1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15 
16 #include <linux/frame.h>
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 
31 #include <asm/apic.h>
32 #include <asm/asm.h>
33 #include <asm/cpu.h>
34 #include <asm/debugreg.h>
35 #include <asm/desc.h>
36 #include <asm/fpu/internal.h>
37 #include <asm/io.h>
38 #include <asm/irq_remapping.h>
39 #include <asm/kexec.h>
40 #include <asm/perf_event.h>
41 #include <asm/mce.h>
42 #include <asm/mmu_context.h>
43 #include <asm/mshyperv.h>
44 #include <asm/spec-ctrl.h>
45 #include <asm/virtext.h>
46 #include <asm/vmx.h>
47 
48 #include "capabilities.h"
49 #include "cpuid.h"
50 #include "evmcs.h"
51 #include "irq.h"
52 #include "kvm_cache_regs.h"
53 #include "lapic.h"
54 #include "mmu.h"
55 #include "nested.h"
56 #include "ops.h"
57 #include "pmu.h"
58 #include "trace.h"
59 #include "vmcs.h"
60 #include "vmcs12.h"
61 #include "vmx.h"
62 #include "x86.h"
63 
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
66 
67 static const struct x86_cpu_id vmx_cpu_id[] = {
68 	X86_FEATURE_MATCH(X86_FEATURE_VMX),
69 	{}
70 };
71 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
72 
73 bool __read_mostly enable_vpid = 1;
74 module_param_named(vpid, enable_vpid, bool, 0444);
75 
76 static bool __read_mostly enable_vnmi = 1;
77 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
78 
79 bool __read_mostly flexpriority_enabled = 1;
80 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
81 
82 bool __read_mostly enable_ept = 1;
83 module_param_named(ept, enable_ept, bool, S_IRUGO);
84 
85 bool __read_mostly enable_unrestricted_guest = 1;
86 module_param_named(unrestricted_guest,
87 			enable_unrestricted_guest, bool, S_IRUGO);
88 
89 bool __read_mostly enable_ept_ad_bits = 1;
90 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
91 
92 static bool __read_mostly emulate_invalid_guest_state = true;
93 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
94 
95 static bool __read_mostly fasteoi = 1;
96 module_param(fasteoi, bool, S_IRUGO);
97 
98 static bool __read_mostly enable_apicv = 1;
99 module_param(enable_apicv, bool, S_IRUGO);
100 
101 /*
102  * If nested=1, nested virtualization is supported, i.e., guests may use
103  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
104  * use VMX instructions.
105  */
106 static bool __read_mostly nested = 1;
107 module_param(nested, bool, S_IRUGO);
108 
109 static u64 __read_mostly host_xss;
110 
111 bool __read_mostly enable_pml = 1;
112 module_param_named(pml, enable_pml, bool, S_IRUGO);
113 
114 static bool __read_mostly dump_invalid_vmcs = 0;
115 module_param(dump_invalid_vmcs, bool, 0644);
116 
117 #define MSR_BITMAP_MODE_X2APIC		1
118 #define MSR_BITMAP_MODE_X2APIC_APICV	2
119 
120 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
121 
122 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
123 static int __read_mostly cpu_preemption_timer_multi;
124 static bool __read_mostly enable_preemption_timer = 1;
125 #ifdef CONFIG_X86_64
126 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
127 #endif
128 
129 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
130 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
131 #define KVM_VM_CR0_ALWAYS_ON				\
132 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | 	\
133 	 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
134 #define KVM_CR4_GUEST_OWNED_BITS				      \
135 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
136 	 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
137 
138 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
139 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
140 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
141 
142 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
143 
144 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
145 	RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
146 	RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
147 	RTIT_STATUS_BYTECNT))
148 
149 #define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
150 	(~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
151 
152 /*
153  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
154  * ple_gap:    upper bound on the amount of time between two successive
155  *             executions of PAUSE in a loop. Also indicate if ple enabled.
156  *             According to test, this time is usually smaller than 128 cycles.
157  * ple_window: upper bound on the amount of time a guest is allowed to execute
158  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
159  *             less than 2^12 cycles
160  * Time is measured based on a counter that runs at the same rate as the TSC,
161  * refer SDM volume 3b section 21.6.13 & 22.1.3.
162  */
163 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
164 module_param(ple_gap, uint, 0444);
165 
166 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
167 module_param(ple_window, uint, 0444);
168 
169 /* Default doubles per-vcpu window every exit. */
170 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
171 module_param(ple_window_grow, uint, 0444);
172 
173 /* Default resets per-vcpu window every exit to ple_window. */
174 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
175 module_param(ple_window_shrink, uint, 0444);
176 
177 /* Default is to compute the maximum so we can never overflow. */
178 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
179 module_param(ple_window_max, uint, 0444);
180 
181 /* Default is SYSTEM mode, 1 for host-guest mode */
182 int __read_mostly pt_mode = PT_MODE_SYSTEM;
183 module_param(pt_mode, int, S_IRUGO);
184 
185 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
186 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
187 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
188 
189 /* Storage for pre module init parameter parsing */
190 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
191 
192 static const struct {
193 	const char *option;
194 	bool for_parse;
195 } vmentry_l1d_param[] = {
196 	[VMENTER_L1D_FLUSH_AUTO]	 = {"auto", true},
197 	[VMENTER_L1D_FLUSH_NEVER]	 = {"never", true},
198 	[VMENTER_L1D_FLUSH_COND]	 = {"cond", true},
199 	[VMENTER_L1D_FLUSH_ALWAYS]	 = {"always", true},
200 	[VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
201 	[VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
202 };
203 
204 #define L1D_CACHE_ORDER 4
205 static void *vmx_l1d_flush_pages;
206 
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)207 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
208 {
209 	struct page *page;
210 	unsigned int i;
211 
212 	if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
213 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
214 		return 0;
215 	}
216 
217 	if (!enable_ept) {
218 		l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
219 		return 0;
220 	}
221 
222 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
223 		u64 msr;
224 
225 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
226 		if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
227 			l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
228 			return 0;
229 		}
230 	}
231 
232 	/* If set to auto use the default l1tf mitigation method */
233 	if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
234 		switch (l1tf_mitigation) {
235 		case L1TF_MITIGATION_OFF:
236 			l1tf = VMENTER_L1D_FLUSH_NEVER;
237 			break;
238 		case L1TF_MITIGATION_FLUSH_NOWARN:
239 		case L1TF_MITIGATION_FLUSH:
240 		case L1TF_MITIGATION_FLUSH_NOSMT:
241 			l1tf = VMENTER_L1D_FLUSH_COND;
242 			break;
243 		case L1TF_MITIGATION_FULL:
244 		case L1TF_MITIGATION_FULL_FORCE:
245 			l1tf = VMENTER_L1D_FLUSH_ALWAYS;
246 			break;
247 		}
248 	} else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
249 		l1tf = VMENTER_L1D_FLUSH_ALWAYS;
250 	}
251 
252 	if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
253 	    !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
254 		/*
255 		 * This allocation for vmx_l1d_flush_pages is not tied to a VM
256 		 * lifetime and so should not be charged to a memcg.
257 		 */
258 		page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
259 		if (!page)
260 			return -ENOMEM;
261 		vmx_l1d_flush_pages = page_address(page);
262 
263 		/*
264 		 * Initialize each page with a different pattern in
265 		 * order to protect against KSM in the nested
266 		 * virtualization case.
267 		 */
268 		for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
269 			memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
270 			       PAGE_SIZE);
271 		}
272 	}
273 
274 	l1tf_vmx_mitigation = l1tf;
275 
276 	if (l1tf != VMENTER_L1D_FLUSH_NEVER)
277 		static_branch_enable(&vmx_l1d_should_flush);
278 	else
279 		static_branch_disable(&vmx_l1d_should_flush);
280 
281 	if (l1tf == VMENTER_L1D_FLUSH_COND)
282 		static_branch_enable(&vmx_l1d_flush_cond);
283 	else
284 		static_branch_disable(&vmx_l1d_flush_cond);
285 	return 0;
286 }
287 
vmentry_l1d_flush_parse(const char * s)288 static int vmentry_l1d_flush_parse(const char *s)
289 {
290 	unsigned int i;
291 
292 	if (s) {
293 		for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
294 			if (vmentry_l1d_param[i].for_parse &&
295 			    sysfs_streq(s, vmentry_l1d_param[i].option))
296 				return i;
297 		}
298 	}
299 	return -EINVAL;
300 }
301 
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)302 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
303 {
304 	int l1tf, ret;
305 
306 	l1tf = vmentry_l1d_flush_parse(s);
307 	if (l1tf < 0)
308 		return l1tf;
309 
310 	if (!boot_cpu_has(X86_BUG_L1TF))
311 		return 0;
312 
313 	/*
314 	 * Has vmx_init() run already? If not then this is the pre init
315 	 * parameter parsing. In that case just store the value and let
316 	 * vmx_init() do the proper setup after enable_ept has been
317 	 * established.
318 	 */
319 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
320 		vmentry_l1d_flush_param = l1tf;
321 		return 0;
322 	}
323 
324 	mutex_lock(&vmx_l1d_flush_mutex);
325 	ret = vmx_setup_l1d_flush(l1tf);
326 	mutex_unlock(&vmx_l1d_flush_mutex);
327 	return ret;
328 }
329 
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)330 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
331 {
332 	if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
333 		return sprintf(s, "???\n");
334 
335 	return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
336 }
337 
338 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
339 	.set = vmentry_l1d_flush_set,
340 	.get = vmentry_l1d_flush_get,
341 };
342 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
343 
344 static bool guest_state_valid(struct kvm_vcpu *vcpu);
345 static u32 vmx_segment_access_rights(struct kvm_segment *var);
346 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
347 							  u32 msr, int type);
348 
349 void vmx_vmexit(void);
350 
351 #define vmx_insn_failed(fmt...)		\
352 do {					\
353 	WARN_ONCE(1, fmt);		\
354 	pr_warn_ratelimited(fmt);	\
355 } while (0)
356 
vmread_error(unsigned long field,bool fault)357 asmlinkage void vmread_error(unsigned long field, bool fault)
358 {
359 	if (fault)
360 		kvm_spurious_fault();
361 	else
362 		vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
363 }
364 
vmwrite_error(unsigned long field,unsigned long value)365 noinline void vmwrite_error(unsigned long field, unsigned long value)
366 {
367 	vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
368 			field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
369 }
370 
vmclear_error(struct vmcs * vmcs,u64 phys_addr)371 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
372 {
373 	vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
374 }
375 
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)376 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
377 {
378 	vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
379 }
380 
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)381 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
382 {
383 	vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
384 			ext, vpid, gva);
385 }
386 
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)387 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
388 {
389 	vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
390 			ext, eptp, gpa);
391 }
392 
393 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
394 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
395 /*
396  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
397  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
398  */
399 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
400 
401 /*
402  * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
403  * can find which vCPU should be waken up.
404  */
405 static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
406 static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
407 
408 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
409 static DEFINE_SPINLOCK(vmx_vpid_lock);
410 
411 struct vmcs_config vmcs_config;
412 struct vmx_capability vmx_capability;
413 
414 #define VMX_SEGMENT_FIELD(seg)					\
415 	[VCPU_SREG_##seg] = {                                   \
416 		.selector = GUEST_##seg##_SELECTOR,		\
417 		.base = GUEST_##seg##_BASE,		   	\
418 		.limit = GUEST_##seg##_LIMIT,		   	\
419 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
420 	}
421 
422 static const struct kvm_vmx_segment_field {
423 	unsigned selector;
424 	unsigned base;
425 	unsigned limit;
426 	unsigned ar_bytes;
427 } kvm_vmx_segment_fields[] = {
428 	VMX_SEGMENT_FIELD(CS),
429 	VMX_SEGMENT_FIELD(DS),
430 	VMX_SEGMENT_FIELD(ES),
431 	VMX_SEGMENT_FIELD(FS),
432 	VMX_SEGMENT_FIELD(GS),
433 	VMX_SEGMENT_FIELD(SS),
434 	VMX_SEGMENT_FIELD(TR),
435 	VMX_SEGMENT_FIELD(LDTR),
436 };
437 
438 u64 host_efer;
439 static unsigned long host_idt_base;
440 
441 /*
442  * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
443  * will emulate SYSCALL in legacy mode if the vendor string in guest
444  * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
445  * support this emulation, IA32_STAR must always be included in
446  * vmx_msr_index[], even in i386 builds.
447  */
448 const u32 vmx_msr_index[] = {
449 #ifdef CONFIG_X86_64
450 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
451 #endif
452 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
453 };
454 
455 #if IS_ENABLED(CONFIG_HYPERV)
456 static bool __read_mostly enlightened_vmcs = true;
457 module_param(enlightened_vmcs, bool, 0444);
458 
459 /* check_ept_pointer() should be under protection of ept_pointer_lock. */
check_ept_pointer_match(struct kvm * kvm)460 static void check_ept_pointer_match(struct kvm *kvm)
461 {
462 	struct kvm_vcpu *vcpu;
463 	u64 tmp_eptp = INVALID_PAGE;
464 	int i;
465 
466 	kvm_for_each_vcpu(i, vcpu, kvm) {
467 		if (!VALID_PAGE(tmp_eptp)) {
468 			tmp_eptp = to_vmx(vcpu)->ept_pointer;
469 		} else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
470 			to_kvm_vmx(kvm)->ept_pointers_match
471 				= EPT_POINTERS_MISMATCH;
472 			return;
473 		}
474 	}
475 
476 	to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
477 }
478 
kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list * flush,void * data)479 static int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
480 		void *data)
481 {
482 	struct kvm_tlb_range *range = data;
483 
484 	return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
485 			range->pages);
486 }
487 
__hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_vcpu * vcpu,struct kvm_tlb_range * range)488 static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
489 		struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
490 {
491 	u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
492 
493 	/*
494 	 * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
495 	 * of the base of EPT PML4 table, strip off EPT configuration
496 	 * information.
497 	 */
498 	if (range)
499 		return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
500 				kvm_fill_hv_flush_list_func, (void *)range);
501 	else
502 		return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
503 }
504 
hv_remote_flush_tlb_with_range(struct kvm * kvm,struct kvm_tlb_range * range)505 static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
506 		struct kvm_tlb_range *range)
507 {
508 	struct kvm_vcpu *vcpu;
509 	int ret = 0, i;
510 
511 	spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
512 
513 	if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
514 		check_ept_pointer_match(kvm);
515 
516 	if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
517 		kvm_for_each_vcpu(i, vcpu, kvm) {
518 			/* If ept_pointer is invalid pointer, bypass flush request. */
519 			if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
520 				ret |= __hv_remote_flush_tlb_with_range(
521 					kvm, vcpu, range);
522 		}
523 	} else {
524 		ret = __hv_remote_flush_tlb_with_range(kvm,
525 				kvm_get_vcpu(kvm, 0), range);
526 	}
527 
528 	spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
529 	return ret;
530 }
hv_remote_flush_tlb(struct kvm * kvm)531 static int hv_remote_flush_tlb(struct kvm *kvm)
532 {
533 	return hv_remote_flush_tlb_with_range(kvm, NULL);
534 }
535 
hv_enable_direct_tlbflush(struct kvm_vcpu * vcpu)536 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
537 {
538 	struct hv_enlightened_vmcs *evmcs;
539 	struct hv_partition_assist_pg **p_hv_pa_pg =
540 			&vcpu->kvm->arch.hyperv.hv_pa_pg;
541 	/*
542 	 * Synthetic VM-Exit is not enabled in current code and so All
543 	 * evmcs in singe VM shares same assist page.
544 	 */
545 	if (!*p_hv_pa_pg)
546 		*p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL);
547 
548 	if (!*p_hv_pa_pg)
549 		return -ENOMEM;
550 
551 	evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
552 
553 	evmcs->partition_assist_page =
554 		__pa(*p_hv_pa_pg);
555 	evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
556 	evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
557 
558 	return 0;
559 }
560 
561 #endif /* IS_ENABLED(CONFIG_HYPERV) */
562 
563 /*
564  * Comment's format: document - errata name - stepping - processor name.
565  * Refer from
566  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
567  */
568 static u32 vmx_preemption_cpu_tfms[] = {
569 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
570 0x000206E6,
571 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
572 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
573 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
574 0x00020652,
575 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
576 0x00020655,
577 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
578 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
579 /*
580  * 320767.pdf - AAP86  - B1 -
581  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
582  */
583 0x000106E5,
584 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
585 0x000106A0,
586 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
587 0x000106A1,
588 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
589 0x000106A4,
590  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
591  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
592  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
593 0x000106A5,
594  /* Xeon E3-1220 V2 */
595 0x000306A8,
596 };
597 
cpu_has_broken_vmx_preemption_timer(void)598 static inline bool cpu_has_broken_vmx_preemption_timer(void)
599 {
600 	u32 eax = cpuid_eax(0x00000001), i;
601 
602 	/* Clear the reserved bits */
603 	eax &= ~(0x3U << 14 | 0xfU << 28);
604 	for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
605 		if (eax == vmx_preemption_cpu_tfms[i])
606 			return true;
607 
608 	return false;
609 }
610 
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)611 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
612 {
613 	return flexpriority_enabled && lapic_in_kernel(vcpu);
614 }
615 
report_flexpriority(void)616 static inline bool report_flexpriority(void)
617 {
618 	return flexpriority_enabled;
619 }
620 
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)621 static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
622 {
623 	int i;
624 
625 	for (i = 0; i < vmx->nmsrs; ++i)
626 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
627 			return i;
628 	return -1;
629 }
630 
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)631 struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
632 {
633 	int i;
634 
635 	i = __find_msr_index(vmx, msr);
636 	if (i >= 0)
637 		return &vmx->guest_msrs[i];
638 	return NULL;
639 }
640 
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)641 void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
642 {
643 	vmcs_clear(loaded_vmcs->vmcs);
644 	if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
645 		vmcs_clear(loaded_vmcs->shadow_vmcs);
646 	loaded_vmcs->cpu = -1;
647 	loaded_vmcs->launched = 0;
648 }
649 
650 #ifdef CONFIG_KEXEC_CORE
651 /*
652  * This bitmap is used to indicate whether the vmclear
653  * operation is enabled on all cpus. All disabled by
654  * default.
655  */
656 static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
657 
crash_enable_local_vmclear(int cpu)658 static inline void crash_enable_local_vmclear(int cpu)
659 {
660 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
661 }
662 
crash_disable_local_vmclear(int cpu)663 static inline void crash_disable_local_vmclear(int cpu)
664 {
665 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
666 }
667 
crash_local_vmclear_enabled(int cpu)668 static inline int crash_local_vmclear_enabled(int cpu)
669 {
670 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
671 }
672 
crash_vmclear_local_loaded_vmcss(void)673 static void crash_vmclear_local_loaded_vmcss(void)
674 {
675 	int cpu = raw_smp_processor_id();
676 	struct loaded_vmcs *v;
677 
678 	if (!crash_local_vmclear_enabled(cpu))
679 		return;
680 
681 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
682 			    loaded_vmcss_on_cpu_link)
683 		vmcs_clear(v->vmcs);
684 }
685 #else
crash_enable_local_vmclear(int cpu)686 static inline void crash_enable_local_vmclear(int cpu) { }
crash_disable_local_vmclear(int cpu)687 static inline void crash_disable_local_vmclear(int cpu) { }
688 #endif /* CONFIG_KEXEC_CORE */
689 
__loaded_vmcs_clear(void * arg)690 static void __loaded_vmcs_clear(void *arg)
691 {
692 	struct loaded_vmcs *loaded_vmcs = arg;
693 	int cpu = raw_smp_processor_id();
694 
695 	if (loaded_vmcs->cpu != cpu)
696 		return; /* vcpu migration can race with cpu offline */
697 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
698 		per_cpu(current_vmcs, cpu) = NULL;
699 	crash_disable_local_vmclear(cpu);
700 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
701 
702 	/*
703 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
704 	 * is before setting loaded_vmcs->vcpu to -1 which is done in
705 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
706 	 * then adds the vmcs into percpu list before it is deleted.
707 	 */
708 	smp_wmb();
709 
710 	loaded_vmcs_init(loaded_vmcs);
711 	crash_enable_local_vmclear(cpu);
712 }
713 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)714 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
715 {
716 	int cpu = loaded_vmcs->cpu;
717 
718 	if (cpu != -1)
719 		smp_call_function_single(cpu,
720 			 __loaded_vmcs_clear, loaded_vmcs, 1);
721 }
722 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)723 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
724 				       unsigned field)
725 {
726 	bool ret;
727 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
728 
729 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
730 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
731 		vmx->segment_cache.bitmask = 0;
732 	}
733 	ret = vmx->segment_cache.bitmask & mask;
734 	vmx->segment_cache.bitmask |= mask;
735 	return ret;
736 }
737 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)738 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
739 {
740 	u16 *p = &vmx->segment_cache.seg[seg].selector;
741 
742 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
743 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
744 	return *p;
745 }
746 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)747 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
748 {
749 	ulong *p = &vmx->segment_cache.seg[seg].base;
750 
751 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
752 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
753 	return *p;
754 }
755 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)756 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
757 {
758 	u32 *p = &vmx->segment_cache.seg[seg].limit;
759 
760 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
761 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
762 	return *p;
763 }
764 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)765 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
766 {
767 	u32 *p = &vmx->segment_cache.seg[seg].ar;
768 
769 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
770 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
771 	return *p;
772 }
773 
update_exception_bitmap(struct kvm_vcpu * vcpu)774 void update_exception_bitmap(struct kvm_vcpu *vcpu)
775 {
776 	u32 eb;
777 
778 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
779 	     (1u << DB_VECTOR) | (1u << AC_VECTOR);
780 	/*
781 	 * Guest access to VMware backdoor ports could legitimately
782 	 * trigger #GP because of TSS I/O permission bitmap.
783 	 * We intercept those #GP and allow access to them anyway
784 	 * as VMware does.
785 	 */
786 	if (enable_vmware_backdoor)
787 		eb |= (1u << GP_VECTOR);
788 	if ((vcpu->guest_debug &
789 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
790 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
791 		eb |= 1u << BP_VECTOR;
792 	if (to_vmx(vcpu)->rmode.vm86_active)
793 		eb = ~0;
794 	if (enable_ept)
795 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
796 
797 	/* When we are running a nested L2 guest and L1 specified for it a
798 	 * certain exception bitmap, we must trap the same exceptions and pass
799 	 * them to L1. When running L2, we will only handle the exceptions
800 	 * specified above if L1 did not want them.
801 	 */
802 	if (is_guest_mode(vcpu))
803 		eb |= get_vmcs12(vcpu)->exception_bitmap;
804 
805 	vmcs_write32(EXCEPTION_BITMAP, eb);
806 }
807 
808 /*
809  * Check if MSR is intercepted for currently loaded MSR bitmap.
810  */
msr_write_intercepted(struct kvm_vcpu * vcpu,u32 msr)811 static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
812 {
813 	unsigned long *msr_bitmap;
814 	int f = sizeof(unsigned long);
815 
816 	if (!cpu_has_vmx_msr_bitmap())
817 		return true;
818 
819 	msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
820 
821 	if (msr <= 0x1fff) {
822 		return !!test_bit(msr, msr_bitmap + 0x800 / f);
823 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
824 		msr &= 0x1fff;
825 		return !!test_bit(msr, msr_bitmap + 0xc00 / f);
826 	}
827 
828 	return true;
829 }
830 
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)831 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
832 		unsigned long entry, unsigned long exit)
833 {
834 	vm_entry_controls_clearbit(vmx, entry);
835 	vm_exit_controls_clearbit(vmx, exit);
836 }
837 
find_msr(struct vmx_msrs * m,unsigned int msr)838 static int find_msr(struct vmx_msrs *m, unsigned int msr)
839 {
840 	unsigned int i;
841 
842 	for (i = 0; i < m->nr; ++i) {
843 		if (m->val[i].index == msr)
844 			return i;
845 	}
846 	return -ENOENT;
847 }
848 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)849 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
850 {
851 	int i;
852 	struct msr_autoload *m = &vmx->msr_autoload;
853 
854 	switch (msr) {
855 	case MSR_EFER:
856 		if (cpu_has_load_ia32_efer()) {
857 			clear_atomic_switch_msr_special(vmx,
858 					VM_ENTRY_LOAD_IA32_EFER,
859 					VM_EXIT_LOAD_IA32_EFER);
860 			return;
861 		}
862 		break;
863 	case MSR_CORE_PERF_GLOBAL_CTRL:
864 		if (cpu_has_load_perf_global_ctrl()) {
865 			clear_atomic_switch_msr_special(vmx,
866 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
867 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
868 			return;
869 		}
870 		break;
871 	}
872 	i = find_msr(&m->guest, msr);
873 	if (i < 0)
874 		goto skip_guest;
875 	--m->guest.nr;
876 	m->guest.val[i] = m->guest.val[m->guest.nr];
877 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
878 
879 skip_guest:
880 	i = find_msr(&m->host, msr);
881 	if (i < 0)
882 		return;
883 
884 	--m->host.nr;
885 	m->host.val[i] = m->host.val[m->host.nr];
886 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
887 }
888 
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)889 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
890 		unsigned long entry, unsigned long exit,
891 		unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
892 		u64 guest_val, u64 host_val)
893 {
894 	vmcs_write64(guest_val_vmcs, guest_val);
895 	if (host_val_vmcs != HOST_IA32_EFER)
896 		vmcs_write64(host_val_vmcs, host_val);
897 	vm_entry_controls_setbit(vmx, entry);
898 	vm_exit_controls_setbit(vmx, exit);
899 }
900 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)901 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
902 				  u64 guest_val, u64 host_val, bool entry_only)
903 {
904 	int i, j = 0;
905 	struct msr_autoload *m = &vmx->msr_autoload;
906 
907 	switch (msr) {
908 	case MSR_EFER:
909 		if (cpu_has_load_ia32_efer()) {
910 			add_atomic_switch_msr_special(vmx,
911 					VM_ENTRY_LOAD_IA32_EFER,
912 					VM_EXIT_LOAD_IA32_EFER,
913 					GUEST_IA32_EFER,
914 					HOST_IA32_EFER,
915 					guest_val, host_val);
916 			return;
917 		}
918 		break;
919 	case MSR_CORE_PERF_GLOBAL_CTRL:
920 		if (cpu_has_load_perf_global_ctrl()) {
921 			add_atomic_switch_msr_special(vmx,
922 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
923 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
924 					GUEST_IA32_PERF_GLOBAL_CTRL,
925 					HOST_IA32_PERF_GLOBAL_CTRL,
926 					guest_val, host_val);
927 			return;
928 		}
929 		break;
930 	case MSR_IA32_PEBS_ENABLE:
931 		/* PEBS needs a quiescent period after being disabled (to write
932 		 * a record).  Disabling PEBS through VMX MSR swapping doesn't
933 		 * provide that period, so a CPU could write host's record into
934 		 * guest's memory.
935 		 */
936 		wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
937 	}
938 
939 	i = find_msr(&m->guest, msr);
940 	if (!entry_only)
941 		j = find_msr(&m->host, msr);
942 
943 	if ((i < 0 && m->guest.nr == NR_AUTOLOAD_MSRS) ||
944 		(j < 0 &&  m->host.nr == NR_AUTOLOAD_MSRS)) {
945 		printk_once(KERN_WARNING "Not enough msr switch entries. "
946 				"Can't add msr %x\n", msr);
947 		return;
948 	}
949 	if (i < 0) {
950 		i = m->guest.nr++;
951 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
952 	}
953 	m->guest.val[i].index = msr;
954 	m->guest.val[i].value = guest_val;
955 
956 	if (entry_only)
957 		return;
958 
959 	if (j < 0) {
960 		j = m->host.nr++;
961 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
962 	}
963 	m->host.val[j].index = msr;
964 	m->host.val[j].value = host_val;
965 }
966 
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)967 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
968 {
969 	u64 guest_efer = vmx->vcpu.arch.efer;
970 	u64 ignore_bits = 0;
971 
972 	/* Shadow paging assumes NX to be available.  */
973 	if (!enable_ept)
974 		guest_efer |= EFER_NX;
975 
976 	/*
977 	 * LMA and LME handled by hardware; SCE meaningless outside long mode.
978 	 */
979 	ignore_bits |= EFER_SCE;
980 #ifdef CONFIG_X86_64
981 	ignore_bits |= EFER_LMA | EFER_LME;
982 	/* SCE is meaningful only in long mode on Intel */
983 	if (guest_efer & EFER_LMA)
984 		ignore_bits &= ~(u64)EFER_SCE;
985 #endif
986 
987 	/*
988 	 * On EPT, we can't emulate NX, so we must switch EFER atomically.
989 	 * On CPUs that support "load IA32_EFER", always switch EFER
990 	 * atomically, since it's faster than switching it manually.
991 	 */
992 	if (cpu_has_load_ia32_efer() ||
993 	    (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
994 		if (!(guest_efer & EFER_LMA))
995 			guest_efer &= ~EFER_LME;
996 		if (guest_efer != host_efer)
997 			add_atomic_switch_msr(vmx, MSR_EFER,
998 					      guest_efer, host_efer, false);
999 		else
1000 			clear_atomic_switch_msr(vmx, MSR_EFER);
1001 		return false;
1002 	} else {
1003 		clear_atomic_switch_msr(vmx, MSR_EFER);
1004 
1005 		guest_efer &= ~ignore_bits;
1006 		guest_efer |= host_efer & ignore_bits;
1007 
1008 		vmx->guest_msrs[efer_offset].data = guest_efer;
1009 		vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1010 
1011 		return true;
1012 	}
1013 }
1014 
1015 #ifdef CONFIG_X86_32
1016 /*
1017  * On 32-bit kernels, VM exits still load the FS and GS bases from the
1018  * VMCS rather than the segment table.  KVM uses this helper to figure
1019  * out the current bases to poke them into the VMCS before entry.
1020  */
segment_base(u16 selector)1021 static unsigned long segment_base(u16 selector)
1022 {
1023 	struct desc_struct *table;
1024 	unsigned long v;
1025 
1026 	if (!(selector & ~SEGMENT_RPL_MASK))
1027 		return 0;
1028 
1029 	table = get_current_gdt_ro();
1030 
1031 	if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1032 		u16 ldt_selector = kvm_read_ldt();
1033 
1034 		if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1035 			return 0;
1036 
1037 		table = (struct desc_struct *)segment_base(ldt_selector);
1038 	}
1039 	v = get_desc_base(&table[selector >> 3]);
1040 	return v;
1041 }
1042 #endif
1043 
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1044 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1045 {
1046 	u32 i;
1047 
1048 	wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1049 	wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1050 	wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1051 	wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1052 	for (i = 0; i < addr_range; i++) {
1053 		wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1054 		wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1055 	}
1056 }
1057 
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1058 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1059 {
1060 	u32 i;
1061 
1062 	rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1063 	rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1064 	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1065 	rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1066 	for (i = 0; i < addr_range; i++) {
1067 		rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1068 		rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1069 	}
1070 }
1071 
pt_guest_enter(struct vcpu_vmx * vmx)1072 static void pt_guest_enter(struct vcpu_vmx *vmx)
1073 {
1074 	if (pt_mode == PT_MODE_SYSTEM)
1075 		return;
1076 
1077 	/*
1078 	 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1079 	 * Save host state before VM entry.
1080 	 */
1081 	rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1082 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1083 		wrmsrl(MSR_IA32_RTIT_CTL, 0);
1084 		pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1085 		pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1086 	}
1087 }
1088 
pt_guest_exit(struct vcpu_vmx * vmx)1089 static void pt_guest_exit(struct vcpu_vmx *vmx)
1090 {
1091 	if (pt_mode == PT_MODE_SYSTEM)
1092 		return;
1093 
1094 	if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1095 		pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
1096 		pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
1097 	}
1098 
1099 	/* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
1100 	wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1101 }
1102 
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1103 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1104 			unsigned long fs_base, unsigned long gs_base)
1105 {
1106 	if (unlikely(fs_sel != host->fs_sel)) {
1107 		if (!(fs_sel & 7))
1108 			vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1109 		else
1110 			vmcs_write16(HOST_FS_SELECTOR, 0);
1111 		host->fs_sel = fs_sel;
1112 	}
1113 	if (unlikely(gs_sel != host->gs_sel)) {
1114 		if (!(gs_sel & 7))
1115 			vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1116 		else
1117 			vmcs_write16(HOST_GS_SELECTOR, 0);
1118 		host->gs_sel = gs_sel;
1119 	}
1120 	if (unlikely(fs_base != host->fs_base)) {
1121 		vmcs_writel(HOST_FS_BASE, fs_base);
1122 		host->fs_base = fs_base;
1123 	}
1124 	if (unlikely(gs_base != host->gs_base)) {
1125 		vmcs_writel(HOST_GS_BASE, gs_base);
1126 		host->gs_base = gs_base;
1127 	}
1128 }
1129 
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1130 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1131 {
1132 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1133 	struct vmcs_host_state *host_state;
1134 #ifdef CONFIG_X86_64
1135 	int cpu = raw_smp_processor_id();
1136 #endif
1137 	unsigned long fs_base, gs_base;
1138 	u16 fs_sel, gs_sel;
1139 	int i;
1140 
1141 	vmx->req_immediate_exit = false;
1142 
1143 	/*
1144 	 * Note that guest MSRs to be saved/restored can also be changed
1145 	 * when guest state is loaded. This happens when guest transitions
1146 	 * to/from long-mode by setting MSR_EFER.LMA.
1147 	 */
1148 	if (!vmx->guest_msrs_ready) {
1149 		vmx->guest_msrs_ready = true;
1150 		for (i = 0; i < vmx->save_nmsrs; ++i)
1151 			kvm_set_shared_msr(vmx->guest_msrs[i].index,
1152 					   vmx->guest_msrs[i].data,
1153 					   vmx->guest_msrs[i].mask);
1154 
1155 	}
1156 	if (vmx->guest_state_loaded)
1157 		return;
1158 
1159 	host_state = &vmx->loaded_vmcs->host_state;
1160 
1161 	/*
1162 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1163 	 * allow segment selectors with cpl > 0 or ti == 1.
1164 	 */
1165 	host_state->ldt_sel = kvm_read_ldt();
1166 
1167 #ifdef CONFIG_X86_64
1168 	savesegment(ds, host_state->ds_sel);
1169 	savesegment(es, host_state->es_sel);
1170 
1171 	gs_base = cpu_kernelmode_gs_base(cpu);
1172 	if (likely(is_64bit_mm(current->mm))) {
1173 		save_fsgs_for_kvm();
1174 		fs_sel = current->thread.fsindex;
1175 		gs_sel = current->thread.gsindex;
1176 		fs_base = current->thread.fsbase;
1177 		vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1178 	} else {
1179 		savesegment(fs, fs_sel);
1180 		savesegment(gs, gs_sel);
1181 		fs_base = read_msr(MSR_FS_BASE);
1182 		vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1183 	}
1184 
1185 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1186 #else
1187 	savesegment(fs, fs_sel);
1188 	savesegment(gs, gs_sel);
1189 	fs_base = segment_base(fs_sel);
1190 	gs_base = segment_base(gs_sel);
1191 #endif
1192 
1193 	vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1194 	vmx->guest_state_loaded = true;
1195 }
1196 
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1197 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1198 {
1199 	struct vmcs_host_state *host_state;
1200 
1201 	if (!vmx->guest_state_loaded)
1202 		return;
1203 
1204 	host_state = &vmx->loaded_vmcs->host_state;
1205 
1206 	++vmx->vcpu.stat.host_state_reload;
1207 
1208 #ifdef CONFIG_X86_64
1209 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1210 #endif
1211 	if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1212 		kvm_load_ldt(host_state->ldt_sel);
1213 #ifdef CONFIG_X86_64
1214 		load_gs_index(host_state->gs_sel);
1215 #else
1216 		loadsegment(gs, host_state->gs_sel);
1217 #endif
1218 	}
1219 	if (host_state->fs_sel & 7)
1220 		loadsegment(fs, host_state->fs_sel);
1221 #ifdef CONFIG_X86_64
1222 	if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1223 		loadsegment(ds, host_state->ds_sel);
1224 		loadsegment(es, host_state->es_sel);
1225 	}
1226 #endif
1227 	invalidate_tss_limit();
1228 #ifdef CONFIG_X86_64
1229 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1230 #endif
1231 	load_fixmap_gdt(raw_smp_processor_id());
1232 	vmx->guest_state_loaded = false;
1233 	vmx->guest_msrs_ready = false;
1234 }
1235 
1236 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1237 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1238 {
1239 	preempt_disable();
1240 	if (vmx->guest_state_loaded)
1241 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1242 	preempt_enable();
1243 	return vmx->msr_guest_kernel_gs_base;
1244 }
1245 
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1246 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1247 {
1248 	preempt_disable();
1249 	if (vmx->guest_state_loaded)
1250 		wrmsrl(MSR_KERNEL_GS_BASE, data);
1251 	preempt_enable();
1252 	vmx->msr_guest_kernel_gs_base = data;
1253 }
1254 #endif
1255 
vmx_vcpu_pi_load(struct kvm_vcpu * vcpu,int cpu)1256 static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
1257 {
1258 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1259 	struct pi_desc old, new;
1260 	unsigned int dest;
1261 
1262 	/*
1263 	 * In case of hot-plug or hot-unplug, we may have to undo
1264 	 * vmx_vcpu_pi_put even if there is no assigned device.  And we
1265 	 * always keep PI.NDST up to date for simplicity: it makes the
1266 	 * code easier, and CPU migration is not a fast path.
1267 	 */
1268 	if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
1269 		return;
1270 
1271 	/*
1272 	 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
1273 	 * PI.NDST: pi_post_block is the one expected to change PID.NDST and the
1274 	 * wakeup handler expects the vCPU to be on the blocked_vcpu_list that
1275 	 * matches PI.NDST. Otherwise, a vcpu may not be able to be woken up
1276 	 * correctly.
1277 	 */
1278 	if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR || vcpu->cpu == cpu) {
1279 		pi_clear_sn(pi_desc);
1280 		goto after_clear_sn;
1281 	}
1282 
1283 	/* The full case.  */
1284 	do {
1285 		old.control = new.control = pi_desc->control;
1286 
1287 		dest = cpu_physical_id(cpu);
1288 
1289 		if (x2apic_enabled())
1290 			new.ndst = dest;
1291 		else
1292 			new.ndst = (dest << 8) & 0xFF00;
1293 
1294 		new.sn = 0;
1295 	} while (cmpxchg64(&pi_desc->control, old.control,
1296 			   new.control) != old.control);
1297 
1298 after_clear_sn:
1299 
1300 	/*
1301 	 * Clear SN before reading the bitmap.  The VT-d firmware
1302 	 * writes the bitmap and reads SN atomically (5.2.3 in the
1303 	 * spec), so it doesn't really have a memory barrier that
1304 	 * pairs with this, but we cannot do that and we need one.
1305 	 */
1306 	smp_mb__after_atomic();
1307 
1308 	if (!pi_is_pir_empty(pi_desc))
1309 		pi_set_on(pi_desc);
1310 }
1311 
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu)1312 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu)
1313 {
1314 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1315 	bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1316 
1317 	if (!already_loaded) {
1318 		loaded_vmcs_clear(vmx->loaded_vmcs);
1319 		local_irq_disable();
1320 		crash_disable_local_vmclear(cpu);
1321 
1322 		/*
1323 		 * Read loaded_vmcs->cpu should be before fetching
1324 		 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1325 		 * See the comments in __loaded_vmcs_clear().
1326 		 */
1327 		smp_rmb();
1328 
1329 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1330 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1331 		crash_enable_local_vmclear(cpu);
1332 		local_irq_enable();
1333 	}
1334 
1335 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1336 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1337 		vmcs_load(vmx->loaded_vmcs->vmcs);
1338 		indirect_branch_prediction_barrier();
1339 	}
1340 
1341 	if (!already_loaded) {
1342 		void *gdt = get_current_gdt_ro();
1343 		unsigned long sysenter_esp;
1344 
1345 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1346 
1347 		/*
1348 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1349 		 * processors.  See 22.2.4.
1350 		 */
1351 		vmcs_writel(HOST_TR_BASE,
1352 			    (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1353 		vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1354 
1355 		/*
1356 		 * VM exits change the host TR limit to 0x67 after a VM
1357 		 * exit.  This is okay, since 0x67 covers everything except
1358 		 * the IO bitmap and have have code to handle the IO bitmap
1359 		 * being lost after a VM exit.
1360 		 */
1361 		BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
1362 
1363 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1364 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1365 
1366 		vmx->loaded_vmcs->cpu = cpu;
1367 	}
1368 
1369 	/* Setup TSC multiplier */
1370 	if (kvm_has_tsc_control &&
1371 	    vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
1372 		decache_tsc_multiplier(vmx);
1373 }
1374 
1375 /*
1376  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1377  * vcpu mutex is already taken.
1378  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1379 void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1380 {
1381 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1382 
1383 	vmx_vcpu_load_vmcs(vcpu, cpu);
1384 
1385 	vmx_vcpu_pi_load(vcpu, cpu);
1386 
1387 	vmx->host_pkru = read_pkru();
1388 	vmx->host_debugctlmsr = get_debugctlmsr();
1389 }
1390 
vmx_vcpu_pi_put(struct kvm_vcpu * vcpu)1391 static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
1392 {
1393 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
1394 
1395 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
1396 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
1397 		!kvm_vcpu_apicv_active(vcpu))
1398 		return;
1399 
1400 	/* Set SN when the vCPU is preempted */
1401 	if (vcpu->preempted)
1402 		pi_set_sn(pi_desc);
1403 }
1404 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1405 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1406 {
1407 	vmx_vcpu_pi_put(vcpu);
1408 
1409 	vmx_prepare_switch_to_host(to_vmx(vcpu));
1410 }
1411 
emulation_required(struct kvm_vcpu * vcpu)1412 static bool emulation_required(struct kvm_vcpu *vcpu)
1413 {
1414 	return emulate_invalid_guest_state && !guest_state_valid(vcpu);
1415 }
1416 
1417 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1418 
vmx_get_rflags(struct kvm_vcpu * vcpu)1419 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1420 {
1421 	unsigned long rflags, save_rflags;
1422 
1423 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1424 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1425 		rflags = vmcs_readl(GUEST_RFLAGS);
1426 		if (to_vmx(vcpu)->rmode.vm86_active) {
1427 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1428 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1429 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1430 		}
1431 		to_vmx(vcpu)->rflags = rflags;
1432 	}
1433 	return to_vmx(vcpu)->rflags;
1434 }
1435 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1436 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1437 {
1438 	unsigned long old_rflags = vmx_get_rflags(vcpu);
1439 
1440 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1441 	to_vmx(vcpu)->rflags = rflags;
1442 	if (to_vmx(vcpu)->rmode.vm86_active) {
1443 		to_vmx(vcpu)->rmode.save_rflags = rflags;
1444 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1445 	}
1446 	vmcs_writel(GUEST_RFLAGS, rflags);
1447 
1448 	if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
1449 		to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
1450 }
1451 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1452 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1453 {
1454 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1455 	int ret = 0;
1456 
1457 	if (interruptibility & GUEST_INTR_STATE_STI)
1458 		ret |= KVM_X86_SHADOW_INT_STI;
1459 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1460 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1461 
1462 	return ret;
1463 }
1464 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1465 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1466 {
1467 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1468 	u32 interruptibility = interruptibility_old;
1469 
1470 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1471 
1472 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1473 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1474 	else if (mask & KVM_X86_SHADOW_INT_STI)
1475 		interruptibility |= GUEST_INTR_STATE_STI;
1476 
1477 	if ((interruptibility != interruptibility_old))
1478 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1479 }
1480 
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1481 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1482 {
1483 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1484 	unsigned long value;
1485 
1486 	/*
1487 	 * Any MSR write that attempts to change bits marked reserved will
1488 	 * case a #GP fault.
1489 	 */
1490 	if (data & vmx->pt_desc.ctl_bitmask)
1491 		return 1;
1492 
1493 	/*
1494 	 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1495 	 * result in a #GP unless the same write also clears TraceEn.
1496 	 */
1497 	if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1498 		((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1499 		return 1;
1500 
1501 	/*
1502 	 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1503 	 * and FabricEn would cause #GP, if
1504 	 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1505 	 */
1506 	if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1507 		!(data & RTIT_CTL_FABRIC_EN) &&
1508 		!intel_pt_validate_cap(vmx->pt_desc.caps,
1509 					PT_CAP_single_range_output))
1510 		return 1;
1511 
1512 	/*
1513 	 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1514 	 * utilize encodings marked reserved will casue a #GP fault.
1515 	 */
1516 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1517 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1518 			!test_bit((data & RTIT_CTL_MTC_RANGE) >>
1519 			RTIT_CTL_MTC_RANGE_OFFSET, &value))
1520 		return 1;
1521 	value = intel_pt_validate_cap(vmx->pt_desc.caps,
1522 						PT_CAP_cycle_thresholds);
1523 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1524 			!test_bit((data & RTIT_CTL_CYC_THRESH) >>
1525 			RTIT_CTL_CYC_THRESH_OFFSET, &value))
1526 		return 1;
1527 	value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1528 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1529 			!test_bit((data & RTIT_CTL_PSB_FREQ) >>
1530 			RTIT_CTL_PSB_FREQ_OFFSET, &value))
1531 		return 1;
1532 
1533 	/*
1534 	 * If ADDRx_CFG is reserved or the encodings is >2 will
1535 	 * cause a #GP fault.
1536 	 */
1537 	value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1538 	if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
1539 		return 1;
1540 	value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1541 	if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
1542 		return 1;
1543 	value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1544 	if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
1545 		return 1;
1546 	value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1547 	if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
1548 		return 1;
1549 
1550 	return 0;
1551 }
1552 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1553 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1554 {
1555 	unsigned long rip;
1556 
1557 	/*
1558 	 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1559 	 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1560 	 * set when EPT misconfig occurs.  In practice, real hardware updates
1561 	 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1562 	 * (namely Hyper-V) don't set it due to it being undefined behavior,
1563 	 * i.e. we end up advancing IP with some random value.
1564 	 */
1565 	if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1566 	    to_vmx(vcpu)->exit_reason != EXIT_REASON_EPT_MISCONFIG) {
1567 		rip = kvm_rip_read(vcpu);
1568 		rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1569 		kvm_rip_write(vcpu, rip);
1570 	} else {
1571 		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1572 			return 0;
1573 	}
1574 
1575 	/* skipping an emulated instruction also counts */
1576 	vmx_set_interrupt_shadow(vcpu, 0);
1577 
1578 	return 1;
1579 }
1580 
vmx_clear_hlt(struct kvm_vcpu * vcpu)1581 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1582 {
1583 	/*
1584 	 * Ensure that we clear the HLT state in the VMCS.  We don't need to
1585 	 * explicitly skip the instruction because if the HLT state is set,
1586 	 * then the instruction is already executing and RIP has already been
1587 	 * advanced.
1588 	 */
1589 	if (kvm_hlt_in_guest(vcpu->kvm) &&
1590 			vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1591 		vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1592 }
1593 
vmx_queue_exception(struct kvm_vcpu * vcpu)1594 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1595 {
1596 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1597 	unsigned nr = vcpu->arch.exception.nr;
1598 	bool has_error_code = vcpu->arch.exception.has_error_code;
1599 	u32 error_code = vcpu->arch.exception.error_code;
1600 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1601 
1602 	kvm_deliver_exception_payload(vcpu);
1603 
1604 	if (has_error_code) {
1605 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1606 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1607 	}
1608 
1609 	if (vmx->rmode.vm86_active) {
1610 		int inc_eip = 0;
1611 		if (kvm_exception_is_soft(nr))
1612 			inc_eip = vcpu->arch.event_exit_inst_len;
1613 		kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1614 		return;
1615 	}
1616 
1617 	WARN_ON_ONCE(vmx->emulation_required);
1618 
1619 	if (kvm_exception_is_soft(nr)) {
1620 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1621 			     vmx->vcpu.arch.event_exit_inst_len);
1622 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1623 	} else
1624 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1625 
1626 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1627 
1628 	vmx_clear_hlt(vcpu);
1629 }
1630 
vmx_rdtscp_supported(void)1631 static bool vmx_rdtscp_supported(void)
1632 {
1633 	return cpu_has_vmx_rdtscp();
1634 }
1635 
vmx_invpcid_supported(void)1636 static bool vmx_invpcid_supported(void)
1637 {
1638 	return cpu_has_vmx_invpcid();
1639 }
1640 
1641 /*
1642  * Swap MSR entry in host/guest MSR entry array.
1643  */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)1644 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1645 {
1646 	struct shared_msr_entry tmp;
1647 
1648 	tmp = vmx->guest_msrs[to];
1649 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1650 	vmx->guest_msrs[from] = tmp;
1651 }
1652 
1653 /*
1654  * Set up the vmcs to automatically save and restore system
1655  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1656  * mode, as fiddling with msrs is very expensive.
1657  */
setup_msrs(struct vcpu_vmx * vmx)1658 static void setup_msrs(struct vcpu_vmx *vmx)
1659 {
1660 	int save_nmsrs, index;
1661 
1662 	save_nmsrs = 0;
1663 #ifdef CONFIG_X86_64
1664 	/*
1665 	 * The SYSCALL MSRs are only needed on long mode guests, and only
1666 	 * when EFER.SCE is set.
1667 	 */
1668 	if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
1669 		index = __find_msr_index(vmx, MSR_STAR);
1670 		if (index >= 0)
1671 			move_msr_up(vmx, index, save_nmsrs++);
1672 		index = __find_msr_index(vmx, MSR_LSTAR);
1673 		if (index >= 0)
1674 			move_msr_up(vmx, index, save_nmsrs++);
1675 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1676 		if (index >= 0)
1677 			move_msr_up(vmx, index, save_nmsrs++);
1678 	}
1679 #endif
1680 	index = __find_msr_index(vmx, MSR_EFER);
1681 	if (index >= 0 && update_transition_efer(vmx, index))
1682 		move_msr_up(vmx, index, save_nmsrs++);
1683 	index = __find_msr_index(vmx, MSR_TSC_AUX);
1684 	if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
1685 		move_msr_up(vmx, index, save_nmsrs++);
1686 
1687 	vmx->save_nmsrs = save_nmsrs;
1688 	vmx->guest_msrs_ready = false;
1689 
1690 	if (cpu_has_vmx_msr_bitmap())
1691 		vmx_update_msr_bitmap(&vmx->vcpu);
1692 }
1693 
vmx_read_l1_tsc_offset(struct kvm_vcpu * vcpu)1694 static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
1695 {
1696 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1697 
1698 	if (is_guest_mode(vcpu) &&
1699 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1700 		return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
1701 
1702 	return vcpu->arch.tsc_offset;
1703 }
1704 
vmx_write_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1705 static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1706 {
1707 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1708 	u64 g_tsc_offset = 0;
1709 
1710 	/*
1711 	 * We're here if L1 chose not to trap WRMSR to TSC. According
1712 	 * to the spec, this should set L1's TSC; The offset that L1
1713 	 * set for L2 remains unchanged, and still needs to be added
1714 	 * to the newly set TSC to get L2's TSC.
1715 	 */
1716 	if (is_guest_mode(vcpu) &&
1717 	    (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
1718 		g_tsc_offset = vmcs12->tsc_offset;
1719 
1720 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
1721 				   vcpu->arch.tsc_offset - g_tsc_offset,
1722 				   offset);
1723 	vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
1724 	return offset + g_tsc_offset;
1725 }
1726 
1727 /*
1728  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1729  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1730  * all guests if the "nested" module option is off, and can also be disabled
1731  * for a single guest by disabling its VMX cpuid bit.
1732  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1733 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1734 {
1735 	return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1736 }
1737 
vmx_feature_control_msr_valid(struct kvm_vcpu * vcpu,uint64_t val)1738 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1739 						 uint64_t val)
1740 {
1741 	uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1742 
1743 	return !(val & ~valid_bits);
1744 }
1745 
vmx_get_msr_feature(struct kvm_msr_entry * msr)1746 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1747 {
1748 	switch (msr->index) {
1749 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1750 		if (!nested)
1751 			return 1;
1752 		return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1753 	default:
1754 		return 1;
1755 	}
1756 
1757 	return 0;
1758 }
1759 
1760 /*
1761  * Reads an msr value (of 'msr_index') into 'pdata'.
1762  * Returns 0 on success, non-0 otherwise.
1763  * Assumes vcpu_load() was already called.
1764  */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1765 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1766 {
1767 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1768 	struct shared_msr_entry *msr;
1769 	u32 index;
1770 
1771 	switch (msr_info->index) {
1772 #ifdef CONFIG_X86_64
1773 	case MSR_FS_BASE:
1774 		msr_info->data = vmcs_readl(GUEST_FS_BASE);
1775 		break;
1776 	case MSR_GS_BASE:
1777 		msr_info->data = vmcs_readl(GUEST_GS_BASE);
1778 		break;
1779 	case MSR_KERNEL_GS_BASE:
1780 		msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1781 		break;
1782 #endif
1783 	case MSR_EFER:
1784 		return kvm_get_msr_common(vcpu, msr_info);
1785 	case MSR_IA32_UMWAIT_CONTROL:
1786 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1787 			return 1;
1788 
1789 		msr_info->data = vmx->msr_ia32_umwait_control;
1790 		break;
1791 	case MSR_IA32_SPEC_CTRL:
1792 		if (!msr_info->host_initiated &&
1793 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1794 			return 1;
1795 
1796 		msr_info->data = to_vmx(vcpu)->spec_ctrl;
1797 		break;
1798 	case MSR_IA32_SYSENTER_CS:
1799 		msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1800 		break;
1801 	case MSR_IA32_SYSENTER_EIP:
1802 		msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1803 		break;
1804 	case MSR_IA32_SYSENTER_ESP:
1805 		msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1806 		break;
1807 	case MSR_IA32_BNDCFGS:
1808 		if (!kvm_mpx_supported() ||
1809 		    (!msr_info->host_initiated &&
1810 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1811 			return 1;
1812 		msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1813 		break;
1814 	case MSR_IA32_MCG_EXT_CTL:
1815 		if (!msr_info->host_initiated &&
1816 		    !(vmx->msr_ia32_feature_control &
1817 		      FEATURE_CONTROL_LMCE))
1818 			return 1;
1819 		msr_info->data = vcpu->arch.mcg_ext_ctl;
1820 		break;
1821 	case MSR_IA32_FEATURE_CONTROL:
1822 		msr_info->data = vmx->msr_ia32_feature_control;
1823 		break;
1824 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1825 		if (!nested_vmx_allowed(vcpu))
1826 			return 1;
1827 		return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1828 				       &msr_info->data);
1829 	case MSR_IA32_XSS:
1830 		if (!vmx_xsaves_supported() ||
1831 		    (!msr_info->host_initiated &&
1832 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
1833 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
1834 			return 1;
1835 		msr_info->data = vcpu->arch.ia32_xss;
1836 		break;
1837 	case MSR_IA32_RTIT_CTL:
1838 		if (pt_mode != PT_MODE_HOST_GUEST)
1839 			return 1;
1840 		msr_info->data = vmx->pt_desc.guest.ctl;
1841 		break;
1842 	case MSR_IA32_RTIT_STATUS:
1843 		if (pt_mode != PT_MODE_HOST_GUEST)
1844 			return 1;
1845 		msr_info->data = vmx->pt_desc.guest.status;
1846 		break;
1847 	case MSR_IA32_RTIT_CR3_MATCH:
1848 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1849 			!intel_pt_validate_cap(vmx->pt_desc.caps,
1850 						PT_CAP_cr3_filtering))
1851 			return 1;
1852 		msr_info->data = vmx->pt_desc.guest.cr3_match;
1853 		break;
1854 	case MSR_IA32_RTIT_OUTPUT_BASE:
1855 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1856 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1857 					PT_CAP_topa_output) &&
1858 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1859 					PT_CAP_single_range_output)))
1860 			return 1;
1861 		msr_info->data = vmx->pt_desc.guest.output_base;
1862 		break;
1863 	case MSR_IA32_RTIT_OUTPUT_MASK:
1864 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1865 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
1866 					PT_CAP_topa_output) &&
1867 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
1868 					PT_CAP_single_range_output)))
1869 			return 1;
1870 		msr_info->data = vmx->pt_desc.guest.output_mask;
1871 		break;
1872 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1873 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1874 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
1875 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
1876 					PT_CAP_num_address_ranges)))
1877 			return 1;
1878 		if (index % 2)
1879 			msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1880 		else
1881 			msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1882 		break;
1883 	case MSR_TSC_AUX:
1884 		if (!msr_info->host_initiated &&
1885 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1886 			return 1;
1887 		/* Else, falls through */
1888 	default:
1889 		msr = find_msr_entry(vmx, msr_info->index);
1890 		if (msr) {
1891 			msr_info->data = msr->data;
1892 			break;
1893 		}
1894 		return kvm_get_msr_common(vcpu, msr_info);
1895 	}
1896 
1897 	return 0;
1898 }
1899 
1900 /*
1901  * Writes msr value into into the appropriate "register".
1902  * Returns 0 on success, non-0 otherwise.
1903  * Assumes vcpu_load() was already called.
1904  */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1905 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1906 {
1907 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1908 	struct shared_msr_entry *msr;
1909 	int ret = 0;
1910 	u32 msr_index = msr_info->index;
1911 	u64 data = msr_info->data;
1912 	u32 index;
1913 
1914 	switch (msr_index) {
1915 	case MSR_EFER:
1916 		ret = kvm_set_msr_common(vcpu, msr_info);
1917 		break;
1918 #ifdef CONFIG_X86_64
1919 	case MSR_FS_BASE:
1920 		vmx_segment_cache_clear(vmx);
1921 		vmcs_writel(GUEST_FS_BASE, data);
1922 		break;
1923 	case MSR_GS_BASE:
1924 		vmx_segment_cache_clear(vmx);
1925 		vmcs_writel(GUEST_GS_BASE, data);
1926 		break;
1927 	case MSR_KERNEL_GS_BASE:
1928 		vmx_write_guest_kernel_gs_base(vmx, data);
1929 		break;
1930 #endif
1931 	case MSR_IA32_SYSENTER_CS:
1932 		if (is_guest_mode(vcpu))
1933 			get_vmcs12(vcpu)->guest_sysenter_cs = data;
1934 		vmcs_write32(GUEST_SYSENTER_CS, data);
1935 		break;
1936 	case MSR_IA32_SYSENTER_EIP:
1937 		if (is_guest_mode(vcpu))
1938 			get_vmcs12(vcpu)->guest_sysenter_eip = data;
1939 		vmcs_writel(GUEST_SYSENTER_EIP, data);
1940 		break;
1941 	case MSR_IA32_SYSENTER_ESP:
1942 		if (is_guest_mode(vcpu))
1943 			get_vmcs12(vcpu)->guest_sysenter_esp = data;
1944 		vmcs_writel(GUEST_SYSENTER_ESP, data);
1945 		break;
1946 	case MSR_IA32_DEBUGCTLMSR:
1947 		if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1948 						VM_EXIT_SAVE_DEBUG_CONTROLS)
1949 			get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1950 
1951 		ret = kvm_set_msr_common(vcpu, msr_info);
1952 		break;
1953 
1954 	case MSR_IA32_BNDCFGS:
1955 		if (!kvm_mpx_supported() ||
1956 		    (!msr_info->host_initiated &&
1957 		     !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1958 			return 1;
1959 		if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
1960 		    (data & MSR_IA32_BNDCFGS_RSVD))
1961 			return 1;
1962 		vmcs_write64(GUEST_BNDCFGS, data);
1963 		break;
1964 	case MSR_IA32_UMWAIT_CONTROL:
1965 		if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1966 			return 1;
1967 
1968 		/* The reserved bit 1 and non-32 bit [63:32] should be zero */
1969 		if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
1970 			return 1;
1971 
1972 		vmx->msr_ia32_umwait_control = data;
1973 		break;
1974 	case MSR_IA32_SPEC_CTRL:
1975 		if (!msr_info->host_initiated &&
1976 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
1977 			return 1;
1978 
1979 		/* The STIBP bit doesn't fault even if it's not advertised */
1980 		if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
1981 			return 1;
1982 
1983 		vmx->spec_ctrl = data;
1984 
1985 		if (!data)
1986 			break;
1987 
1988 		/*
1989 		 * For non-nested:
1990 		 * When it's written (to non-zero) for the first time, pass
1991 		 * it through.
1992 		 *
1993 		 * For nested:
1994 		 * The handling of the MSR bitmap for L2 guests is done in
1995 		 * nested_vmx_merge_msr_bitmap. We should not touch the
1996 		 * vmcs02.msr_bitmap here since it gets completely overwritten
1997 		 * in the merging. We update the vmcs01 here for L1 as well
1998 		 * since it will end up touching the MSR anyway now.
1999 		 */
2000 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
2001 					      MSR_IA32_SPEC_CTRL,
2002 					      MSR_TYPE_RW);
2003 		break;
2004 	case MSR_IA32_PRED_CMD:
2005 		if (!msr_info->host_initiated &&
2006 		    !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
2007 			return 1;
2008 
2009 		if (data & ~PRED_CMD_IBPB)
2010 			return 1;
2011 
2012 		if (!data)
2013 			break;
2014 
2015 		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2016 
2017 		/*
2018 		 * For non-nested:
2019 		 * When it's written (to non-zero) for the first time, pass
2020 		 * it through.
2021 		 *
2022 		 * For nested:
2023 		 * The handling of the MSR bitmap for L2 guests is done in
2024 		 * nested_vmx_merge_msr_bitmap. We should not touch the
2025 		 * vmcs02.msr_bitmap here since it gets completely overwritten
2026 		 * in the merging.
2027 		 */
2028 		vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
2029 					      MSR_TYPE_W);
2030 		break;
2031 	case MSR_IA32_CR_PAT:
2032 		if (!kvm_pat_valid(data))
2033 			return 1;
2034 
2035 		if (is_guest_mode(vcpu) &&
2036 		    get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2037 			get_vmcs12(vcpu)->guest_ia32_pat = data;
2038 
2039 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2040 			vmcs_write64(GUEST_IA32_PAT, data);
2041 			vcpu->arch.pat = data;
2042 			break;
2043 		}
2044 		ret = kvm_set_msr_common(vcpu, msr_info);
2045 		break;
2046 	case MSR_IA32_TSC_ADJUST:
2047 		ret = kvm_set_msr_common(vcpu, msr_info);
2048 		break;
2049 	case MSR_IA32_MCG_EXT_CTL:
2050 		if ((!msr_info->host_initiated &&
2051 		     !(to_vmx(vcpu)->msr_ia32_feature_control &
2052 		       FEATURE_CONTROL_LMCE)) ||
2053 		    (data & ~MCG_EXT_CTL_LMCE_EN))
2054 			return 1;
2055 		vcpu->arch.mcg_ext_ctl = data;
2056 		break;
2057 	case MSR_IA32_FEATURE_CONTROL:
2058 		if (!vmx_feature_control_msr_valid(vcpu, data) ||
2059 		    (to_vmx(vcpu)->msr_ia32_feature_control &
2060 		     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
2061 			return 1;
2062 		vmx->msr_ia32_feature_control = data;
2063 		if (msr_info->host_initiated && data == 0)
2064 			vmx_leave_nested(vcpu);
2065 		break;
2066 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2067 		if (!msr_info->host_initiated)
2068 			return 1; /* they are read-only */
2069 		if (!nested_vmx_allowed(vcpu))
2070 			return 1;
2071 		return vmx_set_vmx_msr(vcpu, msr_index, data);
2072 	case MSR_IA32_XSS:
2073 		if (!vmx_xsaves_supported() ||
2074 		    (!msr_info->host_initiated &&
2075 		     !(guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
2076 		       guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))))
2077 			return 1;
2078 		/*
2079 		 * The only supported bit as of Skylake is bit 8, but
2080 		 * it is not supported on KVM.
2081 		 */
2082 		if (data != 0)
2083 			return 1;
2084 		vcpu->arch.ia32_xss = data;
2085 		if (vcpu->arch.ia32_xss != host_xss)
2086 			add_atomic_switch_msr(vmx, MSR_IA32_XSS,
2087 				vcpu->arch.ia32_xss, host_xss, false);
2088 		else
2089 			clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
2090 		break;
2091 	case MSR_IA32_RTIT_CTL:
2092 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2093 			vmx_rtit_ctl_check(vcpu, data) ||
2094 			vmx->nested.vmxon)
2095 			return 1;
2096 		vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2097 		vmx->pt_desc.guest.ctl = data;
2098 		pt_update_intercept_for_msr(vmx);
2099 		break;
2100 	case MSR_IA32_RTIT_STATUS:
2101 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2102 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2103 			(data & MSR_IA32_RTIT_STATUS_MASK))
2104 			return 1;
2105 		vmx->pt_desc.guest.status = data;
2106 		break;
2107 	case MSR_IA32_RTIT_CR3_MATCH:
2108 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2109 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2110 			!intel_pt_validate_cap(vmx->pt_desc.caps,
2111 						PT_CAP_cr3_filtering))
2112 			return 1;
2113 		vmx->pt_desc.guest.cr3_match = data;
2114 		break;
2115 	case MSR_IA32_RTIT_OUTPUT_BASE:
2116 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2117 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2118 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2119 					PT_CAP_topa_output) &&
2120 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2121 					PT_CAP_single_range_output)) ||
2122 			(data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
2123 			return 1;
2124 		vmx->pt_desc.guest.output_base = data;
2125 		break;
2126 	case MSR_IA32_RTIT_OUTPUT_MASK:
2127 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2128 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2129 			(!intel_pt_validate_cap(vmx->pt_desc.caps,
2130 					PT_CAP_topa_output) &&
2131 			 !intel_pt_validate_cap(vmx->pt_desc.caps,
2132 					PT_CAP_single_range_output)))
2133 			return 1;
2134 		vmx->pt_desc.guest.output_mask = data;
2135 		break;
2136 	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2137 		index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2138 		if ((pt_mode != PT_MODE_HOST_GUEST) ||
2139 			(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
2140 			(index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
2141 					PT_CAP_num_address_ranges)))
2142 			return 1;
2143 		if (index % 2)
2144 			vmx->pt_desc.guest.addr_b[index / 2] = data;
2145 		else
2146 			vmx->pt_desc.guest.addr_a[index / 2] = data;
2147 		break;
2148 	case MSR_TSC_AUX:
2149 		if (!msr_info->host_initiated &&
2150 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
2151 			return 1;
2152 		/* Check reserved bit, higher 32 bits should be zero */
2153 		if ((data >> 32) != 0)
2154 			return 1;
2155 		/* Else, falls through */
2156 	default:
2157 		msr = find_msr_entry(vmx, msr_index);
2158 		if (msr) {
2159 			u64 old_msr_data = msr->data;
2160 			msr->data = data;
2161 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2162 				preempt_disable();
2163 				ret = kvm_set_shared_msr(msr->index, msr->data,
2164 							 msr->mask);
2165 				preempt_enable();
2166 				if (ret)
2167 					msr->data = old_msr_data;
2168 			}
2169 			break;
2170 		}
2171 		ret = kvm_set_msr_common(vcpu, msr_info);
2172 	}
2173 
2174 	return ret;
2175 }
2176 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2177 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2178 {
2179 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2180 	switch (reg) {
2181 	case VCPU_REGS_RSP:
2182 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2183 		break;
2184 	case VCPU_REGS_RIP:
2185 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2186 		break;
2187 	case VCPU_EXREG_PDPTR:
2188 		if (enable_ept)
2189 			ept_save_pdptrs(vcpu);
2190 		break;
2191 	default:
2192 		break;
2193 	}
2194 }
2195 
cpu_has_kvm_support(void)2196 static __init int cpu_has_kvm_support(void)
2197 {
2198 	return cpu_has_vmx();
2199 }
2200 
vmx_disabled_by_bios(void)2201 static __init int vmx_disabled_by_bios(void)
2202 {
2203 	u64 msr;
2204 
2205 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2206 	if (msr & FEATURE_CONTROL_LOCKED) {
2207 		/* launched w/ TXT and VMX disabled */
2208 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2209 			&& tboot_enabled())
2210 			return 1;
2211 		/* launched w/o TXT and VMX only enabled w/ TXT */
2212 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2213 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2214 			&& !tboot_enabled()) {
2215 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2216 				"activate TXT before enabling KVM\n");
2217 			return 1;
2218 		}
2219 		/* launched w/o TXT and VMX disabled */
2220 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2221 			&& !tboot_enabled())
2222 			return 1;
2223 	}
2224 
2225 	return 0;
2226 }
2227 
kvm_cpu_vmxon(u64 addr)2228 static void kvm_cpu_vmxon(u64 addr)
2229 {
2230 	cr4_set_bits(X86_CR4_VMXE);
2231 	intel_pt_handle_vmx(1);
2232 
2233 	asm volatile ("vmxon %0" : : "m"(addr));
2234 }
2235 
hardware_enable(void)2236 static int hardware_enable(void)
2237 {
2238 	int cpu = raw_smp_processor_id();
2239 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2240 	u64 old, test_bits;
2241 
2242 	if (cr4_read_shadow() & X86_CR4_VMXE)
2243 		return -EBUSY;
2244 
2245 	/*
2246 	 * This can happen if we hot-added a CPU but failed to allocate
2247 	 * VP assist page for it.
2248 	 */
2249 	if (static_branch_unlikely(&enable_evmcs) &&
2250 	    !hv_get_vp_assist_page(cpu))
2251 		return -EFAULT;
2252 
2253 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2254 	INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
2255 	spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
2256 
2257 	/*
2258 	 * Now we can enable the vmclear operation in kdump
2259 	 * since the loaded_vmcss_on_cpu list on this cpu
2260 	 * has been initialized.
2261 	 *
2262 	 * Though the cpu is not in VMX operation now, there
2263 	 * is no problem to enable the vmclear operation
2264 	 * for the loaded_vmcss_on_cpu list is empty!
2265 	 */
2266 	crash_enable_local_vmclear(cpu);
2267 
2268 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2269 
2270 	test_bits = FEATURE_CONTROL_LOCKED;
2271 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2272 	if (tboot_enabled())
2273 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2274 
2275 	if ((old & test_bits) != test_bits) {
2276 		/* enable and lock */
2277 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2278 	}
2279 	kvm_cpu_vmxon(phys_addr);
2280 	if (enable_ept)
2281 		ept_sync_global();
2282 
2283 	return 0;
2284 }
2285 
vmclear_local_loaded_vmcss(void)2286 static void vmclear_local_loaded_vmcss(void)
2287 {
2288 	int cpu = raw_smp_processor_id();
2289 	struct loaded_vmcs *v, *n;
2290 
2291 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2292 				 loaded_vmcss_on_cpu_link)
2293 		__loaded_vmcs_clear(v);
2294 }
2295 
2296 
2297 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2298  * tricks.
2299  */
kvm_cpu_vmxoff(void)2300 static void kvm_cpu_vmxoff(void)
2301 {
2302 	asm volatile (__ex("vmxoff"));
2303 
2304 	intel_pt_handle_vmx(0);
2305 	cr4_clear_bits(X86_CR4_VMXE);
2306 }
2307 
hardware_disable(void)2308 static void hardware_disable(void)
2309 {
2310 	vmclear_local_loaded_vmcss();
2311 	kvm_cpu_vmxoff();
2312 }
2313 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2314 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2315 				      u32 msr, u32 *result)
2316 {
2317 	u32 vmx_msr_low, vmx_msr_high;
2318 	u32 ctl = ctl_min | ctl_opt;
2319 
2320 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2321 
2322 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2323 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2324 
2325 	/* Ensure minimum (required) set of control bits are supported. */
2326 	if (ctl_min & ~ctl)
2327 		return -EIO;
2328 
2329 	*result = ctl;
2330 	return 0;
2331 }
2332 
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2333 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2334 				    struct vmx_capability *vmx_cap)
2335 {
2336 	u32 vmx_msr_low, vmx_msr_high;
2337 	u32 min, opt, min2, opt2;
2338 	u32 _pin_based_exec_control = 0;
2339 	u32 _cpu_based_exec_control = 0;
2340 	u32 _cpu_based_2nd_exec_control = 0;
2341 	u32 _vmexit_control = 0;
2342 	u32 _vmentry_control = 0;
2343 
2344 	memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2345 	min = CPU_BASED_HLT_EXITING |
2346 #ifdef CONFIG_X86_64
2347 	      CPU_BASED_CR8_LOAD_EXITING |
2348 	      CPU_BASED_CR8_STORE_EXITING |
2349 #endif
2350 	      CPU_BASED_CR3_LOAD_EXITING |
2351 	      CPU_BASED_CR3_STORE_EXITING |
2352 	      CPU_BASED_UNCOND_IO_EXITING |
2353 	      CPU_BASED_MOV_DR_EXITING |
2354 	      CPU_BASED_USE_TSC_OFFSETING |
2355 	      CPU_BASED_MWAIT_EXITING |
2356 	      CPU_BASED_MONITOR_EXITING |
2357 	      CPU_BASED_INVLPG_EXITING |
2358 	      CPU_BASED_RDPMC_EXITING;
2359 
2360 	opt = CPU_BASED_TPR_SHADOW |
2361 	      CPU_BASED_USE_MSR_BITMAPS |
2362 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2363 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2364 				&_cpu_based_exec_control) < 0)
2365 		return -EIO;
2366 #ifdef CONFIG_X86_64
2367 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2368 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2369 					   ~CPU_BASED_CR8_STORE_EXITING;
2370 #endif
2371 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2372 		min2 = 0;
2373 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2374 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2375 			SECONDARY_EXEC_WBINVD_EXITING |
2376 			SECONDARY_EXEC_ENABLE_VPID |
2377 			SECONDARY_EXEC_ENABLE_EPT |
2378 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2379 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2380 			SECONDARY_EXEC_DESC |
2381 			SECONDARY_EXEC_RDTSCP |
2382 			SECONDARY_EXEC_ENABLE_INVPCID |
2383 			SECONDARY_EXEC_APIC_REGISTER_VIRT |
2384 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2385 			SECONDARY_EXEC_SHADOW_VMCS |
2386 			SECONDARY_EXEC_XSAVES |
2387 			SECONDARY_EXEC_RDSEED_EXITING |
2388 			SECONDARY_EXEC_RDRAND_EXITING |
2389 			SECONDARY_EXEC_ENABLE_PML |
2390 			SECONDARY_EXEC_TSC_SCALING |
2391 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2392 			SECONDARY_EXEC_PT_USE_GPA |
2393 			SECONDARY_EXEC_PT_CONCEAL_VMX |
2394 			SECONDARY_EXEC_ENABLE_VMFUNC |
2395 			SECONDARY_EXEC_ENCLS_EXITING;
2396 		if (adjust_vmx_controls(min2, opt2,
2397 					MSR_IA32_VMX_PROCBASED_CTLS2,
2398 					&_cpu_based_2nd_exec_control) < 0)
2399 			return -EIO;
2400 	}
2401 #ifndef CONFIG_X86_64
2402 	if (!(_cpu_based_2nd_exec_control &
2403 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2404 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2405 #endif
2406 
2407 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2408 		_cpu_based_2nd_exec_control &= ~(
2409 				SECONDARY_EXEC_APIC_REGISTER_VIRT |
2410 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2411 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2412 
2413 	rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2414 		&vmx_cap->ept, &vmx_cap->vpid);
2415 
2416 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2417 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2418 		   enabled */
2419 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2420 					     CPU_BASED_CR3_STORE_EXITING |
2421 					     CPU_BASED_INVLPG_EXITING);
2422 	} else if (vmx_cap->ept) {
2423 		vmx_cap->ept = 0;
2424 		pr_warn_once("EPT CAP should not exist if not support "
2425 				"1-setting enable EPT VM-execution control\n");
2426 	}
2427 	if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2428 		vmx_cap->vpid) {
2429 		vmx_cap->vpid = 0;
2430 		pr_warn_once("VPID CAP should not exist if not support "
2431 				"1-setting enable VPID VM-execution control\n");
2432 	}
2433 
2434 	min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2435 #ifdef CONFIG_X86_64
2436 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2437 #endif
2438 	opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2439 	      VM_EXIT_LOAD_IA32_PAT |
2440 	      VM_EXIT_LOAD_IA32_EFER |
2441 	      VM_EXIT_CLEAR_BNDCFGS |
2442 	      VM_EXIT_PT_CONCEAL_PIP |
2443 	      VM_EXIT_CLEAR_IA32_RTIT_CTL;
2444 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2445 				&_vmexit_control) < 0)
2446 		return -EIO;
2447 
2448 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2449 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2450 		 PIN_BASED_VMX_PREEMPTION_TIMER;
2451 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2452 				&_pin_based_exec_control) < 0)
2453 		return -EIO;
2454 
2455 	if (cpu_has_broken_vmx_preemption_timer())
2456 		_pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2457 	if (!(_cpu_based_2nd_exec_control &
2458 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2459 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2460 
2461 	min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2462 	opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2463 	      VM_ENTRY_LOAD_IA32_PAT |
2464 	      VM_ENTRY_LOAD_IA32_EFER |
2465 	      VM_ENTRY_LOAD_BNDCFGS |
2466 	      VM_ENTRY_PT_CONCEAL_PIP |
2467 	      VM_ENTRY_LOAD_IA32_RTIT_CTL;
2468 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2469 				&_vmentry_control) < 0)
2470 		return -EIO;
2471 
2472 	/*
2473 	 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2474 	 * can't be used due to an errata where VM Exit may incorrectly clear
2475 	 * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2476 	 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2477 	 */
2478 	if (boot_cpu_data.x86 == 0x6) {
2479 		switch (boot_cpu_data.x86_model) {
2480 		case 26: /* AAK155 */
2481 		case 30: /* AAP115 */
2482 		case 37: /* AAT100 */
2483 		case 44: /* BC86,AAY89,BD102 */
2484 		case 46: /* BA97 */
2485 			_vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2486 			_vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2487 			pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2488 					"does not work properly. Using workaround\n");
2489 			break;
2490 		default:
2491 			break;
2492 		}
2493 	}
2494 
2495 
2496 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2497 
2498 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2499 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2500 		return -EIO;
2501 
2502 #ifdef CONFIG_X86_64
2503 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2504 	if (vmx_msr_high & (1u<<16))
2505 		return -EIO;
2506 #endif
2507 
2508 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2509 	if (((vmx_msr_high >> 18) & 15) != 6)
2510 		return -EIO;
2511 
2512 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2513 	vmcs_conf->order = get_order(vmcs_conf->size);
2514 	vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2515 
2516 	vmcs_conf->revision_id = vmx_msr_low;
2517 
2518 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2519 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2520 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2521 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2522 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2523 
2524 	if (static_branch_unlikely(&enable_evmcs))
2525 		evmcs_sanitize_exec_ctrls(vmcs_conf);
2526 
2527 	return 0;
2528 }
2529 
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2530 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2531 {
2532 	int node = cpu_to_node(cpu);
2533 	struct page *pages;
2534 	struct vmcs *vmcs;
2535 
2536 	pages = __alloc_pages_node(node, flags, vmcs_config.order);
2537 	if (!pages)
2538 		return NULL;
2539 	vmcs = page_address(pages);
2540 	memset(vmcs, 0, vmcs_config.size);
2541 
2542 	/* KVM supports Enlightened VMCS v1 only */
2543 	if (static_branch_unlikely(&enable_evmcs))
2544 		vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2545 	else
2546 		vmcs->hdr.revision_id = vmcs_config.revision_id;
2547 
2548 	if (shadow)
2549 		vmcs->hdr.shadow_vmcs = 1;
2550 	return vmcs;
2551 }
2552 
free_vmcs(struct vmcs * vmcs)2553 void free_vmcs(struct vmcs *vmcs)
2554 {
2555 	free_pages((unsigned long)vmcs, vmcs_config.order);
2556 }
2557 
2558 /*
2559  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2560  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2561 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2562 {
2563 	if (!loaded_vmcs->vmcs)
2564 		return;
2565 	loaded_vmcs_clear(loaded_vmcs);
2566 	free_vmcs(loaded_vmcs->vmcs);
2567 	loaded_vmcs->vmcs = NULL;
2568 	if (loaded_vmcs->msr_bitmap)
2569 		free_page((unsigned long)loaded_vmcs->msr_bitmap);
2570 	WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2571 }
2572 
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2573 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2574 {
2575 	loaded_vmcs->vmcs = alloc_vmcs(false);
2576 	if (!loaded_vmcs->vmcs)
2577 		return -ENOMEM;
2578 
2579 	loaded_vmcs->shadow_vmcs = NULL;
2580 	loaded_vmcs->hv_timer_soft_disabled = false;
2581 	loaded_vmcs_init(loaded_vmcs);
2582 
2583 	if (cpu_has_vmx_msr_bitmap()) {
2584 		loaded_vmcs->msr_bitmap = (unsigned long *)
2585 				__get_free_page(GFP_KERNEL_ACCOUNT);
2586 		if (!loaded_vmcs->msr_bitmap)
2587 			goto out_vmcs;
2588 		memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2589 
2590 		if (IS_ENABLED(CONFIG_HYPERV) &&
2591 		    static_branch_unlikely(&enable_evmcs) &&
2592 		    (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
2593 			struct hv_enlightened_vmcs *evmcs =
2594 				(struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
2595 
2596 			evmcs->hv_enlightenments_control.msr_bitmap = 1;
2597 		}
2598 	}
2599 
2600 	memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2601 	memset(&loaded_vmcs->controls_shadow, 0,
2602 		sizeof(struct vmcs_controls_shadow));
2603 
2604 	return 0;
2605 
2606 out_vmcs:
2607 	free_loaded_vmcs(loaded_vmcs);
2608 	return -ENOMEM;
2609 }
2610 
free_kvm_area(void)2611 static void free_kvm_area(void)
2612 {
2613 	int cpu;
2614 
2615 	for_each_possible_cpu(cpu) {
2616 		free_vmcs(per_cpu(vmxarea, cpu));
2617 		per_cpu(vmxarea, cpu) = NULL;
2618 	}
2619 }
2620 
alloc_kvm_area(void)2621 static __init int alloc_kvm_area(void)
2622 {
2623 	int cpu;
2624 
2625 	for_each_possible_cpu(cpu) {
2626 		struct vmcs *vmcs;
2627 
2628 		vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2629 		if (!vmcs) {
2630 			free_kvm_area();
2631 			return -ENOMEM;
2632 		}
2633 
2634 		/*
2635 		 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2636 		 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2637 		 * revision_id reported by MSR_IA32_VMX_BASIC.
2638 		 *
2639 		 * However, even though not explicitly documented by
2640 		 * TLFS, VMXArea passed as VMXON argument should
2641 		 * still be marked with revision_id reported by
2642 		 * physical CPU.
2643 		 */
2644 		if (static_branch_unlikely(&enable_evmcs))
2645 			vmcs->hdr.revision_id = vmcs_config.revision_id;
2646 
2647 		per_cpu(vmxarea, cpu) = vmcs;
2648 	}
2649 	return 0;
2650 }
2651 
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2652 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2653 		struct kvm_segment *save)
2654 {
2655 	if (!emulate_invalid_guest_state) {
2656 		/*
2657 		 * CS and SS RPL should be equal during guest entry according
2658 		 * to VMX spec, but in reality it is not always so. Since vcpu
2659 		 * is in the middle of the transition from real mode to
2660 		 * protected mode it is safe to assume that RPL 0 is a good
2661 		 * default value.
2662 		 */
2663 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2664 			save->selector &= ~SEGMENT_RPL_MASK;
2665 		save->dpl = save->selector & SEGMENT_RPL_MASK;
2666 		save->s = 1;
2667 	}
2668 	vmx_set_segment(vcpu, save, seg);
2669 }
2670 
enter_pmode(struct kvm_vcpu * vcpu)2671 static void enter_pmode(struct kvm_vcpu *vcpu)
2672 {
2673 	unsigned long flags;
2674 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2675 
2676 	/*
2677 	 * Update real mode segment cache. It may be not up-to-date if sement
2678 	 * register was written while vcpu was in a guest mode.
2679 	 */
2680 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2681 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2682 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2683 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2684 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2685 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2686 
2687 	vmx->rmode.vm86_active = 0;
2688 
2689 	vmx_segment_cache_clear(vmx);
2690 
2691 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2692 
2693 	flags = vmcs_readl(GUEST_RFLAGS);
2694 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2695 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2696 	vmcs_writel(GUEST_RFLAGS, flags);
2697 
2698 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2699 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2700 
2701 	update_exception_bitmap(vcpu);
2702 
2703 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2704 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2705 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2706 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2707 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2708 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2709 }
2710 
fix_rmode_seg(int seg,struct kvm_segment * save)2711 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2712 {
2713 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2714 	struct kvm_segment var = *save;
2715 
2716 	var.dpl = 0x3;
2717 	if (seg == VCPU_SREG_CS)
2718 		var.type = 0x3;
2719 
2720 	if (!emulate_invalid_guest_state) {
2721 		var.selector = var.base >> 4;
2722 		var.base = var.base & 0xffff0;
2723 		var.limit = 0xffff;
2724 		var.g = 0;
2725 		var.db = 0;
2726 		var.present = 1;
2727 		var.s = 1;
2728 		var.l = 0;
2729 		var.unusable = 0;
2730 		var.type = 0x3;
2731 		var.avl = 0;
2732 		if (save->base & 0xf)
2733 			printk_once(KERN_WARNING "kvm: segment base is not "
2734 					"paragraph aligned when entering "
2735 					"protected mode (seg=%d)", seg);
2736 	}
2737 
2738 	vmcs_write16(sf->selector, var.selector);
2739 	vmcs_writel(sf->base, var.base);
2740 	vmcs_write32(sf->limit, var.limit);
2741 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2742 }
2743 
enter_rmode(struct kvm_vcpu * vcpu)2744 static void enter_rmode(struct kvm_vcpu *vcpu)
2745 {
2746 	unsigned long flags;
2747 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2748 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2749 
2750 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2751 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2752 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2753 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2754 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2755 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2756 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2757 
2758 	vmx->rmode.vm86_active = 1;
2759 
2760 	/*
2761 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2762 	 * vcpu. Warn the user that an update is overdue.
2763 	 */
2764 	if (!kvm_vmx->tss_addr)
2765 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2766 			     "called before entering vcpu\n");
2767 
2768 	vmx_segment_cache_clear(vmx);
2769 
2770 	vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2771 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2772 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2773 
2774 	flags = vmcs_readl(GUEST_RFLAGS);
2775 	vmx->rmode.save_rflags = flags;
2776 
2777 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2778 
2779 	vmcs_writel(GUEST_RFLAGS, flags);
2780 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2781 	update_exception_bitmap(vcpu);
2782 
2783 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2784 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2785 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2786 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2787 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2788 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2789 
2790 	kvm_mmu_reset_context(vcpu);
2791 }
2792 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2793 void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2794 {
2795 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2796 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2797 
2798 	if (!msr)
2799 		return;
2800 
2801 	vcpu->arch.efer = efer;
2802 	if (efer & EFER_LMA) {
2803 		vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2804 		msr->data = efer;
2805 	} else {
2806 		vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2807 
2808 		msr->data = efer & ~EFER_LME;
2809 	}
2810 	setup_msrs(vmx);
2811 }
2812 
2813 #ifdef CONFIG_X86_64
2814 
enter_lmode(struct kvm_vcpu * vcpu)2815 static void enter_lmode(struct kvm_vcpu *vcpu)
2816 {
2817 	u32 guest_tr_ar;
2818 
2819 	vmx_segment_cache_clear(to_vmx(vcpu));
2820 
2821 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2822 	if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2823 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2824 				     __func__);
2825 		vmcs_write32(GUEST_TR_AR_BYTES,
2826 			     (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2827 			     | VMX_AR_TYPE_BUSY_64_TSS);
2828 	}
2829 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2830 }
2831 
exit_lmode(struct kvm_vcpu * vcpu)2832 static void exit_lmode(struct kvm_vcpu *vcpu)
2833 {
2834 	vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2835 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2836 }
2837 
2838 #endif
2839 
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)2840 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2841 {
2842 	int vpid = to_vmx(vcpu)->vpid;
2843 
2844 	if (!vpid_sync_vcpu_addr(vpid, addr))
2845 		vpid_sync_context(vpid);
2846 
2847 	/*
2848 	 * If VPIDs are not supported or enabled, then the above is a no-op.
2849 	 * But we don't really need a TLB flush in that case anyway, because
2850 	 * each VM entry/exit includes an implicit flush when VPID is 0.
2851 	 */
2852 }
2853 
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2854 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2855 {
2856 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2857 
2858 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2859 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2860 }
2861 
vmx_decache_cr3(struct kvm_vcpu * vcpu)2862 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2863 {
2864 	if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
2865 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2866 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2867 }
2868 
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2869 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2870 {
2871 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2872 
2873 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2874 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2875 }
2876 
ept_load_pdptrs(struct kvm_vcpu * vcpu)2877 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2878 {
2879 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2880 
2881 	if (!test_bit(VCPU_EXREG_PDPTR,
2882 		      (unsigned long *)&vcpu->arch.regs_dirty))
2883 		return;
2884 
2885 	if (is_pae_paging(vcpu)) {
2886 		vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2887 		vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2888 		vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2889 		vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2890 	}
2891 }
2892 
ept_save_pdptrs(struct kvm_vcpu * vcpu)2893 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2894 {
2895 	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2896 
2897 	if (is_pae_paging(vcpu)) {
2898 		mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2899 		mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2900 		mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2901 		mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2902 	}
2903 
2904 	__set_bit(VCPU_EXREG_PDPTR,
2905 		  (unsigned long *)&vcpu->arch.regs_avail);
2906 	__set_bit(VCPU_EXREG_PDPTR,
2907 		  (unsigned long *)&vcpu->arch.regs_dirty);
2908 }
2909 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)2910 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2911 					unsigned long cr0,
2912 					struct kvm_vcpu *vcpu)
2913 {
2914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2915 
2916 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2917 		vmx_decache_cr3(vcpu);
2918 	if (!(cr0 & X86_CR0_PG)) {
2919 		/* From paging/starting to nonpaging */
2920 		exec_controls_setbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2921 					  CPU_BASED_CR3_STORE_EXITING);
2922 		vcpu->arch.cr0 = cr0;
2923 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2924 	} else if (!is_paging(vcpu)) {
2925 		/* From nonpaging to paging */
2926 		exec_controls_clearbit(vmx, CPU_BASED_CR3_LOAD_EXITING |
2927 					    CPU_BASED_CR3_STORE_EXITING);
2928 		vcpu->arch.cr0 = cr0;
2929 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2930 	}
2931 
2932 	if (!(cr0 & X86_CR0_WP))
2933 		*hw_cr0 &= ~X86_CR0_WP;
2934 }
2935 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2936 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2937 {
2938 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2939 	unsigned long hw_cr0;
2940 
2941 	hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
2942 	if (enable_unrestricted_guest)
2943 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2944 	else {
2945 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
2946 
2947 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2948 			enter_pmode(vcpu);
2949 
2950 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2951 			enter_rmode(vcpu);
2952 	}
2953 
2954 #ifdef CONFIG_X86_64
2955 	if (vcpu->arch.efer & EFER_LME) {
2956 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2957 			enter_lmode(vcpu);
2958 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2959 			exit_lmode(vcpu);
2960 	}
2961 #endif
2962 
2963 	if (enable_ept && !enable_unrestricted_guest)
2964 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2965 
2966 	vmcs_writel(CR0_READ_SHADOW, cr0);
2967 	vmcs_writel(GUEST_CR0, hw_cr0);
2968 	vcpu->arch.cr0 = cr0;
2969 
2970 	/* depends on vcpu->arch.cr0 to be set to a new value */
2971 	vmx->emulation_required = emulation_required(vcpu);
2972 }
2973 
get_ept_level(struct kvm_vcpu * vcpu)2974 static int get_ept_level(struct kvm_vcpu *vcpu)
2975 {
2976 	if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
2977 		return 5;
2978 	return 4;
2979 }
2980 
construct_eptp(struct kvm_vcpu * vcpu,unsigned long root_hpa)2981 u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
2982 {
2983 	u64 eptp = VMX_EPTP_MT_WB;
2984 
2985 	eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
2986 
2987 	if (enable_ept_ad_bits &&
2988 	    (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
2989 		eptp |= VMX_EPTP_AD_ENABLE_BIT;
2990 	eptp |= (root_hpa & PAGE_MASK);
2991 
2992 	return eptp;
2993 }
2994 
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)2995 void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
2996 {
2997 	struct kvm *kvm = vcpu->kvm;
2998 	unsigned long guest_cr3;
2999 	u64 eptp;
3000 
3001 	guest_cr3 = cr3;
3002 	if (enable_ept) {
3003 		eptp = construct_eptp(vcpu, cr3);
3004 		vmcs_write64(EPT_POINTER, eptp);
3005 
3006 		if (kvm_x86_ops->tlb_remote_flush) {
3007 			spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3008 			to_vmx(vcpu)->ept_pointer = eptp;
3009 			to_kvm_vmx(kvm)->ept_pointers_match
3010 				= EPT_POINTERS_CHECK;
3011 			spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
3012 		}
3013 
3014 		if (enable_unrestricted_guest || is_paging(vcpu) ||
3015 		    is_guest_mode(vcpu))
3016 			guest_cr3 = kvm_read_cr3(vcpu);
3017 		else
3018 			guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3019 		ept_load_pdptrs(vcpu);
3020 	}
3021 
3022 	vmcs_writel(GUEST_CR3, guest_cr3);
3023 }
3024 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3025 int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3026 {
3027 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3028 	/*
3029 	 * Pass through host's Machine Check Enable value to hw_cr4, which
3030 	 * is in force while we are in guest mode.  Do not let guests control
3031 	 * this bit, even if host CR4.MCE == 0.
3032 	 */
3033 	unsigned long hw_cr4;
3034 
3035 	hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3036 	if (enable_unrestricted_guest)
3037 		hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3038 	else if (vmx->rmode.vm86_active)
3039 		hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3040 	else
3041 		hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3042 
3043 	if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3044 		if (cr4 & X86_CR4_UMIP) {
3045 			secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3046 			hw_cr4 &= ~X86_CR4_UMIP;
3047 		} else if (!is_guest_mode(vcpu) ||
3048 			!nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3049 			secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3050 		}
3051 	}
3052 
3053 	if (cr4 & X86_CR4_VMXE) {
3054 		/*
3055 		 * To use VMXON (and later other VMX instructions), a guest
3056 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3057 		 * So basically the check on whether to allow nested VMX
3058 		 * is here.  We operate under the default treatment of SMM,
3059 		 * so VMX cannot be enabled under SMM.
3060 		 */
3061 		if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
3062 			return 1;
3063 	}
3064 
3065 	if (vmx->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3066 		return 1;
3067 
3068 	vcpu->arch.cr4 = cr4;
3069 
3070 	if (!enable_unrestricted_guest) {
3071 		if (enable_ept) {
3072 			if (!is_paging(vcpu)) {
3073 				hw_cr4 &= ~X86_CR4_PAE;
3074 				hw_cr4 |= X86_CR4_PSE;
3075 			} else if (!(cr4 & X86_CR4_PAE)) {
3076 				hw_cr4 &= ~X86_CR4_PAE;
3077 			}
3078 		}
3079 
3080 		/*
3081 		 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3082 		 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3083 		 * to be manually disabled when guest switches to non-paging
3084 		 * mode.
3085 		 *
3086 		 * If !enable_unrestricted_guest, the CPU is always running
3087 		 * with CR0.PG=1 and CR4 needs to be modified.
3088 		 * If enable_unrestricted_guest, the CPU automatically
3089 		 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3090 		 */
3091 		if (!is_paging(vcpu))
3092 			hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3093 	}
3094 
3095 	vmcs_writel(CR4_READ_SHADOW, cr4);
3096 	vmcs_writel(GUEST_CR4, hw_cr4);
3097 	return 0;
3098 }
3099 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3100 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3101 {
3102 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3103 	u32 ar;
3104 
3105 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3106 		*var = vmx->rmode.segs[seg];
3107 		if (seg == VCPU_SREG_TR
3108 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3109 			return;
3110 		var->base = vmx_read_guest_seg_base(vmx, seg);
3111 		var->selector = vmx_read_guest_seg_selector(vmx, seg);
3112 		return;
3113 	}
3114 	var->base = vmx_read_guest_seg_base(vmx, seg);
3115 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3116 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3117 	ar = vmx_read_guest_seg_ar(vmx, seg);
3118 	var->unusable = (ar >> 16) & 1;
3119 	var->type = ar & 15;
3120 	var->s = (ar >> 4) & 1;
3121 	var->dpl = (ar >> 5) & 3;
3122 	/*
3123 	 * Some userspaces do not preserve unusable property. Since usable
3124 	 * segment has to be present according to VMX spec we can use present
3125 	 * property to amend userspace bug by making unusable segment always
3126 	 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3127 	 * segment as unusable.
3128 	 */
3129 	var->present = !var->unusable;
3130 	var->avl = (ar >> 12) & 1;
3131 	var->l = (ar >> 13) & 1;
3132 	var->db = (ar >> 14) & 1;
3133 	var->g = (ar >> 15) & 1;
3134 }
3135 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3136 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3137 {
3138 	struct kvm_segment s;
3139 
3140 	if (to_vmx(vcpu)->rmode.vm86_active) {
3141 		vmx_get_segment(vcpu, &s, seg);
3142 		return s.base;
3143 	}
3144 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3145 }
3146 
vmx_get_cpl(struct kvm_vcpu * vcpu)3147 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3148 {
3149 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3150 
3151 	if (unlikely(vmx->rmode.vm86_active))
3152 		return 0;
3153 	else {
3154 		int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3155 		return VMX_AR_DPL(ar);
3156 	}
3157 }
3158 
vmx_segment_access_rights(struct kvm_segment * var)3159 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3160 {
3161 	u32 ar;
3162 
3163 	if (var->unusable || !var->present)
3164 		ar = 1 << 16;
3165 	else {
3166 		ar = var->type & 15;
3167 		ar |= (var->s & 1) << 4;
3168 		ar |= (var->dpl & 3) << 5;
3169 		ar |= (var->present & 1) << 7;
3170 		ar |= (var->avl & 1) << 12;
3171 		ar |= (var->l & 1) << 13;
3172 		ar |= (var->db & 1) << 14;
3173 		ar |= (var->g & 1) << 15;
3174 	}
3175 
3176 	return ar;
3177 }
3178 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3179 void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3180 {
3181 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3182 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3183 
3184 	vmx_segment_cache_clear(vmx);
3185 
3186 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3187 		vmx->rmode.segs[seg] = *var;
3188 		if (seg == VCPU_SREG_TR)
3189 			vmcs_write16(sf->selector, var->selector);
3190 		else if (var->s)
3191 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3192 		goto out;
3193 	}
3194 
3195 	vmcs_writel(sf->base, var->base);
3196 	vmcs_write32(sf->limit, var->limit);
3197 	vmcs_write16(sf->selector, var->selector);
3198 
3199 	/*
3200 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3201 	 * qemu binaries.
3202 	 *   IA32 arch specifies that at the time of processor reset the
3203 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3204 	 * is setting it to 0 in the userland code. This causes invalid guest
3205 	 * state vmexit when "unrestricted guest" mode is turned on.
3206 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3207 	 * tree. Newer qemu binaries with that qemu fix would not need this
3208 	 * kvm hack.
3209 	 */
3210 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3211 		var->type |= 0x1; /* Accessed */
3212 
3213 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3214 
3215 out:
3216 	vmx->emulation_required = emulation_required(vcpu);
3217 }
3218 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3219 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3220 {
3221 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3222 
3223 	*db = (ar >> 14) & 1;
3224 	*l = (ar >> 13) & 1;
3225 }
3226 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3227 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3228 {
3229 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3230 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3231 }
3232 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3233 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3234 {
3235 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3236 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3237 }
3238 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3239 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3240 {
3241 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3242 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3243 }
3244 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3245 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3246 {
3247 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3248 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3249 }
3250 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3251 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3252 {
3253 	struct kvm_segment var;
3254 	u32 ar;
3255 
3256 	vmx_get_segment(vcpu, &var, seg);
3257 	var.dpl = 0x3;
3258 	if (seg == VCPU_SREG_CS)
3259 		var.type = 0x3;
3260 	ar = vmx_segment_access_rights(&var);
3261 
3262 	if (var.base != (var.selector << 4))
3263 		return false;
3264 	if (var.limit != 0xffff)
3265 		return false;
3266 	if (ar != 0xf3)
3267 		return false;
3268 
3269 	return true;
3270 }
3271 
code_segment_valid(struct kvm_vcpu * vcpu)3272 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3273 {
3274 	struct kvm_segment cs;
3275 	unsigned int cs_rpl;
3276 
3277 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3278 	cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3279 
3280 	if (cs.unusable)
3281 		return false;
3282 	if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3283 		return false;
3284 	if (!cs.s)
3285 		return false;
3286 	if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3287 		if (cs.dpl > cs_rpl)
3288 			return false;
3289 	} else {
3290 		if (cs.dpl != cs_rpl)
3291 			return false;
3292 	}
3293 	if (!cs.present)
3294 		return false;
3295 
3296 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3297 	return true;
3298 }
3299 
stack_segment_valid(struct kvm_vcpu * vcpu)3300 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3301 {
3302 	struct kvm_segment ss;
3303 	unsigned int ss_rpl;
3304 
3305 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3306 	ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3307 
3308 	if (ss.unusable)
3309 		return true;
3310 	if (ss.type != 3 && ss.type != 7)
3311 		return false;
3312 	if (!ss.s)
3313 		return false;
3314 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3315 		return false;
3316 	if (!ss.present)
3317 		return false;
3318 
3319 	return true;
3320 }
3321 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3322 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3323 {
3324 	struct kvm_segment var;
3325 	unsigned int rpl;
3326 
3327 	vmx_get_segment(vcpu, &var, seg);
3328 	rpl = var.selector & SEGMENT_RPL_MASK;
3329 
3330 	if (var.unusable)
3331 		return true;
3332 	if (!var.s)
3333 		return false;
3334 	if (!var.present)
3335 		return false;
3336 	if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3337 		if (var.dpl < rpl) /* DPL < RPL */
3338 			return false;
3339 	}
3340 
3341 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3342 	 * rights flags
3343 	 */
3344 	return true;
3345 }
3346 
tr_valid(struct kvm_vcpu * vcpu)3347 static bool tr_valid(struct kvm_vcpu *vcpu)
3348 {
3349 	struct kvm_segment tr;
3350 
3351 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3352 
3353 	if (tr.unusable)
3354 		return false;
3355 	if (tr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3356 		return false;
3357 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3358 		return false;
3359 	if (!tr.present)
3360 		return false;
3361 
3362 	return true;
3363 }
3364 
ldtr_valid(struct kvm_vcpu * vcpu)3365 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3366 {
3367 	struct kvm_segment ldtr;
3368 
3369 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3370 
3371 	if (ldtr.unusable)
3372 		return true;
3373 	if (ldtr.selector & SEGMENT_TI_MASK)	/* TI = 1 */
3374 		return false;
3375 	if (ldtr.type != 2)
3376 		return false;
3377 	if (!ldtr.present)
3378 		return false;
3379 
3380 	return true;
3381 }
3382 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3383 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3384 {
3385 	struct kvm_segment cs, ss;
3386 
3387 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3388 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3389 
3390 	return ((cs.selector & SEGMENT_RPL_MASK) ==
3391 		 (ss.selector & SEGMENT_RPL_MASK));
3392 }
3393 
3394 /*
3395  * Check if guest state is valid. Returns true if valid, false if
3396  * not.
3397  * We assume that registers are always usable
3398  */
guest_state_valid(struct kvm_vcpu * vcpu)3399 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3400 {
3401 	if (enable_unrestricted_guest)
3402 		return true;
3403 
3404 	/* real mode guest state checks */
3405 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3406 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3407 			return false;
3408 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3409 			return false;
3410 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3411 			return false;
3412 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3413 			return false;
3414 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3415 			return false;
3416 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3417 			return false;
3418 	} else {
3419 	/* protected mode guest state checks */
3420 		if (!cs_ss_rpl_check(vcpu))
3421 			return false;
3422 		if (!code_segment_valid(vcpu))
3423 			return false;
3424 		if (!stack_segment_valid(vcpu))
3425 			return false;
3426 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3427 			return false;
3428 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3429 			return false;
3430 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3431 			return false;
3432 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3433 			return false;
3434 		if (!tr_valid(vcpu))
3435 			return false;
3436 		if (!ldtr_valid(vcpu))
3437 			return false;
3438 	}
3439 	/* TODO:
3440 	 * - Add checks on RIP
3441 	 * - Add checks on RFLAGS
3442 	 */
3443 
3444 	return true;
3445 }
3446 
init_rmode_tss(struct kvm * kvm)3447 static int init_rmode_tss(struct kvm *kvm)
3448 {
3449 	gfn_t fn;
3450 	u16 data = 0;
3451 	int idx, r;
3452 
3453 	idx = srcu_read_lock(&kvm->srcu);
3454 	fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
3455 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3456 	if (r < 0)
3457 		goto out;
3458 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3459 	r = kvm_write_guest_page(kvm, fn++, &data,
3460 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3461 	if (r < 0)
3462 		goto out;
3463 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3464 	if (r < 0)
3465 		goto out;
3466 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3467 	if (r < 0)
3468 		goto out;
3469 	data = ~0;
3470 	r = kvm_write_guest_page(kvm, fn, &data,
3471 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3472 				 sizeof(u8));
3473 out:
3474 	srcu_read_unlock(&kvm->srcu, idx);
3475 	return r;
3476 }
3477 
init_rmode_identity_map(struct kvm * kvm)3478 static int init_rmode_identity_map(struct kvm *kvm)
3479 {
3480 	struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3481 	int i, idx, r = 0;
3482 	kvm_pfn_t identity_map_pfn;
3483 	u32 tmp;
3484 
3485 	/* Protect kvm_vmx->ept_identity_pagetable_done. */
3486 	mutex_lock(&kvm->slots_lock);
3487 
3488 	if (likely(kvm_vmx->ept_identity_pagetable_done))
3489 		goto out2;
3490 
3491 	if (!kvm_vmx->ept_identity_map_addr)
3492 		kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3493 	identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
3494 
3495 	r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3496 				    kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
3497 	if (r < 0)
3498 		goto out2;
3499 
3500 	idx = srcu_read_lock(&kvm->srcu);
3501 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3502 	if (r < 0)
3503 		goto out;
3504 	/* Set up identity-mapping pagetable for EPT in real mode */
3505 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3506 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3507 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3508 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3509 				&tmp, i * sizeof(tmp), sizeof(tmp));
3510 		if (r < 0)
3511 			goto out;
3512 	}
3513 	kvm_vmx->ept_identity_pagetable_done = true;
3514 
3515 out:
3516 	srcu_read_unlock(&kvm->srcu, idx);
3517 
3518 out2:
3519 	mutex_unlock(&kvm->slots_lock);
3520 	return r;
3521 }
3522 
seg_setup(int seg)3523 static void seg_setup(int seg)
3524 {
3525 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3526 	unsigned int ar;
3527 
3528 	vmcs_write16(sf->selector, 0);
3529 	vmcs_writel(sf->base, 0);
3530 	vmcs_write32(sf->limit, 0xffff);
3531 	ar = 0x93;
3532 	if (seg == VCPU_SREG_CS)
3533 		ar |= 0x08; /* code segment */
3534 
3535 	vmcs_write32(sf->ar_bytes, ar);
3536 }
3537 
alloc_apic_access_page(struct kvm * kvm)3538 static int alloc_apic_access_page(struct kvm *kvm)
3539 {
3540 	struct page *page;
3541 	int r = 0;
3542 
3543 	mutex_lock(&kvm->slots_lock);
3544 	if (kvm->arch.apic_access_page_done)
3545 		goto out;
3546 	r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3547 				    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3548 	if (r)
3549 		goto out;
3550 
3551 	page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3552 	if (is_error_page(page)) {
3553 		r = -EFAULT;
3554 		goto out;
3555 	}
3556 
3557 	/*
3558 	 * Do not pin the page in memory, so that memory hot-unplug
3559 	 * is able to migrate it.
3560 	 */
3561 	put_page(page);
3562 	kvm->arch.apic_access_page_done = true;
3563 out:
3564 	mutex_unlock(&kvm->slots_lock);
3565 	return r;
3566 }
3567 
allocate_vpid(void)3568 int allocate_vpid(void)
3569 {
3570 	int vpid;
3571 
3572 	if (!enable_vpid)
3573 		return 0;
3574 	spin_lock(&vmx_vpid_lock);
3575 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3576 	if (vpid < VMX_NR_VPIDS)
3577 		__set_bit(vpid, vmx_vpid_bitmap);
3578 	else
3579 		vpid = 0;
3580 	spin_unlock(&vmx_vpid_lock);
3581 	return vpid;
3582 }
3583 
free_vpid(int vpid)3584 void free_vpid(int vpid)
3585 {
3586 	if (!enable_vpid || vpid == 0)
3587 		return;
3588 	spin_lock(&vmx_vpid_lock);
3589 	__clear_bit(vpid, vmx_vpid_bitmap);
3590 	spin_unlock(&vmx_vpid_lock);
3591 }
3592 
vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)3593 static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3594 							  u32 msr, int type)
3595 {
3596 	int f = sizeof(unsigned long);
3597 
3598 	if (!cpu_has_vmx_msr_bitmap())
3599 		return;
3600 
3601 	if (static_branch_unlikely(&enable_evmcs))
3602 		evmcs_touch_msr_bitmap();
3603 
3604 	/*
3605 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3606 	 * have the write-low and read-high bitmap offsets the wrong way round.
3607 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3608 	 */
3609 	if (msr <= 0x1fff) {
3610 		if (type & MSR_TYPE_R)
3611 			/* read-low */
3612 			__clear_bit(msr, msr_bitmap + 0x000 / f);
3613 
3614 		if (type & MSR_TYPE_W)
3615 			/* write-low */
3616 			__clear_bit(msr, msr_bitmap + 0x800 / f);
3617 
3618 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3619 		msr &= 0x1fff;
3620 		if (type & MSR_TYPE_R)
3621 			/* read-high */
3622 			__clear_bit(msr, msr_bitmap + 0x400 / f);
3623 
3624 		if (type & MSR_TYPE_W)
3625 			/* write-high */
3626 			__clear_bit(msr, msr_bitmap + 0xc00 / f);
3627 
3628 	}
3629 }
3630 
vmx_enable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type)3631 static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3632 							 u32 msr, int type)
3633 {
3634 	int f = sizeof(unsigned long);
3635 
3636 	if (!cpu_has_vmx_msr_bitmap())
3637 		return;
3638 
3639 	if (static_branch_unlikely(&enable_evmcs))
3640 		evmcs_touch_msr_bitmap();
3641 
3642 	/*
3643 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3644 	 * have the write-low and read-high bitmap offsets the wrong way round.
3645 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3646 	 */
3647 	if (msr <= 0x1fff) {
3648 		if (type & MSR_TYPE_R)
3649 			/* read-low */
3650 			__set_bit(msr, msr_bitmap + 0x000 / f);
3651 
3652 		if (type & MSR_TYPE_W)
3653 			/* write-low */
3654 			__set_bit(msr, msr_bitmap + 0x800 / f);
3655 
3656 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3657 		msr &= 0x1fff;
3658 		if (type & MSR_TYPE_R)
3659 			/* read-high */
3660 			__set_bit(msr, msr_bitmap + 0x400 / f);
3661 
3662 		if (type & MSR_TYPE_W)
3663 			/* write-high */
3664 			__set_bit(msr, msr_bitmap + 0xc00 / f);
3665 
3666 	}
3667 }
3668 
vmx_set_intercept_for_msr(unsigned long * msr_bitmap,u32 msr,int type,bool value)3669 static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
3670 			     			      u32 msr, int type, bool value)
3671 {
3672 	if (value)
3673 		vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
3674 	else
3675 		vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
3676 }
3677 
vmx_msr_bitmap_mode(struct kvm_vcpu * vcpu)3678 static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
3679 {
3680 	u8 mode = 0;
3681 
3682 	if (cpu_has_secondary_exec_ctrls() &&
3683 	    (secondary_exec_controls_get(to_vmx(vcpu)) &
3684 	     SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3685 		mode |= MSR_BITMAP_MODE_X2APIC;
3686 		if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3687 			mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3688 	}
3689 
3690 	return mode;
3691 }
3692 
vmx_update_msr_bitmap_x2apic(unsigned long * msr_bitmap,u8 mode)3693 static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
3694 					 u8 mode)
3695 {
3696 	int msr;
3697 
3698 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3699 		unsigned word = msr / BITS_PER_LONG;
3700 		msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3701 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
3702 	}
3703 
3704 	if (mode & MSR_BITMAP_MODE_X2APIC) {
3705 		/*
3706 		 * TPR reads and writes can be virtualized even if virtual interrupt
3707 		 * delivery is not in use.
3708 		 */
3709 		vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
3710 		if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3711 			vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
3712 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3713 			vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3714 		}
3715 	}
3716 }
3717 
vmx_update_msr_bitmap(struct kvm_vcpu * vcpu)3718 void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
3719 {
3720 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3721 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3722 	u8 mode = vmx_msr_bitmap_mode(vcpu);
3723 	u8 changed = mode ^ vmx->msr_bitmap_mode;
3724 
3725 	if (!changed)
3726 		return;
3727 
3728 	if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
3729 		vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
3730 
3731 	vmx->msr_bitmap_mode = mode;
3732 }
3733 
pt_update_intercept_for_msr(struct vcpu_vmx * vmx)3734 void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
3735 {
3736 	unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3737 	bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3738 	u32 i;
3739 
3740 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
3741 							MSR_TYPE_RW, flag);
3742 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
3743 							MSR_TYPE_RW, flag);
3744 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
3745 							MSR_TYPE_RW, flag);
3746 	vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
3747 							MSR_TYPE_RW, flag);
3748 	for (i = 0; i < vmx->pt_desc.addr_range; i++) {
3749 		vmx_set_intercept_for_msr(msr_bitmap,
3750 			MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3751 		vmx_set_intercept_for_msr(msr_bitmap,
3752 			MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3753 	}
3754 }
3755 
vmx_get_enable_apicv(struct kvm_vcpu * vcpu)3756 static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
3757 {
3758 	return enable_apicv;
3759 }
3760 
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)3761 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3762 {
3763 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3764 	void *vapic_page;
3765 	u32 vppr;
3766 	int rvi;
3767 
3768 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3769 		!nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3770 		WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3771 		return false;
3772 
3773 	rvi = vmx_get_rvi();
3774 
3775 	vapic_page = vmx->nested.virtual_apic_map.hva;
3776 	vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3777 
3778 	return ((rvi & 0xf0) > (vppr & 0xf0));
3779 }
3780 
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,bool nested)3781 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3782 						     bool nested)
3783 {
3784 #ifdef CONFIG_SMP
3785 	int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3786 
3787 	if (vcpu->mode == IN_GUEST_MODE) {
3788 		/*
3789 		 * The vector of interrupt to be delivered to vcpu had
3790 		 * been set in PIR before this function.
3791 		 *
3792 		 * Following cases will be reached in this block, and
3793 		 * we always send a notification event in all cases as
3794 		 * explained below.
3795 		 *
3796 		 * Case 1: vcpu keeps in non-root mode. Sending a
3797 		 * notification event posts the interrupt to vcpu.
3798 		 *
3799 		 * Case 2: vcpu exits to root mode and is still
3800 		 * runnable. PIR will be synced to vIRR before the
3801 		 * next vcpu entry. Sending a notification event in
3802 		 * this case has no effect, as vcpu is not in root
3803 		 * mode.
3804 		 *
3805 		 * Case 3: vcpu exits to root mode and is blocked.
3806 		 * vcpu_block() has already synced PIR to vIRR and
3807 		 * never blocks vcpu if vIRR is not cleared. Therefore,
3808 		 * a blocked vcpu here does not wait for any requested
3809 		 * interrupts in PIR, and sending a notification event
3810 		 * which has no effect is safe here.
3811 		 */
3812 
3813 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3814 		return true;
3815 	}
3816 #endif
3817 	return false;
3818 }
3819 
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3820 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3821 						int vector)
3822 {
3823 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3824 
3825 	if (is_guest_mode(vcpu) &&
3826 	    vector == vmx->nested.posted_intr_nv) {
3827 		/*
3828 		 * If a posted intr is not recognized by hardware,
3829 		 * we will accomplish it in the next vmentry.
3830 		 */
3831 		vmx->nested.pi_pending = true;
3832 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3833 		/* the PIR and ON have been set by L1. */
3834 		if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3835 			kvm_vcpu_kick(vcpu);
3836 		return 0;
3837 	}
3838 	return -1;
3839 }
3840 /*
3841  * Send interrupt to vcpu via posted interrupt way.
3842  * 1. If target vcpu is running(non-root mode), send posted interrupt
3843  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3844  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3845  * interrupt from PIR in next vmentry.
3846  */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)3847 static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3848 {
3849 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3850 	int r;
3851 
3852 	r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3853 	if (!r)
3854 		return;
3855 
3856 	if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3857 		return;
3858 
3859 	/* If a previous notification has sent the IPI, nothing to do.  */
3860 	if (pi_test_and_set_on(&vmx->pi_desc))
3861 		return;
3862 
3863 	if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3864 		kvm_vcpu_kick(vcpu);
3865 }
3866 
3867 /*
3868  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3869  * will not change in the lifetime of the guest.
3870  * Note that host-state that does change is set elsewhere. E.g., host-state
3871  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3872  */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)3873 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3874 {
3875 	u32 low32, high32;
3876 	unsigned long tmpl;
3877 	unsigned long cr0, cr3, cr4;
3878 
3879 	cr0 = read_cr0();
3880 	WARN_ON(cr0 & X86_CR0_TS);
3881 	vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3882 
3883 	/*
3884 	 * Save the most likely value for this task's CR3 in the VMCS.
3885 	 * We can't use __get_current_cr3_fast() because we're not atomic.
3886 	 */
3887 	cr3 = __read_cr3();
3888 	vmcs_writel(HOST_CR3, cr3);		/* 22.2.3  FIXME: shadow tables */
3889 	vmx->loaded_vmcs->host_state.cr3 = cr3;
3890 
3891 	/* Save the most likely value for this task's CR4 in the VMCS. */
3892 	cr4 = cr4_read_shadow();
3893 	vmcs_writel(HOST_CR4, cr4);			/* 22.2.3, 22.2.5 */
3894 	vmx->loaded_vmcs->host_state.cr4 = cr4;
3895 
3896 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3897 #ifdef CONFIG_X86_64
3898 	/*
3899 	 * Load null selectors, so we can avoid reloading them in
3900 	 * vmx_prepare_switch_to_host(), in case userspace uses
3901 	 * the null selectors too (the expected case).
3902 	 */
3903 	vmcs_write16(HOST_DS_SELECTOR, 0);
3904 	vmcs_write16(HOST_ES_SELECTOR, 0);
3905 #else
3906 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3907 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3908 #endif
3909 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3910 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3911 
3912 	vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
3913 
3914 	vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
3915 
3916 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3917 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3918 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3919 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3920 
3921 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3922 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3923 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3924 	}
3925 
3926 	if (cpu_has_load_ia32_efer())
3927 		vmcs_write64(HOST_IA32_EFER, host_efer);
3928 }
3929 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)3930 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3931 {
3932 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3933 	if (enable_ept)
3934 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3935 	if (is_guest_mode(&vmx->vcpu))
3936 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3937 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3938 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3939 }
3940 
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)3941 u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
3942 {
3943 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
3944 
3945 	if (!kvm_vcpu_apicv_active(&vmx->vcpu))
3946 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
3947 
3948 	if (!enable_vnmi)
3949 		pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
3950 
3951 	if (!enable_preemption_timer)
3952 		pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3953 
3954 	return pin_based_exec_ctrl;
3955 }
3956 
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)3957 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
3958 {
3959 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3960 
3961 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
3962 	if (cpu_has_secondary_exec_ctrls()) {
3963 		if (kvm_vcpu_apicv_active(vcpu))
3964 			secondary_exec_controls_setbit(vmx,
3965 				      SECONDARY_EXEC_APIC_REGISTER_VIRT |
3966 				      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3967 		else
3968 			secondary_exec_controls_clearbit(vmx,
3969 					SECONDARY_EXEC_APIC_REGISTER_VIRT |
3970 					SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3971 	}
3972 
3973 	if (cpu_has_vmx_msr_bitmap())
3974 		vmx_update_msr_bitmap(vcpu);
3975 }
3976 
vmx_exec_control(struct vcpu_vmx * vmx)3977 u32 vmx_exec_control(struct vcpu_vmx *vmx)
3978 {
3979 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3980 
3981 	if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
3982 		exec_control &= ~CPU_BASED_MOV_DR_EXITING;
3983 
3984 	if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
3985 		exec_control &= ~CPU_BASED_TPR_SHADOW;
3986 #ifdef CONFIG_X86_64
3987 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
3988 				CPU_BASED_CR8_LOAD_EXITING;
3989 #endif
3990 	}
3991 	if (!enable_ept)
3992 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
3993 				CPU_BASED_CR3_LOAD_EXITING  |
3994 				CPU_BASED_INVLPG_EXITING;
3995 	if (kvm_mwait_in_guest(vmx->vcpu.kvm))
3996 		exec_control &= ~(CPU_BASED_MWAIT_EXITING |
3997 				CPU_BASED_MONITOR_EXITING);
3998 	if (kvm_hlt_in_guest(vmx->vcpu.kvm))
3999 		exec_control &= ~CPU_BASED_HLT_EXITING;
4000 	return exec_control;
4001 }
4002 
4003 
vmx_compute_secondary_exec_control(struct vcpu_vmx * vmx)4004 static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
4005 {
4006 	struct kvm_vcpu *vcpu = &vmx->vcpu;
4007 
4008 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4009 
4010 	if (pt_mode == PT_MODE_SYSTEM)
4011 		exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4012 	if (!cpu_need_virtualize_apic_accesses(vcpu))
4013 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4014 	if (vmx->vpid == 0)
4015 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4016 	if (!enable_ept) {
4017 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4018 		enable_unrestricted_guest = 0;
4019 	}
4020 	if (!enable_unrestricted_guest)
4021 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4022 	if (kvm_pause_in_guest(vmx->vcpu.kvm))
4023 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4024 	if (!kvm_vcpu_apicv_active(vcpu))
4025 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4026 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4027 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4028 
4029 	/* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4030 	 * in vmx_set_cr4.  */
4031 	exec_control &= ~SECONDARY_EXEC_DESC;
4032 
4033 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4034 	   (handle_vmptrld).
4035 	   We can NOT enable shadow_vmcs here because we don't have yet
4036 	   a current VMCS12
4037 	*/
4038 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4039 
4040 	if (!enable_pml)
4041 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4042 
4043 	if (vmx_xsaves_supported()) {
4044 		/* Exposing XSAVES only when XSAVE is exposed */
4045 		bool xsaves_enabled =
4046 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4047 			guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4048 
4049 		if (!xsaves_enabled)
4050 			exec_control &= ~SECONDARY_EXEC_XSAVES;
4051 
4052 		if (nested) {
4053 			if (xsaves_enabled)
4054 				vmx->nested.msrs.secondary_ctls_high |=
4055 					SECONDARY_EXEC_XSAVES;
4056 			else
4057 				vmx->nested.msrs.secondary_ctls_high &=
4058 					~SECONDARY_EXEC_XSAVES;
4059 		}
4060 	}
4061 
4062 	if (vmx_rdtscp_supported()) {
4063 		bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
4064 		if (!rdtscp_enabled)
4065 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
4066 
4067 		if (nested) {
4068 			if (rdtscp_enabled)
4069 				vmx->nested.msrs.secondary_ctls_high |=
4070 					SECONDARY_EXEC_RDTSCP;
4071 			else
4072 				vmx->nested.msrs.secondary_ctls_high &=
4073 					~SECONDARY_EXEC_RDTSCP;
4074 		}
4075 	}
4076 
4077 	if (vmx_invpcid_supported()) {
4078 		/* Exposing INVPCID only when PCID is exposed */
4079 		bool invpcid_enabled =
4080 			guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
4081 			guest_cpuid_has(vcpu, X86_FEATURE_PCID);
4082 
4083 		if (!invpcid_enabled) {
4084 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4085 			guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
4086 		}
4087 
4088 		if (nested) {
4089 			if (invpcid_enabled)
4090 				vmx->nested.msrs.secondary_ctls_high |=
4091 					SECONDARY_EXEC_ENABLE_INVPCID;
4092 			else
4093 				vmx->nested.msrs.secondary_ctls_high &=
4094 					~SECONDARY_EXEC_ENABLE_INVPCID;
4095 		}
4096 	}
4097 
4098 	if (vmx_rdrand_supported()) {
4099 		bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
4100 		if (rdrand_enabled)
4101 			exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
4102 
4103 		if (nested) {
4104 			if (rdrand_enabled)
4105 				vmx->nested.msrs.secondary_ctls_high |=
4106 					SECONDARY_EXEC_RDRAND_EXITING;
4107 			else
4108 				vmx->nested.msrs.secondary_ctls_high &=
4109 					~SECONDARY_EXEC_RDRAND_EXITING;
4110 		}
4111 	}
4112 
4113 	if (vmx_rdseed_supported()) {
4114 		bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
4115 		if (rdseed_enabled)
4116 			exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
4117 
4118 		if (nested) {
4119 			if (rdseed_enabled)
4120 				vmx->nested.msrs.secondary_ctls_high |=
4121 					SECONDARY_EXEC_RDSEED_EXITING;
4122 			else
4123 				vmx->nested.msrs.secondary_ctls_high &=
4124 					~SECONDARY_EXEC_RDSEED_EXITING;
4125 		}
4126 	}
4127 
4128 	if (vmx_waitpkg_supported()) {
4129 		bool waitpkg_enabled =
4130 			guest_cpuid_has(vcpu, X86_FEATURE_WAITPKG);
4131 
4132 		if (!waitpkg_enabled)
4133 			exec_control &= ~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4134 
4135 		if (nested) {
4136 			if (waitpkg_enabled)
4137 				vmx->nested.msrs.secondary_ctls_high |=
4138 					SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4139 			else
4140 				vmx->nested.msrs.secondary_ctls_high &=
4141 					~SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
4142 		}
4143 	}
4144 
4145 	vmx->secondary_exec_control = exec_control;
4146 }
4147 
ept_set_mmio_spte_mask(void)4148 static void ept_set_mmio_spte_mask(void)
4149 {
4150 	/*
4151 	 * EPT Misconfigurations can be generated if the value of bits 2:0
4152 	 * of an EPT paging-structure entry is 110b (write/execute).
4153 	 */
4154 	kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
4155 				   VMX_EPT_MISCONFIG_WX_VALUE, 0);
4156 }
4157 
4158 #define VMX_XSS_EXIT_BITMAP 0
4159 
4160 /*
4161  * Sets up the vmcs for emulated real mode.
4162  */
vmx_vcpu_setup(struct vcpu_vmx * vmx)4163 static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
4164 {
4165 	int i;
4166 
4167 	if (nested)
4168 		nested_vmx_vcpu_setup();
4169 
4170 	if (cpu_has_vmx_msr_bitmap())
4171 		vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4172 
4173 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4174 
4175 	/* Control */
4176 	pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4177 	vmx->hv_deadline_tsc = -1;
4178 
4179 	exec_controls_set(vmx, vmx_exec_control(vmx));
4180 
4181 	if (cpu_has_secondary_exec_ctrls()) {
4182 		vmx_compute_secondary_exec_control(vmx);
4183 		secondary_exec_controls_set(vmx, vmx->secondary_exec_control);
4184 	}
4185 
4186 	if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4187 		vmcs_write64(EOI_EXIT_BITMAP0, 0);
4188 		vmcs_write64(EOI_EXIT_BITMAP1, 0);
4189 		vmcs_write64(EOI_EXIT_BITMAP2, 0);
4190 		vmcs_write64(EOI_EXIT_BITMAP3, 0);
4191 
4192 		vmcs_write16(GUEST_INTR_STATUS, 0);
4193 
4194 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4195 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4196 	}
4197 
4198 	if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4199 		vmcs_write32(PLE_GAP, ple_gap);
4200 		vmx->ple_window = ple_window;
4201 		vmx->ple_window_dirty = true;
4202 	}
4203 
4204 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4205 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4206 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4207 
4208 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4209 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4210 	vmx_set_constant_host_state(vmx);
4211 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4212 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4213 
4214 	if (cpu_has_vmx_vmfunc())
4215 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
4216 
4217 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4218 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4219 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4220 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4221 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4222 
4223 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4224 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4225 
4226 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
4227 		u32 index = vmx_msr_index[i];
4228 		u32 data_low, data_high;
4229 		int j = vmx->nmsrs;
4230 
4231 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
4232 			continue;
4233 		if (wrmsr_safe(index, data_low, data_high) < 0)
4234 			continue;
4235 		vmx->guest_msrs[j].index = i;
4236 		vmx->guest_msrs[j].data = 0;
4237 		vmx->guest_msrs[j].mask = -1ull;
4238 		++vmx->nmsrs;
4239 	}
4240 
4241 	vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4242 
4243 	/* 22.2.1, 20.8.1 */
4244 	vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4245 
4246 	vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
4247 	vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
4248 
4249 	set_cr4_guest_host_mask(vmx);
4250 
4251 	if (vmx_xsaves_supported())
4252 		vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4253 
4254 	if (enable_pml) {
4255 		vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4256 		vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4257 	}
4258 
4259 	if (cpu_has_vmx_encls_vmexit())
4260 		vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
4261 
4262 	if (pt_mode == PT_MODE_HOST_GUEST) {
4263 		memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4264 		/* Bit[6~0] are forced to 1, writes are ignored. */
4265 		vmx->pt_desc.guest.output_mask = 0x7F;
4266 		vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4267 	}
4268 }
4269 
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4270 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4271 {
4272 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4273 	struct msr_data apic_base_msr;
4274 	u64 cr0;
4275 
4276 	vmx->rmode.vm86_active = 0;
4277 	vmx->spec_ctrl = 0;
4278 
4279 	vmx->msr_ia32_umwait_control = 0;
4280 
4281 	vcpu->arch.microcode_version = 0x100000000ULL;
4282 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4283 	vmx->hv_deadline_tsc = -1;
4284 	kvm_set_cr8(vcpu, 0);
4285 
4286 	if (!init_event) {
4287 		apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4288 				     MSR_IA32_APICBASE_ENABLE;
4289 		if (kvm_vcpu_is_reset_bsp(vcpu))
4290 			apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4291 		apic_base_msr.host_initiated = true;
4292 		kvm_set_apic_base(vcpu, &apic_base_msr);
4293 	}
4294 
4295 	vmx_segment_cache_clear(vmx);
4296 
4297 	seg_setup(VCPU_SREG_CS);
4298 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4299 	vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4300 
4301 	seg_setup(VCPU_SREG_DS);
4302 	seg_setup(VCPU_SREG_ES);
4303 	seg_setup(VCPU_SREG_FS);
4304 	seg_setup(VCPU_SREG_GS);
4305 	seg_setup(VCPU_SREG_SS);
4306 
4307 	vmcs_write16(GUEST_TR_SELECTOR, 0);
4308 	vmcs_writel(GUEST_TR_BASE, 0);
4309 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4310 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4311 
4312 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4313 	vmcs_writel(GUEST_LDTR_BASE, 0);
4314 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4315 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4316 
4317 	if (!init_event) {
4318 		vmcs_write32(GUEST_SYSENTER_CS, 0);
4319 		vmcs_writel(GUEST_SYSENTER_ESP, 0);
4320 		vmcs_writel(GUEST_SYSENTER_EIP, 0);
4321 		vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4322 	}
4323 
4324 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
4325 	kvm_rip_write(vcpu, 0xfff0);
4326 
4327 	vmcs_writel(GUEST_GDTR_BASE, 0);
4328 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4329 
4330 	vmcs_writel(GUEST_IDTR_BASE, 0);
4331 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4332 
4333 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4334 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4335 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4336 	if (kvm_mpx_supported())
4337 		vmcs_write64(GUEST_BNDCFGS, 0);
4338 
4339 	setup_msrs(vmx);
4340 
4341 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4342 
4343 	if (cpu_has_vmx_tpr_shadow() && !init_event) {
4344 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4345 		if (cpu_need_tpr_shadow(vcpu))
4346 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4347 				     __pa(vcpu->arch.apic->regs));
4348 		vmcs_write32(TPR_THRESHOLD, 0);
4349 	}
4350 
4351 	kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4352 
4353 	if (vmx->vpid != 0)
4354 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4355 
4356 	cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4357 	vmx->vcpu.arch.cr0 = cr0;
4358 	vmx_set_cr0(vcpu, cr0); /* enter rmode */
4359 	vmx_set_cr4(vcpu, 0);
4360 	vmx_set_efer(vcpu, 0);
4361 
4362 	update_exception_bitmap(vcpu);
4363 
4364 	vpid_sync_context(vmx->vpid);
4365 	if (init_event)
4366 		vmx_clear_hlt(vcpu);
4367 }
4368 
enable_irq_window(struct kvm_vcpu * vcpu)4369 static void enable_irq_window(struct kvm_vcpu *vcpu)
4370 {
4371 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
4372 }
4373 
enable_nmi_window(struct kvm_vcpu * vcpu)4374 static void enable_nmi_window(struct kvm_vcpu *vcpu)
4375 {
4376 	if (!enable_vnmi ||
4377 	    vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4378 		enable_irq_window(vcpu);
4379 		return;
4380 	}
4381 
4382 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
4383 }
4384 
vmx_inject_irq(struct kvm_vcpu * vcpu)4385 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4386 {
4387 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4388 	uint32_t intr;
4389 	int irq = vcpu->arch.interrupt.nr;
4390 
4391 	trace_kvm_inj_virq(irq);
4392 
4393 	++vcpu->stat.irq_injections;
4394 	if (vmx->rmode.vm86_active) {
4395 		int inc_eip = 0;
4396 		if (vcpu->arch.interrupt.soft)
4397 			inc_eip = vcpu->arch.event_exit_inst_len;
4398 		kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4399 		return;
4400 	}
4401 	intr = irq | INTR_INFO_VALID_MASK;
4402 	if (vcpu->arch.interrupt.soft) {
4403 		intr |= INTR_TYPE_SOFT_INTR;
4404 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4405 			     vmx->vcpu.arch.event_exit_inst_len);
4406 	} else
4407 		intr |= INTR_TYPE_EXT_INTR;
4408 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4409 
4410 	vmx_clear_hlt(vcpu);
4411 }
4412 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4413 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4414 {
4415 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4416 
4417 	if (!enable_vnmi) {
4418 		/*
4419 		 * Tracking the NMI-blocked state in software is built upon
4420 		 * finding the next open IRQ window. This, in turn, depends on
4421 		 * well-behaving guests: They have to keep IRQs disabled at
4422 		 * least as long as the NMI handler runs. Otherwise we may
4423 		 * cause NMI nesting, maybe breaking the guest. But as this is
4424 		 * highly unlikely, we can live with the residual risk.
4425 		 */
4426 		vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4427 		vmx->loaded_vmcs->vnmi_blocked_time = 0;
4428 	}
4429 
4430 	++vcpu->stat.nmi_injections;
4431 	vmx->loaded_vmcs->nmi_known_unmasked = false;
4432 
4433 	if (vmx->rmode.vm86_active) {
4434 		kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4435 		return;
4436 	}
4437 
4438 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4439 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4440 
4441 	vmx_clear_hlt(vcpu);
4442 }
4443 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4444 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4445 {
4446 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4447 	bool masked;
4448 
4449 	if (!enable_vnmi)
4450 		return vmx->loaded_vmcs->soft_vnmi_blocked;
4451 	if (vmx->loaded_vmcs->nmi_known_unmasked)
4452 		return false;
4453 	masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4454 	vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4455 	return masked;
4456 }
4457 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4458 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4459 {
4460 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4461 
4462 	if (!enable_vnmi) {
4463 		if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4464 			vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4465 			vmx->loaded_vmcs->vnmi_blocked_time = 0;
4466 		}
4467 	} else {
4468 		vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4469 		if (masked)
4470 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4471 				      GUEST_INTR_STATE_NMI);
4472 		else
4473 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4474 					GUEST_INTR_STATE_NMI);
4475 	}
4476 }
4477 
vmx_nmi_allowed(struct kvm_vcpu * vcpu)4478 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4479 {
4480 	if (to_vmx(vcpu)->nested.nested_run_pending)
4481 		return 0;
4482 
4483 	if (!enable_vnmi &&
4484 	    to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4485 		return 0;
4486 
4487 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4488 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4489 		   | GUEST_INTR_STATE_NMI));
4490 }
4491 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)4492 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4493 {
4494 	return (!to_vmx(vcpu)->nested.nested_run_pending &&
4495 		vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4496 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4497 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4498 }
4499 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4500 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4501 {
4502 	int ret;
4503 
4504 	if (enable_unrestricted_guest)
4505 		return 0;
4506 
4507 	ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4508 				    PAGE_SIZE * 3);
4509 	if (ret)
4510 		return ret;
4511 	to_kvm_vmx(kvm)->tss_addr = addr;
4512 	return init_rmode_tss(kvm);
4513 }
4514 
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)4515 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4516 {
4517 	to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4518 	return 0;
4519 }
4520 
rmode_exception(struct kvm_vcpu * vcpu,int vec)4521 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4522 {
4523 	switch (vec) {
4524 	case BP_VECTOR:
4525 		/*
4526 		 * Update instruction length as we may reinject the exception
4527 		 * from user space while in guest debugging mode.
4528 		 */
4529 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4530 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4531 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4532 			return false;
4533 		/* fall through */
4534 	case DB_VECTOR:
4535 		if (vcpu->guest_debug &
4536 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4537 			return false;
4538 		/* fall through */
4539 	case DE_VECTOR:
4540 	case OF_VECTOR:
4541 	case BR_VECTOR:
4542 	case UD_VECTOR:
4543 	case DF_VECTOR:
4544 	case SS_VECTOR:
4545 	case GP_VECTOR:
4546 	case MF_VECTOR:
4547 		return true;
4548 	break;
4549 	}
4550 	return false;
4551 }
4552 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4553 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4554 				  int vec, u32 err_code)
4555 {
4556 	/*
4557 	 * Instruction with address size override prefix opcode 0x67
4558 	 * Cause the #SS fault with 0 error code in VM86 mode.
4559 	 */
4560 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4561 		if (kvm_emulate_instruction(vcpu, 0)) {
4562 			if (vcpu->arch.halt_request) {
4563 				vcpu->arch.halt_request = 0;
4564 				return kvm_vcpu_halt(vcpu);
4565 			}
4566 			return 1;
4567 		}
4568 		return 0;
4569 	}
4570 
4571 	/*
4572 	 * Forward all other exceptions that are valid in real mode.
4573 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4574 	 *        the required debugging infrastructure rework.
4575 	 */
4576 	kvm_queue_exception(vcpu, vec);
4577 	return 1;
4578 }
4579 
4580 /*
4581  * Trigger machine check on the host. We assume all the MSRs are already set up
4582  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4583  * We pass a fake environment to the machine check handler because we want
4584  * the guest to be always treated like user space, no matter what context
4585  * it used internally.
4586  */
kvm_machine_check(void)4587 static void kvm_machine_check(void)
4588 {
4589 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4590 	struct pt_regs regs = {
4591 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4592 		.flags = X86_EFLAGS_IF,
4593 	};
4594 
4595 	do_machine_check(&regs, 0);
4596 #endif
4597 }
4598 
handle_machine_check(struct kvm_vcpu * vcpu)4599 static int handle_machine_check(struct kvm_vcpu *vcpu)
4600 {
4601 	/* handled by vmx_vcpu_run() */
4602 	return 1;
4603 }
4604 
handle_exception_nmi(struct kvm_vcpu * vcpu)4605 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4606 {
4607 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4608 	struct kvm_run *kvm_run = vcpu->run;
4609 	u32 intr_info, ex_no, error_code;
4610 	unsigned long cr2, rip, dr6;
4611 	u32 vect_info;
4612 
4613 	vect_info = vmx->idt_vectoring_info;
4614 	intr_info = vmx->exit_intr_info;
4615 
4616 	if (is_machine_check(intr_info) || is_nmi(intr_info))
4617 		return 1; /* handled by handle_exception_nmi_irqoff() */
4618 
4619 	if (is_invalid_opcode(intr_info))
4620 		return handle_ud(vcpu);
4621 
4622 	error_code = 0;
4623 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4624 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4625 
4626 	if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4627 		WARN_ON_ONCE(!enable_vmware_backdoor);
4628 
4629 		/*
4630 		 * VMware backdoor emulation on #GP interception only handles
4631 		 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4632 		 * error code on #GP.
4633 		 */
4634 		if (error_code) {
4635 			kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4636 			return 1;
4637 		}
4638 		return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4639 	}
4640 
4641 	/*
4642 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4643 	 * MMIO, it is better to report an internal error.
4644 	 * See the comments in vmx_handle_exit.
4645 	 */
4646 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4647 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4648 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4649 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4650 		vcpu->run->internal.ndata = 3;
4651 		vcpu->run->internal.data[0] = vect_info;
4652 		vcpu->run->internal.data[1] = intr_info;
4653 		vcpu->run->internal.data[2] = error_code;
4654 		return 0;
4655 	}
4656 
4657 	if (is_page_fault(intr_info)) {
4658 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4659 		/* EPT won't cause page fault directly */
4660 		WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
4661 		return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4662 	}
4663 
4664 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4665 
4666 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4667 		return handle_rmode_exception(vcpu, ex_no, error_code);
4668 
4669 	switch (ex_no) {
4670 	case AC_VECTOR:
4671 		kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4672 		return 1;
4673 	case DB_VECTOR:
4674 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4675 		if (!(vcpu->guest_debug &
4676 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4677 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4678 			vcpu->arch.dr6 |= dr6 | DR6_RTM;
4679 			if (is_icebp(intr_info))
4680 				WARN_ON(!skip_emulated_instruction(vcpu));
4681 
4682 			kvm_queue_exception(vcpu, DB_VECTOR);
4683 			return 1;
4684 		}
4685 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4686 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4687 		/* fall through */
4688 	case BP_VECTOR:
4689 		/*
4690 		 * Update instruction length as we may reinject #BP from
4691 		 * user space while in guest debugging mode. Reading it for
4692 		 * #DB as well causes no harm, it is not used in that case.
4693 		 */
4694 		vmx->vcpu.arch.event_exit_inst_len =
4695 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4696 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4697 		rip = kvm_rip_read(vcpu);
4698 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4699 		kvm_run->debug.arch.exception = ex_no;
4700 		break;
4701 	default:
4702 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4703 		kvm_run->ex.exception = ex_no;
4704 		kvm_run->ex.error_code = error_code;
4705 		break;
4706 	}
4707 	return 0;
4708 }
4709 
handle_external_interrupt(struct kvm_vcpu * vcpu)4710 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4711 {
4712 	++vcpu->stat.irq_exits;
4713 	return 1;
4714 }
4715 
handle_triple_fault(struct kvm_vcpu * vcpu)4716 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4717 {
4718 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4719 	vcpu->mmio_needed = 0;
4720 	return 0;
4721 }
4722 
handle_io(struct kvm_vcpu * vcpu)4723 static int handle_io(struct kvm_vcpu *vcpu)
4724 {
4725 	unsigned long exit_qualification;
4726 	int size, in, string;
4727 	unsigned port;
4728 
4729 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4730 	string = (exit_qualification & 16) != 0;
4731 
4732 	++vcpu->stat.io_exits;
4733 
4734 	if (string)
4735 		return kvm_emulate_instruction(vcpu, 0);
4736 
4737 	port = exit_qualification >> 16;
4738 	size = (exit_qualification & 7) + 1;
4739 	in = (exit_qualification & 8) != 0;
4740 
4741 	return kvm_fast_pio(vcpu, size, port, in);
4742 }
4743 
4744 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4745 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4746 {
4747 	/*
4748 	 * Patch in the VMCALL instruction:
4749 	 */
4750 	hypercall[0] = 0x0f;
4751 	hypercall[1] = 0x01;
4752 	hypercall[2] = 0xc1;
4753 }
4754 
4755 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)4756 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4757 {
4758 	if (is_guest_mode(vcpu)) {
4759 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4760 		unsigned long orig_val = val;
4761 
4762 		/*
4763 		 * We get here when L2 changed cr0 in a way that did not change
4764 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4765 		 * but did change L0 shadowed bits. So we first calculate the
4766 		 * effective cr0 value that L1 would like to write into the
4767 		 * hardware. It consists of the L2-owned bits from the new
4768 		 * value combined with the L1-owned bits from L1's guest_cr0.
4769 		 */
4770 		val = (val & ~vmcs12->cr0_guest_host_mask) |
4771 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4772 
4773 		if (!nested_guest_cr0_valid(vcpu, val))
4774 			return 1;
4775 
4776 		if (kvm_set_cr0(vcpu, val))
4777 			return 1;
4778 		vmcs_writel(CR0_READ_SHADOW, orig_val);
4779 		return 0;
4780 	} else {
4781 		if (to_vmx(vcpu)->nested.vmxon &&
4782 		    !nested_host_cr0_valid(vcpu, val))
4783 			return 1;
4784 
4785 		return kvm_set_cr0(vcpu, val);
4786 	}
4787 }
4788 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)4789 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4790 {
4791 	if (is_guest_mode(vcpu)) {
4792 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4793 		unsigned long orig_val = val;
4794 
4795 		/* analogously to handle_set_cr0 */
4796 		val = (val & ~vmcs12->cr4_guest_host_mask) |
4797 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4798 		if (kvm_set_cr4(vcpu, val))
4799 			return 1;
4800 		vmcs_writel(CR4_READ_SHADOW, orig_val);
4801 		return 0;
4802 	} else
4803 		return kvm_set_cr4(vcpu, val);
4804 }
4805 
handle_desc(struct kvm_vcpu * vcpu)4806 static int handle_desc(struct kvm_vcpu *vcpu)
4807 {
4808 	WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4809 	return kvm_emulate_instruction(vcpu, 0);
4810 }
4811 
handle_cr(struct kvm_vcpu * vcpu)4812 static int handle_cr(struct kvm_vcpu *vcpu)
4813 {
4814 	unsigned long exit_qualification, val;
4815 	int cr;
4816 	int reg;
4817 	int err;
4818 	int ret;
4819 
4820 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4821 	cr = exit_qualification & 15;
4822 	reg = (exit_qualification >> 8) & 15;
4823 	switch ((exit_qualification >> 4) & 3) {
4824 	case 0: /* mov to cr */
4825 		val = kvm_register_readl(vcpu, reg);
4826 		trace_kvm_cr_write(cr, val);
4827 		switch (cr) {
4828 		case 0:
4829 			err = handle_set_cr0(vcpu, val);
4830 			return kvm_complete_insn_gp(vcpu, err);
4831 		case 3:
4832 			WARN_ON_ONCE(enable_unrestricted_guest);
4833 			err = kvm_set_cr3(vcpu, val);
4834 			return kvm_complete_insn_gp(vcpu, err);
4835 		case 4:
4836 			err = handle_set_cr4(vcpu, val);
4837 			return kvm_complete_insn_gp(vcpu, err);
4838 		case 8: {
4839 				u8 cr8_prev = kvm_get_cr8(vcpu);
4840 				u8 cr8 = (u8)val;
4841 				err = kvm_set_cr8(vcpu, cr8);
4842 				ret = kvm_complete_insn_gp(vcpu, err);
4843 				if (lapic_in_kernel(vcpu))
4844 					return ret;
4845 				if (cr8_prev <= cr8)
4846 					return ret;
4847 				/*
4848 				 * TODO: we might be squashing a
4849 				 * KVM_GUESTDBG_SINGLESTEP-triggered
4850 				 * KVM_EXIT_DEBUG here.
4851 				 */
4852 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4853 				return 0;
4854 			}
4855 		}
4856 		break;
4857 	case 2: /* clts */
4858 		WARN_ONCE(1, "Guest should always own CR0.TS");
4859 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4860 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4861 		return kvm_skip_emulated_instruction(vcpu);
4862 	case 1: /*mov from cr*/
4863 		switch (cr) {
4864 		case 3:
4865 			WARN_ON_ONCE(enable_unrestricted_guest);
4866 			val = kvm_read_cr3(vcpu);
4867 			kvm_register_write(vcpu, reg, val);
4868 			trace_kvm_cr_read(cr, val);
4869 			return kvm_skip_emulated_instruction(vcpu);
4870 		case 8:
4871 			val = kvm_get_cr8(vcpu);
4872 			kvm_register_write(vcpu, reg, val);
4873 			trace_kvm_cr_read(cr, val);
4874 			return kvm_skip_emulated_instruction(vcpu);
4875 		}
4876 		break;
4877 	case 3: /* lmsw */
4878 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4879 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4880 		kvm_lmsw(vcpu, val);
4881 
4882 		return kvm_skip_emulated_instruction(vcpu);
4883 	default:
4884 		break;
4885 	}
4886 	vcpu->run->exit_reason = 0;
4887 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4888 	       (int)(exit_qualification >> 4) & 3, cr);
4889 	return 0;
4890 }
4891 
handle_dr(struct kvm_vcpu * vcpu)4892 static int handle_dr(struct kvm_vcpu *vcpu)
4893 {
4894 	unsigned long exit_qualification;
4895 	int dr, dr7, reg;
4896 
4897 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4898 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4899 
4900 	/* First, if DR does not exist, trigger UD */
4901 	if (!kvm_require_dr(vcpu, dr))
4902 		return 1;
4903 
4904 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4905 	if (!kvm_require_cpl(vcpu, 0))
4906 		return 1;
4907 	dr7 = vmcs_readl(GUEST_DR7);
4908 	if (dr7 & DR7_GD) {
4909 		/*
4910 		 * As the vm-exit takes precedence over the debug trap, we
4911 		 * need to emulate the latter, either for the host or the
4912 		 * guest debugging itself.
4913 		 */
4914 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4915 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4916 			vcpu->run->debug.arch.dr7 = dr7;
4917 			vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4918 			vcpu->run->debug.arch.exception = DB_VECTOR;
4919 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4920 			return 0;
4921 		} else {
4922 			vcpu->arch.dr6 &= ~DR_TRAP_BITS;
4923 			vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
4924 			kvm_queue_exception(vcpu, DB_VECTOR);
4925 			return 1;
4926 		}
4927 	}
4928 
4929 	if (vcpu->guest_debug == 0) {
4930 		exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4931 
4932 		/*
4933 		 * No more DR vmexits; force a reload of the debug registers
4934 		 * and reenter on this instruction.  The next vmexit will
4935 		 * retrieve the full state of the debug registers.
4936 		 */
4937 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
4938 		return 1;
4939 	}
4940 
4941 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4942 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4943 		unsigned long val;
4944 
4945 		if (kvm_get_dr(vcpu, dr, &val))
4946 			return 1;
4947 		kvm_register_write(vcpu, reg, val);
4948 	} else
4949 		if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4950 			return 1;
4951 
4952 	return kvm_skip_emulated_instruction(vcpu);
4953 }
4954 
vmx_get_dr6(struct kvm_vcpu * vcpu)4955 static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
4956 {
4957 	return vcpu->arch.dr6;
4958 }
4959 
vmx_set_dr6(struct kvm_vcpu * vcpu,unsigned long val)4960 static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
4961 {
4962 }
4963 
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)4964 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
4965 {
4966 	get_debugreg(vcpu->arch.db[0], 0);
4967 	get_debugreg(vcpu->arch.db[1], 1);
4968 	get_debugreg(vcpu->arch.db[2], 2);
4969 	get_debugreg(vcpu->arch.db[3], 3);
4970 	get_debugreg(vcpu->arch.dr6, 6);
4971 	vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
4972 
4973 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
4974 	exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
4975 }
4976 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)4977 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4978 {
4979 	vmcs_writel(GUEST_DR7, val);
4980 }
4981 
handle_cpuid(struct kvm_vcpu * vcpu)4982 static int handle_cpuid(struct kvm_vcpu *vcpu)
4983 {
4984 	return kvm_emulate_cpuid(vcpu);
4985 }
4986 
handle_rdmsr(struct kvm_vcpu * vcpu)4987 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4988 {
4989 	return kvm_emulate_rdmsr(vcpu);
4990 }
4991 
handle_wrmsr(struct kvm_vcpu * vcpu)4992 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4993 {
4994 	return kvm_emulate_wrmsr(vcpu);
4995 }
4996 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)4997 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4998 {
4999 	kvm_apic_update_ppr(vcpu);
5000 	return 1;
5001 }
5002 
handle_interrupt_window(struct kvm_vcpu * vcpu)5003 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5004 {
5005 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_INTR_PENDING);
5006 
5007 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5008 
5009 	++vcpu->stat.irq_window_exits;
5010 	return 1;
5011 }
5012 
handle_halt(struct kvm_vcpu * vcpu)5013 static int handle_halt(struct kvm_vcpu *vcpu)
5014 {
5015 	return kvm_emulate_halt(vcpu);
5016 }
5017 
handle_vmcall(struct kvm_vcpu * vcpu)5018 static int handle_vmcall(struct kvm_vcpu *vcpu)
5019 {
5020 	return kvm_emulate_hypercall(vcpu);
5021 }
5022 
handle_invd(struct kvm_vcpu * vcpu)5023 static int handle_invd(struct kvm_vcpu *vcpu)
5024 {
5025 	return kvm_emulate_instruction(vcpu, 0);
5026 }
5027 
handle_invlpg(struct kvm_vcpu * vcpu)5028 static int handle_invlpg(struct kvm_vcpu *vcpu)
5029 {
5030 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5031 
5032 	kvm_mmu_invlpg(vcpu, exit_qualification);
5033 	return kvm_skip_emulated_instruction(vcpu);
5034 }
5035 
handle_rdpmc(struct kvm_vcpu * vcpu)5036 static int handle_rdpmc(struct kvm_vcpu *vcpu)
5037 {
5038 	int err;
5039 
5040 	err = kvm_rdpmc(vcpu);
5041 	return kvm_complete_insn_gp(vcpu, err);
5042 }
5043 
handle_wbinvd(struct kvm_vcpu * vcpu)5044 static int handle_wbinvd(struct kvm_vcpu *vcpu)
5045 {
5046 	return kvm_emulate_wbinvd(vcpu);
5047 }
5048 
handle_xsetbv(struct kvm_vcpu * vcpu)5049 static int handle_xsetbv(struct kvm_vcpu *vcpu)
5050 {
5051 	u64 new_bv = kvm_read_edx_eax(vcpu);
5052 	u32 index = kvm_rcx_read(vcpu);
5053 
5054 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5055 		return kvm_skip_emulated_instruction(vcpu);
5056 	return 1;
5057 }
5058 
handle_apic_access(struct kvm_vcpu * vcpu)5059 static int handle_apic_access(struct kvm_vcpu *vcpu)
5060 {
5061 	if (likely(fasteoi)) {
5062 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5063 		int access_type, offset;
5064 
5065 		access_type = exit_qualification & APIC_ACCESS_TYPE;
5066 		offset = exit_qualification & APIC_ACCESS_OFFSET;
5067 		/*
5068 		 * Sane guest uses MOV to write EOI, with written value
5069 		 * not cared. So make a short-circuit here by avoiding
5070 		 * heavy instruction emulation.
5071 		 */
5072 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5073 		    (offset == APIC_EOI)) {
5074 			kvm_lapic_set_eoi(vcpu);
5075 			return kvm_skip_emulated_instruction(vcpu);
5076 		}
5077 	}
5078 	return kvm_emulate_instruction(vcpu, 0);
5079 }
5080 
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5081 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5082 {
5083 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5084 	int vector = exit_qualification & 0xff;
5085 
5086 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5087 	kvm_apic_set_eoi_accelerated(vcpu, vector);
5088 	return 1;
5089 }
5090 
handle_apic_write(struct kvm_vcpu * vcpu)5091 static int handle_apic_write(struct kvm_vcpu *vcpu)
5092 {
5093 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5094 	u32 offset = exit_qualification & 0xfff;
5095 
5096 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */
5097 	kvm_apic_write_nodecode(vcpu, offset);
5098 	return 1;
5099 }
5100 
handle_task_switch(struct kvm_vcpu * vcpu)5101 static int handle_task_switch(struct kvm_vcpu *vcpu)
5102 {
5103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5104 	unsigned long exit_qualification;
5105 	bool has_error_code = false;
5106 	u32 error_code = 0;
5107 	u16 tss_selector;
5108 	int reason, type, idt_v, idt_index;
5109 
5110 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5111 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5112 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5113 
5114 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5115 
5116 	reason = (u32)exit_qualification >> 30;
5117 	if (reason == TASK_SWITCH_GATE && idt_v) {
5118 		switch (type) {
5119 		case INTR_TYPE_NMI_INTR:
5120 			vcpu->arch.nmi_injected = false;
5121 			vmx_set_nmi_mask(vcpu, true);
5122 			break;
5123 		case INTR_TYPE_EXT_INTR:
5124 		case INTR_TYPE_SOFT_INTR:
5125 			kvm_clear_interrupt_queue(vcpu);
5126 			break;
5127 		case INTR_TYPE_HARD_EXCEPTION:
5128 			if (vmx->idt_vectoring_info &
5129 			    VECTORING_INFO_DELIVER_CODE_MASK) {
5130 				has_error_code = true;
5131 				error_code =
5132 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
5133 			}
5134 			/* fall through */
5135 		case INTR_TYPE_SOFT_EXCEPTION:
5136 			kvm_clear_exception_queue(vcpu);
5137 			break;
5138 		default:
5139 			break;
5140 		}
5141 	}
5142 	tss_selector = exit_qualification;
5143 
5144 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5145 		       type != INTR_TYPE_EXT_INTR &&
5146 		       type != INTR_TYPE_NMI_INTR))
5147 		WARN_ON(!skip_emulated_instruction(vcpu));
5148 
5149 	/*
5150 	 * TODO: What about debug traps on tss switch?
5151 	 *       Are we supposed to inject them and update dr6?
5152 	 */
5153 	return kvm_task_switch(vcpu, tss_selector,
5154 			       type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5155 			       reason, has_error_code, error_code);
5156 }
5157 
handle_ept_violation(struct kvm_vcpu * vcpu)5158 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5159 {
5160 	unsigned long exit_qualification;
5161 	gpa_t gpa;
5162 	u64 error_code;
5163 
5164 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5165 
5166 	/*
5167 	 * EPT violation happened while executing iret from NMI,
5168 	 * "blocked by NMI" bit has to be set before next VM entry.
5169 	 * There are errata that may cause this bit to not be set:
5170 	 * AAK134, BY25.
5171 	 */
5172 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5173 			enable_vnmi &&
5174 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5175 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5176 
5177 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5178 	trace_kvm_page_fault(gpa, exit_qualification);
5179 
5180 	/* Is it a read fault? */
5181 	error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5182 		     ? PFERR_USER_MASK : 0;
5183 	/* Is it a write fault? */
5184 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5185 		      ? PFERR_WRITE_MASK : 0;
5186 	/* Is it a fetch fault? */
5187 	error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5188 		      ? PFERR_FETCH_MASK : 0;
5189 	/* ept page table entry is present? */
5190 	error_code |= (exit_qualification &
5191 		       (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5192 			EPT_VIOLATION_EXECUTABLE))
5193 		      ? PFERR_PRESENT_MASK : 0;
5194 
5195 	error_code |= (exit_qualification & 0x100) != 0 ?
5196 	       PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5197 
5198 	vcpu->arch.exit_qualification = exit_qualification;
5199 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5200 }
5201 
handle_ept_misconfig(struct kvm_vcpu * vcpu)5202 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5203 {
5204 	gpa_t gpa;
5205 
5206 	/*
5207 	 * A nested guest cannot optimize MMIO vmexits, because we have an
5208 	 * nGPA here instead of the required GPA.
5209 	 */
5210 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5211 	if (!is_guest_mode(vcpu) &&
5212 	    !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5213 		trace_kvm_fast_mmio(gpa);
5214 		return kvm_skip_emulated_instruction(vcpu);
5215 	}
5216 
5217 	return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5218 }
5219 
handle_nmi_window(struct kvm_vcpu * vcpu)5220 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5221 {
5222 	WARN_ON_ONCE(!enable_vnmi);
5223 	exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_VIRTUAL_NMI_PENDING);
5224 	++vcpu->stat.nmi_window_exits;
5225 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5226 
5227 	return 1;
5228 }
5229 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5230 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5231 {
5232 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5233 	bool intr_window_requested;
5234 	unsigned count = 130;
5235 
5236 	/*
5237 	 * We should never reach the point where we are emulating L2
5238 	 * due to invalid guest state as that means we incorrectly
5239 	 * allowed a nested VMEntry with an invalid vmcs12.
5240 	 */
5241 	WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
5242 
5243 	intr_window_requested = exec_controls_get(vmx) &
5244 				CPU_BASED_VIRTUAL_INTR_PENDING;
5245 
5246 	while (vmx->emulation_required && count-- != 0) {
5247 		if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5248 			return handle_interrupt_window(&vmx->vcpu);
5249 
5250 		if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5251 			return 1;
5252 
5253 		if (!kvm_emulate_instruction(vcpu, 0))
5254 			return 0;
5255 
5256 		if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5257 		    vcpu->arch.exception.pending) {
5258 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5259 			vcpu->run->internal.suberror =
5260 						KVM_INTERNAL_ERROR_EMULATION;
5261 			vcpu->run->internal.ndata = 0;
5262 			return 0;
5263 		}
5264 
5265 		if (vcpu->arch.halt_request) {
5266 			vcpu->arch.halt_request = 0;
5267 			return kvm_vcpu_halt(vcpu);
5268 		}
5269 
5270 		/*
5271 		 * Note, return 1 and not 0, vcpu_run() is responsible for
5272 		 * morphing the pending signal into the proper return code.
5273 		 */
5274 		if (signal_pending(current))
5275 			return 1;
5276 
5277 		if (need_resched())
5278 			schedule();
5279 	}
5280 
5281 	return 1;
5282 }
5283 
grow_ple_window(struct kvm_vcpu * vcpu)5284 static void grow_ple_window(struct kvm_vcpu *vcpu)
5285 {
5286 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5287 	unsigned int old = vmx->ple_window;
5288 
5289 	vmx->ple_window = __grow_ple_window(old, ple_window,
5290 					    ple_window_grow,
5291 					    ple_window_max);
5292 
5293 	if (vmx->ple_window != old) {
5294 		vmx->ple_window_dirty = true;
5295 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5296 					    vmx->ple_window, old);
5297 	}
5298 }
5299 
shrink_ple_window(struct kvm_vcpu * vcpu)5300 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5301 {
5302 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5303 	unsigned int old = vmx->ple_window;
5304 
5305 	vmx->ple_window = __shrink_ple_window(old, ple_window,
5306 					      ple_window_shrink,
5307 					      ple_window);
5308 
5309 	if (vmx->ple_window != old) {
5310 		vmx->ple_window_dirty = true;
5311 		trace_kvm_ple_window_update(vcpu->vcpu_id,
5312 					    vmx->ple_window, old);
5313 	}
5314 }
5315 
5316 /*
5317  * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
5318  */
wakeup_handler(void)5319 static void wakeup_handler(void)
5320 {
5321 	struct kvm_vcpu *vcpu;
5322 	int cpu = smp_processor_id();
5323 
5324 	spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5325 	list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
5326 			blocked_vcpu_list) {
5327 		struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
5328 
5329 		if (pi_test_on(pi_desc) == 1)
5330 			kvm_vcpu_kick(vcpu);
5331 	}
5332 	spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
5333 }
5334 
vmx_enable_tdp(void)5335 static void vmx_enable_tdp(void)
5336 {
5337 	kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
5338 		enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
5339 		enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
5340 		0ull, VMX_EPT_EXECUTABLE_MASK,
5341 		cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
5342 		VMX_EPT_RWX_MASK, 0ull);
5343 
5344 	ept_set_mmio_spte_mask();
5345 	kvm_enable_tdp();
5346 }
5347 
5348 /*
5349  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5350  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5351  */
handle_pause(struct kvm_vcpu * vcpu)5352 static int handle_pause(struct kvm_vcpu *vcpu)
5353 {
5354 	if (!kvm_pause_in_guest(vcpu->kvm))
5355 		grow_ple_window(vcpu);
5356 
5357 	/*
5358 	 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5359 	 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5360 	 * never set PAUSE_EXITING and just set PLE if supported,
5361 	 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5362 	 */
5363 	kvm_vcpu_on_spin(vcpu, true);
5364 	return kvm_skip_emulated_instruction(vcpu);
5365 }
5366 
handle_nop(struct kvm_vcpu * vcpu)5367 static int handle_nop(struct kvm_vcpu *vcpu)
5368 {
5369 	return kvm_skip_emulated_instruction(vcpu);
5370 }
5371 
handle_mwait(struct kvm_vcpu * vcpu)5372 static int handle_mwait(struct kvm_vcpu *vcpu)
5373 {
5374 	printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
5375 	return handle_nop(vcpu);
5376 }
5377 
handle_invalid_op(struct kvm_vcpu * vcpu)5378 static int handle_invalid_op(struct kvm_vcpu *vcpu)
5379 {
5380 	kvm_queue_exception(vcpu, UD_VECTOR);
5381 	return 1;
5382 }
5383 
handle_monitor_trap(struct kvm_vcpu * vcpu)5384 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5385 {
5386 	return 1;
5387 }
5388 
handle_monitor(struct kvm_vcpu * vcpu)5389 static int handle_monitor(struct kvm_vcpu *vcpu)
5390 {
5391 	printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
5392 	return handle_nop(vcpu);
5393 }
5394 
handle_invpcid(struct kvm_vcpu * vcpu)5395 static int handle_invpcid(struct kvm_vcpu *vcpu)
5396 {
5397 	u32 vmx_instruction_info;
5398 	unsigned long type;
5399 	bool pcid_enabled;
5400 	gva_t gva;
5401 	struct x86_exception e;
5402 	unsigned i;
5403 	unsigned long roots_to_free = 0;
5404 	struct {
5405 		u64 pcid;
5406 		u64 gla;
5407 	} operand;
5408 
5409 	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5410 		kvm_queue_exception(vcpu, UD_VECTOR);
5411 		return 1;
5412 	}
5413 
5414 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5415 	type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
5416 
5417 	if (type > 3) {
5418 		kvm_inject_gp(vcpu, 0);
5419 		return 1;
5420 	}
5421 
5422 	/* According to the Intel instruction reference, the memory operand
5423 	 * is read even if it isn't needed (e.g., for type==all)
5424 	 */
5425 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5426 				vmx_instruction_info, false,
5427 				sizeof(operand), &gva))
5428 		return 1;
5429 
5430 	if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
5431 		kvm_inject_page_fault(vcpu, &e);
5432 		return 1;
5433 	}
5434 
5435 	if (operand.pcid >> 12 != 0) {
5436 		kvm_inject_gp(vcpu, 0);
5437 		return 1;
5438 	}
5439 
5440 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
5441 
5442 	switch (type) {
5443 	case INVPCID_TYPE_INDIV_ADDR:
5444 		if ((!pcid_enabled && (operand.pcid != 0)) ||
5445 		    is_noncanonical_address(operand.gla, vcpu)) {
5446 			kvm_inject_gp(vcpu, 0);
5447 			return 1;
5448 		}
5449 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
5450 		return kvm_skip_emulated_instruction(vcpu);
5451 
5452 	case INVPCID_TYPE_SINGLE_CTXT:
5453 		if (!pcid_enabled && (operand.pcid != 0)) {
5454 			kvm_inject_gp(vcpu, 0);
5455 			return 1;
5456 		}
5457 
5458 		if (kvm_get_active_pcid(vcpu) == operand.pcid) {
5459 			kvm_mmu_sync_roots(vcpu);
5460 			kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
5461 		}
5462 
5463 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5464 			if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
5465 			    == operand.pcid)
5466 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5467 
5468 		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
5469 		/*
5470 		 * If neither the current cr3 nor any of the prev_roots use the
5471 		 * given PCID, then nothing needs to be done here because a
5472 		 * resync will happen anyway before switching to any other CR3.
5473 		 */
5474 
5475 		return kvm_skip_emulated_instruction(vcpu);
5476 
5477 	case INVPCID_TYPE_ALL_NON_GLOBAL:
5478 		/*
5479 		 * Currently, KVM doesn't mark global entries in the shadow
5480 		 * page tables, so a non-global flush just degenerates to a
5481 		 * global flush. If needed, we could optimize this later by
5482 		 * keeping track of global entries in shadow page tables.
5483 		 */
5484 
5485 		/* fall-through */
5486 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
5487 		kvm_mmu_unload(vcpu);
5488 		return kvm_skip_emulated_instruction(vcpu);
5489 
5490 	default:
5491 		BUG(); /* We have already checked above that type <= 3 */
5492 	}
5493 }
5494 
handle_pml_full(struct kvm_vcpu * vcpu)5495 static int handle_pml_full(struct kvm_vcpu *vcpu)
5496 {
5497 	unsigned long exit_qualification;
5498 
5499 	trace_kvm_pml_full(vcpu->vcpu_id);
5500 
5501 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5502 
5503 	/*
5504 	 * PML buffer FULL happened while executing iret from NMI,
5505 	 * "blocked by NMI" bit has to be set before next VM entry.
5506 	 */
5507 	if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5508 			enable_vnmi &&
5509 			(exit_qualification & INTR_INFO_UNBLOCK_NMI))
5510 		vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5511 				GUEST_INTR_STATE_NMI);
5512 
5513 	/*
5514 	 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5515 	 * here.., and there's no userspace involvement needed for PML.
5516 	 */
5517 	return 1;
5518 }
5519 
handle_preemption_timer(struct kvm_vcpu * vcpu)5520 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5521 {
5522 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5523 
5524 	if (!vmx->req_immediate_exit &&
5525 	    !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled))
5526 		kvm_lapic_expired_hv_timer(vcpu);
5527 
5528 	return 1;
5529 }
5530 
5531 /*
5532  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5533  * are overwritten by nested_vmx_setup() when nested=1.
5534  */
handle_vmx_instruction(struct kvm_vcpu * vcpu)5535 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5536 {
5537 	kvm_queue_exception(vcpu, UD_VECTOR);
5538 	return 1;
5539 }
5540 
handle_encls(struct kvm_vcpu * vcpu)5541 static int handle_encls(struct kvm_vcpu *vcpu)
5542 {
5543 	/*
5544 	 * SGX virtualization is not yet supported.  There is no software
5545 	 * enable bit for SGX, so we have to trap ENCLS and inject a #UD
5546 	 * to prevent the guest from executing ENCLS.
5547 	 */
5548 	kvm_queue_exception(vcpu, UD_VECTOR);
5549 	return 1;
5550 }
5551 
5552 /*
5553  * The exit handlers return 1 if the exit was handled fully and guest execution
5554  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5555  * to be done to userspace and return 0.
5556  */
5557 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5558 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5559 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5560 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5561 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5562 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5563 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5564 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5565 	[EXIT_REASON_CPUID]                   = handle_cpuid,
5566 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
5567 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5568 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5569 	[EXIT_REASON_HLT]                     = handle_halt,
5570 	[EXIT_REASON_INVD]		      = handle_invd,
5571 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5572 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5573 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5574 	[EXIT_REASON_VMCLEAR]		      = handle_vmx_instruction,
5575 	[EXIT_REASON_VMLAUNCH]		      = handle_vmx_instruction,
5576 	[EXIT_REASON_VMPTRLD]		      = handle_vmx_instruction,
5577 	[EXIT_REASON_VMPTRST]		      = handle_vmx_instruction,
5578 	[EXIT_REASON_VMREAD]		      = handle_vmx_instruction,
5579 	[EXIT_REASON_VMRESUME]		      = handle_vmx_instruction,
5580 	[EXIT_REASON_VMWRITE]		      = handle_vmx_instruction,
5581 	[EXIT_REASON_VMOFF]		      = handle_vmx_instruction,
5582 	[EXIT_REASON_VMON]		      = handle_vmx_instruction,
5583 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5584 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5585 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5586 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5587 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5588 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5589 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5590 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5591 	[EXIT_REASON_GDTR_IDTR]		      = handle_desc,
5592 	[EXIT_REASON_LDTR_TR]		      = handle_desc,
5593 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5594 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5595 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5596 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_mwait,
5597 	[EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5598 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
5599 	[EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5600 	[EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5601 	[EXIT_REASON_RDRAND]                  = handle_invalid_op,
5602 	[EXIT_REASON_RDSEED]                  = handle_invalid_op,
5603 	[EXIT_REASON_PML_FULL]		      = handle_pml_full,
5604 	[EXIT_REASON_INVPCID]                 = handle_invpcid,
5605 	[EXIT_REASON_VMFUNC]		      = handle_vmx_instruction,
5606 	[EXIT_REASON_PREEMPTION_TIMER]	      = handle_preemption_timer,
5607 	[EXIT_REASON_ENCLS]		      = handle_encls,
5608 };
5609 
5610 static const int kvm_vmx_max_exit_handlers =
5611 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5612 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)5613 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5614 {
5615 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5616 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5617 }
5618 
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)5619 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5620 {
5621 	if (vmx->pml_pg) {
5622 		__free_page(vmx->pml_pg);
5623 		vmx->pml_pg = NULL;
5624 	}
5625 }
5626 
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)5627 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5628 {
5629 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5630 	u64 *pml_buf;
5631 	u16 pml_idx;
5632 
5633 	pml_idx = vmcs_read16(GUEST_PML_INDEX);
5634 
5635 	/* Do nothing if PML buffer is empty */
5636 	if (pml_idx == (PML_ENTITY_NUM - 1))
5637 		return;
5638 
5639 	/* PML index always points to next available PML buffer entity */
5640 	if (pml_idx >= PML_ENTITY_NUM)
5641 		pml_idx = 0;
5642 	else
5643 		pml_idx++;
5644 
5645 	pml_buf = page_address(vmx->pml_pg);
5646 	for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5647 		u64 gpa;
5648 
5649 		gpa = pml_buf[pml_idx];
5650 		WARN_ON(gpa & (PAGE_SIZE - 1));
5651 		kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5652 	}
5653 
5654 	/* reset PML index */
5655 	vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5656 }
5657 
5658 /*
5659  * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
5660  * Called before reporting dirty_bitmap to userspace.
5661  */
kvm_flush_pml_buffers(struct kvm * kvm)5662 static void kvm_flush_pml_buffers(struct kvm *kvm)
5663 {
5664 	int i;
5665 	struct kvm_vcpu *vcpu;
5666 	/*
5667 	 * We only need to kick vcpu out of guest mode here, as PML buffer
5668 	 * is flushed at beginning of all VMEXITs, and it's obvious that only
5669 	 * vcpus running in guest are possible to have unflushed GPAs in PML
5670 	 * buffer.
5671 	 */
5672 	kvm_for_each_vcpu(i, vcpu, kvm)
5673 		kvm_vcpu_kick(vcpu);
5674 }
5675 
vmx_dump_sel(char * name,uint32_t sel)5676 static void vmx_dump_sel(char *name, uint32_t sel)
5677 {
5678 	pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5679 	       name, vmcs_read16(sel),
5680 	       vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5681 	       vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5682 	       vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5683 }
5684 
vmx_dump_dtsel(char * name,uint32_t limit)5685 static void vmx_dump_dtsel(char *name, uint32_t limit)
5686 {
5687 	pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5688 	       name, vmcs_read32(limit),
5689 	       vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5690 }
5691 
dump_vmcs(void)5692 void dump_vmcs(void)
5693 {
5694 	u32 vmentry_ctl, vmexit_ctl;
5695 	u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5696 	unsigned long cr4;
5697 	u64 efer;
5698 	int i, n;
5699 
5700 	if (!dump_invalid_vmcs) {
5701 		pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5702 		return;
5703 	}
5704 
5705 	vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5706 	vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5707 	cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5708 	pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5709 	cr4 = vmcs_readl(GUEST_CR4);
5710 	efer = vmcs_read64(GUEST_IA32_EFER);
5711 	secondary_exec_control = 0;
5712 	if (cpu_has_secondary_exec_ctrls())
5713 		secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5714 
5715 	pr_err("*** Guest State ***\n");
5716 	pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5717 	       vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5718 	       vmcs_readl(CR0_GUEST_HOST_MASK));
5719 	pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5720 	       cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5721 	pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5722 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
5723 	    (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
5724 	{
5725 		pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5726 		       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5727 		pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5728 		       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5729 	}
5730 	pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5731 	       vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5732 	pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5733 	       vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5734 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5735 	       vmcs_readl(GUEST_SYSENTER_ESP),
5736 	       vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5737 	vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5738 	vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5739 	vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5740 	vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5741 	vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5742 	vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5743 	vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5744 	vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5745 	vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5746 	vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5747 	if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
5748 	    (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
5749 		pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
5750 		       efer, vmcs_read64(GUEST_IA32_PAT));
5751 	pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5752 	       vmcs_read64(GUEST_IA32_DEBUGCTL),
5753 	       vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5754 	if (cpu_has_load_perf_global_ctrl() &&
5755 	    vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5756 		pr_err("PerfGlobCtl = 0x%016llx\n",
5757 		       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5758 	if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5759 		pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5760 	pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5761 	       vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5762 	       vmcs_read32(GUEST_ACTIVITY_STATE));
5763 	if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5764 		pr_err("InterruptStatus = %04x\n",
5765 		       vmcs_read16(GUEST_INTR_STATUS));
5766 
5767 	pr_err("*** Host State ***\n");
5768 	pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5769 	       vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5770 	pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5771 	       vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5772 	       vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5773 	       vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5774 	       vmcs_read16(HOST_TR_SELECTOR));
5775 	pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5776 	       vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5777 	       vmcs_readl(HOST_TR_BASE));
5778 	pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5779 	       vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5780 	pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5781 	       vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5782 	       vmcs_readl(HOST_CR4));
5783 	pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5784 	       vmcs_readl(HOST_IA32_SYSENTER_ESP),
5785 	       vmcs_read32(HOST_IA32_SYSENTER_CS),
5786 	       vmcs_readl(HOST_IA32_SYSENTER_EIP));
5787 	if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
5788 		pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
5789 		       vmcs_read64(HOST_IA32_EFER),
5790 		       vmcs_read64(HOST_IA32_PAT));
5791 	if (cpu_has_load_perf_global_ctrl() &&
5792 	    vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5793 		pr_err("PerfGlobCtl = 0x%016llx\n",
5794 		       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5795 
5796 	pr_err("*** Control State ***\n");
5797 	pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5798 	       pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5799 	pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5800 	pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5801 	       vmcs_read32(EXCEPTION_BITMAP),
5802 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5803 	       vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5804 	pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5805 	       vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5806 	       vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5807 	       vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5808 	pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5809 	       vmcs_read32(VM_EXIT_INTR_INFO),
5810 	       vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5811 	       vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5812 	pr_err("        reason=%08x qualification=%016lx\n",
5813 	       vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5814 	pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5815 	       vmcs_read32(IDT_VECTORING_INFO_FIELD),
5816 	       vmcs_read32(IDT_VECTORING_ERROR_CODE));
5817 	pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5818 	if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5819 		pr_err("TSC Multiplier = 0x%016llx\n",
5820 		       vmcs_read64(TSC_MULTIPLIER));
5821 	if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5822 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5823 			u16 status = vmcs_read16(GUEST_INTR_STATUS);
5824 			pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5825 		}
5826 		pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5827 		if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5828 			pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5829 		pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5830 	}
5831 	if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5832 		pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5833 	if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5834 		pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5835 	n = vmcs_read32(CR3_TARGET_COUNT);
5836 	for (i = 0; i + 1 < n; i += 4)
5837 		pr_err("CR3 target%u=%016lx target%u=%016lx\n",
5838 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
5839 		       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
5840 	if (i < n)
5841 		pr_err("CR3 target%u=%016lx\n",
5842 		       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
5843 	if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5844 		pr_err("PLE Gap=%08x Window=%08x\n",
5845 		       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5846 	if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5847 		pr_err("Virtual processor ID = 0x%04x\n",
5848 		       vmcs_read16(VIRTUAL_PROCESSOR_ID));
5849 }
5850 
5851 /*
5852  * The guest has exited.  See if we can fix it or if we need userspace
5853  * assistance.
5854  */
vmx_handle_exit(struct kvm_vcpu * vcpu)5855 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5856 {
5857 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5858 	u32 exit_reason = vmx->exit_reason;
5859 	u32 vectoring_info = vmx->idt_vectoring_info;
5860 
5861 	trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
5862 
5863 	/*
5864 	 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5865 	 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5866 	 * querying dirty_bitmap, we only need to kick all vcpus out of guest
5867 	 * mode as if vcpus is in root mode, the PML buffer must has been
5868 	 * flushed already.
5869 	 */
5870 	if (enable_pml)
5871 		vmx_flush_pml_buffer(vcpu);
5872 
5873 	/* If guest state is invalid, start emulating */
5874 	if (vmx->emulation_required)
5875 		return handle_invalid_guest_state(vcpu);
5876 
5877 	if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
5878 		return nested_vmx_reflect_vmexit(vcpu, exit_reason);
5879 
5880 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5881 		dump_vmcs();
5882 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5883 		vcpu->run->fail_entry.hardware_entry_failure_reason
5884 			= exit_reason;
5885 		return 0;
5886 	}
5887 
5888 	if (unlikely(vmx->fail)) {
5889 		dump_vmcs();
5890 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5891 		vcpu->run->fail_entry.hardware_entry_failure_reason
5892 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5893 		return 0;
5894 	}
5895 
5896 	/*
5897 	 * Note:
5898 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5899 	 * delivery event since it indicates guest is accessing MMIO.
5900 	 * The vm-exit can be triggered again after return to guest that
5901 	 * will cause infinite loop.
5902 	 */
5903 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5904 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5905 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5906 			exit_reason != EXIT_REASON_PML_FULL &&
5907 			exit_reason != EXIT_REASON_TASK_SWITCH)) {
5908 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5909 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5910 		vcpu->run->internal.ndata = 3;
5911 		vcpu->run->internal.data[0] = vectoring_info;
5912 		vcpu->run->internal.data[1] = exit_reason;
5913 		vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5914 		if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
5915 			vcpu->run->internal.ndata++;
5916 			vcpu->run->internal.data[3] =
5917 				vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5918 		}
5919 		return 0;
5920 	}
5921 
5922 	if (unlikely(!enable_vnmi &&
5923 		     vmx->loaded_vmcs->soft_vnmi_blocked)) {
5924 		if (vmx_interrupt_allowed(vcpu)) {
5925 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5926 		} else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5927 			   vcpu->arch.nmi_pending) {
5928 			/*
5929 			 * This CPU don't support us in finding the end of an
5930 			 * NMI-blocked window if the guest runs with IRQs
5931 			 * disabled. So we pull the trigger after 1 s of
5932 			 * futile waiting, but inform the user about this.
5933 			 */
5934 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5935 			       "state on VCPU %d after 1 s timeout\n",
5936 			       __func__, vcpu->vcpu_id);
5937 			vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5938 		}
5939 	}
5940 
5941 	if (exit_reason < kvm_vmx_max_exit_handlers
5942 	    && kvm_vmx_exit_handlers[exit_reason])
5943 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
5944 	else {
5945 		vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
5946 				exit_reason);
5947 		dump_vmcs();
5948 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5949 		vcpu->run->internal.suberror =
5950 			KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
5951 		vcpu->run->internal.ndata = 1;
5952 		vcpu->run->internal.data[0] = exit_reason;
5953 		return 0;
5954 	}
5955 }
5956 
5957 /*
5958  * Software based L1D cache flush which is used when microcode providing
5959  * the cache control MSR is not loaded.
5960  *
5961  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
5962  * flush it is required to read in 64 KiB because the replacement algorithm
5963  * is not exactly LRU. This could be sized at runtime via topology
5964  * information but as all relevant affected CPUs have 32KiB L1D cache size
5965  * there is no point in doing so.
5966  */
vmx_l1d_flush(struct kvm_vcpu * vcpu)5967 static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
5968 {
5969 	int size = PAGE_SIZE << L1D_CACHE_ORDER;
5970 
5971 	/*
5972 	 * This code is only executed when the the flush mode is 'cond' or
5973 	 * 'always'
5974 	 */
5975 	if (static_branch_likely(&vmx_l1d_flush_cond)) {
5976 		bool flush_l1d;
5977 
5978 		/*
5979 		 * Clear the per-vcpu flush bit, it gets set again
5980 		 * either from vcpu_run() or from one of the unsafe
5981 		 * VMEXIT handlers.
5982 		 */
5983 		flush_l1d = vcpu->arch.l1tf_flush_l1d;
5984 		vcpu->arch.l1tf_flush_l1d = false;
5985 
5986 		/*
5987 		 * Clear the per-cpu flush bit, it gets set again from
5988 		 * the interrupt handlers.
5989 		 */
5990 		flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
5991 		kvm_clear_cpu_l1tf_flush_l1d();
5992 
5993 		if (!flush_l1d)
5994 			return;
5995 	}
5996 
5997 	vcpu->stat.l1d_flush++;
5998 
5999 	if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6000 		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6001 		return;
6002 	}
6003 
6004 	asm volatile(
6005 		/* First ensure the pages are in the TLB */
6006 		"xorl	%%eax, %%eax\n"
6007 		".Lpopulate_tlb:\n\t"
6008 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6009 		"addl	$4096, %%eax\n\t"
6010 		"cmpl	%%eax, %[size]\n\t"
6011 		"jne	.Lpopulate_tlb\n\t"
6012 		"xorl	%%eax, %%eax\n\t"
6013 		"cpuid\n\t"
6014 		/* Now fill the cache */
6015 		"xorl	%%eax, %%eax\n"
6016 		".Lfill_cache:\n"
6017 		"movzbl	(%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6018 		"addl	$64, %%eax\n\t"
6019 		"cmpl	%%eax, %[size]\n\t"
6020 		"jne	.Lfill_cache\n\t"
6021 		"lfence\n"
6022 		:: [flush_pages] "r" (vmx_l1d_flush_pages),
6023 		    [size] "r" (size)
6024 		: "eax", "ebx", "ecx", "edx");
6025 }
6026 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6027 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6028 {
6029 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6030 
6031 	if (is_guest_mode(vcpu) &&
6032 		nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6033 		return;
6034 
6035 	if (irr == -1 || tpr < irr) {
6036 		vmcs_write32(TPR_THRESHOLD, 0);
6037 		return;
6038 	}
6039 
6040 	vmcs_write32(TPR_THRESHOLD, irr);
6041 }
6042 
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6043 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6044 {
6045 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6046 	u32 sec_exec_control;
6047 
6048 	if (!lapic_in_kernel(vcpu))
6049 		return;
6050 
6051 	if (!flexpriority_enabled &&
6052 	    !cpu_has_vmx_virtualize_x2apic_mode())
6053 		return;
6054 
6055 	/* Postpone execution until vmcs01 is the current VMCS. */
6056 	if (is_guest_mode(vcpu)) {
6057 		vmx->nested.change_vmcs01_virtual_apic_mode = true;
6058 		return;
6059 	}
6060 
6061 	sec_exec_control = secondary_exec_controls_get(vmx);
6062 	sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6063 			      SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6064 
6065 	switch (kvm_get_apic_mode(vcpu)) {
6066 	case LAPIC_MODE_INVALID:
6067 		WARN_ONCE(true, "Invalid local APIC state");
6068 	case LAPIC_MODE_DISABLED:
6069 		break;
6070 	case LAPIC_MODE_XAPIC:
6071 		if (flexpriority_enabled) {
6072 			sec_exec_control |=
6073 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6074 			vmx_flush_tlb(vcpu, true);
6075 		}
6076 		break;
6077 	case LAPIC_MODE_X2APIC:
6078 		if (cpu_has_vmx_virtualize_x2apic_mode())
6079 			sec_exec_control |=
6080 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6081 		break;
6082 	}
6083 	secondary_exec_controls_set(vmx, sec_exec_control);
6084 
6085 	vmx_update_msr_bitmap(vcpu);
6086 }
6087 
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu,hpa_t hpa)6088 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
6089 {
6090 	if (!is_guest_mode(vcpu)) {
6091 		vmcs_write64(APIC_ACCESS_ADDR, hpa);
6092 		vmx_flush_tlb(vcpu, true);
6093 	}
6094 }
6095 
vmx_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)6096 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6097 {
6098 	u16 status;
6099 	u8 old;
6100 
6101 	if (max_isr == -1)
6102 		max_isr = 0;
6103 
6104 	status = vmcs_read16(GUEST_INTR_STATUS);
6105 	old = status >> 8;
6106 	if (max_isr != old) {
6107 		status &= 0xff;
6108 		status |= max_isr << 8;
6109 		vmcs_write16(GUEST_INTR_STATUS, status);
6110 	}
6111 }
6112 
vmx_set_rvi(int vector)6113 static void vmx_set_rvi(int vector)
6114 {
6115 	u16 status;
6116 	u8 old;
6117 
6118 	if (vector == -1)
6119 		vector = 0;
6120 
6121 	status = vmcs_read16(GUEST_INTR_STATUS);
6122 	old = (u8)status & 0xff;
6123 	if ((u8)vector != old) {
6124 		status &= ~0xff;
6125 		status |= (u8)vector;
6126 		vmcs_write16(GUEST_INTR_STATUS, status);
6127 	}
6128 }
6129 
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6130 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6131 {
6132 	/*
6133 	 * When running L2, updating RVI is only relevant when
6134 	 * vmcs12 virtual-interrupt-delivery enabled.
6135 	 * However, it can be enabled only when L1 also
6136 	 * intercepts external-interrupts and in that case
6137 	 * we should not update vmcs02 RVI but instead intercept
6138 	 * interrupt. Therefore, do nothing when running L2.
6139 	 */
6140 	if (!is_guest_mode(vcpu))
6141 		vmx_set_rvi(max_irr);
6142 }
6143 
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6144 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6145 {
6146 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6147 	int max_irr;
6148 	bool max_irr_updated;
6149 
6150 	WARN_ON(!vcpu->arch.apicv_active);
6151 	if (pi_test_on(&vmx->pi_desc)) {
6152 		pi_clear_on(&vmx->pi_desc);
6153 		/*
6154 		 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6155 		 * But on x86 this is just a compiler barrier anyway.
6156 		 */
6157 		smp_mb__after_atomic();
6158 		max_irr_updated =
6159 			kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6160 
6161 		/*
6162 		 * If we are running L2 and L1 has a new pending interrupt
6163 		 * which can be injected, we should re-evaluate
6164 		 * what should be done with this new L1 interrupt.
6165 		 * If L1 intercepts external-interrupts, we should
6166 		 * exit from L2 to L1. Otherwise, interrupt should be
6167 		 * delivered directly to L2.
6168 		 */
6169 		if (is_guest_mode(vcpu) && max_irr_updated) {
6170 			if (nested_exit_on_intr(vcpu))
6171 				kvm_vcpu_exiting_guest_mode(vcpu);
6172 			else
6173 				kvm_make_request(KVM_REQ_EVENT, vcpu);
6174 		}
6175 	} else {
6176 		max_irr = kvm_lapic_find_highest_irr(vcpu);
6177 	}
6178 	vmx_hwapic_irr_update(vcpu, max_irr);
6179 	return max_irr;
6180 }
6181 
vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)6182 static bool vmx_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
6183 {
6184 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6185 
6186 	return pi_test_on(pi_desc) ||
6187 		(pi_test_sn(pi_desc) && !pi_is_pir_empty(pi_desc));
6188 }
6189 
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6190 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6191 {
6192 	if (!kvm_vcpu_apicv_active(vcpu))
6193 		return;
6194 
6195 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6196 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6197 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6198 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6199 }
6200 
vmx_apicv_post_state_restore(struct kvm_vcpu * vcpu)6201 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6202 {
6203 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6204 
6205 	pi_clear_on(&vmx->pi_desc);
6206 	memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6207 }
6208 
handle_exception_nmi_irqoff(struct vcpu_vmx * vmx)6209 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6210 {
6211 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6212 
6213 	/* if exit due to PF check for async PF */
6214 	if (is_page_fault(vmx->exit_intr_info))
6215 		vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
6216 
6217 	/* Handle machine checks before interrupts are enabled */
6218 	if (is_machine_check(vmx->exit_intr_info))
6219 		kvm_machine_check();
6220 
6221 	/* We need to handle NMIs before interrupts are enabled */
6222 	if (is_nmi(vmx->exit_intr_info)) {
6223 		kvm_before_interrupt(&vmx->vcpu);
6224 		asm("int $2");
6225 		kvm_after_interrupt(&vmx->vcpu);
6226 	}
6227 }
6228 
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6229 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6230 {
6231 	unsigned int vector;
6232 	unsigned long entry;
6233 #ifdef CONFIG_X86_64
6234 	unsigned long tmp;
6235 #endif
6236 	gate_desc *desc;
6237 	u32 intr_info;
6238 
6239 	intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6240 	if (WARN_ONCE(!is_external_intr(intr_info),
6241 	    "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6242 		return;
6243 
6244 	vector = intr_info & INTR_INFO_VECTOR_MASK;
6245 	desc = (gate_desc *)host_idt_base + vector;
6246 	entry = gate_offset(desc);
6247 
6248 	kvm_before_interrupt(vcpu);
6249 
6250 	asm volatile(
6251 #ifdef CONFIG_X86_64
6252 		"mov %%" _ASM_SP ", %[sp]\n\t"
6253 		"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6254 		"push $%c[ss]\n\t"
6255 		"push %[sp]\n\t"
6256 #endif
6257 		"pushf\n\t"
6258 		__ASM_SIZE(push) " $%c[cs]\n\t"
6259 		CALL_NOSPEC
6260 		:
6261 #ifdef CONFIG_X86_64
6262 		[sp]"=&r"(tmp),
6263 #endif
6264 		ASM_CALL_CONSTRAINT
6265 		:
6266 		THUNK_TARGET(entry),
6267 		[ss]"i"(__KERNEL_DS),
6268 		[cs]"i"(__KERNEL_CS)
6269 	);
6270 
6271 	kvm_after_interrupt(vcpu);
6272 }
6273 STACK_FRAME_NON_STANDARD(handle_external_interrupt_irqoff);
6274 
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6275 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6276 {
6277 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6278 
6279 	if (vmx->exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
6280 		handle_external_interrupt_irqoff(vcpu);
6281 	else if (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)
6282 		handle_exception_nmi_irqoff(vmx);
6283 }
6284 
vmx_has_emulated_msr(int index)6285 static bool vmx_has_emulated_msr(int index)
6286 {
6287 	switch (index) {
6288 	case MSR_IA32_SMBASE:
6289 		/*
6290 		 * We cannot do SMM unless we can run the guest in big
6291 		 * real mode.
6292 		 */
6293 		return enable_unrestricted_guest || emulate_invalid_guest_state;
6294 	case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6295 		return nested;
6296 	case MSR_AMD64_VIRT_SPEC_CTRL:
6297 		/* This is AMD only.  */
6298 		return false;
6299 	default:
6300 		return true;
6301 	}
6302 }
6303 
vmx_pt_supported(void)6304 static bool vmx_pt_supported(void)
6305 {
6306 	return pt_mode == PT_MODE_HOST_GUEST;
6307 }
6308 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)6309 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6310 {
6311 	u32 exit_intr_info;
6312 	bool unblock_nmi;
6313 	u8 vector;
6314 	bool idtv_info_valid;
6315 
6316 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6317 
6318 	if (enable_vnmi) {
6319 		if (vmx->loaded_vmcs->nmi_known_unmasked)
6320 			return;
6321 		/*
6322 		 * Can't use vmx->exit_intr_info since we're not sure what
6323 		 * the exit reason is.
6324 		 */
6325 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6326 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6327 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6328 		/*
6329 		 * SDM 3: 27.7.1.2 (September 2008)
6330 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6331 		 * a guest IRET fault.
6332 		 * SDM 3: 23.2.2 (September 2008)
6333 		 * Bit 12 is undefined in any of the following cases:
6334 		 *  If the VM exit sets the valid bit in the IDT-vectoring
6335 		 *   information field.
6336 		 *  If the VM exit is due to a double fault.
6337 		 */
6338 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6339 		    vector != DF_VECTOR && !idtv_info_valid)
6340 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6341 				      GUEST_INTR_STATE_NMI);
6342 		else
6343 			vmx->loaded_vmcs->nmi_known_unmasked =
6344 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6345 				  & GUEST_INTR_STATE_NMI);
6346 	} else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6347 		vmx->loaded_vmcs->vnmi_blocked_time +=
6348 			ktime_to_ns(ktime_sub(ktime_get(),
6349 					      vmx->loaded_vmcs->entry_time));
6350 }
6351 
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)6352 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6353 				      u32 idt_vectoring_info,
6354 				      int instr_len_field,
6355 				      int error_code_field)
6356 {
6357 	u8 vector;
6358 	int type;
6359 	bool idtv_info_valid;
6360 
6361 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6362 
6363 	vcpu->arch.nmi_injected = false;
6364 	kvm_clear_exception_queue(vcpu);
6365 	kvm_clear_interrupt_queue(vcpu);
6366 
6367 	if (!idtv_info_valid)
6368 		return;
6369 
6370 	kvm_make_request(KVM_REQ_EVENT, vcpu);
6371 
6372 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6373 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6374 
6375 	switch (type) {
6376 	case INTR_TYPE_NMI_INTR:
6377 		vcpu->arch.nmi_injected = true;
6378 		/*
6379 		 * SDM 3: 27.7.1.2 (September 2008)
6380 		 * Clear bit "block by NMI" before VM entry if a NMI
6381 		 * delivery faulted.
6382 		 */
6383 		vmx_set_nmi_mask(vcpu, false);
6384 		break;
6385 	case INTR_TYPE_SOFT_EXCEPTION:
6386 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6387 		/* fall through */
6388 	case INTR_TYPE_HARD_EXCEPTION:
6389 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6390 			u32 err = vmcs_read32(error_code_field);
6391 			kvm_requeue_exception_e(vcpu, vector, err);
6392 		} else
6393 			kvm_requeue_exception(vcpu, vector);
6394 		break;
6395 	case INTR_TYPE_SOFT_INTR:
6396 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6397 		/* fall through */
6398 	case INTR_TYPE_EXT_INTR:
6399 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6400 		break;
6401 	default:
6402 		break;
6403 	}
6404 }
6405 
vmx_complete_interrupts(struct vcpu_vmx * vmx)6406 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6407 {
6408 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6409 				  VM_EXIT_INSTRUCTION_LEN,
6410 				  IDT_VECTORING_ERROR_CODE);
6411 }
6412 
vmx_cancel_injection(struct kvm_vcpu * vcpu)6413 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6414 {
6415 	__vmx_complete_interrupts(vcpu,
6416 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6417 				  VM_ENTRY_INSTRUCTION_LEN,
6418 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6419 
6420 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6421 }
6422 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6423 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6424 {
6425 	int i, nr_msrs;
6426 	struct perf_guest_switch_msr *msrs;
6427 
6428 	msrs = perf_guest_get_msrs(&nr_msrs);
6429 
6430 	if (!msrs)
6431 		return;
6432 
6433 	for (i = 0; i < nr_msrs; i++)
6434 		if (msrs[i].host == msrs[i].guest)
6435 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6436 		else
6437 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6438 					msrs[i].host, false);
6439 }
6440 
atomic_switch_umwait_control_msr(struct vcpu_vmx * vmx)6441 static void atomic_switch_umwait_control_msr(struct vcpu_vmx *vmx)
6442 {
6443 	u32 host_umwait_control;
6444 
6445 	if (!vmx_has_waitpkg(vmx))
6446 		return;
6447 
6448 	host_umwait_control = get_umwait_control_msr();
6449 
6450 	if (vmx->msr_ia32_umwait_control != host_umwait_control)
6451 		add_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL,
6452 			vmx->msr_ia32_umwait_control,
6453 			host_umwait_control, false);
6454 	else
6455 		clear_atomic_switch_msr(vmx, MSR_IA32_UMWAIT_CONTROL);
6456 }
6457 
vmx_update_hv_timer(struct kvm_vcpu * vcpu)6458 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6459 {
6460 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6461 	u64 tscl;
6462 	u32 delta_tsc;
6463 
6464 	if (vmx->req_immediate_exit) {
6465 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6466 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6467 	} else if (vmx->hv_deadline_tsc != -1) {
6468 		tscl = rdtsc();
6469 		if (vmx->hv_deadline_tsc > tscl)
6470 			/* set_hv_timer ensures the delta fits in 32-bits */
6471 			delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6472 				cpu_preemption_timer_multi);
6473 		else
6474 			delta_tsc = 0;
6475 
6476 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6477 		vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6478 	} else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6479 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6480 		vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6481 	}
6482 }
6483 
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)6484 void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6485 {
6486 	if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6487 		vmx->loaded_vmcs->host_state.rsp = host_rsp;
6488 		vmcs_writel(HOST_RSP, host_rsp);
6489 	}
6490 }
6491 
6492 bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs, bool launched);
6493 
vmx_vcpu_run(struct kvm_vcpu * vcpu)6494 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
6495 {
6496 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6497 	unsigned long cr3, cr4;
6498 
6499 	/* Record the guest's net vcpu time for enforced NMI injections. */
6500 	if (unlikely(!enable_vnmi &&
6501 		     vmx->loaded_vmcs->soft_vnmi_blocked))
6502 		vmx->loaded_vmcs->entry_time = ktime_get();
6503 
6504 	/* Don't enter VMX if guest state is invalid, let the exit handler
6505 	   start emulation until we arrive back to a valid state */
6506 	if (vmx->emulation_required)
6507 		return;
6508 
6509 	if (vmx->ple_window_dirty) {
6510 		vmx->ple_window_dirty = false;
6511 		vmcs_write32(PLE_WINDOW, vmx->ple_window);
6512 	}
6513 
6514 	if (vmx->nested.need_vmcs12_to_shadow_sync)
6515 		nested_sync_vmcs12_to_shadow(vcpu);
6516 
6517 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6518 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6519 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6520 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6521 
6522 	cr3 = __get_current_cr3_fast();
6523 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6524 		vmcs_writel(HOST_CR3, cr3);
6525 		vmx->loaded_vmcs->host_state.cr3 = cr3;
6526 	}
6527 
6528 	cr4 = cr4_read_shadow();
6529 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6530 		vmcs_writel(HOST_CR4, cr4);
6531 		vmx->loaded_vmcs->host_state.cr4 = cr4;
6532 	}
6533 
6534 	/* When single-stepping over STI and MOV SS, we must clear the
6535 	 * corresponding interruptibility bits in the guest state. Otherwise
6536 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6537 	 * exceptions being set, but that's not correct for the guest debugging
6538 	 * case. */
6539 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6540 		vmx_set_interrupt_shadow(vcpu, 0);
6541 
6542 	kvm_load_guest_xcr0(vcpu);
6543 
6544 	if (static_cpu_has(X86_FEATURE_PKU) &&
6545 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
6546 	    vcpu->arch.pkru != vmx->host_pkru)
6547 		__write_pkru(vcpu->arch.pkru);
6548 
6549 	pt_guest_enter(vmx);
6550 
6551 	atomic_switch_perf_msrs(vmx);
6552 	atomic_switch_umwait_control_msr(vmx);
6553 
6554 	if (enable_preemption_timer)
6555 		vmx_update_hv_timer(vcpu);
6556 
6557 	if (lapic_in_kernel(vcpu) &&
6558 		vcpu->arch.apic->lapic_timer.timer_advance_ns)
6559 		kvm_wait_lapic_expire(vcpu);
6560 
6561 	/*
6562 	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6563 	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
6564 	 * is no need to worry about the conditional branch over the wrmsr
6565 	 * being speculatively taken.
6566 	 */
6567 	x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6568 
6569 	/* L1D Flush includes CPU buffer clear to mitigate MDS */
6570 	if (static_branch_unlikely(&vmx_l1d_should_flush))
6571 		vmx_l1d_flush(vcpu);
6572 	else if (static_branch_unlikely(&mds_user_clear))
6573 		mds_clear_cpu_buffers();
6574 
6575 	if (vcpu->arch.cr2 != read_cr2())
6576 		write_cr2(vcpu->arch.cr2);
6577 
6578 	vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6579 				   vmx->loaded_vmcs->launched);
6580 
6581 	vcpu->arch.cr2 = read_cr2();
6582 
6583 	/*
6584 	 * We do not use IBRS in the kernel. If this vCPU has used the
6585 	 * SPEC_CTRL MSR it may have left it on; save the value and
6586 	 * turn it off. This is much more efficient than blindly adding
6587 	 * it to the atomic save/restore list. Especially as the former
6588 	 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6589 	 *
6590 	 * For non-nested case:
6591 	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
6592 	 * save it.
6593 	 *
6594 	 * For nested case:
6595 	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
6596 	 * save it.
6597 	 */
6598 	if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
6599 		vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6600 
6601 	x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6602 
6603 	/* All fields are clean at this point */
6604 	if (static_branch_unlikely(&enable_evmcs))
6605 		current_evmcs->hv_clean_fields |=
6606 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6607 
6608 	if (static_branch_unlikely(&enable_evmcs))
6609 		current_evmcs->hv_vp_id = vcpu->arch.hyperv.vp_index;
6610 
6611 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6612 	if (vmx->host_debugctlmsr)
6613 		update_debugctlmsr(vmx->host_debugctlmsr);
6614 
6615 #ifndef CONFIG_X86_64
6616 	/*
6617 	 * The sysexit path does not restore ds/es, so we must set them to
6618 	 * a reasonable value ourselves.
6619 	 *
6620 	 * We can't defer this to vmx_prepare_switch_to_host() since that
6621 	 * function may be executed in interrupt context, which saves and
6622 	 * restore segments around it, nullifying its effect.
6623 	 */
6624 	loadsegment(ds, __USER_DS);
6625 	loadsegment(es, __USER_DS);
6626 #endif
6627 
6628 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6629 				  | (1 << VCPU_EXREG_RFLAGS)
6630 				  | (1 << VCPU_EXREG_PDPTR)
6631 				  | (1 << VCPU_EXREG_SEGMENTS)
6632 				  | (1 << VCPU_EXREG_CR3));
6633 	vcpu->arch.regs_dirty = 0;
6634 
6635 	pt_guest_exit(vmx);
6636 
6637 	/*
6638 	 * eager fpu is enabled if PKEY is supported and CR4 is switched
6639 	 * back on host, so it is safe to read guest PKRU from current
6640 	 * XSAVE.
6641 	 */
6642 	if (static_cpu_has(X86_FEATURE_PKU) &&
6643 	    kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
6644 		vcpu->arch.pkru = rdpkru();
6645 		if (vcpu->arch.pkru != vmx->host_pkru)
6646 			__write_pkru(vmx->host_pkru);
6647 	}
6648 
6649 	kvm_put_guest_xcr0(vcpu);
6650 
6651 	vmx->nested.nested_run_pending = 0;
6652 	vmx->idt_vectoring_info = 0;
6653 
6654 	vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
6655 	if ((u16)vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
6656 		kvm_machine_check();
6657 
6658 	if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6659 		return;
6660 
6661 	vmx->loaded_vmcs->launched = 1;
6662 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6663 
6664 	vmx_recover_nmi_blocking(vmx);
6665 	vmx_complete_interrupts(vmx);
6666 }
6667 
vmx_vm_alloc(void)6668 static struct kvm *vmx_vm_alloc(void)
6669 {
6670 	struct kvm_vmx *kvm_vmx = __vmalloc(sizeof(struct kvm_vmx),
6671 					    GFP_KERNEL_ACCOUNT | __GFP_ZERO,
6672 					    PAGE_KERNEL);
6673 	return &kvm_vmx->kvm;
6674 }
6675 
vmx_vm_free(struct kvm * kvm)6676 static void vmx_vm_free(struct kvm *kvm)
6677 {
6678 	kfree(kvm->arch.hyperv.hv_pa_pg);
6679 	vfree(to_kvm_vmx(kvm));
6680 }
6681 
vmx_free_vcpu(struct kvm_vcpu * vcpu)6682 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6683 {
6684 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6685 
6686 	if (enable_pml)
6687 		vmx_destroy_pml_buffer(vmx);
6688 	free_vpid(vmx->vpid);
6689 	nested_vmx_free_vcpu(vcpu);
6690 	free_loaded_vmcs(vmx->loaded_vmcs);
6691 	kfree(vmx->guest_msrs);
6692 	kvm_vcpu_uninit(vcpu);
6693 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6694 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6695 	kmem_cache_free(kvm_vcpu_cache, vmx);
6696 }
6697 
vmx_create_vcpu(struct kvm * kvm,unsigned int id)6698 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6699 {
6700 	int err;
6701 	struct vcpu_vmx *vmx;
6702 	unsigned long *msr_bitmap;
6703 	int cpu;
6704 
6705 	BUILD_BUG_ON_MSG(offsetof(struct vcpu_vmx, vcpu) != 0,
6706 		"struct kvm_vcpu must be at offset 0 for arch usercopy region");
6707 
6708 	vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
6709 	if (!vmx)
6710 		return ERR_PTR(-ENOMEM);
6711 
6712 	vmx->vcpu.arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
6713 			GFP_KERNEL_ACCOUNT);
6714 	if (!vmx->vcpu.arch.user_fpu) {
6715 		printk(KERN_ERR "kvm: failed to allocate kvm userspace's fpu\n");
6716 		err = -ENOMEM;
6717 		goto free_partial_vcpu;
6718 	}
6719 
6720 	vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
6721 			GFP_KERNEL_ACCOUNT);
6722 	if (!vmx->vcpu.arch.guest_fpu) {
6723 		printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
6724 		err = -ENOMEM;
6725 		goto free_user_fpu;
6726 	}
6727 
6728 	vmx->vpid = allocate_vpid();
6729 
6730 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6731 	if (err)
6732 		goto free_vcpu;
6733 
6734 	err = -ENOMEM;
6735 
6736 	/*
6737 	 * If PML is turned on, failure on enabling PML just results in failure
6738 	 * of creating the vcpu, therefore we can simplify PML logic (by
6739 	 * avoiding dealing with cases, such as enabling PML partially on vcpus
6740 	 * for the guest, etc.
6741 	 */
6742 	if (enable_pml) {
6743 		vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6744 		if (!vmx->pml_pg)
6745 			goto uninit_vcpu;
6746 	}
6747 
6748 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
6749 	BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
6750 		     > PAGE_SIZE);
6751 
6752 	if (!vmx->guest_msrs)
6753 		goto free_pml;
6754 
6755 	err = alloc_loaded_vmcs(&vmx->vmcs01);
6756 	if (err < 0)
6757 		goto free_msrs;
6758 
6759 	msr_bitmap = vmx->vmcs01.msr_bitmap;
6760 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
6761 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
6762 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
6763 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6764 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6765 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6766 	vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6767 	if (kvm_cstate_in_guest(kvm)) {
6768 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C1_RES, MSR_TYPE_R);
6769 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6770 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6771 		vmx_disable_intercept_for_msr(msr_bitmap, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6772 	}
6773 	vmx->msr_bitmap_mode = 0;
6774 
6775 	vmx->loaded_vmcs = &vmx->vmcs01;
6776 	cpu = get_cpu();
6777 	vmx_vcpu_load(&vmx->vcpu, cpu);
6778 	vmx->vcpu.cpu = cpu;
6779 	vmx_vcpu_setup(vmx);
6780 	vmx_vcpu_put(&vmx->vcpu);
6781 	put_cpu();
6782 	if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
6783 		err = alloc_apic_access_page(kvm);
6784 		if (err)
6785 			goto free_vmcs;
6786 	}
6787 
6788 	if (enable_ept && !enable_unrestricted_guest) {
6789 		err = init_rmode_identity_map(kvm);
6790 		if (err)
6791 			goto free_vmcs;
6792 	}
6793 
6794 	if (nested)
6795 		nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
6796 					   vmx_capability.ept,
6797 					   kvm_vcpu_apicv_active(&vmx->vcpu));
6798 	else
6799 		memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
6800 
6801 	vmx->nested.posted_intr_nv = -1;
6802 	vmx->nested.current_vmptr = -1ull;
6803 
6804 	vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
6805 
6806 	/*
6807 	 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
6808 	 * or POSTED_INTR_WAKEUP_VECTOR.
6809 	 */
6810 	vmx->pi_desc.nv = POSTED_INTR_VECTOR;
6811 	vmx->pi_desc.sn = 1;
6812 
6813 	vmx->ept_pointer = INVALID_PAGE;
6814 
6815 	return &vmx->vcpu;
6816 
6817 free_vmcs:
6818 	free_loaded_vmcs(vmx->loaded_vmcs);
6819 free_msrs:
6820 	kfree(vmx->guest_msrs);
6821 free_pml:
6822 	vmx_destroy_pml_buffer(vmx);
6823 uninit_vcpu:
6824 	kvm_vcpu_uninit(&vmx->vcpu);
6825 free_vcpu:
6826 	free_vpid(vmx->vpid);
6827 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
6828 free_user_fpu:
6829 	kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.user_fpu);
6830 free_partial_vcpu:
6831 	kmem_cache_free(kvm_vcpu_cache, vmx);
6832 	return ERR_PTR(err);
6833 }
6834 
6835 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6836 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6837 
vmx_vm_init(struct kvm * kvm)6838 static int vmx_vm_init(struct kvm *kvm)
6839 {
6840 	spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
6841 
6842 	if (!ple_gap)
6843 		kvm->arch.pause_in_guest = true;
6844 
6845 	if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6846 		switch (l1tf_mitigation) {
6847 		case L1TF_MITIGATION_OFF:
6848 		case L1TF_MITIGATION_FLUSH_NOWARN:
6849 			/* 'I explicitly don't care' is set */
6850 			break;
6851 		case L1TF_MITIGATION_FLUSH:
6852 		case L1TF_MITIGATION_FLUSH_NOSMT:
6853 		case L1TF_MITIGATION_FULL:
6854 			/*
6855 			 * Warn upon starting the first VM in a potentially
6856 			 * insecure environment.
6857 			 */
6858 			if (sched_smt_active())
6859 				pr_warn_once(L1TF_MSG_SMT);
6860 			if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6861 				pr_warn_once(L1TF_MSG_L1D);
6862 			break;
6863 		case L1TF_MITIGATION_FULL_FORCE:
6864 			/* Flush is enforced */
6865 			break;
6866 		}
6867 	}
6868 	return 0;
6869 }
6870 
vmx_check_processor_compat(void)6871 static int __init vmx_check_processor_compat(void)
6872 {
6873 	struct vmcs_config vmcs_conf;
6874 	struct vmx_capability vmx_cap;
6875 
6876 	if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6877 		return -EIO;
6878 	if (nested)
6879 		nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
6880 					   enable_apicv);
6881 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6882 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6883 				smp_processor_id());
6884 		return -EIO;
6885 	}
6886 	return 0;
6887 }
6888 
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)6889 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6890 {
6891 	u8 cache;
6892 	u64 ipat = 0;
6893 
6894 	/* For VT-d and EPT combination
6895 	 * 1. MMIO: always map as UC
6896 	 * 2. EPT with VT-d:
6897 	 *   a. VT-d without snooping control feature: can't guarantee the
6898 	 *	result, try to trust guest.
6899 	 *   b. VT-d with snooping control feature: snooping control feature of
6900 	 *	VT-d engine can guarantee the cache correctness. Just set it
6901 	 *	to WB to keep consistent with host. So the same as item 3.
6902 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6903 	 *    consistent with host MTRR
6904 	 */
6905 	if (is_mmio) {
6906 		cache = MTRR_TYPE_UNCACHABLE;
6907 		goto exit;
6908 	}
6909 
6910 	if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6911 		ipat = VMX_EPT_IPAT_BIT;
6912 		cache = MTRR_TYPE_WRBACK;
6913 		goto exit;
6914 	}
6915 
6916 	if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
6917 		ipat = VMX_EPT_IPAT_BIT;
6918 		if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
6919 			cache = MTRR_TYPE_WRBACK;
6920 		else
6921 			cache = MTRR_TYPE_UNCACHABLE;
6922 		goto exit;
6923 	}
6924 
6925 	cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
6926 
6927 exit:
6928 	return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
6929 }
6930 
vmx_get_lpage_level(void)6931 static int vmx_get_lpage_level(void)
6932 {
6933 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
6934 		return PT_DIRECTORY_LEVEL;
6935 	else
6936 		/* For shadow and EPT supported 1GB page */
6937 		return PT_PDPE_LEVEL;
6938 }
6939 
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx)6940 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx)
6941 {
6942 	/*
6943 	 * These bits in the secondary execution controls field
6944 	 * are dynamic, the others are mostly based on the hypervisor
6945 	 * architecture and the guest's CPUID.  Do not touch the
6946 	 * dynamic bits.
6947 	 */
6948 	u32 mask =
6949 		SECONDARY_EXEC_SHADOW_VMCS |
6950 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6951 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6952 		SECONDARY_EXEC_DESC;
6953 
6954 	u32 new_ctl = vmx->secondary_exec_control;
6955 	u32 cur_ctl = secondary_exec_controls_get(vmx);
6956 
6957 	secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
6958 }
6959 
6960 /*
6961  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
6962  * (indicating "allowed-1") if they are supported in the guest's CPUID.
6963  */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)6964 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
6965 {
6966 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6967 	struct kvm_cpuid_entry2 *entry;
6968 
6969 	vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
6970 	vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
6971 
6972 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {		\
6973 	if (entry && (entry->_reg & (_cpuid_mask)))			\
6974 		vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);	\
6975 } while (0)
6976 
6977 	entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
6978 	cr4_fixed1_update(X86_CR4_VME,        edx, bit(X86_FEATURE_VME));
6979 	cr4_fixed1_update(X86_CR4_PVI,        edx, bit(X86_FEATURE_VME));
6980 	cr4_fixed1_update(X86_CR4_TSD,        edx, bit(X86_FEATURE_TSC));
6981 	cr4_fixed1_update(X86_CR4_DE,         edx, bit(X86_FEATURE_DE));
6982 	cr4_fixed1_update(X86_CR4_PSE,        edx, bit(X86_FEATURE_PSE));
6983 	cr4_fixed1_update(X86_CR4_PAE,        edx, bit(X86_FEATURE_PAE));
6984 	cr4_fixed1_update(X86_CR4_MCE,        edx, bit(X86_FEATURE_MCE));
6985 	cr4_fixed1_update(X86_CR4_PGE,        edx, bit(X86_FEATURE_PGE));
6986 	cr4_fixed1_update(X86_CR4_OSFXSR,     edx, bit(X86_FEATURE_FXSR));
6987 	cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
6988 	cr4_fixed1_update(X86_CR4_VMXE,       ecx, bit(X86_FEATURE_VMX));
6989 	cr4_fixed1_update(X86_CR4_SMXE,       ecx, bit(X86_FEATURE_SMX));
6990 	cr4_fixed1_update(X86_CR4_PCIDE,      ecx, bit(X86_FEATURE_PCID));
6991 	cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, bit(X86_FEATURE_XSAVE));
6992 
6993 	entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
6994 	cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, bit(X86_FEATURE_FSGSBASE));
6995 	cr4_fixed1_update(X86_CR4_SMEP,       ebx, bit(X86_FEATURE_SMEP));
6996 	cr4_fixed1_update(X86_CR4_SMAP,       ebx, bit(X86_FEATURE_SMAP));
6997 	cr4_fixed1_update(X86_CR4_PKE,        ecx, bit(X86_FEATURE_PKU));
6998 	cr4_fixed1_update(X86_CR4_UMIP,       ecx, bit(X86_FEATURE_UMIP));
6999 
7000 #undef cr4_fixed1_update
7001 }
7002 
nested_vmx_entry_exit_ctls_update(struct kvm_vcpu * vcpu)7003 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7004 {
7005 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7006 
7007 	if (kvm_mpx_supported()) {
7008 		bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7009 
7010 		if (mpx_enabled) {
7011 			vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7012 			vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7013 		} else {
7014 			vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7015 			vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7016 		}
7017 	}
7018 }
7019 
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7020 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7021 {
7022 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7023 	struct kvm_cpuid_entry2 *best = NULL;
7024 	int i;
7025 
7026 	for (i = 0; i < PT_CPUID_LEAVES; i++) {
7027 		best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7028 		if (!best)
7029 			return;
7030 		vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7031 		vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7032 		vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7033 		vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7034 	}
7035 
7036 	/* Get the number of configurable Address Ranges for filtering */
7037 	vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
7038 						PT_CAP_num_address_ranges);
7039 
7040 	/* Initialize and clear the no dependency bits */
7041 	vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7042 			RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
7043 
7044 	/*
7045 	 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7046 	 * will inject an #GP
7047 	 */
7048 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7049 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7050 
7051 	/*
7052 	 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7053 	 * PSBFreq can be set
7054 	 */
7055 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7056 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7057 				RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7058 
7059 	/*
7060 	 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
7061 	 * MTCFreq can be set
7062 	 */
7063 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7064 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7065 				RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
7066 
7067 	/* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7068 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7069 		vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7070 							RTIT_CTL_PTW_EN);
7071 
7072 	/* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7073 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7074 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7075 
7076 	/* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7077 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7078 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7079 
7080 	/* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
7081 	if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7082 		vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7083 
7084 	/* unmask address range configure area */
7085 	for (i = 0; i < vmx->pt_desc.addr_range; i++)
7086 		vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7087 }
7088 
vmx_cpuid_update(struct kvm_vcpu * vcpu)7089 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7090 {
7091 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7092 
7093 	if (cpu_has_secondary_exec_ctrls()) {
7094 		vmx_compute_secondary_exec_control(vmx);
7095 		vmcs_set_secondary_exec_control(vmx);
7096 	}
7097 
7098 	if (nested_vmx_allowed(vcpu))
7099 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7100 			FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7101 	else
7102 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7103 			~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
7104 
7105 	if (nested_vmx_allowed(vcpu)) {
7106 		nested_vmx_cr_fixed1_bits_update(vcpu);
7107 		nested_vmx_entry_exit_ctls_update(vcpu);
7108 	}
7109 
7110 	if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7111 			guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7112 		update_intel_pt_cfg(vcpu);
7113 }
7114 
vmx_set_supported_cpuid(u32 func,struct kvm_cpuid_entry2 * entry)7115 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7116 {
7117 	if (func == 1 && nested)
7118 		entry->ecx |= bit(X86_FEATURE_VMX);
7119 }
7120 
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7121 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7122 {
7123 	to_vmx(vcpu)->req_immediate_exit = true;
7124 }
7125 
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage)7126 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7127 			       struct x86_instruction_info *info,
7128 			       enum x86_intercept_stage stage)
7129 {
7130 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7131 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7132 
7133 	/*
7134 	 * RDPID causes #UD if disabled through secondary execution controls.
7135 	 * Because it is marked as EmulateOnUD, we need to intercept it here.
7136 	 */
7137 	if (info->intercept == x86_intercept_rdtscp &&
7138 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
7139 		ctxt->exception.vector = UD_VECTOR;
7140 		ctxt->exception.error_code_valid = false;
7141 		return X86EMUL_PROPAGATE_FAULT;
7142 	}
7143 
7144 	/* TODO: check more intercepts... */
7145 	return X86EMUL_CONTINUE;
7146 }
7147 
7148 #ifdef CONFIG_X86_64
7149 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)7150 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7151 				  u64 divisor, u64 *result)
7152 {
7153 	u64 low = a << shift, high = a >> (64 - shift);
7154 
7155 	/* To avoid the overflow on divq */
7156 	if (high >= divisor)
7157 		return 1;
7158 
7159 	/* Low hold the result, high hold rem which is discarded */
7160 	asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7161 	    "rm" (divisor), "0" (low), "1" (high));
7162 	*result = low;
7163 
7164 	return 0;
7165 }
7166 
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)7167 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7168 			    bool *expired)
7169 {
7170 	struct vcpu_vmx *vmx;
7171 	u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7172 	struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7173 
7174 	if (kvm_mwait_in_guest(vcpu->kvm) ||
7175 		kvm_can_post_timer_interrupt(vcpu))
7176 		return -EOPNOTSUPP;
7177 
7178 	vmx = to_vmx(vcpu);
7179 	tscl = rdtsc();
7180 	guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7181 	delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7182 	lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7183 						    ktimer->timer_advance_ns);
7184 
7185 	if (delta_tsc > lapic_timer_advance_cycles)
7186 		delta_tsc -= lapic_timer_advance_cycles;
7187 	else
7188 		delta_tsc = 0;
7189 
7190 	/* Convert to host delta tsc if tsc scaling is enabled */
7191 	if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7192 	    delta_tsc && u64_shl_div_u64(delta_tsc,
7193 				kvm_tsc_scaling_ratio_frac_bits,
7194 				vcpu->arch.tsc_scaling_ratio, &delta_tsc))
7195 		return -ERANGE;
7196 
7197 	/*
7198 	 * If the delta tsc can't fit in the 32 bit after the multi shift,
7199 	 * we can't use the preemption timer.
7200 	 * It's possible that it fits on later vmentries, but checking
7201 	 * on every vmentry is costly so we just use an hrtimer.
7202 	 */
7203 	if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7204 		return -ERANGE;
7205 
7206 	vmx->hv_deadline_tsc = tscl + delta_tsc;
7207 	*expired = !delta_tsc;
7208 	return 0;
7209 }
7210 
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)7211 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7212 {
7213 	to_vmx(vcpu)->hv_deadline_tsc = -1;
7214 }
7215 #endif
7216 
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)7217 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7218 {
7219 	if (!kvm_pause_in_guest(vcpu->kvm))
7220 		shrink_ple_window(vcpu);
7221 }
7222 
vmx_slot_enable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7223 static void vmx_slot_enable_log_dirty(struct kvm *kvm,
7224 				     struct kvm_memory_slot *slot)
7225 {
7226 	kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
7227 	kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
7228 }
7229 
vmx_slot_disable_log_dirty(struct kvm * kvm,struct kvm_memory_slot * slot)7230 static void vmx_slot_disable_log_dirty(struct kvm *kvm,
7231 				       struct kvm_memory_slot *slot)
7232 {
7233 	kvm_mmu_slot_set_dirty(kvm, slot);
7234 }
7235 
vmx_flush_log_dirty(struct kvm * kvm)7236 static void vmx_flush_log_dirty(struct kvm *kvm)
7237 {
7238 	kvm_flush_pml_buffers(kvm);
7239 }
7240 
vmx_write_pml_buffer(struct kvm_vcpu * vcpu)7241 static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
7242 {
7243 	struct vmcs12 *vmcs12;
7244 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7245 	gpa_t gpa, dst;
7246 
7247 	if (is_guest_mode(vcpu)) {
7248 		WARN_ON_ONCE(vmx->nested.pml_full);
7249 
7250 		/*
7251 		 * Check if PML is enabled for the nested guest.
7252 		 * Whether eptp bit 6 is set is already checked
7253 		 * as part of A/D emulation.
7254 		 */
7255 		vmcs12 = get_vmcs12(vcpu);
7256 		if (!nested_cpu_has_pml(vmcs12))
7257 			return 0;
7258 
7259 		if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
7260 			vmx->nested.pml_full = true;
7261 			return 1;
7262 		}
7263 
7264 		gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
7265 		dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
7266 
7267 		if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
7268 					 offset_in_page(dst), sizeof(gpa)))
7269 			return 0;
7270 
7271 		vmcs12->guest_pml_index--;
7272 	}
7273 
7274 	return 0;
7275 }
7276 
vmx_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * memslot,gfn_t offset,unsigned long mask)7277 static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
7278 					   struct kvm_memory_slot *memslot,
7279 					   gfn_t offset, unsigned long mask)
7280 {
7281 	kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
7282 }
7283 
__pi_post_block(struct kvm_vcpu * vcpu)7284 static void __pi_post_block(struct kvm_vcpu *vcpu)
7285 {
7286 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7287 	struct pi_desc old, new;
7288 	unsigned int dest;
7289 
7290 	do {
7291 		old.control = new.control = pi_desc->control;
7292 		WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
7293 		     "Wakeup handler not enabled while the VCPU is blocked\n");
7294 
7295 		dest = cpu_physical_id(vcpu->cpu);
7296 
7297 		if (x2apic_enabled())
7298 			new.ndst = dest;
7299 		else
7300 			new.ndst = (dest << 8) & 0xFF00;
7301 
7302 		/* set 'NV' to 'notification vector' */
7303 		new.nv = POSTED_INTR_VECTOR;
7304 	} while (cmpxchg64(&pi_desc->control, old.control,
7305 			   new.control) != old.control);
7306 
7307 	if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
7308 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7309 		list_del(&vcpu->blocked_vcpu_list);
7310 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7311 		vcpu->pre_pcpu = -1;
7312 	}
7313 }
7314 
7315 /*
7316  * This routine does the following things for vCPU which is going
7317  * to be blocked if VT-d PI is enabled.
7318  * - Store the vCPU to the wakeup list, so when interrupts happen
7319  *   we can find the right vCPU to wake up.
7320  * - Change the Posted-interrupt descriptor as below:
7321  *      'NDST' <-- vcpu->pre_pcpu
7322  *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
7323  * - If 'ON' is set during this process, which means at least one
7324  *   interrupt is posted for this vCPU, we cannot block it, in
7325  *   this case, return 1, otherwise, return 0.
7326  *
7327  */
pi_pre_block(struct kvm_vcpu * vcpu)7328 static int pi_pre_block(struct kvm_vcpu *vcpu)
7329 {
7330 	unsigned int dest;
7331 	struct pi_desc old, new;
7332 	struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7333 
7334 	if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
7335 		!irq_remapping_cap(IRQ_POSTING_CAP)  ||
7336 		!kvm_vcpu_apicv_active(vcpu))
7337 		return 0;
7338 
7339 	WARN_ON(irqs_disabled());
7340 	local_irq_disable();
7341 	if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
7342 		vcpu->pre_pcpu = vcpu->cpu;
7343 		spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7344 		list_add_tail(&vcpu->blocked_vcpu_list,
7345 			      &per_cpu(blocked_vcpu_on_cpu,
7346 				       vcpu->pre_pcpu));
7347 		spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
7348 	}
7349 
7350 	do {
7351 		old.control = new.control = pi_desc->control;
7352 
7353 		WARN((pi_desc->sn == 1),
7354 		     "Warning: SN field of posted-interrupts "
7355 		     "is set before blocking\n");
7356 
7357 		/*
7358 		 * Since vCPU can be preempted during this process,
7359 		 * vcpu->cpu could be different with pre_pcpu, we
7360 		 * need to set pre_pcpu as the destination of wakeup
7361 		 * notification event, then we can find the right vCPU
7362 		 * to wakeup in wakeup handler if interrupts happen
7363 		 * when the vCPU is in blocked state.
7364 		 */
7365 		dest = cpu_physical_id(vcpu->pre_pcpu);
7366 
7367 		if (x2apic_enabled())
7368 			new.ndst = dest;
7369 		else
7370 			new.ndst = (dest << 8) & 0xFF00;
7371 
7372 		/* set 'NV' to 'wakeup vector' */
7373 		new.nv = POSTED_INTR_WAKEUP_VECTOR;
7374 	} while (cmpxchg64(&pi_desc->control, old.control,
7375 			   new.control) != old.control);
7376 
7377 	/* We should not block the vCPU if an interrupt is posted for it.  */
7378 	if (pi_test_on(pi_desc) == 1)
7379 		__pi_post_block(vcpu);
7380 
7381 	local_irq_enable();
7382 	return (vcpu->pre_pcpu == -1);
7383 }
7384 
vmx_pre_block(struct kvm_vcpu * vcpu)7385 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7386 {
7387 	if (pi_pre_block(vcpu))
7388 		return 1;
7389 
7390 	if (kvm_lapic_hv_timer_in_use(vcpu))
7391 		kvm_lapic_switch_to_sw_timer(vcpu);
7392 
7393 	return 0;
7394 }
7395 
pi_post_block(struct kvm_vcpu * vcpu)7396 static void pi_post_block(struct kvm_vcpu *vcpu)
7397 {
7398 	if (vcpu->pre_pcpu == -1)
7399 		return;
7400 
7401 	WARN_ON(irqs_disabled());
7402 	local_irq_disable();
7403 	__pi_post_block(vcpu);
7404 	local_irq_enable();
7405 }
7406 
vmx_post_block(struct kvm_vcpu * vcpu)7407 static void vmx_post_block(struct kvm_vcpu *vcpu)
7408 {
7409 	if (kvm_x86_ops->set_hv_timer)
7410 		kvm_lapic_switch_to_hv_timer(vcpu);
7411 
7412 	pi_post_block(vcpu);
7413 }
7414 
7415 /*
7416  * vmx_update_pi_irte - set IRTE for Posted-Interrupts
7417  *
7418  * @kvm: kvm
7419  * @host_irq: host irq of the interrupt
7420  * @guest_irq: gsi of the interrupt
7421  * @set: set or unset PI
7422  * returns 0 on success, < 0 on failure
7423  */
vmx_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)7424 static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
7425 			      uint32_t guest_irq, bool set)
7426 {
7427 	struct kvm_kernel_irq_routing_entry *e;
7428 	struct kvm_irq_routing_table *irq_rt;
7429 	struct kvm_lapic_irq irq;
7430 	struct kvm_vcpu *vcpu;
7431 	struct vcpu_data vcpu_info;
7432 	int idx, ret = 0;
7433 
7434 	if (!kvm_arch_has_assigned_device(kvm) ||
7435 		!irq_remapping_cap(IRQ_POSTING_CAP) ||
7436 		!kvm_vcpu_apicv_active(kvm->vcpus[0]))
7437 		return 0;
7438 
7439 	idx = srcu_read_lock(&kvm->irq_srcu);
7440 	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
7441 	if (guest_irq >= irq_rt->nr_rt_entries ||
7442 	    hlist_empty(&irq_rt->map[guest_irq])) {
7443 		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
7444 			     guest_irq, irq_rt->nr_rt_entries);
7445 		goto out;
7446 	}
7447 
7448 	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
7449 		if (e->type != KVM_IRQ_ROUTING_MSI)
7450 			continue;
7451 		/*
7452 		 * VT-d PI cannot support posting multicast/broadcast
7453 		 * interrupts to a vCPU, we still use interrupt remapping
7454 		 * for these kind of interrupts.
7455 		 *
7456 		 * For lowest-priority interrupts, we only support
7457 		 * those with single CPU as the destination, e.g. user
7458 		 * configures the interrupts via /proc/irq or uses
7459 		 * irqbalance to make the interrupts single-CPU.
7460 		 *
7461 		 * We will support full lowest-priority interrupt later.
7462 		 *
7463 		 * In addition, we can only inject generic interrupts using
7464 		 * the PI mechanism, refuse to route others through it.
7465 		 */
7466 
7467 		kvm_set_msi_irq(kvm, e, &irq);
7468 		if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
7469 		    !kvm_irq_is_postable(&irq)) {
7470 			/*
7471 			 * Make sure the IRTE is in remapped mode if
7472 			 * we don't handle it in posted mode.
7473 			 */
7474 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7475 			if (ret < 0) {
7476 				printk(KERN_INFO
7477 				   "failed to back to remapped mode, irq: %u\n",
7478 				   host_irq);
7479 				goto out;
7480 			}
7481 
7482 			continue;
7483 		}
7484 
7485 		vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
7486 		vcpu_info.vector = irq.vector;
7487 
7488 		trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
7489 				vcpu_info.vector, vcpu_info.pi_desc_addr, set);
7490 
7491 		if (set)
7492 			ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
7493 		else
7494 			ret = irq_set_vcpu_affinity(host_irq, NULL);
7495 
7496 		if (ret < 0) {
7497 			printk(KERN_INFO "%s: failed to update PI IRTE\n",
7498 					__func__);
7499 			goto out;
7500 		}
7501 	}
7502 
7503 	ret = 0;
7504 out:
7505 	srcu_read_unlock(&kvm->irq_srcu, idx);
7506 	return ret;
7507 }
7508 
vmx_setup_mce(struct kvm_vcpu * vcpu)7509 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7510 {
7511 	if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7512 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7513 			FEATURE_CONTROL_LMCE;
7514 	else
7515 		to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7516 			~FEATURE_CONTROL_LMCE;
7517 }
7518 
vmx_smi_allowed(struct kvm_vcpu * vcpu)7519 static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
7520 {
7521 	/* we need a nested vmexit to enter SMM, postpone if run is pending */
7522 	if (to_vmx(vcpu)->nested.nested_run_pending)
7523 		return 0;
7524 	return 1;
7525 }
7526 
vmx_pre_enter_smm(struct kvm_vcpu * vcpu,char * smstate)7527 static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7528 {
7529 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7530 
7531 	vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7532 	if (vmx->nested.smm.guest_mode)
7533 		nested_vmx_vmexit(vcpu, -1, 0, 0);
7534 
7535 	vmx->nested.smm.vmxon = vmx->nested.vmxon;
7536 	vmx->nested.vmxon = false;
7537 	vmx_clear_hlt(vcpu);
7538 	return 0;
7539 }
7540 
vmx_pre_leave_smm(struct kvm_vcpu * vcpu,const char * smstate)7541 static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7542 {
7543 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7544 	int ret;
7545 
7546 	if (vmx->nested.smm.vmxon) {
7547 		vmx->nested.vmxon = true;
7548 		vmx->nested.smm.vmxon = false;
7549 	}
7550 
7551 	if (vmx->nested.smm.guest_mode) {
7552 		ret = nested_vmx_enter_non_root_mode(vcpu, false);
7553 		if (ret)
7554 			return ret;
7555 
7556 		vmx->nested.smm.guest_mode = false;
7557 	}
7558 	return 0;
7559 }
7560 
enable_smi_window(struct kvm_vcpu * vcpu)7561 static int enable_smi_window(struct kvm_vcpu *vcpu)
7562 {
7563 	return 0;
7564 }
7565 
vmx_need_emulation_on_page_fault(struct kvm_vcpu * vcpu)7566 static bool vmx_need_emulation_on_page_fault(struct kvm_vcpu *vcpu)
7567 {
7568 	return false;
7569 }
7570 
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)7571 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7572 {
7573 	return to_vmx(vcpu)->nested.vmxon;
7574 }
7575 
hardware_setup(void)7576 static __init int hardware_setup(void)
7577 {
7578 	unsigned long host_bndcfgs;
7579 	struct desc_ptr dt;
7580 	int r, i;
7581 
7582 	rdmsrl_safe(MSR_EFER, &host_efer);
7583 
7584 	store_idt(&dt);
7585 	host_idt_base = dt.address;
7586 
7587 	for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7588 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7589 
7590 	if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7591 		return -EIO;
7592 
7593 	if (boot_cpu_has(X86_FEATURE_NX))
7594 		kvm_enable_efer_bits(EFER_NX);
7595 
7596 	if (boot_cpu_has(X86_FEATURE_MPX)) {
7597 		rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7598 		WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7599 	}
7600 
7601 	if (boot_cpu_has(X86_FEATURE_XSAVES))
7602 		rdmsrl(MSR_IA32_XSS, host_xss);
7603 
7604 	if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7605 	    !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7606 		enable_vpid = 0;
7607 
7608 	if (!cpu_has_vmx_ept() ||
7609 	    !cpu_has_vmx_ept_4levels() ||
7610 	    !cpu_has_vmx_ept_mt_wb() ||
7611 	    !cpu_has_vmx_invept_global())
7612 		enable_ept = 0;
7613 
7614 	if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7615 		enable_ept_ad_bits = 0;
7616 
7617 	if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7618 		enable_unrestricted_guest = 0;
7619 
7620 	if (!cpu_has_vmx_flexpriority())
7621 		flexpriority_enabled = 0;
7622 
7623 	if (!cpu_has_virtual_nmis())
7624 		enable_vnmi = 0;
7625 
7626 	/*
7627 	 * set_apic_access_page_addr() is used to reload apic access
7628 	 * page upon invalidation.  No need to do anything if not
7629 	 * using the APIC_ACCESS_ADDR VMCS field.
7630 	 */
7631 	if (!flexpriority_enabled)
7632 		kvm_x86_ops->set_apic_access_page_addr = NULL;
7633 
7634 	if (!cpu_has_vmx_tpr_shadow())
7635 		kvm_x86_ops->update_cr8_intercept = NULL;
7636 
7637 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
7638 		kvm_disable_largepages();
7639 
7640 #if IS_ENABLED(CONFIG_HYPERV)
7641 	if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7642 	    && enable_ept) {
7643 		kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
7644 		kvm_x86_ops->tlb_remote_flush_with_range =
7645 				hv_remote_flush_tlb_with_range;
7646 	}
7647 #endif
7648 
7649 	if (!cpu_has_vmx_ple()) {
7650 		ple_gap = 0;
7651 		ple_window = 0;
7652 		ple_window_grow = 0;
7653 		ple_window_max = 0;
7654 		ple_window_shrink = 0;
7655 	}
7656 
7657 	if (!cpu_has_vmx_apicv()) {
7658 		enable_apicv = 0;
7659 		kvm_x86_ops->sync_pir_to_irr = NULL;
7660 	}
7661 
7662 	if (cpu_has_vmx_tsc_scaling()) {
7663 		kvm_has_tsc_control = true;
7664 		kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7665 		kvm_tsc_scaling_ratio_frac_bits = 48;
7666 	}
7667 
7668 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7669 
7670 	if (enable_ept)
7671 		vmx_enable_tdp();
7672 	else
7673 		kvm_disable_tdp();
7674 
7675 	/*
7676 	 * Only enable PML when hardware supports PML feature, and both EPT
7677 	 * and EPT A/D bit features are enabled -- PML depends on them to work.
7678 	 */
7679 	if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7680 		enable_pml = 0;
7681 
7682 	if (!enable_pml) {
7683 		kvm_x86_ops->slot_enable_log_dirty = NULL;
7684 		kvm_x86_ops->slot_disable_log_dirty = NULL;
7685 		kvm_x86_ops->flush_log_dirty = NULL;
7686 		kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7687 	}
7688 
7689 	if (!cpu_has_vmx_preemption_timer())
7690 		enable_preemption_timer = false;
7691 
7692 	if (enable_preemption_timer) {
7693 		u64 use_timer_freq = 5000ULL * 1000 * 1000;
7694 		u64 vmx_msr;
7695 
7696 		rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7697 		cpu_preemption_timer_multi =
7698 			vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7699 
7700 		if (tsc_khz)
7701 			use_timer_freq = (u64)tsc_khz * 1000;
7702 		use_timer_freq >>= cpu_preemption_timer_multi;
7703 
7704 		/*
7705 		 * KVM "disables" the preemption timer by setting it to its max
7706 		 * value.  Don't use the timer if it might cause spurious exits
7707 		 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7708 		 */
7709 		if (use_timer_freq > 0xffffffffu / 10)
7710 			enable_preemption_timer = false;
7711 	}
7712 
7713 	if (!enable_preemption_timer) {
7714 		kvm_x86_ops->set_hv_timer = NULL;
7715 		kvm_x86_ops->cancel_hv_timer = NULL;
7716 		kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
7717 	}
7718 
7719 	kvm_set_posted_intr_wakeup_handler(wakeup_handler);
7720 
7721 	kvm_mce_cap_supported |= MCG_LMCE_P;
7722 
7723 	if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7724 		return -EINVAL;
7725 	if (!enable_ept || !cpu_has_vmx_intel_pt())
7726 		pt_mode = PT_MODE_SYSTEM;
7727 
7728 	if (nested) {
7729 		nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7730 					   vmx_capability.ept, enable_apicv);
7731 
7732 		r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7733 		if (r)
7734 			return r;
7735 	}
7736 
7737 	r = alloc_kvm_area();
7738 	if (r)
7739 		nested_vmx_hardware_unsetup();
7740 	return r;
7741 }
7742 
hardware_unsetup(void)7743 static __exit void hardware_unsetup(void)
7744 {
7745 	if (nested)
7746 		nested_vmx_hardware_unsetup();
7747 
7748 	free_kvm_area();
7749 }
7750 
7751 static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
7752 	.cpu_has_kvm_support = cpu_has_kvm_support,
7753 	.disabled_by_bios = vmx_disabled_by_bios,
7754 	.hardware_setup = hardware_setup,
7755 	.hardware_unsetup = hardware_unsetup,
7756 	.check_processor_compatibility = vmx_check_processor_compat,
7757 	.hardware_enable = hardware_enable,
7758 	.hardware_disable = hardware_disable,
7759 	.cpu_has_accelerated_tpr = report_flexpriority,
7760 	.has_emulated_msr = vmx_has_emulated_msr,
7761 
7762 	.vm_init = vmx_vm_init,
7763 	.vm_alloc = vmx_vm_alloc,
7764 	.vm_free = vmx_vm_free,
7765 
7766 	.vcpu_create = vmx_create_vcpu,
7767 	.vcpu_free = vmx_free_vcpu,
7768 	.vcpu_reset = vmx_vcpu_reset,
7769 
7770 	.prepare_guest_switch = vmx_prepare_switch_to_guest,
7771 	.vcpu_load = vmx_vcpu_load,
7772 	.vcpu_put = vmx_vcpu_put,
7773 
7774 	.update_bp_intercept = update_exception_bitmap,
7775 	.get_msr_feature = vmx_get_msr_feature,
7776 	.get_msr = vmx_get_msr,
7777 	.set_msr = vmx_set_msr,
7778 	.get_segment_base = vmx_get_segment_base,
7779 	.get_segment = vmx_get_segment,
7780 	.set_segment = vmx_set_segment,
7781 	.get_cpl = vmx_get_cpl,
7782 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7783 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7784 	.decache_cr3 = vmx_decache_cr3,
7785 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7786 	.set_cr0 = vmx_set_cr0,
7787 	.set_cr3 = vmx_set_cr3,
7788 	.set_cr4 = vmx_set_cr4,
7789 	.set_efer = vmx_set_efer,
7790 	.get_idt = vmx_get_idt,
7791 	.set_idt = vmx_set_idt,
7792 	.get_gdt = vmx_get_gdt,
7793 	.set_gdt = vmx_set_gdt,
7794 	.get_dr6 = vmx_get_dr6,
7795 	.set_dr6 = vmx_set_dr6,
7796 	.set_dr7 = vmx_set_dr7,
7797 	.sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7798 	.cache_reg = vmx_cache_reg,
7799 	.get_rflags = vmx_get_rflags,
7800 	.set_rflags = vmx_set_rflags,
7801 
7802 	.tlb_flush = vmx_flush_tlb,
7803 	.tlb_flush_gva = vmx_flush_tlb_gva,
7804 
7805 	.run = vmx_vcpu_run,
7806 	.handle_exit = vmx_handle_exit,
7807 	.skip_emulated_instruction = skip_emulated_instruction,
7808 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7809 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7810 	.patch_hypercall = vmx_patch_hypercall,
7811 	.set_irq = vmx_inject_irq,
7812 	.set_nmi = vmx_inject_nmi,
7813 	.queue_exception = vmx_queue_exception,
7814 	.cancel_injection = vmx_cancel_injection,
7815 	.interrupt_allowed = vmx_interrupt_allowed,
7816 	.nmi_allowed = vmx_nmi_allowed,
7817 	.get_nmi_mask = vmx_get_nmi_mask,
7818 	.set_nmi_mask = vmx_set_nmi_mask,
7819 	.enable_nmi_window = enable_nmi_window,
7820 	.enable_irq_window = enable_irq_window,
7821 	.update_cr8_intercept = update_cr8_intercept,
7822 	.set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7823 	.set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7824 	.get_enable_apicv = vmx_get_enable_apicv,
7825 	.refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7826 	.load_eoi_exitmap = vmx_load_eoi_exitmap,
7827 	.apicv_post_state_restore = vmx_apicv_post_state_restore,
7828 	.hwapic_irr_update = vmx_hwapic_irr_update,
7829 	.hwapic_isr_update = vmx_hwapic_isr_update,
7830 	.guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7831 	.sync_pir_to_irr = vmx_sync_pir_to_irr,
7832 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7833 	.dy_apicv_has_pending_interrupt = vmx_dy_apicv_has_pending_interrupt,
7834 
7835 	.set_tss_addr = vmx_set_tss_addr,
7836 	.set_identity_map_addr = vmx_set_identity_map_addr,
7837 	.get_tdp_level = get_ept_level,
7838 	.get_mt_mask = vmx_get_mt_mask,
7839 
7840 	.get_exit_info = vmx_get_exit_info,
7841 
7842 	.get_lpage_level = vmx_get_lpage_level,
7843 
7844 	.cpuid_update = vmx_cpuid_update,
7845 
7846 	.rdtscp_supported = vmx_rdtscp_supported,
7847 	.invpcid_supported = vmx_invpcid_supported,
7848 
7849 	.set_supported_cpuid = vmx_set_supported_cpuid,
7850 
7851 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7852 
7853 	.read_l1_tsc_offset = vmx_read_l1_tsc_offset,
7854 	.write_l1_tsc_offset = vmx_write_l1_tsc_offset,
7855 
7856 	.set_tdp_cr3 = vmx_set_cr3,
7857 
7858 	.check_intercept = vmx_check_intercept,
7859 	.handle_exit_irqoff = vmx_handle_exit_irqoff,
7860 	.mpx_supported = vmx_mpx_supported,
7861 	.xsaves_supported = vmx_xsaves_supported,
7862 	.umip_emulated = vmx_umip_emulated,
7863 	.pt_supported = vmx_pt_supported,
7864 
7865 	.request_immediate_exit = vmx_request_immediate_exit,
7866 
7867 	.sched_in = vmx_sched_in,
7868 
7869 	.slot_enable_log_dirty = vmx_slot_enable_log_dirty,
7870 	.slot_disable_log_dirty = vmx_slot_disable_log_dirty,
7871 	.flush_log_dirty = vmx_flush_log_dirty,
7872 	.enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
7873 	.write_log_dirty = vmx_write_pml_buffer,
7874 
7875 	.pre_block = vmx_pre_block,
7876 	.post_block = vmx_post_block,
7877 
7878 	.pmu_ops = &intel_pmu_ops,
7879 
7880 	.update_pi_irte = vmx_update_pi_irte,
7881 
7882 #ifdef CONFIG_X86_64
7883 	.set_hv_timer = vmx_set_hv_timer,
7884 	.cancel_hv_timer = vmx_cancel_hv_timer,
7885 #endif
7886 
7887 	.setup_mce = vmx_setup_mce,
7888 
7889 	.smi_allowed = vmx_smi_allowed,
7890 	.pre_enter_smm = vmx_pre_enter_smm,
7891 	.pre_leave_smm = vmx_pre_leave_smm,
7892 	.enable_smi_window = enable_smi_window,
7893 
7894 	.check_nested_events = NULL,
7895 	.get_nested_state = NULL,
7896 	.set_nested_state = NULL,
7897 	.get_vmcs12_pages = NULL,
7898 	.nested_enable_evmcs = NULL,
7899 	.nested_get_evmcs_version = NULL,
7900 	.need_emulation_on_page_fault = vmx_need_emulation_on_page_fault,
7901 	.apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7902 };
7903 
vmx_cleanup_l1d_flush(void)7904 static void vmx_cleanup_l1d_flush(void)
7905 {
7906 	if (vmx_l1d_flush_pages) {
7907 		free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7908 		vmx_l1d_flush_pages = NULL;
7909 	}
7910 	/* Restore state so sysfs ignores VMX */
7911 	l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7912 }
7913 
vmx_exit(void)7914 static void vmx_exit(void)
7915 {
7916 #ifdef CONFIG_KEXEC_CORE
7917 	RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7918 	synchronize_rcu();
7919 #endif
7920 
7921 	kvm_exit();
7922 
7923 #if IS_ENABLED(CONFIG_HYPERV)
7924 	if (static_branch_unlikely(&enable_evmcs)) {
7925 		int cpu;
7926 		struct hv_vp_assist_page *vp_ap;
7927 		/*
7928 		 * Reset everything to support using non-enlightened VMCS
7929 		 * access later (e.g. when we reload the module with
7930 		 * enlightened_vmcs=0)
7931 		 */
7932 		for_each_online_cpu(cpu) {
7933 			vp_ap =	hv_get_vp_assist_page(cpu);
7934 
7935 			if (!vp_ap)
7936 				continue;
7937 
7938 			vp_ap->nested_control.features.directhypercall = 0;
7939 			vp_ap->current_nested_vmcs = 0;
7940 			vp_ap->enlighten_vmentry = 0;
7941 		}
7942 
7943 		static_branch_disable(&enable_evmcs);
7944 	}
7945 #endif
7946 	vmx_cleanup_l1d_flush();
7947 }
7948 module_exit(vmx_exit);
7949 
vmx_init(void)7950 static int __init vmx_init(void)
7951 {
7952 	int r;
7953 
7954 #if IS_ENABLED(CONFIG_HYPERV)
7955 	/*
7956 	 * Enlightened VMCS usage should be recommended and the host needs
7957 	 * to support eVMCS v1 or above. We can also disable eVMCS support
7958 	 * with module parameter.
7959 	 */
7960 	if (enlightened_vmcs &&
7961 	    ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7962 	    (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7963 	    KVM_EVMCS_VERSION) {
7964 		int cpu;
7965 
7966 		/* Check that we have assist pages on all online CPUs */
7967 		for_each_online_cpu(cpu) {
7968 			if (!hv_get_vp_assist_page(cpu)) {
7969 				enlightened_vmcs = false;
7970 				break;
7971 			}
7972 		}
7973 
7974 		if (enlightened_vmcs) {
7975 			pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7976 			static_branch_enable(&enable_evmcs);
7977 		}
7978 
7979 		if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7980 			vmx_x86_ops.enable_direct_tlbflush
7981 				= hv_enable_direct_tlbflush;
7982 
7983 	} else {
7984 		enlightened_vmcs = false;
7985 	}
7986 #endif
7987 
7988 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7989 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7990 	if (r)
7991 		return r;
7992 
7993 	/*
7994 	 * Must be called after kvm_init() so enable_ept is properly set
7995 	 * up. Hand the parameter mitigation value in which was stored in
7996 	 * the pre module init parser. If no parameter was given, it will
7997 	 * contain 'auto' which will be turned into the default 'cond'
7998 	 * mitigation mode.
7999 	 */
8000 	r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8001 	if (r) {
8002 		vmx_exit();
8003 		return r;
8004 	}
8005 
8006 #ifdef CONFIG_KEXEC_CORE
8007 	rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8008 			   crash_vmclear_local_loaded_vmcss);
8009 #endif
8010 	vmx_check_vmcs12_offsets();
8011 
8012 	return 0;
8013 }
8014 module_init(vmx_init);
8015