
3441 struct kvm_segment ldtr;
3442
3443 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3444
3445 if (ldtr.unusable)
3446 return true;
3447 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3448 return false;
3449 if (ldtr.type != 2)
3450 return false;
3451 if (!ldtr.present)
3452 return false;
3453
3454 return true;
3455 }
3456
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3457 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3458 {
3459 struct kvm_segment cs, ss;
3460
3461 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3462 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3463
3464 return ((cs.selector & SEGMENT_RPL_MASK) ==
3465 (ss.selector & SEGMENT_RPL_MASK));
3466 }
3467
3468 /*
3469 * Check if guest state is valid. Returns true if valid, false if
3470 * not.
3471 * We assume that registers are always usable
3472 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3473 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3474 {
3475 /* real mode guest state checks */
3476 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3477 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3478 return false;
3479 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3480 return false;
3481 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3482 return false;
3483 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3484 return false;
3485 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3486 return false;
3487 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3488 return false;
3489 } else {
3490 /* protected mode guest state checks */
3491 if (!cs_ss_rpl_check(vcpu))
3492 return false;
3493 if (!code_segment_valid(vcpu))
3494 return false;
3495 if (!stack_segment_valid(vcpu))
3496 return false;
3497 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3498 return false;
3499 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3500 return false;
3501 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3502 return false;
3503 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3504 return false;
3505 if (!tr_valid(vcpu))
3506 return false;
3507 if (!ldtr_valid(vcpu))
3508 return false;
3509 }
3510 /* TODO:
3511 * - Add checks on RIP
3512 * - Add checks on RFLAGS
3513 */
3514
3515 return true;
3516 }
3517
init_rmode_tss(struct kvm * kvm)3518 static int init_rmode_tss(struct kvm *kvm)
3519 {
3520 gfn_t fn;
3521 u16 data = 0;
3522 int idx, r;
3523
3524 idx = srcu_read_lock(&kvm->srcu);
3525 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3526 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3527 if (r < 0)
3528 goto out;
3529 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3530 r = kvm_write_guest_page(kvm, fn++, &data,
3531 TSS_IOPB_BASE_OFFSET, sizeof(u16));
3532 if (r < 0)
3533 goto out;
3534 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3535 if (r < 0)
3536 goto out;
3537 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3538 if (r < 0)
3539 goto out;
3540 data = ~0;
3541 r = kvm_write_guest_page(kvm, fn, &data,
3542 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3543 sizeof(u8));
3544 out:
3545 srcu_read_unlock(&kvm->srcu, idx);
3546 return r;
3547 }
3548
init_rmode_identity_map(struct kvm * kvm)3549 static int init_rmode_identity_map(struct kvm *kvm)
3550 {
3551 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3552 int i, r = 0;
3553 kvm_pfn_t identity_map_pfn;
3554 u32 tmp;
3555
3556 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3557 mutex_lock(&kvm->slots_lock);
3558
3559 if (likely(kvm_vmx->ept_identity_pagetable_done))
3560 goto out;
3561
3562 if (!kvm_vmx->ept_identity_map_addr)
3563 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3564 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3565
3566 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3567 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3568 if (r < 0)
3569 goto out;
3570
3571 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3572 if (r < 0)
3573 goto out;
3574 /* Set up identity-mapping pagetable for EPT in real mode */
3575 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3576 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3577 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3578 r = kvm_write_guest_page(kvm, identity_map_pfn,
3579 &tmp, i * sizeof(tmp), sizeof(tmp));
3580 if (r < 0)
3581 goto out;
3582 }
3583 kvm_vmx->ept_identity_pagetable_done = true;
3584
3585 out:
3586 mutex_unlock(&kvm->slots_lock);
3587 return r;
3588 }
3589
seg_setup(int seg)3590 static void seg_setup(int seg)
3591 {
3592 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3593 unsigned int ar;
3594
3595 vmcs_write16(sf->selector, 0);
3596 vmcs_writel(sf->base, 0);
3597 vmcs_write32(sf->limit, 0xffff);
3598 ar = 0x93;
3599 if (seg == VCPU_SREG_CS)
3600 ar |= 0x08; /* code segment */
3601
3602 vmcs_write32(sf->ar_bytes, ar);
3603 }
3604
alloc_apic_access_page(struct kvm * kvm)3605 static int alloc_apic_access_page(struct kvm *kvm)
3606 {
3607 struct page *page;
3608 int r = 0;
3609
3610 mutex_lock(&kvm->slots_lock);
3611 if (kvm->arch.apic_access_page_done)
3612 goto out;
3613 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3614 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3615 if (r)
3616 goto out;
3617
3618 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3619 if (is_error_page(page)) {
3620 r = -EFAULT;
3621 goto out;
3622 }
3623
3624 /*
3625 * Do not pin the page in memory, so that memory hot-unplug
3626 * is able to migrate it.
3627 */
3628 put_page(page);
3629 kvm->arch.apic_access_page_done = true;
3630 out:
3631 mutex_unlock(&kvm->slots_lock);
3632 return r;
3633 }
3634
allocate_vpid(void)3635 int allocate_vpid(void)
3636 {
3637 int vpid;
3638
3639 if (!enable_vpid)
3640 return 0;
3641 spin_lock(&vmx_vpid_lock);
3642 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3643 if (vpid < VMX_NR_VPIDS)
3644 __set_bit(vpid, vmx_vpid_bitmap);
3645 else
3646 vpid = 0;
3647 spin_unlock(&vmx_vpid_lock);
3648 return vpid;
3649 }
3650
free_vpid(int vpid)3651 void free_vpid(int vpid)
3652 {
3653 if (!enable_vpid || vpid == 0)
3654 return;
3655 spin_lock(&vmx_vpid_lock);
3656 __clear_bit(vpid, vmx_vpid_bitmap);
3657 spin_unlock(&vmx_vpid_lock);
3658 }
3659
vmx_clear_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3660 static void vmx_clear_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3661 {
3662 int f = sizeof(unsigned long);
3663
3664 if (msr <= 0x1fff)
3665 __clear_bit(msr, msr_bitmap + 0x000 / f);
3666 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3667 __clear_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3668 }
3669
vmx_clear_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3670 static void vmx_clear_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3671 {
3672 int f = sizeof(unsigned long);
3673
3674 if (msr <= 0x1fff)
3675 __clear_bit(msr, msr_bitmap + 0x800 / f);
3676 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3677 __clear_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3678 }
3679
vmx_set_msr_bitmap_read(ulong * msr_bitmap,u32 msr)3680 static void vmx_set_msr_bitmap_read(ulong *msr_bitmap, u32 msr)
3681 {
3682 int f = sizeof(unsigned long);
3683
3684 if (msr <= 0x1fff)
3685 __set_bit(msr, msr_bitmap + 0x000 / f);
3686 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3687 __set_bit(msr & 0x1fff, msr_bitmap + 0x400 / f);
3688 }
3689
vmx_set_msr_bitmap_write(ulong * msr_bitmap,u32 msr)3690 static void vmx_set_msr_bitmap_write(ulong *msr_bitmap, u32 msr)
3691 {
3692 int f = sizeof(unsigned long);
3693
3694 if (msr <= 0x1fff)
3695 __set_bit(msr, msr_bitmap + 0x800 / f);
3696 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff))
3697 __set_bit(msr & 0x1fff, msr_bitmap + 0xc00 / f);
3698 }
3699
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3700 static __always_inline void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu,
3701 u32 msr, int type)
3702 {
3703 struct vcpu_vmx *vmx = to_vmx(vcpu);
3704 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3705
3706 if (!cpu_has_vmx_msr_bitmap())
3707 return;
3708
3709 if (static_branch_unlikely(&enable_evmcs))
3710 evmcs_touch_msr_bitmap();
3711
3712 /*
3713 * Mark the desired intercept state in shadow bitmap, this is needed
3714 * for resync when the MSR filters change.
3715 */
3716 if (is_valid_passthrough_msr(msr)) {
3717 int idx = possible_passthrough_msr_slot(msr);
3718
3719 if (idx != -ENOENT) {
3720 if (type & MSR_TYPE_R)
3721 clear_bit(idx, vmx->shadow_msr_intercept.read);
3722 if (type & MSR_TYPE_W)
3723 clear_bit(idx, vmx->shadow_msr_intercept.write);
3724 }
3725 }
3726
3727 if ((type & MSR_TYPE_R) &&
3728 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3729 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3730 type &= ~MSR_TYPE_R;
3731 }
3732
3733 if ((type & MSR_TYPE_W) &&
3734 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3735 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3736 type &= ~MSR_TYPE_W;
3737 }
3738
3739 if (type & MSR_TYPE_R)
3740 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3741
3742 if (type & MSR_TYPE_W)
3743 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3744 }
3745
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3746 static __always_inline void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu,
3747 u32 msr, int type)
3748 {
3749 struct vcpu_vmx *vmx = to_vmx(vcpu);
3750 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3751
3752 if (!cpu_has_vmx_msr_bitmap())
3753 return;
3754
3755 if (static_branch_unlikely(&enable_evmcs))
3756 evmcs_touch_msr_bitmap();
3757
3758 /*
3759 * Mark the desired intercept state in shadow bitmap, this is needed
3760 * for resync when the MSR filter changes.
3761 */
3762 if (is_valid_passthrough_msr(msr)) {
3763 int idx = possible_passthrough_msr_slot(msr);
3764
3765 if (idx != -ENOENT) {
3766 if (type & MSR_TYPE_R)
3767 set_bit(idx, vmx->shadow_msr_intercept.read);
3768 if (type & MSR_TYPE_W)
3769 set_bit(idx, vmx->shadow_msr_intercept.write);
3770 }
3771 }
3772
3773 if (type & MSR_TYPE_R)
3774 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3775
3776 if (type & MSR_TYPE_W)
3777 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3778 }
3779
vmx_set_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type,bool value)3780 static __always_inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu,
3781 u32 msr, int type, bool value)
3782 {
3783 if (value)
3784 vmx_enable_intercept_for_msr(vcpu, msr, type);
3785 else
3786 vmx_disable_intercept_for_msr(vcpu, msr, type);
3787 }
3788
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3789 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3790 {
3791 u8 mode = 0;
3792
3793 if (cpu_has_secondary_exec_ctrls() &&
3794 (secondary_exec_controls_get(to_vmx(vcpu)) &
3795 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3796 mode |= MSR_BITMAP_MODE_X2APIC;
3797 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3798 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3799 }
3800
3801 return mode;
3802 }
3803
vmx_reset_x2apic_msrs(struct kvm_vcpu * vcpu,u8 mode)3804 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3805 {
3806 unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3807 unsigned long read_intercept;
3808 int msr;
3809
3810 read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3811
3812 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3813 unsigned int read_idx = msr / BITS_PER_LONG;
3814 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3815
3816 msr_bitmap[read_idx] = read_intercept;
3817 msr_bitmap[write_idx] = ~0ul;
3818 }
3819 }
3820
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu,u8 mode)3821 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu, u8 mode)
3822 {
3823 if (!cpu_has_vmx_msr_bitmap())
3824 return;
3825
3826 vmx_reset_x2apic_msrs(vcpu, mode);
3827
3828 /*
3829 * TPR reads and writes can be virtualized even if virtual interrupt
3830 * delivery is not in use.
3831 */
3832 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3833 !(mode & MSR_BITMAP_MODE_X2APIC));
3834
3835 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3836 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3837 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3838 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3839 }
3840 }
3841
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3842 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3843 {
3844 struct vcpu_vmx *vmx = to_vmx(vcpu);
3845 u8 mode = vmx_msr_bitmap_mode(vcpu);
3846 u8 changed = mode ^ vmx->msr_bitmap_mode;
3847
3848 if (!changed)
3849 return;
3850
3851 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3852 vmx_update_msr_bitmap_x2apic(vcpu, mode);
3853
3854 vmx->msr_bitmap_mode = mode;
3855 }
3856
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)3857 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3858 {
3859 struct vcpu_vmx *vmx = to_vmx(vcpu);
3860 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3861 u32 i;
3862
3863 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3864 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3865 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3866 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3867 for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3868 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3869 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3870 }
3871 }
3872
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3873 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3874 {
3875 struct vcpu_vmx *vmx = to_vmx(vcpu);
3876 void *vapic_page;
3877 u32 vppr;
3878 int rvi;
3879
3880 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3881 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3882 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3883 return false;
3884
3885 rvi = vmx_get_rvi();
3886
3887 vapic_page = vmx->nested.virtual_apic_map.hva;
3888 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3889
3890 return ((rvi & 0xf0) > (vppr & 0xf0));
3891 }
3892
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)3893 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3894 {
3895 struct vcpu_vmx *vmx = to_vmx(vcpu);
3896 u32 i;
3897
3898 /*
3899 * Set intercept permissions for all potentially passed through MSRs
3900 * again. They will automatically get filtered through the MSR filter,
3901 * so we are back in sync after this.
3902 */
3903 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3904 u32 msr = vmx_possible_passthrough_msrs[i];
3905 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3906 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3907
3908 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3909 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3910 }
3911
3912 pt_update_intercept_for_msr(vcpu);
3913 vmx_update_msr_bitmap_x2apic(vcpu, vmx_msr_bitmap_mode(vcpu));
3914 }
3915
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)3916 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3917 bool nested)
3918 {
3919 #ifdef CONFIG_SMP
3920 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3921
3922 if (vcpu->mode == IN_GUEST_MODE) {
3923 /*
3924 * The vector of interrupt to be delivered to vcpu had
3925 * been set in PIR before this function.
3926 *
3927 * Following cases will be reached in this block, and
3928 * we always send a notification event in all cases as
3929 * explained below.
3930 *
3931 * Case 1: vcpu keeps in non-root mode. Sending a
3932 * notification event posts the interrupt to vcpu.
3933 *
3934 * Case 2: vcpu exits to root mode and is still
3935 * runnable. PIR will be synced to vIRR before the
3936 * next vcpu entry. Sending a notification event in
3937 * this case has no effect, as vcpu is not in root
3938 * mode.
3939 *
3940 * Case 3: vcpu exits to root mode and is blocked.
3941 * vcpu_block() has already synced PIR to vIRR and
3942 * never blocks vcpu if vIRR is not cleared. Therefore,
3943 * a blocked vcpu here does not wait for any requested
3944 * interrupts in PIR, and sending a notification event
3945 * which has no effect is safe here.
3946 */
3947
3948 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3949 return true;
3950 }
3951 #endif
3952 return false;
3953 }
3954
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3955 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3956 int vector)
3957 {
3958 struct vcpu_vmx *vmx = to_vmx(vcpu);
3959
3960 if (is_guest_mode(vcpu) &&
3961 vector == vmx->nested.posted_intr_nv) {
3962 /*
3963 * If a posted intr is not recognized by hardware,
3964 * we will accomplish it in the next vmentry.
3965 */
3966 vmx->nested.pi_pending = true;
3967 kvm_make_request(KVM_REQ_EVENT, vcpu);
3968 /* the PIR and ON have been set by L1. */
3969 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3970 kvm_vcpu_kick(vcpu);
3971 return 0;
3972 }
3973 return -1;
3974 }
3975 /*
3976 * Send interrupt to vcpu via posted interrupt way.
3977 * 1. If target vcpu is running(non-root mode), send posted interrupt
3978 * notification to vcpu and hardware will sync PIR to vIRR atomically.
3979 * 2. If target vcpu isn't running(root mode), kick it to pick up the
3980 * interrupt from PIR in next vmentry.
3981 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3982 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3983 {
3984 struct vcpu_vmx *vmx = to_vmx(vcpu);
3985 int r;
3986
3987 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3988 if (!r)
3989 return 0;
3990
3991 if (!vcpu->arch.apicv_active)
3992 return -1;
3993
3994 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3995 return 0;
3996
3997 /* If a previous notification has sent the IPI, nothing to do. */
3998 if (pi_test_and_set_on(&vmx->pi_desc))
3999 return 0;
4000
4001 if (vcpu != kvm_get_running_vcpu() &&
4002 !kvm_vcpu_trigger_posted_interrupt(vcpu, false))
4003 kvm_vcpu_kick(vcpu);
4004
4005 return 0;
4006 }
4007
4008 /*
4009 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4010 * will not change in the lifetime of the guest.
4011 * Note that host-state that does change is set elsewhere. E.g., host-state
4012 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4013 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4014 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4015 {
4016 u32 low32, high32;
4017 unsigned long tmpl;
4018 unsigned long cr0, cr3, cr4;
4019
4020 cr0 = read_cr0();
4021 WARN_ON(cr0 & X86_CR0_TS);
4022 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4023
4024 /*
4025 * Save the most likely value for this task's CR3 in the VMCS.
4026 * We can't use __get_current_cr3_fast() because we're not atomic.
4027 */
4028 cr3 = __read_cr3();
4029 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4030 vmx->loaded_vmcs->host_state.cr3 = cr3;
4031
4032 /* Save the most likely value for this task's CR4 in the VMCS. */
4033 cr4 = cr4_read_shadow();
4034 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4035 vmx->loaded_vmcs->host_state.cr4 = cr4;
4036
4037 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4038 #ifdef CONFIG_X86_64
4039 /*
4040 * Load null selectors, so we can avoid reloading them in
4041 * vmx_prepare_switch_to_host(), in case userspace uses
4042 * the null selectors too (the expected case).
4043 */
4044 vmcs_write16(HOST_DS_SELECTOR, 0);
4045 vmcs_write16(HOST_ES_SELECTOR, 0);
4046 #else
4047 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4048 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4049 #endif
4050 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4051 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4052
4053 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4054
4055 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4056
4057 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4058 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4059 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4060 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4061
4062 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4063 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4064 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4065 }
4066
4067 if (cpu_has_load_ia32_efer())
4068 vmcs_write64(HOST_IA32_EFER, host_efer);
4069 }
4070
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4071 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4072 {
4073 struct kvm_vcpu *vcpu = &vmx->vcpu;
4074
4075 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4076 ~vcpu->arch.cr4_guest_rsvd_bits;
4077 if (!enable_ept)
4078 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4079 if (is_guest_mode(&vmx->vcpu))
4080 vcpu->arch.cr4_guest_owned_bits &=
4081 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4082 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4083 }
4084
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4085 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4086 {
4087 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4088
4089 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4090 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4091
4092 if (!enable_vnmi)
4093 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4094
4095 if (!enable_preemption_timer)
4096 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4097
4098 return pin_based_exec_ctrl;
4099 }
4100
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4101 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4102 {
4103 struct vcpu_vmx *vmx = to_vmx(vcpu);
4104
4105 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4106 if (cpu_has_secondary_exec_ctrls()) {
4107 if (kvm_vcpu_apicv_active(vcpu))
4108 secondary_exec_controls_setbit(vmx,
4109 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4110 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4111 else
4112 secondary_exec_controls_clearbit(vmx,
4113 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4114 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4115 }
4116
4117 if (cpu_has_vmx_msr_bitmap())
4118 vmx_update_msr_bitmap(vcpu);
4119 }
4120
vmx_exec_control(struct vcpu_vmx * vmx)4121 u32 vmx_exec_control(struct vcpu_vmx *vmx)
4122 {
4123 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4124
4125 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4126 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4127
4128 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4129 exec_control &= ~CPU_BASED_TPR_SHADOW;
4130 #ifdef CONFIG_X86_64
4131 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4132 CPU_BASED_CR8_LOAD_EXITING;
4133 #endif
4134 }
4135 if (!enable_ept)
4136 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4137 CPU_BASED_CR3_LOAD_EXITING |
4138 CPU_BASED_INVLPG_EXITING;
4139 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4140 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4141 CPU_BASED_MONITOR_EXITING);
4142 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4143 exec_control &= ~CPU_BASED_HLT_EXITING;
4144 return exec_control;
4145 }
4146
4147 /*
4148 * Adjust a single secondary execution control bit to intercept/allow an
4149 * instruction in the guest. This is usually done based on whether or not a
4150 * feature has been exposed to the guest in order to correctly emulate faults.
4151 */
4152 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4153 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4154 u32 control, bool enabled, bool exiting)
4155 {
4156 /*
4157 * If the control is for an opt-in feature, clear the control if the
4158 * feature is not exposed to the guest, i.e. not enabled. If the
4159 * control is opt-out, i.e. an exiting control, clear the control if
4160 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4161 * disabled for the associated instruction. Note, the caller is
4162 * responsible presetting exec_control to set all supported bits.
4163 */
4164 if (enabled == exiting)
4165 *exec_control &= ~control;
4166
4167 /*
4168 * Update the nested MSR settings so that a nested VMM can/can't set
4169 * controls for features that are/aren't exposed to the guest.
4170 */
4171 if (nested) {
4172 if (enabled)
4173 vmx->nested.msrs.secondary_ctls_high |= control;
4174 else
4175 vmx->nested.msrs.secondary_ctls_high &= ~control;
4176 }
4177 }
4178
4179 /*
4180 * Wrapper macro for the common case of adjusting a secondary execution control
4181 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4182 * verifies that the control is actually supported by KVM and hardware.
4183 */
4184 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4185 ({ \
4186 bool __enabled; \
4187 \
4188 if (cpu_has_vmx_##name()) { \
4189 __enabled = guest_cpuid_has(&(vmx)->vcpu, \
4190 X86_FEATURE_##feat_name); \
4191 vmx_adjust_secondary_exec_control(vmx, exec_control, \
4192 SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4193 } \
4194 })
4195
4196 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4197 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4198 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4199
4200 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4201 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4202
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4203 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4204 {
4205 struct kvm_vcpu *vcpu = &vmx->vcpu;
4206
4207 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4208
4209 if (vmx_pt_mode_is_system())
4210 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4211 if (!cpu_need_virtualize_apic_accesses(vcpu))
4212 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4213 if (vmx->vpid == 0)
4214 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4215 if (!enable_ept) {
4216 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4217 enable_unrestricted_guest = 0;
4218 }
4219 if (!enable_unrestricted_guest)
4220 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4221 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4222 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4223 if (!kvm_vcpu_apicv_active(vcpu))
4224 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4225 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4226 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4227
4228 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4229 * in vmx_set_cr4. */
4230 exec_control &= ~SECONDARY_EXEC_DESC;
4231
4232 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4233 (handle_vmptrld).
4234 We can NOT enable shadow_vmcs here because we don't have yet
4235 a current VMCS12
4236 */
4237 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4238
4239 if (!enable_pml)
4240 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4241
4242 if (cpu_has_vmx_xsaves()) {
4243 /* Exposing XSAVES only when XSAVE is exposed */
4244 bool xsaves_enabled =
4245 boot_cpu_has(X86_FEATURE_XSAVE) &&
4246 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4247 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4248
4249 vcpu->arch.xsaves_enabled = xsaves_enabled;
4250
4251 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4252 SECONDARY_EXEC_XSAVES,
4253 xsaves_enabled, false);
4254 }
4255
4256 vmx_adjust_sec_exec_feature(vmx, &exec_control, rdtscp, RDTSCP);
4257
4258 /*
4259 * Expose INVPCID if and only if PCID is also exposed to the guest.
4260 * INVPCID takes a #UD when it's disabled in the VMCS, but a #GP or #PF
4261 * if CR4.PCIDE=0. Enumerating CPUID.INVPCID=1 would lead to incorrect
4262 * behavior from the guest perspective (it would expect #GP or #PF).
4263 */
4264 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
4265 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4266 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4267
4268
4269 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4270 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4271
4272 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4273 ENABLE_USR_WAIT_PAUSE, false);
4274
4275 vmx->secondary_exec_control = exec_control;
4276 }
4277
ept_set_mmio_spte_mask(void)4278 static void ept_set_mmio_spte_mask(void)
4279 {
4280 /*
4281 * EPT Misconfigurations can be generated if the value of bits 2:0
4282 * of an EPT paging-structure entry is 110b (write/execute).
4283 */
4284 kvm_mmu_set_mmio_spte_mask(VMX_EPT_MISCONFIG_WX_VALUE, 0);
4285 }
4286
4287 #define VMX_XSS_EXIT_BITMAP 0
4288
4289 /*
4290 * Noting that the initialization of Guest-state Area of VMCS is in
4291 * vmx_vcpu_reset().
4292 */
init_vmcs(struct vcpu_vmx * vmx)4293 static void init_vmcs(struct vcpu_vmx *vmx)
4294 {
4295 if (nested)
4296 nested_vmx_set_vmcs_shadowing_bitmap();
4297
4298 if (cpu_has_vmx_msr_bitmap())
4299 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4300
4301 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4302
4303 /* Control */
4304 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4305
4306 exec_controls_set(vmx, vmx_exec_control(vmx));
4307
4308 if (cpu_has_secondary_exec_ctrls()) {
4309 vmx_compute_secondary_exec_control(vmx);
4310 secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4311 }
4312
4313 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4314 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4315 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4316 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4317 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4318
4319 vmcs_write16(GUEST_INTR_STATUS, 0);
4320
4321 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4322 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4323 }
4324
4325 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4326 vmcs_write32(PLE_GAP, ple_gap);
4327 vmx->ple_window = ple_window;
4328 vmx->ple_window_dirty = true;
4329 }
4330
4331 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4332 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4333 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4334
4335 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4336 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4337 vmx_set_constant_host_state(vmx);
4338 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4339 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4340
4341 if (cpu_has_vmx_vmfunc())
4342 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4343
4344 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4345 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4346 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4347 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4348 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4349
4350 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4351 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4352
4353 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4354
4355 /* 22.2.1, 20.8.1 */
4356 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4357
4358 vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4359 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4360
4361 set_cr4_guest_host_mask(vmx);
4362
4363 if (vmx->vpid != 0)
4364 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4365
4366 if (cpu_has_vmx_xsaves())
4367 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4368
4369 if (enable_pml) {
4370 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4371 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4372 }
4373
4374 if (cpu_has_vmx_encls_vmexit())
4375 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4376
4377 if (vmx_pt_mode_is_host_guest()) {
4378 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4379 /* Bit[6~0] are forced to 1, writes are ignored. */
4380 vmx->pt_desc.guest.output_mask = 0x7F;
4381 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4382 }
4383 }
4384
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4385 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4386 {
4387 struct vcpu_vmx *vmx = to_vmx(vcpu);
4388 struct msr_data apic_base_msr;
4389 u64 cr0;
4390
4391 vmx->rmode.vm86_active = 0;
4392 vmx->spec_ctrl = 0;
4393
4394 vmx->msr_ia32_umwait_control = 0;
4395
4396 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4397 vmx->hv_deadline_tsc = -1;
4398 kvm_set_cr8(vcpu, 0);
4399
4400 if (!init_event) {
4401 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4402 MSR_IA32_APICBASE_ENABLE;
4403 if (kvm_vcpu_is_reset_bsp(vcpu))
4404 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4405 apic_base_msr.host_initiated = true;
4406 kvm_set_apic_base(vcpu, &apic_base_msr);
4407 }
4408
4409 vmx_segment_cache_clear(vmx);
4410
4411 seg_setup(VCPU_SREG_CS);
4412 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4413 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4414
4415 seg_setup(VCPU_SREG_DS);
4416 seg_setup(VCPU_SREG_ES);
4417 seg_setup(VCPU_SREG_FS);
4418 seg_setup(VCPU_SREG_GS);
4419 seg_setup(VCPU_SREG_SS);
4420
4421 vmcs_write16(GUEST_TR_SELECTOR, 0);
4422 vmcs_writel(GUEST_TR_BASE, 0);
4423 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4424 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4425
4426 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4427 vmcs_writel(GUEST_LDTR_BASE, 0);
4428 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4429 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4430
4431 if (!init_event) {
4432 vmcs_write32(GUEST_SYSENTER_CS, 0);
4433 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4434 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4435 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4436 }
4437
4438 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4439 kvm_rip_write(vcpu, 0xfff0);
4440
4441 vmcs_writel(GUEST_GDTR_BASE, 0);
4442 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4443
4444 vmcs_writel(GUEST_IDTR_BASE, 0);
4445 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4446
4447 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4448 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4449 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4450 if (kvm_mpx_supported())
4451 vmcs_write64(GUEST_BNDCFGS, 0);
4452
4453 setup_msrs(vmx);
4454
4455 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4456
4457 if (cpu_has_vmx_tpr_shadow() && !init_event) {
4458 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4459 if (cpu_need_tpr_shadow(vcpu))
4460 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4461 __pa(vcpu->arch.apic->regs));
4462 vmcs_write32(TPR_THRESHOLD, 0);
4463 }
4464
4465 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4466
4467 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4468 vmx->vcpu.arch.cr0 = cr0;
4469 vmx_set_cr0(vcpu, cr0); /* enter rmode */
4470 vmx_set_cr4(vcpu, 0);
4471 vmx_set_efer(vcpu, 0);
4472
4473 update_exception_bitmap(vcpu);
4474
4475 vpid_sync_context(vmx->vpid);
4476 if (init_event)
4477 vmx_clear_hlt(vcpu);
4478 }
4479
enable_irq_window(struct kvm_vcpu * vcpu)4480 static void enable_irq_window(struct kvm_vcpu *vcpu)
4481 {
4482 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4483 }
4484
enable_nmi_window(struct kvm_vcpu * vcpu)4485 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4486 {
4487 if (!enable_vnmi ||
4488 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4489 enable_irq_window(vcpu);
4490 return;
4491 }
4492
4493 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4494 }
4495
vmx_inject_irq(struct kvm_vcpu * vcpu)4496 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4497 {
4498 struct vcpu_vmx *vmx = to_vmx(vcpu);
4499 uint32_t intr;
4500 int irq = vcpu->arch.interrupt.nr;
4501
4502 trace_kvm_inj_virq(irq);
4503
4504 ++vcpu->stat.irq_injections;
4505 if (vmx->rmode.vm86_active) {
4506 int inc_eip = 0;
4507 if (vcpu->arch.interrupt.soft)
4508 inc_eip = vcpu->arch.event_exit_inst_len;
4509 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4510 return;
4511 }
4512 intr = irq | INTR_INFO_VALID_MASK;
4513 if (vcpu->arch.interrupt.soft) {
4514 intr |= INTR_TYPE_SOFT_INTR;
4515 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4516 vmx->vcpu.arch.event_exit_inst_len);
4517 } else
4518 intr |= INTR_TYPE_EXT_INTR;
4519 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4520
4521 vmx_clear_hlt(vcpu);
4522 }
4523
vmx_inject_nmi(struct kvm_vcpu * vcpu)4524 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4525 {
4526 struct vcpu_vmx *vmx = to_vmx(vcpu);
4527
4528 if (!enable_vnmi) {
4529 /*
4530 * Tracking the NMI-blocked state in software is built upon
4531 * finding the next open IRQ window. This, in turn, depends on
4532 * well-behaving guests: They have to keep IRQs disabled at
4533 * least as long as the NMI handler runs. Otherwise we may
4534 * cause NMI nesting, maybe breaking the guest. But as this is
4535 * highly unlikely, we can live with the residual risk.
4536 */
4537 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4538 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4539 }
4540
4541 ++vcpu->stat.nmi_injections;
4542 vmx->loaded_vmcs->nmi_known_unmasked = false;
4543
4544 if (vmx->rmode.vm86_active) {
4545 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4546 return;
4547 }
4548
4549 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4550 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4551
4552 vmx_clear_hlt(vcpu);
4553 }
4554
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4555 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4556 {
4557 struct vcpu_vmx *vmx = to_vmx(vcpu);
4558 bool masked;
4559
4560 if (!enable_vnmi)
4561 return vmx->loaded_vmcs->soft_vnmi_blocked;
4562 if (vmx->loaded_vmcs->nmi_known_unmasked)
4563 return false;
4564 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4565 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4566 return masked;
4567 }
4568
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4569 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4570 {
4571 struct vcpu_vmx *vmx = to_vmx(vcpu);
4572
4573 if (!enable_vnmi) {
4574 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4575 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4576 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4577 }
4578 } else {
4579 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4580 if (masked)
4581 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4582 GUEST_INTR_STATE_NMI);
4583 else
4584 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4585 GUEST_INTR_STATE_NMI);
4586 }
4587 }
4588
vmx_nmi_blocked(struct kvm_vcpu * vcpu)4589 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4590 {
4591 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4592 return false;
4593
4594 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4595 return true;
4596
4597 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4598 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4599 GUEST_INTR_STATE_NMI));
4600 }
4601
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)4602 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4603 {
4604 if (to_vmx(vcpu)->nested.nested_run_pending)
4605 return -EBUSY;
4606
4607 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
4608 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4609 return -EBUSY;
4610
4611 return !vmx_nmi_blocked(vcpu);
4612 }
4613
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)4614 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4615 {
4616 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4617 return false;
4618
4619 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4620 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4621 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4622 }
4623
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)4624 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4625 {
4626 if (to_vmx(vcpu)->nested.nested_run_pending)
4627 return -EBUSY;
4628
4629 /*
4630 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4631 * e.g. if the IRQ arrived asynchronously after checking nested events.
4632 */
4633 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4634 return -EBUSY;
4635
4636 return !vmx_interrupt_blocked(vcpu);
4637 }
4638
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4639 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4640 {
4641 int ret;
4642
4643 if (enable_unrestricted_guest)
4644 return 0;
4645
4646 mutex_lock(&kvm->slots_lock);
4647 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4648 PAGE_SIZE * 3);
4649 mutex_unlock(&kvm->slots_lock);
4650
4651 if (ret)
4652 return ret;
4653 to_kvm_vmx(kvm)->tss_addr = addr;
4654 return init_rmode_tss(kvm);
4655 }
4656
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4657 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4658 {
4659 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4660 return 0;
4661 }
4662
rmode_exception(struct kvm_vcpu * vcpu,int vec)4663 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4664 {
4665 switch (vec) {
4666 case BP_VECTOR:
4667 /*
4668 * Update instruction length as we may reinject the exception
4669 * from user space while in guest debugging mode.
4670 */
4671 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4672 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4673 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4674 return false;
4675 fallthrough;
4676 case DB_VECTOR:
4677 return !(vcpu->guest_debug &
4678 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4679 case DE_VECTOR:
4680 case OF_VECTOR:
4681 case BR_VECTOR:
4682 case UD_VECTOR:
4683 case DF_VECTOR:
4684 case SS_VECTOR:
4685 case GP_VECTOR:
4686 case MF_VECTOR:
4687 return true;
4688 }
4689 return false;
4690 }
4691
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4692 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4693 int vec, u32 err_code)
4694 {
4695 /*
4696 * Instruction with address size override prefix opcode 0x67
4697 * Cause the #SS fault with 0 error code in VM86 mode.
4698 */
4699 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4700 if (kvm_emulate_instruction(vcpu, 0)) {
4701 if (vcpu->arch.halt_request) {
4702 vcpu->arch.halt_request = 0;
4703 return kvm_vcpu_halt(vcpu);
4704 }
4705 return 1;
4706 }
4707 return 0;
4708 }
4709
4710 /*
4711 * Forward all other exceptions that are valid in real mode.
4712 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4713 * the required debugging infrastructure rework.
4714 */
4715 kvm_queue_exception(vcpu, vec);
4716 return 1;
4717 }
4718
4719 /*
4720 * Trigger machine check on the host. We assume all the MSRs are already set up
4721 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4722 * We pass a fake environment to the machine check handler because we want
4723 * the guest to be always treated like user space, no matter what context
4724 * it used internally.
4725 */
kvm_machine_check(void)4726 static void kvm_machine_check(void)
4727 {
4728 #if defined(CONFIG_X86_MCE)
4729 struct pt_regs regs = {
4730 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4731 .flags = X86_EFLAGS_IF,
4732 };
4733
4734 do_machine_check(®s);
4735 #endif
4736 }
4737
handle_machine_check(struct kvm_vcpu * vcpu)4738 static int handle_machine_check(struct kvm_vcpu *vcpu)
4739 {
4740 /* handled by vmx_vcpu_run() */
4741 return 1;
4742 }
4743
4744 /*
4745 * If the host has split lock detection disabled, then #AC is
4746 * unconditionally injected into the guest, which is the pre split lock
4747 * detection behaviour.
4748 *
4749 * If the host has split lock detection enabled then #AC is
4750 * only injected into the guest when:
4751 * - Guest CPL == 3 (user mode)
4752 * - Guest has #AC detection enabled in CR0
4753 * - Guest EFLAGS has AC bit set
4754 */
guest_inject_ac(struct kvm_vcpu * vcpu)4755 static inline bool guest_inject_ac(struct kvm_vcpu *vcpu)
4756 {
4757 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4758 return true;
4759
4760 return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4761 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4762 }
4763
handle_exception_nmi(struct kvm_vcpu * vcpu)4764 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4765 {
4766 struct vcpu_vmx *vmx = to_vmx(vcpu);
4767 struct kvm_run *kvm_run = vcpu->run;
4768 u32 intr_info, ex_no, error_code;
4769 unsigned long cr2, rip, dr6;
4770 u32 vect_info;
4771
4772 vect_info = vmx->idt_vectoring_info;
4773 intr_info = vmx_get_intr_info(vcpu);
4774
4775 if (is_machine_check(intr_info) || is_nmi(intr_info))
4776 return 1; /* handled by handle_exception_nmi_irqoff() */
4777
4778 if (is_invalid_opcode(intr_info))
4779 return handle_ud(vcpu);
4780
4781 error_code = 0;
4782 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4783 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4784
4785 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4786 WARN_ON_ONCE(!enable_vmware_backdoor);
4787
4788 /*
4789 * VMware backdoor emulation on #GP interception only handles
4790 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4791 * error code on #GP.
4792 */
4793 if (error_code) {
4794 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4795 return 1;
4796 }
4797 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4798 }
4799
4800 /*
4801 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4802 * MMIO, it is better to report an internal error.
4803 * See the comments in vmx_handle_exit.
4804 */
4805 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4806 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4807 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4808 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4809 vcpu->run->internal.ndata = 4;
4810 vcpu->run->internal.data[0] = vect_info;
4811 vcpu->run->internal.data[1] = intr_info;
4812 vcpu->run->internal.data[2] = error_code;
4813 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4814 return 0;
4815 }
4816
4817 if (is_page_fault(intr_info)) {
4818 cr2 = vmx_get_exit_qual(vcpu);
4819 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4820 /*
4821 * EPT will cause page fault only if we need to
4822 * detect illegal GPAs.
4823 */
4824 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4825 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4826 return 1;
4827 } else
4828 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4829 }
4830
4831 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4832
4833 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4834 return handle_rmode_exception(vcpu, ex_no, error_code);
4835
4836 switch (ex_no) {
4837 case DB_VECTOR:
4838 dr6 = vmx_get_exit_qual(vcpu);
4839 if (!(vcpu->guest_debug &
4840 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4841 if (is_icebp(intr_info))
4842 WARN_ON(!skip_emulated_instruction(vcpu));
4843
4844 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4845 return 1;
4846 }
4847 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
4848 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4849 fallthrough;
4850 case BP_VECTOR:
4851 /*
4852 * Update instruction length as we may reinject #BP from
4853 * user space while in guest debugging mode. Reading it for
4854 * #DB as well causes no harm, it is not used in that case.
4855 */
4856 vmx->vcpu.arch.event_exit_inst_len =
4857 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4858 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4859 rip = kvm_rip_read(vcpu);
4860 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4861 kvm_run->debug.arch.exception = ex_no;
4862 break;
4863 case AC_VECTOR:
4864 if (guest_inject_ac(vcpu)) {
4865 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4866 return 1;
4867 }
4868
4869 /*
4870 * Handle split lock. Depending on detection mode this will
4871 * either warn and disable split lock detection for this
4872 * task or force SIGBUS on it.
4873 */
4874 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4875 return 1;
4876 fallthrough;
4877 default:
4878 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4879 kvm_run->ex.exception = ex_no;
4880 kvm_run->ex.error_code = error_code;
4881 break;
4882 }
4883 return 0;
4884 }
4885
handle_external_interrupt(struct kvm_vcpu * vcpu)4886 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4887 {
4888 ++vcpu->stat.irq_exits;
4889 return 1;
4890 }
4891
handle_triple_fault(struct kvm_vcpu * vcpu)4892 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4893 {
4894 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4895 vcpu->mmio_needed = 0;
4896 return 0;
4897 }
4898
handle_io(struct kvm_vcpu * vcpu)4899 static int handle_io(struct kvm_vcpu *vcpu)
4900 {
4901 unsigned long exit_qualification;
4902 int size, in, string;
4903 unsigned port;
4904
4905 exit_qualification = vmx_get_exit_qual(vcpu);
4906 string = (exit_qualification & 16) != 0;
4907
4908 ++vcpu->stat.io_exits;
4909
4910 if (string)
4911 return kvm_emulate_instruction(vcpu, 0);
4912
4913 port = exit_qualification >> 16;
4914 size = (exit_qualification & 7) + 1;
4915 in = (exit_qualification & 8) != 0;
4916
4917 return kvm_fast_pio(vcpu, size, port, in);
4918 }
4919
4920 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4921 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4922 {
4923 /*
4924 * Patch in the VMCALL instruction:
4925 */
4926 hypercall[0] = 0x0f;
4927 hypercall[1] = 0x01;
4928 hypercall[2] = 0xc1;
4929 }
4930
4931 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)4932 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4933 {
4934 if (is_guest_mode(vcpu)) {
4935 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4936 unsigned long orig_val = val;
4937
4938 /*
4939 * We get here when L2 changed cr0 in a way that did not change
4940 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4941 * but did change L0 shadowed bits. So we first calculate the
4942 * effective cr0 value that L1 would like to write into the
4943 * hardware. It consists of the L2-owned bits from the new
4944 * value combined with the L1-owned bits from L1's guest_cr0.
4945 */
4946 val = (val & ~vmcs12->cr0_guest_host_mask) |
4947 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4948
4949 if (!nested_guest_cr0_valid(vcpu, val))
4950 return 1;
4951
4952 if (kvm_set_cr0(vcpu, val))
4953 return 1;
4954 vmcs_writel(CR0_READ_SHADOW, orig_val);
4955 return 0;
4956 } else {
4957 if (to_vmx(vcpu)->nested.vmxon &&
4958 !nested_host_cr0_valid(vcpu, val))
4959 return 1;
4960
4961 return kvm_set_cr0(vcpu, val);
4962 }
4963 }
4964
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)4965 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4966 {
4967 if (is_guest_mode(vcpu)) {
4968 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4969 unsigned long orig_val = val;
4970
4971 /* analogously to handle_set_cr0 */
4972 val = (val & ~vmcs12->cr4_guest_host_mask) |
4973 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4974 if (kvm_set_cr4(vcpu, val))
4975 return 1;
4976 vmcs_writel(CR4_READ_SHADOW, orig_val);
4977 return 0;
4978 } else
4979 return kvm_set_cr4(vcpu, val);
4980 }
4981
handle_desc(struct kvm_vcpu * vcpu)4982 static int handle_desc(struct kvm_vcpu *vcpu)
4983 {
4984 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4985 return kvm_emulate_instruction(vcpu, 0);
4986 }
4987
handle_cr(struct kvm_vcpu * vcpu)4988 static int handle_cr(struct kvm_vcpu *vcpu)
4989 {
4990 unsigned long exit_qualification, val;
4991 int cr;
4992 int reg;
4993 int err;
4994 int ret;
4995
4996 exit_qualification = vmx_get_exit_qual(vcpu);
4997 cr = exit_qualification & 15;
4998 reg = (exit_qualification >> 8) & 15;
4999 switch ((exit_qualification >> 4) & 3) {
5000 case 0: /* mov to cr */
5001 val = kvm_register_readl(vcpu, reg);
5002 trace_kvm_cr_write(cr, val);
5003 switch (cr) {
5004 case 0:
5005 err = handle_set_cr0(vcpu, val);
5006 return kvm_complete_insn_gp(vcpu, err);
5007 case 3:
5008 WARN_ON_ONCE(enable_unrestricted_guest);
5009 err = kvm_set_cr3(vcpu, val);
5010 return kvm_complete_insn_gp(vcpu, err);
5011 case 4:
5012 err = handle_set_cr4(vcpu, val);
5013 return kvm_complete_insn_gp(vcpu, err);
5014 case 8: {
5015 u8 cr8_prev = kvm_get_cr8(vcpu);
5016 u8 cr8 = (u8)val;
5017 err = kvm_set_cr8(vcpu, cr8);
5018 ret = kvm_complete_insn_gp(vcpu, err);
5019 if (lapic_in_kernel(vcpu))
5020 return ret;
5021 if (cr8_prev <= cr8)
5022 return ret;
5023 /*
5024 * TODO: we might be squashing a
5025 * KVM_GUESTDBG_SINGLESTEP-triggered
5026 * KVM_EXIT_DEBUG here.
5027 */
5028 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5029 return 0;
5030 }
5031 }
5032 break;
5033 case 2: /* clts */
5034 WARN_ONCE(1, "Guest should always own CR0.TS");
5035 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5036 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5037 return kvm_skip_emulated_instruction(vcpu);
5038 case 1: /*mov from cr*/
5039 switch (cr) {
5040 case 3:
5041 WARN_ON_ONCE(enable_unrestricted_guest);
5042 val = kvm_read_cr3(vcpu);
5043 kvm_register_write(vcpu, reg, val);
5044 trace_kvm_cr_read(cr, val);
5045 return kvm_skip_emulated_instruction(vcpu);
5046 case 8:
5047 val = kvm_get_cr8(vcpu);
5048 kvm_register_write(vcpu, reg, val);
5049 trace_kvm_cr_read(cr, val);
5050 return kvm_skip_emulated_instruction(vcpu);
5051 }
5052 break;
5053 case 3: /* lmsw */
5054 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5055 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5056 kvm_lmsw(vcpu, val);
5057
5058 return kvm_skip_emulated_instruction(vcpu);
5059 default:
5060 break;
5061 }
5062 vcpu->run->exit_reason = 0;
5063 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5064 (int)(exit_qualification >> 4) & 3, cr);
5065 return 0;
5066 }
5067
handle_dr(struct kvm_vcpu * vcpu)5068 static int handle_dr(struct kvm_vcpu *vcpu)
5069 {
5070 unsigned long exit_qualification;
5071 int dr, dr7, reg;
5072
5073 exit_qualification = vmx_get_exit_qual(vcpu);
5074 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5075
5076 /* First, if DR does not exist, trigger UD */
5077 if (!kvm_require_dr(vcpu, dr))
5078 return 1;
5079
5080 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5081 if (!kvm_require_cpl(vcpu, 0))
5082 return 1;
5083 dr7 = vmcs_readl(GUEST_DR7);
5084 if (dr7 & DR7_GD) {
5085 /*
5086 * As the vm-exit takes precedence over the debug trap, we
5087 * need to emulate the latter, either for the host or the
5088 * guest debugging itself.
5089 */
5090 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5091 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_RTM | DR6_FIXED_1;
5092 vcpu->run->debug.arch.dr7 = dr7;
5093 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5094 vcpu->run->debug.arch.exception = DB_VECTOR;
5095 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5096 return 0;
5097 } else {
5098 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5099 return 1;
5100 }
5101 }
5102
5103 if (vcpu->guest_debug == 0) {
5104 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5105
5106 /*
5107 * No more DR vmexits; force a reload of the debug registers
5108 * and reenter on this instruction. The next vmexit will
5109 * retrieve the full state of the debug registers.
5110 */
5111 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5112 return 1;
5113 }
5114
5115 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5116 if (exit_qualification & TYPE_MOV_FROM_DR) {
5117 unsigned long val;
5118
5119 if (kvm_get_dr(vcpu, dr, &val))
5120 return 1;
5121 kvm_register_write(vcpu, reg, val);
5122 } else
5123 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5124 return 1;
5125
5126 return kvm_skip_emulated_instruction(vcpu);
5127 }
5128
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5129 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5130 {
5131 get_debugreg(vcpu->arch.db[0], 0);
5132 get_debugreg(vcpu->arch.db[1], 1);
5133 get_debugreg(vcpu->arch.db[2], 2);
5134 get_debugreg(vcpu->arch.db[3], 3);
5135 get_debugreg(vcpu->arch.dr6, 6);
5136 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5137
5138 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5139 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5140 }
5141
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5142 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5143 {
5144 vmcs_writel(GUEST_DR7, val);
5145 }
5146
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5147 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5148 {
5149 kvm_apic_update_ppr(vcpu);
5150 return 1;
5151 }
5152
handle_interrupt_window(struct kvm_vcpu * vcpu)5153 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5154 {
5155 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5156
5157 kvm_make_request(KVM_REQ_EVENT, vcpu);
5158
5159 ++vcpu->stat.irq_window_exits;
5160 return 1;
5161 }
5162
handle_vmcall(struct kvm_vcpu * vcpu)5163 static int handle_vmcall(struct kvm_vcpu *vcpu)
5164 {
5165 return kvm_emulate_hypercall(vcpu);
5166 }
5167
handle_invd(struct kvm_vcpu * vcpu)5168 static int handle_invd(struct kvm_vcpu *vcpu)
5169 {
5170 /* Treat an INVD instruction as a NOP and just skip it. */
5171 return kvm_skip_emulated_instruction(vcpu);
5172 }
5173
handle_invlpg(struct kvm_vcpu * vcpu)5174 static int handle_invlpg(struct kvm_vcpu *vcpu)
5175 {
5176 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5177
5178 kvm_mmu_invlpg(vcpu, exit_qualification);
5179 return kvm_skip_emulated_instruction(vcpu);
5180 }
5181
handle_rdpmc(struct kvm_vcpu * vcpu)5182 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5183 {
5184 int err;
5185
5186 err = kvm_rdpmc(vcpu);
5187 return kvm_complete_insn_gp(vcpu, err);
5188 }
5189
handle_wbinvd(struct kvm_vcpu * vcpu)5190 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5191 {
5192 return kvm_emulate_wbinvd(vcpu);
5193 }
5194
handle_xsetbv(struct kvm_vcpu * vcpu)5195 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5196 {
5197 u64 new_bv = kvm_read_edx_eax(vcpu);
5198 u32 index = kvm_rcx_read(vcpu);
5199
5200 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5201 return kvm_skip_emulated_instruction(vcpu);
5202 return 1;
5203 }
5204
handle_apic_access(struct kvm_vcpu * vcpu)5205 static int handle_apic_access(struct kvm_vcpu *vcpu)
5206 {
5207 if (likely(fasteoi)) {
5208 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5209 int access_type, offset;
5210
5211 access_type = exit_qualification & APIC_ACCESS_TYPE;
5212 offset = exit_qualification & APIC_ACCESS_OFFSET;
5213 /*
5214 * Sane guest uses MOV to write EOI, with written value
5215 * not cared. So make a short-circuit here by avoiding
5216 * heavy instruction emulation.
5217 */
5218 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5219 (offset == APIC_EOI)) {
5220 kvm_lapic_set_eoi(vcpu);
5221 return kvm_skip_emulated_instruction(vcpu);
5222 }
5223 }
5224 return kvm_emulate_instruction(vcpu, 0);
5225 }
5226
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5227 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5228 {
5229 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5230 int vector = exit_qualification & 0xff;
5231
5232 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5233 kvm_apic_set_eoi_accelerated(vcpu, vector);
5234 return 1;
5235 }
5236
handle_apic_write(struct kvm_vcpu * vcpu)5237 static int handle_apic_write(struct kvm_vcpu *vcpu)
5238 {
5239 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5240 u32 offset = exit_qualification & 0xfff;
5241
5242 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5243 kvm_apic_write_nodecode(vcpu, offset);
5244 return 1;
5245 }
5246
handle_task_switch(struct kvm_vcpu * vcpu)5247 static int handle_task_switch(struct kvm_vcpu *vcpu)
5248 {
5249 struct vcpu_vmx *vmx = to_vmx(vcpu);
5250 unsigned long exit_qualification;
5251 bool has_error_code = false;
5252 u32 error_code = 0;
5253 u16 tss_selector;
5254 int reason, type, idt_v, idt_index;
5255
5256 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5257 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5258 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5259
5260 exit_qualification = vmx_get_exit_qual(vcpu);
5261
5262 reason = (u32)exit_qualification >> 30;
5263 if (reason == TASK_SWITCH_GATE && idt_v) {
5264 switch (type) {
5265 case INTR_TYPE_NMI_INTR:
5266 vcpu->arch.nmi_injected = false;
5267 vmx_set_nmi_mask(vcpu, true);
5268 break;
5269 case INTR_TYPE_EXT_INTR:
5270 case INTR_TYPE_SOFT_INTR:
5271 kvm_clear_interrupt_queue(vcpu);
5272 break;
5273 case INTR_TYPE_HARD_EXCEPTION:
5274 if (vmx->idt_vectoring_info &
5275 VECTORING_INFO_DELIVER_CODE_MASK) {
5276 has_error_code = true;
5277 error_code =
5278 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5279 }
5280 fallthrough;
5281 case INTR_TYPE_SOFT_EXCEPTION:
5282 kvm_clear_exception_queue(vcpu);
5283 break;
5284 default:
5285 break;
5286 }
5287 }
5288 tss_selector = exit_qualification;
5289
5290 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5291 type != INTR_TYPE_EXT_INTR &&
5292 type != INTR_TYPE_NMI_INTR))
5293 WARN_ON(!skip_emulated_instruction(vcpu));
5294
5295 /*
5296 * TODO: What about debug traps on tss switch?
5297 * Are we supposed to inject them and update dr6?
5298 */
5299 return kvm_task_switch(vcpu, tss_selector,
5300 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5301 reason, has_error_code, error_code);
5302 }
5303
handle_ept_violation(struct kvm_vcpu * vcpu)5304 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5305 {
5306 unsigned long exit_qualification;
5307 gpa_t gpa;
5308 u64 error_code;
5309
5310 exit_qualification = vmx_get_exit_qual(vcpu);
5311
5312 /*
5313 * EPT violation happened while executing iret from NMI,
5314 * "blocked by NMI" bit has to be set before next VM entry.
5315 * There are errata that may cause this bit to not be set:
5316 * AAK134, BY25.
5317 */
5318 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5319 enable_vnmi &&
5320 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5321 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5322
5323 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5324 trace_kvm_page_fault(gpa, exit_qualification);
5325
5326 /* Is it a read fault? */
5327 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5328 ? PFERR_USER_MASK : 0;
5329 /* Is it a write fault? */
5330 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5331 ? PFERR_WRITE_MASK : 0;
5332 /* Is it a fetch fault? */
5333 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5334 ? PFERR_FETCH_MASK : 0;
5335 /* ept page table entry is present? */
5336 error_code |= (exit_qualification &
5337 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5338 EPT_VIOLATION_EXECUTABLE))
5339 ? PFERR_PRESENT_MASK : 0;
5340
5341 error_code |= (exit_qualification & 0x100) != 0 ?
5342 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5343
5344 vcpu->arch.exit_qualification = exit_qualification;
5345
5346 /*
5347 * Check that the GPA doesn't exceed physical memory limits, as that is
5348 * a guest page fault. We have to emulate the instruction here, because
5349 * if the illegal address is that of a paging structure, then
5350 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5351 * would also use advanced VM-exit information for EPT violations to
5352 * reconstruct the page fault error code.
5353 */
5354 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5355 return kvm_emulate_instruction(vcpu, 0);
5356
5357 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5358 }
5359
handle_ept_misconfig(struct kvm_vcpu * vcpu)5360 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5361 {
5362 gpa_t gpa;
5363
5364 /*
5365 * A nested guest cannot optimize MMIO vmexits, because we have an
5366 * nGPA here instead of the required GPA.
5367 */
5368 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5369 if (!is_guest_mode(vcpu) &&
5370 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5371 trace_kvm_fast_mmio(gpa);
5372 return kvm_skip_emulated_instruction(vcpu);
5373 }
5374
5375 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5376 }
5377
handle_nmi_window(struct kvm_vcpu * vcpu)5378 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5379 {
5380 WARN_ON_ONCE(!enable_vnmi);
5381 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5382 ++vcpu->stat.nmi_window_exits;
5383 kvm_make_request(KVM_REQ_EVENT, vcpu);
5384
5385 return 1;
5386 }
5387
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5388 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5389 {
5390 struct vcpu_vmx *vmx = to_vmx(vcpu);
5391 bool intr_window_requested;
5392 unsigned count = 130;
5393
5394 intr_window_requested = exec_controls_get(vmx) &
5395 CPU_BASED_INTR_WINDOW_EXITING;
5396
5397 while (vmx->emulation_required && count-- != 0) {
5398 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5399 return handle_interrupt_window(&vmx->vcpu);
5400
5401 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5402 return 1;
5403
5404 if (!kvm_emulate_instruction(vcpu, 0))
5405 return 0;
5406
5407 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5408 vcpu->arch.exception.pending) {
5409 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5410 vcpu->run->internal.suberror =
5411 KVM_INTERNAL_ERROR_EMULATION;
5412 vcpu->run->internal.ndata = 0;
5413 return 0;
5414 }
5415
5416 if (vcpu->arch.halt_request) {
5417 vcpu->arch.halt_request = 0;
5418 return kvm_vcpu_halt(vcpu);
5419 }
5420
5421 /*
5422 * Note, return 1 and not 0, vcpu_run() will invoke
5423 * xfer_to_guest_mode() which will create a proper return
5424 * code.
5425 */
5426 if (__xfer_to_guest_mode_work_pending())
5427 return 1;
5428 }
5429
5430 return 1;
5431 }
5432
grow_ple_window(struct kvm_vcpu * vcpu)5433 static void grow_ple_window(struct kvm_vcpu *vcpu)
5434 {
5435 struct vcpu_vmx *vmx = to_vmx(vcpu);
5436 unsigned int old = vmx->ple_window;
5437
5438 vmx->ple_window = __grow_ple_window(old, ple_window,
5439 ple_window_grow,
5440 ple_window_max);
5441
5442 if (vmx->ple_window != old) {
5443 vmx->ple_window_dirty = true;
5444 trace_kvm_ple_window_update(vcpu->vcpu_id,
5445 vmx->ple_window, old);
5446 }
5447 }
5448
shrink_ple_window(struct kvm_vcpu * vcpu)5449 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5450 {
5451 struct vcpu_vmx *vmx = to_vmx(vcpu);
5452 unsigned int old = vmx->ple_window;
5453
5454 vmx->ple_window = __shrink_ple_window(old, ple_window,
5455 ple_window_shrink,
5456 ple_window);
5457
5458 if (vmx->ple_window != old) {
5459 vmx->ple_window_dirty = true;
5460 trace_kvm_ple_window_update(vcpu->vcpu_id,
5461 vmx->ple_window, old);
5462 }
5463 }
5464
vmx_enable_tdp(void)5465 static void vmx_enable_tdp(void)
5466 {
5467 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5468 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5469 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5470 0ull, VMX_EPT_EXECUTABLE_MASK,
5471 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5472 VMX_EPT_RWX_MASK, 0ull);
5473
5474 ept_set_mmio_spte_mask();
5475 }
5476
5477 /*
5478 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5479 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5480 */
handle_pause(struct kvm_vcpu * vcpu)5481 static int handle_pause(struct kvm_vcpu *vcpu)
5482 {
5483 if (!kvm_pause_in_guest(vcpu->kvm))
5484 grow_ple_window(vcpu);
5485
5486 /*
5487 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5488 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5489 * never set PAUSE_EXITING and just set PLE if supported,
5490 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5491 */
5492 kvm_vcpu_on_spin(vcpu, true);
5493 return kvm_skip_emulated_instruction(vcpu);
5494 }
5495
handle_nop(struct kvm_vcpu * vcpu)5496 static int handle_nop(struct kvm_vcpu *vcpu)
5497 {
5498 return kvm_skip_emulated_instruction(vcpu);
5499 }
5500
handle_mwait(struct kvm_vcpu * vcpu)5501 static int handle_mwait(struct kvm_vcpu *vcpu)
5502 {
5503 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5504 return handle_nop(vcpu);
5505 }
5506
handle_invalid_op(struct kvm_vcpu * vcpu)5507 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5508 {
5509 kvm_queue_exception(vcpu, UD_VECTOR);
5510 return 1;
5511 }
5512
handle_monitor_trap(struct kvm_vcpu * vcpu)5513 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5514 {
5515 return 1;
5516 }
5517
handle_monitor(struct kvm_vcpu * vcpu)5518 static int handle_monitor(struct kvm_vcpu *vcpu)
5519 {
5520 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5521 return handle_nop(vcpu);
5522 }
5523
handle_invpcid(struct kvm_vcpu * vcpu)5524 static int handle_invpcid(struct kvm_vcpu *vcpu)
5525 {
5526 u32 vmx_instruction_info;
5527 unsigned long type;
5528 gva_t gva;
5529 struct {
5530 u64 pcid;
5531 u64 gla;
5532 } operand;
5533
5534 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5535 kvm_queue_exception(vcpu, UD_VECTOR);
5536 return 1;
5537 }
5538
5539 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5540 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5541
5542 if (type > 3) {
5543 kvm_inject_gp(vcpu, 0);
5544 return 1;
5545 }
5546
5547 /* According to the Intel instruction reference, the memory operand
5548 * is read even if it isn't needed (e.g., for type==all)
5549 */
5550 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5551 vmx_instruction_info, false,
5552 sizeof(operand), &gva))
5553 return 1;
5554
5555 return kvm_handle_invpcid(vcpu, type, gva);
5556 }
5557
handle_pml_full(struct kvm_vcpu * vcpu)5558 static int handle_pml_full(struct kvm_vcpu *vcpu)
5559 {
5560 unsigned long exit_qualification;
5561
5562 trace_kvm_pml_full(vcpu->vcpu_id);
5563
5564 exit_qualification = vmx_get_exit_qual(vcpu);
5565
5566 /*
5567 * PML buffer FULL happened while executing iret from NMI,
5568 * "blocked by NMI" bit has to be set before next VM entry.
5569 */
5570 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5571 enable_vnmi &&
5572 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5573 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5574 GUEST_INTR_STATE_NMI);
5575
5576 /*
5577 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5578 * here.., and there's no userspace involvement needed for PML.
5579 */
5580 return 1;
5581 }
5582
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)5583 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5584 {
5585 struct vcpu_vmx *vmx = to_vmx(vcpu);
5586
5587 if (!vmx->req_immediate_exit &&
5588 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5589 kvm_lapic_expired_hv_timer(vcpu);
5590 return EXIT_FASTPATH_REENTER_GUEST;
5591 }
5592
5593 return EXIT_FASTPATH_NONE;
5594 }
5595
handle_preemption_timer(struct kvm_vcpu * vcpu)5596 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5597 {
5598 handle_fastpath_preemption_timer(vcpu);
5599 return 1;
5600 }
5601
5602 /*
5603 * When nested=0, all VMX instruction VM Exits filter here. The handlers
5604 * are overwritten by nested_vmx_setup() when nested=1.
5605 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5606 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5607 {
5608 kvm_queue_exception(vcpu, UD_VECTOR);
5609 return 1;
5610 }
5611
handle_encls(struct kvm_vcpu * vcpu)5612 static int handle_encls(struct kvm_vcpu *vcpu)
5613 {
5614 /*
5615 * SGX virtualization is not yet supported. There is no software
5616 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5617 * to prevent the guest from executing ENCLS.
5618 */
5619 kvm_queue_exception(vcpu, UD_VECTOR);
5620 return 1;
5621 }
5622
5623 /*
5624 * The exit handlers return 1 if the exit was handled fully and guest execution
5625 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5626 * to be done to userspace and return 0.
5627 */
5628 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5629 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
5630 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
5631 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
5632 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
5633 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
5634 [EXIT_REASON_CR_ACCESS] = handle_cr,
5635 [EXIT_REASON_DR_ACCESS] = handle_dr,
5636 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
5637 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
5638 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
5639 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
5640 [EXIT_REASON_HLT] = kvm_emulate_halt,
5641 [EXIT_REASON_INVD] = handle_invd,
5642 [EXIT_REASON_INVLPG] = handle_invlpg,
5643 [EXIT_REASON_RDPMC] = handle_rdpmc,
5644 [EXIT_REASON_VMCALL] = handle_vmcall,
5645 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
5646 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
5647 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
5648 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
5649 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
5650 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
5651 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
5652 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
5653 [EXIT_REASON_VMON] = handle_vmx_instruction,
5654 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5655 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
5656 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
5657 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
5658 [EXIT_REASON_WBINVD] = handle_wbinvd,
5659 [EXIT_REASON_XSETBV] = handle_xsetbv,
5660 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
5661 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
5662 [EXIT_REASON_GDTR_IDTR] = handle_desc,
5663 [EXIT_REASON_LDTR_TR] = handle_desc,
5664 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5665 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
5666 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
5667 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5668 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
5669 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
5670 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
5671 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
5672 [EXIT_REASON_RDRAND] = handle_invalid_op,
5673 [EXIT_REASON_RDSEED] = handle_invalid_op,
5674 [EXIT_REASON_PML_FULL] = handle_pml_full,
5675 [EXIT_REASON_INVPCID] = handle_invpcid,
5676 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
5677 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
5678 [EXIT_REASON_ENCLS] = handle_encls,
5679 };
5680
5681 static const int kvm_vmx_max_exit_handlers =
5682 ARRAY_SIZE(kvm_vmx_exit_handlers);
5683
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)5684 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2,
5685 u32 *intr_info, u32 *error_code)
5686 {
5687 struct vcpu_vmx *vmx = to_vmx(vcpu);
5688
5689 *info1 = vmx_get_exit_qual(vcpu);
5690 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
5691 *info2 = vmx->idt_vectoring_info;
5692 *intr_info = vmx_get_intr_info(vcpu);
5693 if (is_exception_with_error_code(*intr_info))
5694 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5695 else
5696 *error_code = 0;
5697 } else {
5698 *info2 = 0;
5699 *intr_info = 0;
5700 *error_code = 0;
5701 }
5702 }
5703
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5704 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5705 {
5706 if (vmx->pml_pg) {
5707 __free_page(vmx->pml_pg);
5708 vmx->pml_pg = NULL;
5709 }
5710 }
5711
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5712 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5713 {
5714 struct vcpu_vmx *vmx = to_vmx(vcpu);
5715 u64 *pml_buf;
5716 u16 pml_idx;
5717
5718 pml_idx = vmcs_read16(GUEST_PML_INDEX);
5719
5720 /* Do nothing if PML buffer is empty */
5721 if (pml_idx == (PML_ENTITY_NUM - 1))
5722 return;
5723
5724 /* PML index always points to next available PML buffer entity */
5725 if (pml_idx >= PML_ENTITY_NUM)
5726 pml_idx = 0;
5727 else
5728 pml_idx++;
5729
5730 pml_buf = page_address(vmx->pml_pg);
5731 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5732 u64 gpa;
5733
5734 gpa = pml_buf[pml_idx];
5735 WARN_ON(gpa & (PAGE_SIZE - 1));
5736 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5737 }
5738
5739 /* reset PML index */
5740 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5741 }
5742
5743 /*
5744 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5745 * Called before reporting dirty_bitmap to userspace.
5746 */
kvm_flush_pml_buffers(struct kvm * kvm)5747 static void kvm_flush_pml_buffers(struct kvm *kvm)
5748 {
5749 int i;
5750 struct kvm_vcpu *vcpu;
5751 /*
5752 * We only need to kick vcpu out of guest mode here, as PML buffer
5753 * is flushed at beginning of all VMEXITs, and it's obvious that only
5754 * vcpus running in guest are possible to have unflushed GPAs in PML
5755 * buffer.
5756 */
5757 kvm_for_each_vcpu(i, vcpu, kvm)
5758 kvm_vcpu_kick(vcpu);
5759 }
5760
vmx_dump_sel(char * name,uint32_t sel)5761 static void vmx_dump_sel(char *name, uint32_t sel)
5762 {
5763 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5764 name, vmcs_read16(sel),
5765 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5766 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5767 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5768 }
5769
vmx_dump_dtsel(char * name,uint32_t limit)5770 static void vmx_dump_dtsel(char *name, uint32_t limit)
5771 {
5772 pr_err("%s limit=0x%08x, base=0x%016lx\n",
5773 name, vmcs_read32(limit),
5774 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5775 }
5776
dump_vmcs(void)5777 void dump_vmcs(void)
5778 {
5779 u32 vmentry_ctl, vmexit_ctl;
5780 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5781 unsigned long cr4;
5782 u64 efer;
5783
5784 if (!dump_invalid_vmcs) {
5785 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5786 return;
5787 }
5788
5789 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5790 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5791 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5792 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5793 cr4 = vmcs_readl(GUEST_CR4);
5794 efer = vmcs_read64(GUEST_IA32_EFER);
5795 secondary_exec_control = 0;
5796 if (cpu_has_secondary_exec_ctrls())
5797 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5798
5799 pr_err("*** Guest State ***\n");
5800 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5801 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5802 vmcs_readl(CR0_GUEST_HOST_MASK));
5803 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5804 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5805 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5806 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5807 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5808 {
5809 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
5810 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5811 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
5812 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5813 }
5814 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
5815 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5816 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
5817 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5818 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5819 vmcs_readl(GUEST_SYSENTER_ESP),
5820 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5821 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
5822 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
5823 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
5824 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
5825 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
5826 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
5827 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5828 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5829 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5830 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
5831 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5832 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5833 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5834 efer, vmcs_read64(GUEST_IA32_PAT));
5835 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
5836 vmcs_read64(GUEST_IA32_DEBUGCTL),
5837 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5838 if (cpu_has_load_perf_global_ctrl() &&
5839 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5840 pr_err("PerfGlobCtl = 0x%016llx\n",
5841 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5842 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5843 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5844 pr_err("Interruptibility = %08x ActivityState = %08x\n",
5845 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5846 vmcs_read32(GUEST_ACTIVITY_STATE));
5847 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5848 pr_err("InterruptStatus = %04x\n",
5849 vmcs_read16(GUEST_INTR_STATUS));
5850
5851 pr_err("*** Host State ***\n");
5852 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
5853 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5854 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5855 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5856 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5857 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5858 vmcs_read16(HOST_TR_SELECTOR));
5859 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5860 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5861 vmcs_readl(HOST_TR_BASE));
5862 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5863 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5864 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5865 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5866 vmcs_readl(HOST_CR4));
5867 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5868 vmcs_readl(HOST_IA32_SYSENTER_ESP),
5869 vmcs_read32(HOST_IA32_SYSENTER_CS),
5870 vmcs_readl(HOST_IA32_SYSENTER_EIP));
5871 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5872 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
5873 vmcs_read64(HOST_IA32_EFER),
5874 vmcs_read64(HOST_IA32_PAT));
5875 if (cpu_has_load_perf_global_ctrl() &&
5876 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5877 pr_err("PerfGlobCtl = 0x%016llx\n",
5878 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5879
5880 pr_err("*** Control State ***\n");
5881 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5882 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5883 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5884 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5885 vmcs_read32(EXCEPTION_BITMAP),
5886 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5887 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5888 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5889 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5890 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5891 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5892 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5893 vmcs_read32(VM_EXIT_INTR_INFO),
5894 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5895 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5896 pr_err(" reason=%08x qualification=%016lx\n",
5897 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5898 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5899 vmcs_read32(IDT_VECTORING_INFO_FIELD),
5900 vmcs_read32(IDT_VECTORING_ERROR_CODE));
5901 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5902 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5903 pr_err("TSC Multiplier = 0x%016llx\n",
5904 vmcs_read64(TSC_MULTIPLIER));
5905 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5906 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5907 u16 status = vmcs_read16(GUEST_INTR_STATUS);
5908 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5909 }
5910 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5911 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5912 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5913 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5914 }
5915 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5916 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5917 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5918 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5919 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5920 pr_err("PLE Gap=%08x Window=%08x\n",
5921 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5922 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5923 pr_err("Virtual processor ID = 0x%04x\n",
5924 vmcs_read16(VIRTUAL_PROCESSOR_ID));
5925 }
5926
5927 /*
5928 * The guest has exited. See if we can fix it or if we need userspace
5929 * assistance.
5930 */
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)5931 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5932 {
5933 struct vcpu_vmx *vmx = to_vmx(vcpu);
5934 u32 exit_reason = vmx->exit_reason;
5935 u32 vectoring_info = vmx->idt_vectoring_info;
5936
5937 /*
5938 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5939 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5940 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5941 * mode as if vcpus is in root mode, the PML buffer must has been
5942 * flushed already.
5943 */
5944 if (enable_pml)
5945 vmx_flush_pml_buffer(vcpu);
5946
5947 /*
5948 * We should never reach this point with a pending nested VM-Enter, and
5949 * more specifically emulation of L2 due to invalid guest state (see
5950 * below) should never happen as that means we incorrectly allowed a
5951 * nested VM-Enter with an invalid vmcs12.
5952 */
5953 WARN_ON_ONCE(vmx->nested.nested_run_pending);
5954
5955 /* If guest state is invalid, start emulating */
5956 if (vmx->emulation_required)
5957 return handle_invalid_guest_state(vcpu);
5958
5959 if (is_guest_mode(vcpu)) {
5960 /*
5961 * The host physical addresses of some pages of guest memory
5962 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5963 * Page). The CPU may write to these pages via their host
5964 * physical address while L2 is running, bypassing any
5965 * address-translation-based dirty tracking (e.g. EPT write
5966 * protection).
5967 *
5968 * Mark them dirty on every exit from L2 to prevent them from
5969 * getting out of sync with dirty tracking.
5970 */
5971 nested_mark_vmcs12_pages_dirty(vcpu);
5972
5973 if (nested_vmx_reflect_vmexit(vcpu))
5974 return 1;
5975 }
5976
5977 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5978 dump_vmcs();
5979 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5980 vcpu->run->fail_entry.hardware_entry_failure_reason
5981 = exit_reason;
5982 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5983 return 0;
5984 }
5985
5986 if (unlikely(vmx->fail)) {
5987 dump_vmcs();
5988 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5989 vcpu->run->fail_entry.hardware_entry_failure_reason
5990 = vmcs_read32(VM_INSTRUCTION_ERROR);
5991 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5992 return 0;
5993 }
5994
5995 /*
5996 * Note:
5997 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5998 * delivery event since it indicates guest is accessing MMIO.
5999 * The vm-exit can be triggered again after return to guest that
6000 * will cause infinite loop.
6001 */
6002 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6003 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6004 exit_reason != EXIT_REASON_EPT_VIOLATION &&
6005 exit_reason != EXIT_REASON_PML_FULL &&
6006 exit_reason != EXIT_REASON_APIC_ACCESS &&
6007 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6008 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6009 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6010 vcpu->run->internal.ndata = 3;
6011 vcpu->run->internal.data[0] = vectoring_info;
6012 vcpu->run->internal.data[1] = exit_reason;
6013 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6014 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
6015 vcpu->run->internal.ndata++;
6016 vcpu->run->internal.data[3] =
6017 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6018 }
6019 vcpu->run->internal.data[vcpu->run->internal.ndata++] =
6020 vcpu->arch.last_vmentry_cpu;
6021 return 0;
6022 }
6023
6024 if (unlikely(!enable_vnmi &&
6025 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6026 if (!vmx_interrupt_blocked(vcpu)) {
6027 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6028 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6029 vcpu->arch.nmi_pending) {
6030 /*
6031 * This CPU don't support us in finding the end of an
6032 * NMI-blocked window if the guest runs with IRQs
6033 * disabled. So we pull the trigger after 1 s of
6034 * futile waiting, but inform the user about this.
6035 */
6036 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6037 "state on VCPU %d after 1 s timeout\n",
6038 __func__, vcpu->vcpu_id);
6039 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6040 }
6041 }
6042
6043 if (exit_fastpath != EXIT_FASTPATH_NONE)
6044 return 1;
6045
6046 if (exit_reason >= kvm_vmx_max_exit_handlers)
6047 goto unexpected_vmexit;
6048 #ifdef CONFIG_RETPOLINE
6049 if (exit_reason == EXIT_REASON_MSR_WRITE)
6050 return kvm_emulate_wrmsr(vcpu);
6051 else if (exit_reason == EXIT_REASON_PREEMPTION_TIMER)
6052 return handle_preemption_timer(vcpu);
6053 else if (exit_reason == EXIT_REASON_INTERRUPT_WINDOW)
6054 return handle_interrupt_window(vcpu);
6055 else if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6056 return handle_external_interrupt(vcpu);
6057 else if (exit_reason == EXIT_REASON_HLT)
6058 return kvm_emulate_halt(vcpu);
6059 else if (exit_reason == EXIT_REASON_EPT_MISCONFIG)
6060 return handle_ept_misconfig(vcpu);
6061 #endif
6062
6063 exit_reason = array_index_nospec(exit_reason,
6064 kvm_vmx_max_exit_handlers);
6065 if (!kvm_vmx_exit_handlers[exit_reason])
6066 goto unexpected_vmexit;
6067
6068 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6069
6070 unexpected_vmexit:
6071 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n", exit_reason);
6072 dump_vmcs();
6073 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6074 vcpu->run->internal.suberror =
6075 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6076 vcpu->run->internal.ndata = 2;
6077 vcpu->run->internal.data[0] = exit_reason;
6078 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6079 return 0;
6080 }
6081
6082 /*
6083 * Software based L1D cache flush which is used when microcode providing
6084 * the cache control MSR is not loaded.
6085 *
6086 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6087 * flush it is required to read in 64 KiB because the replacement algorithm
6088 * is not exactly LRU. This could be sized at runtime via topology
6089 * information but as all relevant affected CPUs have 32KiB L1D cache size
6090 * there is no point in doing so.
6091 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6092 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6093 {
6094 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6095
6096 /*
6097 * This code is only executed when the the flush mode is 'cond' or
6098 * 'always'
6099 */
6100 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6101 bool flush_l1d;
6102
6103 /*
6104 * Clear the per-vcpu flush bit, it gets set again
6105 * either from vcpu_run() or from one of the unsafe
6106 * VMEXIT handlers.
6107 */
6108 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6109 vcpu->arch.l1tf_flush_l1d = false;
6110
6111 /*
6112 * Clear the per-cpu flush bit, it gets set again from
6113 * the interrupt handlers.
6114 */
6115 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6116 kvm_clear_cpu_l1tf_flush_l1d();
6117
6118 if (!flush_l1d)
6119 return;
6120 }
6121
6122 vcpu->stat.l1d_flush++;
6123
6124 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6125 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6126 return;
6127 }
6128
6129 asm volatile(
6130 /* First ensure the pages are in the TLB */
6131 "xorl %%eax, %%eax\n"
6132 ".Lpopulate_tlb:\n\t"
6133 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6134 "addl $4096, %%eax\n\t"
6135 "cmpl %%eax, %[size]\n\t"
6136 "jne .Lpopulate_tlb\n\t"
6137 "xorl %%eax, %%eax\n\t"
6138 "cpuid\n\t"
6139 /* Now fill the cache */
6140 "xorl %%eax, %%eax\n"
6141 ".Lfill_cache:\n"
6142 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6143 "addl $64, %%eax\n\t"
6144 "cmpl %%eax, %[size]\n\t"
6145 "jne .Lfill_cache\n\t"
6146 "lfence\n"
6147 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6148 [size] "r" (size)
6149 : "eax", "ebx", "ecx", "edx");
6150 }
6151
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6152 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6153 {
6154 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6155 int tpr_threshold;
6156
6157 if (is_guest_mode(vcpu) &&
6158 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6159 return;
6160
6161 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6162 if (is_guest_mode(vcpu))
6163 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6164 else
6165 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6166 }
6167
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6168 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6169 {
6170 struct vcpu_vmx *vmx = to_vmx(vcpu);
6171 u32 sec_exec_control;
6172
6173 if (!lapic_in_kernel(vcpu))
6174 return;
6175
6176 if (!flexpriority_enabled &&
6177 !cpu_has_vmx_virtualize_x2apic_mode())
6178 return;
6179
6180 /* Postpone execution until vmcs01 is the current VMCS. */
6181 if (is_guest_mode(vcpu)) {
6182 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6183 return;
6184 }
6185
6186 sec_exec_control = secondary_exec_controls_get(vmx);
6187 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6188 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6189
6190 switch (kvm_get_apic_mode(vcpu)) {
6191 case LAPIC_MODE_INVALID:
6192 WARN_ONCE(true, "Invalid local APIC state");
6193 case LAPIC_MODE_DISABLED:
6194 break;
6195 case LAPIC_MODE_XAPIC:
6196 if (flexpriority_enabled) {
6197 sec_exec_control |=
6198 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6199 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6200
6201 /*
6202 * Flush the TLB, reloading the APIC access page will
6203 * only do so if its physical address has changed, but
6204 * the guest may have inserted a non-APIC mapping into
6205 * the TLB while the APIC access page was disabled.
6206 */
6207 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6208 }
6209 break;
6210 case LAPIC_MODE_X2APIC:
6211 if (cpu_has_vmx_virtualize_x2apic_mode())
6212 sec_exec_control |=
6213 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6214 break;
6215 }
6216 secondary_exec_controls_set(vmx, sec_exec_control);
6217
6218 vmx_update_msr_bitmap(vcpu);
6219 }
6220
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6221 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6222 {
6223 struct page *page;
6224
6225 /* Defer reload until vmcs01 is the current VMCS. */
6226 if (is_guest_mode(vcpu)) {
6227 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6228 return;
6229 }
6230
6231 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6232 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6233 return;
6234
6235 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6236 if (is_error_page(page))
6237 return;
6238
6239 vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6240 vmx_flush_tlb_current(vcpu);
6241
6242 /*
6243 * Do not pin apic access page in memory, the MMU notifier
6244 * will call us again if it is migrated or swapped out.
6245 */
6246 put_page(page);
6247 }
6248
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6249 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6250 {
6251 u16 status;
6252 u8 old;
6253
6254 if (max_isr == -1)
6255 max_isr = 0;
6256
6257 status = vmcs_read16(GUEST_INTR_STATUS);
6258 old = status >> 8;
6259 if (max_isr != old) {
6260 status &= 0xff;
6261 status |= max_isr << 8;
6262 vmcs_write16(GUEST_INTR_STATUS, status);
6263 }
6264 }
6265
vmx_set_rvi(int vector)6266 static void vmx_set_rvi(int vector)
6267 {
6268 u16 status;
6269 u8 old;
6270
6271 if (vector == -1)
6272 vector = 0;
6273
6274 status = vmcs_read16(GUEST_INTR_STATUS);
6275 old = (u8)status & 0xff;
6276 if ((u8)vector != old) {
6277 status &= ~0xff;
6278 status |= (u8)vector;
6279 vmcs_write16(GUEST_INTR_STATUS, status);
6280 }
6281 }
6282
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6283 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6284 {
6285 /*
6286 * When running L2, updating RVI is only relevant when
6287 * vmcs12 virtual-interrupt-delivery enabled.
6288 * However, it can be enabled only when L1 also
6289 * intercepts external-interrupts and in that case
6290 * we should not update vmcs02 RVI but instead intercept
6291 * interrupt. Therefore, do nothing when running L2.
6292 */
6293 if (!is_guest_mode(vcpu))
6294 vmx_set_rvi(max_irr);
6295 }
6296
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6297 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6298 {
6299 struct vcpu_vmx *vmx = to_vmx(vcpu);
6300 int max_irr;
6301 bool max_irr_updated;
6302
6303 WARN_ON(!vcpu->arch.apicv_active);
6304 if (pi_test_on(&vmx->pi_desc)) {
6305 pi_clear_on(&vmx->pi_desc);
6306 /*
6307 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6308 * But on x86 this is just a compiler barrier anyway.
6309 */
6310 smp_mb__after_atomic();
6311 max_irr_updated =
6312 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6313
6314 /*
6315 * If we are running L2 and L1 has a new pending interrupt
6316 * which can be injected, we should re-evaluate
6317 * what should be done with this new L1 interrupt.
6318 * If L1 intercepts external-interrupts, we should
6319 * exit from L2 to L1. Otherwise, interrupt should be
6320 * delivered directly to L2.
6321 */
6322 if (is_guest_mode(vcpu) && max_irr_updated) {
6323 if (nested_exit_on_intr(vcpu))
6324 kvm_vcpu_exiting_guest_mode(vcpu);
6325 else
6326 kvm_make_request(KVM_REQ_EVENT, vcpu);
6327 }
6328 } else {
6329 max_irr = kvm_lapic_find_highest_irr(vcpu);
6330 }
6331 vmx_hwapic_irr_update(vcpu, max_irr);
6332 return max_irr;
6333 }
6334
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6335 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6336 {
6337 if (!kvm_vcpu_apicv_active(vcpu))
6338 return;
6339
6340 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6341 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6342 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6343 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6344 }
6345
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6346 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6347 {
6348 struct vcpu_vmx *vmx = to_vmx(vcpu);
6349
6350 pi_clear_on(&vmx->pi_desc);
6351 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6352 }
6353
6354 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6355
handle_interrupt_nmi_irqoff(struct kvm_vcpu * vcpu,u32 intr_info)6356 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu, u32 intr_info)
6357 {
6358 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6359 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6360
6361 kvm_before_interrupt(vcpu);
6362 vmx_do_interrupt_nmi_irqoff(gate_offset(desc));
6363 kvm_after_interrupt(vcpu);
6364 }
6365
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6366 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6367 {
6368 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6369
6370 /* if exit due to PF check for async PF */
6371 if (is_page_fault(intr_info))
6372 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6373 /* Handle machine checks before interrupts are enabled */
6374 else if (is_machine_check(intr_info))
6375 kvm_machine_check();
6376 /* We need to handle NMIs before interrupts are enabled */
6377 else if (is_nmi(intr_info))
6378 handle_interrupt_nmi_irqoff(&vmx->vcpu, intr_info);
6379 }
6380
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6381 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6382 {
6383 u32 intr_info = vmx_get_intr_info(vcpu);
6384
6385 if (WARN_ONCE(!is_external_intr(intr_info),
6386 "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6387 return;
6388
6389 handle_interrupt_nmi_irqoff(vcpu, intr_info);
6390 }
6391
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6392 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6393 {
6394 struct vcpu_vmx *vmx = to_vmx(vcpu);
6395
6396 if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6397 handle_external_interrupt_irqoff(vcpu);
6398 else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6399 handle_exception_nmi_irqoff(vmx);
6400 }
6401
vmx_has_emulated_msr(u32 index)6402 static bool vmx_has_emulated_msr(u32 index)
6403 {
6404 switch (index) {
6405 case MSR_IA32_SMBASE:
6406 /*
6407 * We cannot do SMM unless we can run the guest in big
6408 * real mode.
6409 */
6410 return enable_unrestricted_guest || emulate_invalid_guest_state;
6411 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6412 return nested;
6413 case MSR_AMD64_VIRT_SPEC_CTRL:
6414 /* This is AMD only. */
6415 return false;
6416 default:
6417 return true;
6418 }
6419 }
6420
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6421 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6422 {
6423 u32 exit_intr_info;
6424 bool unblock_nmi;
6425 u8 vector;
6426 bool idtv_info_valid;
6427
6428 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6429
6430 if (enable_vnmi) {
6431 if (vmx->loaded_vmcs->nmi_known_unmasked)
6432 return;
6433
6434 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6435 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6436 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6437 /*
6438 * SDM 3: 27.7.1.2 (September 2008)
6439 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6440 * a guest IRET fault.
6441 * SDM 3: 23.2.2 (September 2008)
6442 * Bit 12 is undefined in any of the following cases:
6443 * If the VM exit sets the valid bit in the IDT-vectoring
6444 * information field.
6445 * If the VM exit is due to a double fault.
6446 */
6447 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6448 vector != DF_VECTOR && !idtv_info_valid)
6449 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6450 GUEST_INTR_STATE_NMI);
6451 else
6452 vmx->loaded_vmcs->nmi_known_unmasked =
6453 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6454 & GUEST_INTR_STATE_NMI);
6455 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6456 vmx->loaded_vmcs->vnmi_blocked_time +=
6457 ktime_to_ns(ktime_sub(ktime_get(),
6458 vmx->loaded_vmcs->entry_time));
6459 }
6460
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6461 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6462 u32 idt_vectoring_info,
6463 int instr_len_field,
6464 int error_code_field)
6465 {
6466 u8 vector;
6467 int type;
6468 bool idtv_info_valid;
6469
6470 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6471
6472 vcpu->arch.nmi_injected = false;
6473 kvm_clear_exception_queue(vcpu);
6474 kvm_clear_interrupt_queue(vcpu);
6475
6476 if (!idtv_info_valid)
6477 return;
6478
6479 kvm_make_request(KVM_REQ_EVENT, vcpu);
6480
6481 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6482 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6483
6484 switch (type) {
6485 case INTR_TYPE_NMI_INTR:
6486 vcpu->arch.nmi_injected = true;
6487 /*
6488 * SDM 3: 27.7.1.2 (September 2008)
6489 * Clear bit "block by NMI" before VM entry if a NMI
6490 * delivery faulted.
6491 */
6492 vmx_set_nmi_mask(vcpu, false);
6493 break;
6494 case INTR_TYPE_SOFT_EXCEPTION:
6495 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6496 fallthrough;
6497 case INTR_TYPE_HARD_EXCEPTION:
6498 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6499 u32 err = vmcs_read32(error_code_field);
6500 kvm_requeue_exception_e(vcpu, vector, err);
6501 } else
6502 kvm_requeue_exception(vcpu, vector);
6503 break;
6504 case INTR_TYPE_SOFT_INTR:
6505 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6506 fallthrough;
6507 case INTR_TYPE_EXT_INTR:
6508 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6509 break;
6510 default:
6511 break;
6512 }
6513 }
6514
vmx_complete_interrupts(struct vcpu_vmx * vmx)6515 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6516 {
6517 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6518 VM_EXIT_INSTRUCTION_LEN,
6519 IDT_VECTORING_ERROR_CODE);
6520 }
6521
vmx_cancel_injection(struct kvm_vcpu * vcpu)6522 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6523 {
6524 __vmx_complete_interrupts(vcpu,
6525 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6526 VM_ENTRY_INSTRUCTION_LEN,
6527 VM_ENTRY_EXCEPTION_ERROR_CODE);
6528
6529 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6530 }
6531
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6532 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6533 {
6534 int i, nr_msrs;
6535 struct perf_guest_switch_msr *msrs;
6536
6537 msrs = perf_guest_get_msrs(&nr_msrs);
6538
6539 if (!msrs)
6540 return;
6541
6542 for (i = 0; i < nr_msrs; i++)
6543 if (msrs[i].host == msrs[i].guest)
6544 clear_atomic_switch_msr(vmx, msrs[i].msr);
6545 else
6546 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6547 msrs[i].host, false);
6548 }
6549
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6550 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6551 {
6552 struct vcpu_vmx *vmx = to_vmx(vcpu);
6553 u64 tscl;
6554 u32 delta_tsc;
6555
6556 if (vmx->req_immediate_exit) {
6557 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6558 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6559 } else if (vmx->hv_deadline_tsc != -1) {
6560 tscl = rdtsc();
6561 if (vmx->hv_deadline_tsc > tscl)
6562 /* set_hv_timer ensures the delta fits in 32-bits */
6563 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6564 cpu_preemption_timer_multi);
6565 else
6566 delta_tsc = 0;
6567
6568 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6569 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6570 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6571 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6572 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6573 }
6574 }
6575
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6576 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6577 {
6578 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6579 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6580 vmcs_writel(HOST_RSP, host_rsp);
6581 }
6582 }
6583
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)6584 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6585 {
6586 switch (to_vmx(vcpu)->exit_reason) {
6587 case EXIT_REASON_MSR_WRITE:
6588 return handle_fastpath_set_msr_irqoff(vcpu);
6589 case EXIT_REASON_PREEMPTION_TIMER:
6590 return handle_fastpath_preemption_timer(vcpu);
6591 default:
6592 return EXIT_FASTPATH_NONE;
6593 }
6594 }
6595
6596 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6597
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)6598 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6599 struct vcpu_vmx *vmx)
6600 {
6601 /*
6602 * VMENTER enables interrupts (host state), but the kernel state is
6603 * interrupts disabled when this is invoked. Also tell RCU about
6604 * it. This is the same logic as for exit_to_user_mode().
6605 *
6606 * This ensures that e.g. latency analysis on the host observes
6607 * guest mode as interrupt enabled.
6608 *
6609 * guest_enter_irqoff() informs context tracking about the
6610 * transition to guest mode and if enabled adjusts RCU state
6611 * accordingly.
6612 */
6613 instrumentation_begin();
6614 trace_hardirqs_on_prepare();
6615 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
6616 instrumentation_end();
6617
6618 guest_enter_irqoff();
6619 lockdep_hardirqs_on(CALLER_ADDR0);
6620
6621 /* L1D Flush includes CPU buffer clear to mitigate MDS */
6622 if (static_branch_unlikely(&vmx_l1d_should_flush))
6623 vmx_l1d_flush(vcpu);
6624 else if (static_branch_unlikely(&mds_user_clear))
6625 mds_clear_cpu_buffers();
6626
6627 if (vcpu->arch.cr2 != native_read_cr2())
6628 native_write_cr2(vcpu->arch.cr2);
6629
6630 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6631 vmx->loaded_vmcs->launched);
6632
6633 vcpu->arch.cr2 = native_read_cr2();
6634
6635 /*
6636 * VMEXIT disables interrupts (host state), but tracing and lockdep
6637 * have them in state 'on' as recorded before entering guest mode.
6638 * Same as enter_from_user_mode().
6639 *
6640 * guest_exit_irqoff() restores host context and reinstates RCU if
6641 * enabled and required.
6642 *
6643 * This needs to be done before the below as native_read_msr()
6644 * contains a tracepoint and x86_spec_ctrl_restore_host() calls
6645 * into world and some more.
6646 */
6647 lockdep_hardirqs_off(CALLER_ADDR0);
6648 guest_exit_irqoff();
6649
6650 instrumentation_begin();
6651 trace_hardirqs_off_finish();
6652 instrumentation_end();
6653 }
6654
vmx_vcpu_run(struct kvm_vcpu * vcpu)6655 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6656 {
6657 fastpath_t exit_fastpath;
6658 struct vcpu_vmx *vmx = to_vmx(vcpu);
6659 unsigned long cr3, cr4;
6660
6661 reenter_guest:
6662 /* Record the guest's net vcpu time for enforced NMI injections. */
6663 if (unlikely(!enable_vnmi &&
6664 vmx->loaded_vmcs->soft_vnmi_blocked))
6665 vmx->loaded_vmcs->entry_time = ktime_get();
6666
6667 /* Don't enter VMX if guest state is invalid, let the exit handler
6668 start emulation until we arrive back to a valid state */
6669 if (vmx->emulation_required)
6670 return EXIT_FASTPATH_NONE;
6671
6672 if (vmx->ple_window_dirty) {
6673 vmx->ple_window_dirty = false;
6674 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6675 }
6676
6677 /*
6678 * We did this in prepare_switch_to_guest, because it needs to
6679 * be within srcu_read_lock.
6680 */
6681 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6682
6683 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6684 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6685 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6686 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6687
6688 cr3 = __get_current_cr3_fast();
6689 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6690 vmcs_writel(HOST_CR3, cr3);
6691 vmx->loaded_vmcs->host_state.cr3 = cr3;
6692 }
6693
6694 cr4 = cr4_read_shadow();
6695 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6696 vmcs_writel(HOST_CR4, cr4);
6697 vmx->loaded_vmcs->host_state.cr4 = cr4;
6698 }
6699
6700 /* When single-stepping over STI and MOV SS, we must clear the
6701 * corresponding interruptibility bits in the guest state. Otherwise
6702 * vmentry fails as it then expects bit 14 (BS) in pending debug
6703 * exceptions being set, but that's not correct for the guest debugging
6704 * case. */
6705 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6706 vmx_set_interrupt_shadow(vcpu, 0);
6707
6708 kvm_load_guest_xsave_state(vcpu);
6709
6710 pt_guest_enter(vmx);
6711
6712 atomic_switch_perf_msrs(vmx);
6713
6714 if (enable_preemption_timer)
6715 vmx_update_hv_timer(vcpu);
6716
6717 kvm_wait_lapic_expire(vcpu);
6718
6719 /*
6720 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6721 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6722 * is no need to worry about the conditional branch over the wrmsr
6723 * being speculatively taken.
6724 */
6725 x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6726
6727 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6728 vmx_vcpu_enter_exit(vcpu, vmx);
6729
6730 /*
6731 * We do not use IBRS in the kernel. If this vCPU has used the
6732 * SPEC_CTRL MSR it may have left it on; save the value and
6733 * turn it off. This is much more efficient than blindly adding
6734 * it to the atomic save/restore list. Especially as the former
6735 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6736 *
6737 * For non-nested case:
6738 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6739 * save it.
6740 *
6741 * For nested case:
6742 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6743 * save it.
6744 */
6745 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6746 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6747
6748 x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6749
6750 /* All fields are clean at this point */
6751 if (static_branch_unlikely(&enable_evmcs))
6752 current_evmcs->hv_clean_fields |=
6753 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6754
6755 if (static_branch_unlikely(&enable_evmcs))
6756 current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6757
6758 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6759 if (vmx->host_debugctlmsr)
6760 update_debugctlmsr(vmx->host_debugctlmsr);
6761
6762 #ifndef CONFIG_X86_64
6763 /*
6764 * The sysexit path does not restore ds/es, so we must set them to
6765 * a reasonable value ourselves.
6766 *
6767 * We can't defer this to vmx_prepare_switch_to_host() since that
6768 * function may be executed in interrupt context, which saves and
6769 * restore segments around it, nullifying its effect.
6770 */
6771 loadsegment(ds, __USER_DS);
6772 loadsegment(es, __USER_DS);
6773 #endif
6774
6775 vmx_register_cache_reset(vcpu);
6776
6777 pt_guest_exit(vmx);
6778
6779 kvm_load_host_xsave_state(vcpu);
6780
6781 vmx->nested.nested_run_pending = 0;
6782 vmx->idt_vectoring_info = 0;
6783
6784 if (unlikely(vmx->fail)) {
6785 vmx->exit_reason = 0xdead;
6786 return EXIT_FASTPATH_NONE;
6787 }
6788
6789 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6790 if (unlikely((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY))
6791 kvm_machine_check();
6792
6793 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6794
6795 if (unlikely(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6796 return EXIT_FASTPATH_NONE;
6797
6798 vmx->loaded_vmcs->launched = 1;
6799 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6800
6801 vmx_recover_nmi_blocking(vmx);
6802 vmx_complete_interrupts(vmx);
6803
6804 if (is_guest_mode(vcpu))
6805 return EXIT_FASTPATH_NONE;
6806
6807 exit_fastpath = vmx_exit_handlers_fastpath(vcpu);
6808 if (exit_fastpath == EXIT_FASTPATH_REENTER_GUEST) {
6809 if (!kvm_vcpu_exit_request(vcpu)) {
6810 /*
6811 * FIXME: this goto should be a loop in vcpu_enter_guest,
6812 * but it would incur the cost of a retpoline for now.
6813 * Revisit once static calls are available.
6814 */
6815 if (vcpu->arch.apicv_active)
6816 vmx_sync_pir_to_irr(vcpu);
6817 goto reenter_guest;
6818 }
6819 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
6820 }
6821
6822 return exit_fastpath;
6823 }
6824
vmx_free_vcpu(struct kvm_vcpu * vcpu)6825 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6826 {
6827 struct vcpu_vmx *vmx = to_vmx(vcpu);
6828
6829 if (enable_pml)
6830 vmx_destroy_pml_buffer(vmx);
6831 free_vpid(vmx->vpid);
6832 nested_vmx_free_vcpu(vcpu);
6833 free_loaded_vmcs(vmx->loaded_vmcs);
6834 }
6835
vmx_create_vcpu(struct kvm_vcpu * vcpu)6836 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6837 {
6838 struct vcpu_vmx *vmx;
6839 int i, cpu, err;
6840
6841 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6842 vmx = to_vmx(vcpu);
6843
6844 err = -ENOMEM;
6845
6846 vmx->vpid = allocate_vpid();
6847
6848 /*
6849 * If PML is turned on, failure on enabling PML just results in failure
6850 * of creating the vcpu, therefore we can simplify PML logic (by
6851 * avoiding dealing with cases, such as enabling PML partially on vcpus
6852 * for the guest), etc.
6853 */
6854 if (enable_pml) {
6855 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6856 if (!vmx->pml_pg)
6857 goto free_vpid;
6858 }
6859
6860 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
6861
6862 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i) {
6863 u32 index = vmx_uret_msrs_list[i];
6864 u32 data_low, data_high;
6865 int j = vmx->nr_uret_msrs;
6866
6867 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6868 continue;
6869 if (wrmsr_safe(index, data_low, data_high) < 0)
6870 continue;
6871
6872 vmx->guest_uret_msrs[j].slot = i;
6873 vmx->guest_uret_msrs[j].data = 0;
6874 switch (index) {
6875 case MSR_IA32_TSX_CTRL:
6876 /*
6877 * No need to pass TSX_CTRL_CPUID_CLEAR through, so
6878 * let's avoid changing CPUID bits under the host
6879 * kernel's feet.
6880 */
6881 vmx->guest_uret_msrs[j].mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6882 break;
6883 default:
6884 vmx->guest_uret_msrs[j].mask = -1ull;
6885 break;
6886 }
6887 ++vmx->nr_uret_msrs;
6888 }
6889
6890 err = alloc_loaded_vmcs(&vmx->vmcs01);
6891 if (err < 0)
6892 goto free_pml;
6893
6894 /* The MSR bitmap starts with all ones */
6895 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6896 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6897
6898 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6899 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6900 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6901 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6902 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6903 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6904 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6905 if (kvm_cstate_in_guest(vcpu->kvm)) {
6906 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6907 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6908 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6909 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6910 }
6911 vmx->msr_bitmap_mode = 0;
6912
6913 vmx->loaded_vmcs = &vmx->vmcs01;
6914 cpu = get_cpu();
6915 vmx_vcpu_load(vcpu, cpu);
6916 vcpu->cpu = cpu;
6917 init_vmcs(vmx);
6918 vmx_vcpu_put(vcpu);
6919 put_cpu();
6920 if (cpu_need_virtualize_apic_accesses(vcpu)) {
6921 err = alloc_apic_access_page(vcpu->kvm);
6922 if (err)
6923 goto free_vmcs;
6924 }
6925
6926 if (enable_ept && !enable_unrestricted_guest) {
6927 err = init_rmode_identity_map(vcpu->kvm);
6928 if (err)
6929 goto free_vmcs;
6930 }
6931
6932 if (nested)
6933 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
6934 else
6935 memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6936
6937 vmx->nested.posted_intr_nv = -1;
6938 vmx->nested.current_vmptr = -1ull;
6939
6940 vcpu->arch.microcode_version = 0x100000000ULL;
6941 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
6942
6943 /*
6944 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6945 * or POSTED_INTR_WAKEUP_VECTOR.
6946 */
6947 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6948 vmx->pi_desc.sn = 1;
6949
6950 vmx->ept_pointer = INVALID_PAGE;
6951
6952 return 0;
6953
6954 free_vmcs:
6955 free_loaded_vmcs(vmx->loaded_vmcs);
6956 free_pml:
6957 vmx_destroy_pml_buffer(vmx);
6958 free_vpid:
6959 free_vpid(vmx->vpid);
6960 return err;
6961 }
6962
6963 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6964 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6965
vmx_vm_init(struct kvm * kvm)6966 static int vmx_vm_init(struct kvm *kvm)
6967 {
6968 spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6969
6970 if (!ple_gap)
6971 kvm->arch.pause_in_guest = true;
6972
6973 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6974 switch (l1tf_mitigation) {
6975 case L1TF_MITIGATION_OFF:
6976 case L1TF_MITIGATION_FLUSH_NOWARN:
6977 /* 'I explicitly don't care' is set */
6978 break;
6979 case L1TF_MITIGATION_FLUSH:
6980 case L1TF_MITIGATION_FLUSH_NOSMT:
6981 case L1TF_MITIGATION_FULL:
6982 /*
6983 * Warn upon starting the first VM in a potentially
6984 * insecure environment.
6985 */
6986 if (sched_smt_active())
6987 pr_warn_once(L1TF_MSG_SMT);
6988 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6989 pr_warn_once(L1TF_MSG_L1D);
6990 break;
6991 case L1TF_MITIGATION_FULL_FORCE:
6992 /* Flush is enforced */
6993 break;
6994 }
6995 }
6996 kvm_apicv_init(kvm, enable_apicv);
6997 return 0;
6998 }
6999
vmx_check_processor_compat(void)7000 static int __init vmx_check_processor_compat(void)
7001 {
7002 struct vmcs_config vmcs_conf;
7003 struct vmx_capability vmx_cap;
7004
7005 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
7006 !this_cpu_has(X86_FEATURE_VMX)) {
7007 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
7008 return -EIO;
7009 }
7010
7011 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
7012 return -EIO;
7013 if (nested)
7014 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
7015 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7016 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7017 smp_processor_id());
7018 return -EIO;
7019 }
7020 return 0;
7021 }
7022
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7023 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7024 {
7025 u8 cache;
7026 u64 ipat = 0;
7027
7028 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7029 * memory aliases with conflicting memory types and sometimes MCEs.
7030 * We have to be careful as to what are honored and when.
7031 *
7032 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7033 * UC. The effective memory type is UC or WC depending on guest PAT.
7034 * This was historically the source of MCEs and we want to be
7035 * conservative.
7036 *
7037 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7038 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7039 * EPT memory type is set to WB. The effective memory type is forced
7040 * WB.
7041 *
7042 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7043 * EPT memory type is used to emulate guest CD/MTRR.
7044 */
7045
7046 if (is_mmio) {
7047 cache = MTRR_TYPE_UNCACHABLE;
7048 goto exit;
7049 }
7050
7051 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
7052 ipat = VMX_EPT_IPAT_BIT;
7053 cache = MTRR_TYPE_WRBACK;
7054 goto exit;
7055 }
7056
7057 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7058 ipat = VMX_EPT_IPAT_BIT;
7059 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7060 cache = MTRR_TYPE_WRBACK;
7061 else
7062 cache = MTRR_TYPE_UNCACHABLE;
7063 goto exit;
7064 }
7065
7066 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7067
7068 exit:
7069 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7070 }
7071
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)7072 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
7073 {
7074 /*
7075 * These bits in the secondary execution controls field
7076 * are dynamic, the others are mostly based on the hypervisor
7077 * architecture and the guest's CPUID. Do not touch the
7078 * dynamic bits.
7079 */
7080 u32 mask =
7081 SECONDARY_EXEC_SHADOW_VMCS |
7082 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7083 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7084 SECONDARY_EXEC_DESC;
7085
7086 u32 new_ctl = vmx->secondary_exec_control;
7087 u32 cur_ctl = secondary_exec_controls_get(vmx);
7088
7089 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7090 }
7091
7092 /*
7093 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7094 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7095 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7096 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7097 {
7098 struct vcpu_vmx *vmx = to_vmx(vcpu);
7099 struct kvm_cpuid_entry2 *entry;
7100
7101 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7102 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7103
7104 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7105 if (entry && (entry->_reg & (_cpuid_mask))) \
7106 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7107 } while (0)
7108
7109 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7110 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7111 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7112 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7113 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7114 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7115 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7116 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7117 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7118 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7119 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7120 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7121 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7122 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7123 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7124
7125 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7126 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7127 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7128 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7129 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7130 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7131 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7132
7133 #undef cr4_fixed1_update
7134 }
7135
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7136 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7137 {
7138 struct vcpu_vmx *vmx = to_vmx(vcpu);
7139
7140 if (kvm_mpx_supported()) {
7141 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7142
7143 if (mpx_enabled) {
7144 vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7145 vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7146 } else {
7147 vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7148 vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7149 }
7150 }
7151 }
7152
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7153 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7154 {
7155 struct vcpu_vmx *vmx = to_vmx(vcpu);
7156 struct kvm_cpuid_entry2 *best = NULL;
7157 int i;
7158
7159 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7160 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7161 if (!best)
7162 return;
7163 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7164 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7165 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7166 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7167 }
7168
7169 /* Get the number of configurable Address Ranges for filtering */
7170 vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7171 PT_CAP_num_address_ranges);
7172
7173 /* Initialize and clear the no dependency bits */
7174 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7175 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7176
7177 /*
7178 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7179 * will inject an #GP
7180 */
7181 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7182 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7183
7184 /*
7185 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7186 * PSBFreq can be set
7187 */
7188 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7189 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7190 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7191
7192 /*
7193 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7194 * MTCFreq can be set
7195 */
7196 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7197 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7198 RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7199
7200 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7201 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7202 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7203 RTIT_CTL_PTW_EN);
7204
7205 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7206 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7207 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7208
7209 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7210 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7211 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7212
7213 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7214 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7215 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7216
7217 /* unmask address range configure area */
7218 for (i = 0; i < vmx->pt_desc.addr_range; i++)
7219 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7220 }
7221
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7222 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7223 {
7224 struct vcpu_vmx *vmx = to_vmx(vcpu);
7225
7226 /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7227 vcpu->arch.xsaves_enabled = false;
7228
7229 if (cpu_has_secondary_exec_ctrls()) {
7230 vmx_compute_secondary_exec_control(vmx);
7231 vmcs_set_secondary_exec_control(vmx);
7232 }
7233
7234 if (nested_vmx_allowed(vcpu))
7235 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7236 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7237 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7238 else
7239 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7240 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7241 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7242
7243 if (nested_vmx_allowed(vcpu)) {
7244 nested_vmx_cr_fixed1_bits_update(vcpu);
7245 nested_vmx_entry_exit_ctls_update(vcpu);
7246 }
7247
7248 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7249 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7250 update_intel_pt_cfg(vcpu);
7251
7252 if (boot_cpu_has(X86_FEATURE_RTM)) {
7253 struct vmx_uret_msr *msr;
7254 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7255 if (msr) {
7256 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7257 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7258 }
7259 }
7260
7261 set_cr4_guest_host_mask(vmx);
7262
7263 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7264 update_exception_bitmap(vcpu);
7265 }
7266
vmx_set_cpu_caps(void)7267 static __init void vmx_set_cpu_caps(void)
7268 {
7269 kvm_set_cpu_caps();
7270
7271 /* CPUID 0x1 */
7272 if (nested)
7273 kvm_cpu_cap_set(X86_FEATURE_VMX);
7274
7275 /* CPUID 0x7 */
7276 if (kvm_mpx_supported())
7277 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7278 if (cpu_has_vmx_invpcid())
7279 kvm_cpu_cap_check_and_set(X86_FEATURE_INVPCID);
7280 if (vmx_pt_mode_is_host_guest())
7281 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7282
7283 if (vmx_umip_emulated())
7284 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7285
7286 /* CPUID 0xD.1 */
7287 supported_xss = 0;
7288 if (!cpu_has_vmx_xsaves())
7289 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7290
7291 /* CPUID 0x80000001 */
7292 if (!cpu_has_vmx_rdtscp())
7293 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7294
7295 if (cpu_has_vmx_waitpkg())
7296 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7297 }
7298
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7299 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7300 {
7301 to_vmx(vcpu)->req_immediate_exit = true;
7302 }
7303
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7304 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7305 struct x86_instruction_info *info)
7306 {
7307 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7308 unsigned short port;
7309 bool intercept;
7310 int size;
7311
7312 if (info->intercept == x86_intercept_in ||
7313 info->intercept == x86_intercept_ins) {
7314 port = info->src_val;
7315 size = info->dst_bytes;
7316 } else {
7317 port = info->dst_val;
7318 size = info->src_bytes;
7319 }
7320
7321 /*
7322 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7323 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7324 * control.
7325 *
7326 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7327 */
7328 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7329 intercept = nested_cpu_has(vmcs12,
7330 CPU_BASED_UNCOND_IO_EXITING);
7331 else
7332 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7333
7334 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7335 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7336 }
7337
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7338 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7339 struct x86_instruction_info *info,
7340 enum x86_intercept_stage stage,
7341 struct x86_exception *exception)
7342 {
7343 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7344
7345 switch (info->intercept) {
7346 /*
7347 * RDPID causes #UD if disabled through secondary execution controls.
7348 * Because it is marked as EmulateOnUD, we need to intercept it here.
7349 */
7350 case x86_intercept_rdtscp:
7351 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7352 exception->vector = UD_VECTOR;
7353 exception->error_code_valid = false;
7354 return X86EMUL_PROPAGATE_FAULT;
7355 }
7356 break;
7357
7358 case x86_intercept_in:
7359 case x86_intercept_ins:
7360 case x86_intercept_out:
7361 case x86_intercept_outs:
7362 return vmx_check_intercept_io(vcpu, info);
7363
7364 case x86_intercept_lgdt:
7365 case x86_intercept_lidt:
7366 case x86_intercept_lldt:
7367 case x86_intercept_ltr:
7368 case x86_intercept_sgdt:
7369 case x86_intercept_sidt:
7370 case x86_intercept_sldt:
7371 case x86_intercept_str:
7372 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7373 return X86EMUL_CONTINUE;
7374
7375 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7376 break;
7377
7378 /* TODO: check more intercepts... */
7379 default:
7380 break;
7381 }
7382
7383 return X86EMUL_UNHANDLEABLE;
7384 }
7385
7386 #ifdef CONFIG_X86_64
7387 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7388 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7389 u64 divisor, u64 *result)
7390 {
7391 u64 low = a << shift, high = a >> (64 - shift);
7392
7393 /* To avoid the overflow on divq */
7394 if (high >= divisor)
7395 return 1;
7396
7397 /* Low hold the result, high hold rem which is discarded */
7398 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7399 "rm" (divisor), "0" (low), "1" (high));
7400 *result = low;
7401
7402 return 0;
7403 }
7404
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7405 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7406 bool *expired)
7407 {
7408 struct vcpu_vmx *vmx;
7409 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7410 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7411
7412 vmx = to_vmx(vcpu);
7413 tscl = rdtsc();
7414 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7415 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7416 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7417 ktimer->timer_advance_ns);
7418
7419 if (delta_tsc > lapic_timer_advance_cycles)
7420 delta_tsc -= lapic_timer_advance_cycles;
7421 else
7422 delta_tsc = 0;
7423
7424 /* Convert to host delta tsc if tsc scaling is enabled */
7425 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7426 delta_tsc && u64_shl_div_u64(delta_tsc,
7427 kvm_tsc_scaling_ratio_frac_bits,
7428 vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7429 return -ERANGE;
7430
7431 /*
7432 * If the delta tsc can't fit in the 32 bit after the multi shift,
7433 * we can't use the preemption timer.
7434 * It's possible that it fits on later vmentries, but checking
7435 * on every vmentry is costly so we just use an hrtimer.
7436 */
7437 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7438 return -ERANGE;
7439
7440 vmx->hv_deadline_tsc = tscl + delta_tsc;
7441 *expired = !delta_tsc;
7442 return 0;
7443 }
7444
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7445 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7446 {
7447 to_vmx(vcpu)->hv_deadline_tsc = -1;
7448 }
7449 #endif
7450
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7451 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7452 {
7453 if (!kvm_pause_in_guest(vcpu->kvm))
7454 shrink_ple_window(vcpu);
7455 }
7456
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7457 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7458 struct kvm_memory_slot *slot)
7459 {
7460 if (!kvm_dirty_log_manual_protect_and_init_set(kvm))
7461 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7462 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7463 }
7464
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7465 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7466 struct kvm_memory_slot *slot)
7467 {
7468 kvm_mmu_slot_set_dirty(kvm, slot);
7469 }
7470
vmx_flush_log_dirty(struct kvm * kvm)7471 static void vmx_flush_log_dirty(struct kvm *kvm)
7472 {
7473 kvm_flush_pml_buffers(kvm);
7474 }
7475
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7476 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7477 struct kvm_memory_slot *memslot,
7478 gfn_t offset, unsigned long mask)
7479 {
7480 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7481 }
7482
vmx_pre_block(struct kvm_vcpu * vcpu)7483 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7484 {
7485 if (pi_pre_block(vcpu))
7486 return 1;
7487
7488 if (kvm_lapic_hv_timer_in_use(vcpu))
7489 kvm_lapic_switch_to_sw_timer(vcpu);
7490
7491 return 0;
7492 }
7493
vmx_post_block(struct kvm_vcpu * vcpu)7494 static void vmx_post_block(struct kvm_vcpu *vcpu)
7495 {
7496 if (kvm_x86_ops.set_hv_timer)
7497 kvm_lapic_switch_to_hv_timer(vcpu);
7498
7499 pi_post_block(vcpu);
7500 }
7501
vmx_setup_mce(struct kvm_vcpu * vcpu)7502 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7503 {
7504 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7505 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7506 FEAT_CTL_LMCE_ENABLED;
7507 else
7508 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7509 ~FEAT_CTL_LMCE_ENABLED;
7510 }
7511
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)7512 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7513 {
7514 /* we need a nested vmexit to enter SMM, postpone if run is pending */
7515 if (to_vmx(vcpu)->nested.nested_run_pending)
7516 return -EBUSY;
7517 return !is_smm(vcpu);
7518 }
7519
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7520 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7521 {
7522 struct vcpu_vmx *vmx = to_vmx(vcpu);
7523
7524 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7525 if (vmx->nested.smm.guest_mode)
7526 nested_vmx_vmexit(vcpu, -1, 0, 0);
7527
7528 vmx->nested.smm.vmxon = vmx->nested.vmxon;
7529 vmx->nested.vmxon = false;
7530 vmx_clear_hlt(vcpu);
7531 return 0;
7532 }
7533
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7534 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7535 {
7536 struct vcpu_vmx *vmx = to_vmx(vcpu);
7537 int ret;
7538
7539 if (vmx->nested.smm.vmxon) {
7540 vmx->nested.vmxon = true;
7541 vmx->nested.smm.vmxon = false;
7542 }
7543
7544 if (vmx->nested.smm.guest_mode) {
7545 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7546 if (ret)
7547 return ret;
7548
7549 vmx->nested.smm.guest_mode = false;
7550 }
7551 return 0;
7552 }
7553
enable_smi_window(struct kvm_vcpu * vcpu)7554 static void enable_smi_window(struct kvm_vcpu *vcpu)
7555 {
7556 /* RSM will cause a vmexit anyway. */
7557 }
7558
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7559 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7560 {
7561 return to_vmx(vcpu)->nested.vmxon;
7562 }
7563
vmx_migrate_timers(struct kvm_vcpu * vcpu)7564 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7565 {
7566 if (is_guest_mode(vcpu)) {
7567 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7568
7569 if (hrtimer_try_to_cancel(timer) == 1)
7570 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7571 }
7572 }
7573
hardware_unsetup(void)7574 static void hardware_unsetup(void)
7575 {
7576 if (nested)
7577 nested_vmx_hardware_unsetup();
7578
7579 free_kvm_area();
7580 }
7581
vmx_check_apicv_inhibit_reasons(ulong bit)7582 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7583 {
7584 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7585 BIT(APICV_INHIBIT_REASON_HYPERV);
7586
7587 return supported & BIT(bit);
7588 }
7589
7590 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7591 .hardware_unsetup = hardware_unsetup,
7592
7593 .hardware_enable = hardware_enable,
7594 .hardware_disable = hardware_disable,
7595 .cpu_has_accelerated_tpr = report_flexpriority,
7596 .has_emulated_msr = vmx_has_emulated_msr,
7597
7598 .vm_size = sizeof(struct kvm_vmx),
7599 .vm_init = vmx_vm_init,
7600
7601 .vcpu_create = vmx_create_vcpu,
7602 .vcpu_free = vmx_free_vcpu,
7603 .vcpu_reset = vmx_vcpu_reset,
7604
7605 .prepare_guest_switch = vmx_prepare_switch_to_guest,
7606 .vcpu_load = vmx_vcpu_load,
7607 .vcpu_put = vmx_vcpu_put,
7608
7609 .update_exception_bitmap = update_exception_bitmap,
7610 .get_msr_feature = vmx_get_msr_feature,
7611 .get_msr = vmx_get_msr,
7612 .set_msr = vmx_set_msr,
7613 .get_segment_base = vmx_get_segment_base,
7614 .get_segment = vmx_get_segment,
7615 .set_segment = vmx_set_segment,
7616 .get_cpl = vmx_get_cpl,
7617 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7618 .set_cr0 = vmx_set_cr0,
7619 .set_cr4 = vmx_set_cr4,
7620 .set_efer = vmx_set_efer,
7621 .get_idt = vmx_get_idt,
7622 .set_idt = vmx_set_idt,
7623 .get_gdt = vmx_get_gdt,
7624 .set_gdt = vmx_set_gdt,
7625 .set_dr7 = vmx_set_dr7,
7626 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7627 .cache_reg = vmx_cache_reg,
7628 .get_rflags = vmx_get_rflags,
7629 .set_rflags = vmx_set_rflags,
7630
7631 .tlb_flush_all = vmx_flush_tlb_all,
7632 .tlb_flush_current = vmx_flush_tlb_current,
7633 .tlb_flush_gva = vmx_flush_tlb_gva,
7634 .tlb_flush_guest = vmx_flush_tlb_guest,
7635
7636 .run = vmx_vcpu_run,
7637 .handle_exit = vmx_handle_exit,
7638 .skip_emulated_instruction = vmx_skip_emulated_instruction,
7639 .update_emulated_instruction = vmx_update_emulated_instruction,
7640 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7641 .get_interrupt_shadow = vmx_get_interrupt_shadow,
7642 .patch_hypercall = vmx_patch_hypercall,
7643 .set_irq = vmx_inject_irq,
7644 .set_nmi = vmx_inject_nmi,
7645 .queue_exception = vmx_queue_exception,
7646 .cancel_injection = vmx_cancel_injection,
7647 .interrupt_allowed = vmx_interrupt_allowed,
7648 .nmi_allowed = vmx_nmi_allowed,
7649 .get_nmi_mask = vmx_get_nmi_mask,
7650 .set_nmi_mask = vmx_set_nmi_mask,
7651 .enable_nmi_window = enable_nmi_window,
7652 .enable_irq_window = enable_irq_window,
7653 .update_cr8_intercept = update_cr8_intercept,
7654 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7655 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7656 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7657 .load_eoi_exitmap = vmx_load_eoi_exitmap,
7658 .apicv_post_state_restore = vmx_apicv_post_state_restore,
7659 .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7660 .hwapic_irr_update = vmx_hwapic_irr_update,
7661 .hwapic_isr_update = vmx_hwapic_isr_update,
7662 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7663 .sync_pir_to_irr = vmx_sync_pir_to_irr,
7664 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7665 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7666
7667 .set_tss_addr = vmx_set_tss_addr,
7668 .set_identity_map_addr = vmx_set_identity_map_addr,
7669 .get_mt_mask = vmx_get_mt_mask,
7670
7671 .get_exit_info = vmx_get_exit_info,
7672
7673 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7674
7675 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7676
7677 .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7678
7679 .load_mmu_pgd = vmx_load_mmu_pgd,
7680
7681 .check_intercept = vmx_check_intercept,
7682 .handle_exit_irqoff = vmx_handle_exit_irqoff,
7683
7684 .request_immediate_exit = vmx_request_immediate_exit,
7685
7686 .sched_in = vmx_sched_in,
7687
7688 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7689 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7690 .flush_log_dirty = vmx_flush_log_dirty,
7691 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7692
7693 .pre_block = vmx_pre_block,
7694 .post_block = vmx_post_block,
7695
7696 .pmu_ops = &intel_pmu_ops,
7697 .nested_ops = &vmx_nested_ops,
7698
7699 .update_pi_irte = pi_update_irte,
7700
7701 #ifdef CONFIG_X86_64
7702 .set_hv_timer = vmx_set_hv_timer,
7703 .cancel_hv_timer = vmx_cancel_hv_timer,
7704 #endif
7705
7706 .setup_mce = vmx_setup_mce,
7707
7708 .smi_allowed = vmx_smi_allowed,
7709 .pre_enter_smm = vmx_pre_enter_smm,
7710 .pre_leave_smm = vmx_pre_leave_smm,
7711 .enable_smi_window = enable_smi_window,
7712
7713 .can_emulate_instruction = vmx_can_emulate_instruction,
7714 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7715 .migrate_timers = vmx_migrate_timers,
7716
7717 .msr_filter_changed = vmx_msr_filter_changed,
7718 };
7719
hardware_setup(void)7720 static __init int hardware_setup(void)
7721 {
7722 unsigned long host_bndcfgs;
7723 struct desc_ptr dt;
7724 int r, i, ept_lpage_level;
7725
7726 store_idt(&dt);
7727 host_idt_base = dt.address;
7728
7729 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7730 kvm_define_user_return_msr(i, vmx_uret_msrs_list[i]);
7731
7732 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7733 return -EIO;
7734
7735 if (boot_cpu_has(X86_FEATURE_NX))
7736 kvm_enable_efer_bits(EFER_NX);
7737
7738 if (boot_cpu_has(X86_FEATURE_MPX)) {
7739 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7740 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7741 }
7742
7743 if (!cpu_has_vmx_mpx())
7744 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7745 XFEATURE_MASK_BNDCSR);
7746
7747 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7748 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7749 enable_vpid = 0;
7750
7751 if (!cpu_has_vmx_ept() ||
7752 !cpu_has_vmx_ept_4levels() ||
7753 !cpu_has_vmx_ept_mt_wb() ||
7754 !cpu_has_vmx_invept_global())
7755 enable_ept = 0;
7756
7757 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7758 enable_ept_ad_bits = 0;
7759
7760 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7761 enable_unrestricted_guest = 0;
7762
7763 if (!cpu_has_vmx_flexpriority())
7764 flexpriority_enabled = 0;
7765
7766 if (!cpu_has_virtual_nmis())
7767 enable_vnmi = 0;
7768
7769 /*
7770 * set_apic_access_page_addr() is used to reload apic access
7771 * page upon invalidation. No need to do anything if not
7772 * using the APIC_ACCESS_ADDR VMCS field.
7773 */
7774 if (!flexpriority_enabled)
7775 vmx_x86_ops.set_apic_access_page_addr = NULL;
7776
7777 if (!cpu_has_vmx_tpr_shadow())
7778 vmx_x86_ops.update_cr8_intercept = NULL;
7779
7780 #if IS_ENABLED(CONFIG_HYPERV)
7781 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7782 && enable_ept) {
7783 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7784 vmx_x86_ops.tlb_remote_flush_with_range =
7785 hv_remote_flush_tlb_with_range;
7786 }
7787 #endif
7788
7789 if (!cpu_has_vmx_ple()) {
7790 ple_gap = 0;
7791 ple_window = 0;
7792 ple_window_grow = 0;
7793 ple_window_max = 0;
7794 ple_window_shrink = 0;
7795 }
7796
7797 if (!cpu_has_vmx_apicv()) {
7798 enable_apicv = 0;
7799 vmx_x86_ops.sync_pir_to_irr = NULL;
7800 }
7801
7802 if (cpu_has_vmx_tsc_scaling()) {
7803 kvm_has_tsc_control = true;
7804 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7805 kvm_tsc_scaling_ratio_frac_bits = 48;
7806 }
7807
7808 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7809
7810 if (enable_ept)
7811 vmx_enable_tdp();
7812
7813 if (!enable_ept)
7814 ept_lpage_level = 0;
7815 else if (cpu_has_vmx_ept_1g_page())
7816 ept_lpage_level = PG_LEVEL_1G;
7817 else if (cpu_has_vmx_ept_2m_page())
7818 ept_lpage_level = PG_LEVEL_2M;
7819 else
7820 ept_lpage_level = PG_LEVEL_4K;
7821 kvm_configure_mmu(enable_ept, vmx_get_max_tdp_level(), ept_lpage_level);
7822
7823 /*
7824 * Only enable PML when hardware supports PML feature, and both EPT
7825 * and EPT A/D bit features are enabled -- PML depends on them to work.
7826 */
7827 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7828 enable_pml = 0;
7829
7830 if (!enable_pml) {
7831 vmx_x86_ops.slot_enable_log_dirty = NULL;
7832 vmx_x86_ops.slot_disable_log_dirty = NULL;
7833 vmx_x86_ops.flush_log_dirty = NULL;
7834 vmx_x86_ops.enable_log_dirty_pt_masked = NULL;
7835 }
7836
7837 if (!cpu_has_vmx_preemption_timer())
7838 enable_preemption_timer = false;
7839
7840 if (enable_preemption_timer) {
7841 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7842 u64 vmx_msr;
7843
7844 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7845 cpu_preemption_timer_multi =
7846 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7847
7848 if (tsc_khz)
7849 use_timer_freq = (u64)tsc_khz * 1000;
7850 use_timer_freq >>= cpu_preemption_timer_multi;
7851
7852 /*
7853 * KVM "disables" the preemption timer by setting it to its max
7854 * value. Don't use the timer if it might cause spurious exits
7855 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7856 */
7857 if (use_timer_freq > 0xffffffffu / 10)
7858 enable_preemption_timer = false;
7859 }
7860
7861 if (!enable_preemption_timer) {
7862 vmx_x86_ops.set_hv_timer = NULL;
7863 vmx_x86_ops.cancel_hv_timer = NULL;
7864 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7865 }
7866
7867 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7868
7869 kvm_mce_cap_supported |= MCG_LMCE_P;
7870
7871 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7872 return -EINVAL;
7873 if (!enable_ept || !cpu_has_vmx_intel_pt())
7874 pt_mode = PT_MODE_SYSTEM;
7875
7876 if (nested) {
7877 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7878 vmx_capability.ept);
7879
7880 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7881 if (r)
7882 return r;
7883 }
7884
7885 vmx_set_cpu_caps();
7886
7887 r = alloc_kvm_area();
7888 if (r)
7889 nested_vmx_hardware_unsetup();
7890 return r;
7891 }
7892
7893 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7894 .cpu_has_kvm_support = cpu_has_kvm_support,
7895 .disabled_by_bios = vmx_disabled_by_bios,
7896 .check_processor_compatibility = vmx_check_processor_compat,
7897 .hardware_setup = hardware_setup,
7898
7899 .runtime_ops = &vmx_x86_ops,
7900 };
7901
vmx_cleanup_l1d_flush(void)7902 static void vmx_cleanup_l1d_flush(void)
7903 {
7904 if (vmx_l1d_flush_pages) {
7905 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7906 vmx_l1d_flush_pages = NULL;
7907 }
7908 /* Restore state so sysfs ignores VMX */
7909 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7910 }
7911
vmx_exit(void)7912 static void vmx_exit(void)
7913 {
7914 #ifdef CONFIG_KEXEC_CORE
7915 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7916 synchronize_rcu();
7917 #endif
7918
7919 kvm_exit();
7920
7921 #if IS_ENABLED(CONFIG_HYPERV)
7922 if (static_branch_unlikely(&enable_evmcs)) {
7923 int cpu;
7924 struct hv_vp_assist_page *vp_ap;
7925 /*
7926 * Reset everything to support using non-enlightened VMCS
7927 * access later (e.g. when we reload the module with
7928 * enlightened_vmcs=0)
7929 */
7930 for_each_online_cpu(cpu) {
7931 vp_ap = hv_get_vp_assist_page(cpu);
7932
7933 if (!vp_ap)
7934 continue;
7935
7936 vp_ap->nested_control.features.directhypercall = 0;
7937 vp_ap->current_nested_vmcs = 0;
7938 vp_ap->enlighten_vmentry = 0;
7939 }
7940
7941 static_branch_disable(&enable_evmcs);
7942 }
7943 #endif
7944 vmx_cleanup_l1d_flush();
7945 }
7946 module_exit(vmx_exit);
7947
vmx_init(void)7948 static int __init vmx_init(void)
7949 {
7950 int r, cpu;
7951
7952 #if IS_ENABLED(CONFIG_HYPERV)
7953 /*
7954 * Enlightened VMCS usage should be recommended and the host needs
7955 * to support eVMCS v1 or above. We can also disable eVMCS support
7956 * with module parameter.
7957 */
7958 if (enlightened_vmcs &&
7959 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7960 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7961 KVM_EVMCS_VERSION) {
7962 int cpu;
7963
7964 /* Check that we have assist pages on all online CPUs */
7965 for_each_online_cpu(cpu) {
7966 if (!hv_get_vp_assist_page(cpu)) {
7967 enlightened_vmcs = false;
7968 break;
7969 }
7970 }
7971
7972 if (enlightened_vmcs) {
7973 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7974 static_branch_enable(&enable_evmcs);
7975 }
7976
7977 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7978 vmx_x86_ops.enable_direct_tlbflush
7979 = hv_enable_direct_tlbflush;
7980
7981 } else {
7982 enlightened_vmcs = false;
7983 }
7984 #endif
7985
7986 r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7987 __alignof__(struct vcpu_vmx), THIS_MODULE);
7988 if (r)
7989 return r;
7990
7991 /*
7992 * Must be called after kvm_init() so enable_ept is properly set
7993 * up. Hand the parameter mitigation value in which was stored in
7994 * the pre module init parser. If no parameter was given, it will
7995 * contain 'auto' which will be turned into the default 'cond'
7996 * mitigation mode.
7997 */
7998 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
7999 if (r) {
8000 vmx_exit();
8001 return r;
8002 }
8003
8004 for_each_possible_cpu(cpu) {
8005 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8006
8007 pi_init_cpu(cpu);
8008 }
8009
8010 #ifdef CONFIG_KEXEC_CORE
8011 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8012 crash_vmclear_local_loaded_vmcss);
8013 #endif
8014 vmx_check_vmcs12_offsets();
8015
8016 /*
8017 * Shadow paging doesn't have a (further) performance penalty
8018 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8019 * by default
8020 */
8021 if (!enable_ept)
8022 allow_smaller_maxphyaddr = true;
8023
8024 return 0;
8025 }
8026 module_init(vmx_init);
8027