1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_drv.h"
29 #include <drm/ttm/ttm_bo_driver.h>
30 #include <drm/ttm/ttm_placement.h>
31 #include <drm/ttm/ttm_page_alloc.h>
32
33 static const struct ttm_place vram_placement_flags = {
34 .fpfn = 0,
35 .lpfn = 0,
36 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
37 };
38
39 static const struct ttm_place vram_ne_placement_flags = {
40 .fpfn = 0,
41 .lpfn = 0,
42 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
43 };
44
45 static const struct ttm_place sys_placement_flags = {
46 .fpfn = 0,
47 .lpfn = 0,
48 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
49 };
50
51 static const struct ttm_place sys_ne_placement_flags = {
52 .fpfn = 0,
53 .lpfn = 0,
54 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
55 };
56
57 static const struct ttm_place gmr_placement_flags = {
58 .fpfn = 0,
59 .lpfn = 0,
60 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
61 };
62
63 static const struct ttm_place gmr_ne_placement_flags = {
64 .fpfn = 0,
65 .lpfn = 0,
66 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
67 };
68
69 static const struct ttm_place mob_placement_flags = {
70 .fpfn = 0,
71 .lpfn = 0,
72 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
73 };
74
75 static const struct ttm_place mob_ne_placement_flags = {
76 .fpfn = 0,
77 .lpfn = 0,
78 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED | TTM_PL_FLAG_NO_EVICT
79 };
80
81 struct ttm_placement vmw_vram_placement = {
82 .num_placement = 1,
83 .placement = &vram_placement_flags,
84 .num_busy_placement = 1,
85 .busy_placement = &vram_placement_flags
86 };
87
88 static const struct ttm_place vram_gmr_placement_flags[] = {
89 {
90 .fpfn = 0,
91 .lpfn = 0,
92 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
93 }, {
94 .fpfn = 0,
95 .lpfn = 0,
96 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
97 }
98 };
99
100 static const struct ttm_place gmr_vram_placement_flags[] = {
101 {
102 .fpfn = 0,
103 .lpfn = 0,
104 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
105 }, {
106 .fpfn = 0,
107 .lpfn = 0,
108 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
109 }
110 };
111
112 struct ttm_placement vmw_vram_gmr_placement = {
113 .num_placement = 2,
114 .placement = vram_gmr_placement_flags,
115 .num_busy_placement = 1,
116 .busy_placement = &gmr_placement_flags
117 };
118
119 static const struct ttm_place vram_gmr_ne_placement_flags[] = {
120 {
121 .fpfn = 0,
122 .lpfn = 0,
123 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED |
124 TTM_PL_FLAG_NO_EVICT
125 }, {
126 .fpfn = 0,
127 .lpfn = 0,
128 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED |
129 TTM_PL_FLAG_NO_EVICT
130 }
131 };
132
133 struct ttm_placement vmw_vram_gmr_ne_placement = {
134 .num_placement = 2,
135 .placement = vram_gmr_ne_placement_flags,
136 .num_busy_placement = 1,
137 .busy_placement = &gmr_ne_placement_flags
138 };
139
140 struct ttm_placement vmw_vram_sys_placement = {
141 .num_placement = 1,
142 .placement = &vram_placement_flags,
143 .num_busy_placement = 1,
144 .busy_placement = &sys_placement_flags
145 };
146
147 struct ttm_placement vmw_vram_ne_placement = {
148 .num_placement = 1,
149 .placement = &vram_ne_placement_flags,
150 .num_busy_placement = 1,
151 .busy_placement = &vram_ne_placement_flags
152 };
153
154 struct ttm_placement vmw_sys_placement = {
155 .num_placement = 1,
156 .placement = &sys_placement_flags,
157 .num_busy_placement = 1,
158 .busy_placement = &sys_placement_flags
159 };
160
161 struct ttm_placement vmw_sys_ne_placement = {
162 .num_placement = 1,
163 .placement = &sys_ne_placement_flags,
164 .num_busy_placement = 1,
165 .busy_placement = &sys_ne_placement_flags
166 };
167
168 static const struct ttm_place evictable_placement_flags[] = {
169 {
170 .fpfn = 0,
171 .lpfn = 0,
172 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
173 }, {
174 .fpfn = 0,
175 .lpfn = 0,
176 .flags = TTM_PL_FLAG_VRAM | TTM_PL_FLAG_CACHED
177 }, {
178 .fpfn = 0,
179 .lpfn = 0,
180 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
181 }, {
182 .fpfn = 0,
183 .lpfn = 0,
184 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
185 }
186 };
187
188 static const struct ttm_place nonfixed_placement_flags[] = {
189 {
190 .fpfn = 0,
191 .lpfn = 0,
192 .flags = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED
193 }, {
194 .fpfn = 0,
195 .lpfn = 0,
196 .flags = VMW_PL_FLAG_GMR | TTM_PL_FLAG_CACHED
197 }, {
198 .fpfn = 0,
199 .lpfn = 0,
200 .flags = VMW_PL_FLAG_MOB | TTM_PL_FLAG_CACHED
201 }
202 };
203
204 struct ttm_placement vmw_evictable_placement = {
205 .num_placement = 4,
206 .placement = evictable_placement_flags,
207 .num_busy_placement = 1,
208 .busy_placement = &sys_placement_flags
209 };
210
211 struct ttm_placement vmw_srf_placement = {
212 .num_placement = 1,
213 .num_busy_placement = 2,
214 .placement = &gmr_placement_flags,
215 .busy_placement = gmr_vram_placement_flags
216 };
217
218 struct ttm_placement vmw_mob_placement = {
219 .num_placement = 1,
220 .num_busy_placement = 1,
221 .placement = &mob_placement_flags,
222 .busy_placement = &mob_placement_flags
223 };
224
225 struct ttm_placement vmw_mob_ne_placement = {
226 .num_placement = 1,
227 .num_busy_placement = 1,
228 .placement = &mob_ne_placement_flags,
229 .busy_placement = &mob_ne_placement_flags
230 };
231
232 struct ttm_placement vmw_nonfixed_placement = {
233 .num_placement = 3,
234 .placement = nonfixed_placement_flags,
235 .num_busy_placement = 1,
236 .busy_placement = &sys_placement_flags
237 };
238
239 struct vmw_ttm_tt {
240 struct ttm_dma_tt dma_ttm;
241 struct vmw_private *dev_priv;
242 int gmr_id;
243 struct vmw_mob *mob;
244 int mem_type;
245 struct sg_table sgt;
246 struct vmw_sg_table vsgt;
247 uint64_t sg_alloc_size;
248 bool mapped;
249 };
250
251 const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt);
252
253 /**
254 * Helper functions to advance a struct vmw_piter iterator.
255 *
256 * @viter: Pointer to the iterator.
257 *
258 * These functions return false if past the end of the list,
259 * true otherwise. Functions are selected depending on the current
260 * DMA mapping mode.
261 */
__vmw_piter_non_sg_next(struct vmw_piter * viter)262 static bool __vmw_piter_non_sg_next(struct vmw_piter *viter)
263 {
264 return ++(viter->i) < viter->num_pages;
265 }
266
__vmw_piter_sg_next(struct vmw_piter * viter)267 static bool __vmw_piter_sg_next(struct vmw_piter *viter)
268 {
269 return __sg_page_iter_next(&viter->iter);
270 }
271
272
273 /**
274 * Helper functions to return a pointer to the current page.
275 *
276 * @viter: Pointer to the iterator
277 *
278 * These functions return a pointer to the page currently
279 * pointed to by @viter. Functions are selected depending on the
280 * current mapping mode.
281 */
__vmw_piter_non_sg_page(struct vmw_piter * viter)282 static struct page *__vmw_piter_non_sg_page(struct vmw_piter *viter)
283 {
284 return viter->pages[viter->i];
285 }
286
__vmw_piter_sg_page(struct vmw_piter * viter)287 static struct page *__vmw_piter_sg_page(struct vmw_piter *viter)
288 {
289 return sg_page_iter_page(&viter->iter);
290 }
291
292
293 /**
294 * Helper functions to return the DMA address of the current page.
295 *
296 * @viter: Pointer to the iterator
297 *
298 * These functions return the DMA address of the page currently
299 * pointed to by @viter. Functions are selected depending on the
300 * current mapping mode.
301 */
__vmw_piter_phys_addr(struct vmw_piter * viter)302 static dma_addr_t __vmw_piter_phys_addr(struct vmw_piter *viter)
303 {
304 return page_to_phys(viter->pages[viter->i]);
305 }
306
__vmw_piter_dma_addr(struct vmw_piter * viter)307 static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter)
308 {
309 return viter->addrs[viter->i];
310 }
311
__vmw_piter_sg_addr(struct vmw_piter * viter)312 static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter)
313 {
314 return sg_page_iter_dma_address(&viter->iter);
315 }
316
317
318 /**
319 * vmw_piter_start - Initialize a struct vmw_piter.
320 *
321 * @viter: Pointer to the iterator to initialize
322 * @vsgt: Pointer to a struct vmw_sg_table to initialize from
323 *
324 * Note that we're following the convention of __sg_page_iter_start, so that
325 * the iterator doesn't point to a valid page after initialization; it has
326 * to be advanced one step first.
327 */
vmw_piter_start(struct vmw_piter * viter,const struct vmw_sg_table * vsgt,unsigned long p_offset)328 void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt,
329 unsigned long p_offset)
330 {
331 viter->i = p_offset - 1;
332 viter->num_pages = vsgt->num_pages;
333 switch (vsgt->mode) {
334 case vmw_dma_phys:
335 viter->next = &__vmw_piter_non_sg_next;
336 viter->dma_address = &__vmw_piter_phys_addr;
337 viter->page = &__vmw_piter_non_sg_page;
338 viter->pages = vsgt->pages;
339 break;
340 case vmw_dma_alloc_coherent:
341 viter->next = &__vmw_piter_non_sg_next;
342 viter->dma_address = &__vmw_piter_dma_addr;
343 viter->page = &__vmw_piter_non_sg_page;
344 viter->addrs = vsgt->addrs;
345 viter->pages = vsgt->pages;
346 break;
347 case vmw_dma_map_populate:
348 case vmw_dma_map_bind:
349 viter->next = &__vmw_piter_sg_next;
350 viter->dma_address = &__vmw_piter_sg_addr;
351 viter->page = &__vmw_piter_sg_page;
352 __sg_page_iter_start(&viter->iter, vsgt->sgt->sgl,
353 vsgt->sgt->orig_nents, p_offset);
354 break;
355 default:
356 BUG();
357 }
358 }
359
360 /**
361 * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for
362 * TTM pages
363 *
364 * @vmw_tt: Pointer to a struct vmw_ttm_backend
365 *
366 * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma.
367 */
vmw_ttm_unmap_from_dma(struct vmw_ttm_tt * vmw_tt)368 static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt)
369 {
370 struct device *dev = vmw_tt->dev_priv->dev->dev;
371
372 dma_unmap_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.nents,
373 DMA_BIDIRECTIONAL);
374 vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents;
375 }
376
377 /**
378 * vmw_ttm_map_for_dma - map TTM pages to get device addresses
379 *
380 * @vmw_tt: Pointer to a struct vmw_ttm_backend
381 *
382 * This function is used to get device addresses from the kernel DMA layer.
383 * However, it's violating the DMA API in that when this operation has been
384 * performed, it's illegal for the CPU to write to the pages without first
385 * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is
386 * therefore only legal to call this function if we know that the function
387 * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most
388 * a CPU write buffer flush.
389 */
vmw_ttm_map_for_dma(struct vmw_ttm_tt * vmw_tt)390 static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt)
391 {
392 struct device *dev = vmw_tt->dev_priv->dev->dev;
393 int ret;
394
395 ret = dma_map_sg(dev, vmw_tt->sgt.sgl, vmw_tt->sgt.orig_nents,
396 DMA_BIDIRECTIONAL);
397 if (unlikely(ret == 0))
398 return -ENOMEM;
399
400 vmw_tt->sgt.nents = ret;
401
402 return 0;
403 }
404
405 /**
406 * vmw_ttm_map_dma - Make sure TTM pages are visible to the device
407 *
408 * @vmw_tt: Pointer to a struct vmw_ttm_tt
409 *
410 * Select the correct function for and make sure the TTM pages are
411 * visible to the device. Allocate storage for the device mappings.
412 * If a mapping has already been performed, indicated by the storage
413 * pointer being non NULL, the function returns success.
414 */
vmw_ttm_map_dma(struct vmw_ttm_tt * vmw_tt)415 static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt)
416 {
417 struct vmw_private *dev_priv = vmw_tt->dev_priv;
418 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
419 struct vmw_sg_table *vsgt = &vmw_tt->vsgt;
420 struct ttm_operation_ctx ctx = {
421 .interruptible = true,
422 .no_wait_gpu = false
423 };
424 struct vmw_piter iter;
425 dma_addr_t old;
426 int ret = 0;
427 static size_t sgl_size;
428 static size_t sgt_size;
429
430 if (vmw_tt->mapped)
431 return 0;
432
433 vsgt->mode = dev_priv->map_mode;
434 vsgt->pages = vmw_tt->dma_ttm.ttm.pages;
435 vsgt->num_pages = vmw_tt->dma_ttm.ttm.num_pages;
436 vsgt->addrs = vmw_tt->dma_ttm.dma_address;
437 vsgt->sgt = &vmw_tt->sgt;
438
439 switch (dev_priv->map_mode) {
440 case vmw_dma_map_bind:
441 case vmw_dma_map_populate:
442 if (unlikely(!sgl_size)) {
443 sgl_size = ttm_round_pot(sizeof(struct scatterlist));
444 sgt_size = ttm_round_pot(sizeof(struct sg_table));
445 }
446 vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages;
447 ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx);
448 if (unlikely(ret != 0))
449 return ret;
450
451 ret = sg_alloc_table_from_pages(&vmw_tt->sgt, vsgt->pages,
452 vsgt->num_pages, 0,
453 (unsigned long)
454 vsgt->num_pages << PAGE_SHIFT,
455 GFP_KERNEL);
456 if (unlikely(ret != 0))
457 goto out_sg_alloc_fail;
458
459 if (vsgt->num_pages > vmw_tt->sgt.nents) {
460 uint64_t over_alloc =
461 sgl_size * (vsgt->num_pages -
462 vmw_tt->sgt.nents);
463
464 ttm_mem_global_free(glob, over_alloc);
465 vmw_tt->sg_alloc_size -= over_alloc;
466 }
467
468 ret = vmw_ttm_map_for_dma(vmw_tt);
469 if (unlikely(ret != 0))
470 goto out_map_fail;
471
472 break;
473 default:
474 break;
475 }
476
477 old = ~((dma_addr_t) 0);
478 vmw_tt->vsgt.num_regions = 0;
479 for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) {
480 dma_addr_t cur = vmw_piter_dma_addr(&iter);
481
482 if (cur != old + PAGE_SIZE)
483 vmw_tt->vsgt.num_regions++;
484 old = cur;
485 }
486
487 vmw_tt->mapped = true;
488 return 0;
489
490 out_map_fail:
491 sg_free_table(vmw_tt->vsgt.sgt);
492 vmw_tt->vsgt.sgt = NULL;
493 out_sg_alloc_fail:
494 ttm_mem_global_free(glob, vmw_tt->sg_alloc_size);
495 return ret;
496 }
497
498 /**
499 * vmw_ttm_unmap_dma - Tear down any TTM page device mappings
500 *
501 * @vmw_tt: Pointer to a struct vmw_ttm_tt
502 *
503 * Tear down any previously set up device DMA mappings and free
504 * any storage space allocated for them. If there are no mappings set up,
505 * this function is a NOP.
506 */
vmw_ttm_unmap_dma(struct vmw_ttm_tt * vmw_tt)507 static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt)
508 {
509 struct vmw_private *dev_priv = vmw_tt->dev_priv;
510
511 if (!vmw_tt->vsgt.sgt)
512 return;
513
514 switch (dev_priv->map_mode) {
515 case vmw_dma_map_bind:
516 case vmw_dma_map_populate:
517 vmw_ttm_unmap_from_dma(vmw_tt);
518 sg_free_table(vmw_tt->vsgt.sgt);
519 vmw_tt->vsgt.sgt = NULL;
520 ttm_mem_global_free(vmw_mem_glob(dev_priv),
521 vmw_tt->sg_alloc_size);
522 break;
523 default:
524 break;
525 }
526 vmw_tt->mapped = false;
527 }
528
529
530 /**
531 * vmw_bo_map_dma - Make sure buffer object pages are visible to the device
532 *
533 * @bo: Pointer to a struct ttm_buffer_object
534 *
535 * Wrapper around vmw_ttm_map_dma, that takes a TTM buffer object pointer
536 * instead of a pointer to a struct vmw_ttm_backend as argument.
537 * Note that the buffer object must be either pinned or reserved before
538 * calling this function.
539 */
vmw_bo_map_dma(struct ttm_buffer_object * bo)540 int vmw_bo_map_dma(struct ttm_buffer_object *bo)
541 {
542 struct vmw_ttm_tt *vmw_tt =
543 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
544
545 return vmw_ttm_map_dma(vmw_tt);
546 }
547
548
549 /**
550 * vmw_bo_unmap_dma - Make sure buffer object pages are visible to the device
551 *
552 * @bo: Pointer to a struct ttm_buffer_object
553 *
554 * Wrapper around vmw_ttm_unmap_dma, that takes a TTM buffer object pointer
555 * instead of a pointer to a struct vmw_ttm_backend as argument.
556 */
vmw_bo_unmap_dma(struct ttm_buffer_object * bo)557 void vmw_bo_unmap_dma(struct ttm_buffer_object *bo)
558 {
559 struct vmw_ttm_tt *vmw_tt =
560 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
561
562 vmw_ttm_unmap_dma(vmw_tt);
563 }
564
565
566 /**
567 * vmw_bo_sg_table - Return a struct vmw_sg_table object for a
568 * TTM buffer object
569 *
570 * @bo: Pointer to a struct ttm_buffer_object
571 *
572 * Returns a pointer to a struct vmw_sg_table object. The object should
573 * not be freed after use.
574 * Note that for the device addresses to be valid, the buffer object must
575 * either be reserved or pinned.
576 */
vmw_bo_sg_table(struct ttm_buffer_object * bo)577 const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo)
578 {
579 struct vmw_ttm_tt *vmw_tt =
580 container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm.ttm);
581
582 return &vmw_tt->vsgt;
583 }
584
585
vmw_ttm_bind(struct ttm_tt * ttm,struct ttm_mem_reg * bo_mem)586 static int vmw_ttm_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
587 {
588 struct vmw_ttm_tt *vmw_be =
589 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
590 int ret;
591
592 ret = vmw_ttm_map_dma(vmw_be);
593 if (unlikely(ret != 0))
594 return ret;
595
596 vmw_be->gmr_id = bo_mem->start;
597 vmw_be->mem_type = bo_mem->mem_type;
598
599 switch (bo_mem->mem_type) {
600 case VMW_PL_GMR:
601 return vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt,
602 ttm->num_pages, vmw_be->gmr_id);
603 case VMW_PL_MOB:
604 if (unlikely(vmw_be->mob == NULL)) {
605 vmw_be->mob =
606 vmw_mob_create(ttm->num_pages);
607 if (unlikely(vmw_be->mob == NULL))
608 return -ENOMEM;
609 }
610
611 return vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob,
612 &vmw_be->vsgt, ttm->num_pages,
613 vmw_be->gmr_id);
614 default:
615 BUG();
616 }
617 return 0;
618 }
619
vmw_ttm_unbind(struct ttm_tt * ttm)620 static int vmw_ttm_unbind(struct ttm_tt *ttm)
621 {
622 struct vmw_ttm_tt *vmw_be =
623 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
624
625 switch (vmw_be->mem_type) {
626 case VMW_PL_GMR:
627 vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id);
628 break;
629 case VMW_PL_MOB:
630 vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob);
631 break;
632 default:
633 BUG();
634 }
635
636 if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind)
637 vmw_ttm_unmap_dma(vmw_be);
638
639 return 0;
640 }
641
642
vmw_ttm_destroy(struct ttm_tt * ttm)643 static void vmw_ttm_destroy(struct ttm_tt *ttm)
644 {
645 struct vmw_ttm_tt *vmw_be =
646 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
647
648 vmw_ttm_unmap_dma(vmw_be);
649 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
650 ttm_dma_tt_fini(&vmw_be->dma_ttm);
651 else
652 ttm_tt_fini(ttm);
653
654 if (vmw_be->mob)
655 vmw_mob_destroy(vmw_be->mob);
656
657 kfree(vmw_be);
658 }
659
660
vmw_ttm_populate(struct ttm_tt * ttm,struct ttm_operation_ctx * ctx)661 static int vmw_ttm_populate(struct ttm_tt *ttm, struct ttm_operation_ctx *ctx)
662 {
663 struct vmw_ttm_tt *vmw_tt =
664 container_of(ttm, struct vmw_ttm_tt, dma_ttm.ttm);
665 struct vmw_private *dev_priv = vmw_tt->dev_priv;
666 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
667 int ret;
668
669 if (ttm->state != tt_unpopulated)
670 return 0;
671
672 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
673 size_t size =
674 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
675 ret = ttm_mem_global_alloc(glob, size, ctx);
676 if (unlikely(ret != 0))
677 return ret;
678
679 ret = ttm_dma_populate(&vmw_tt->dma_ttm, dev_priv->dev->dev,
680 ctx);
681 if (unlikely(ret != 0))
682 ttm_mem_global_free(glob, size);
683 } else
684 ret = ttm_pool_populate(ttm, ctx);
685
686 return ret;
687 }
688
vmw_ttm_unpopulate(struct ttm_tt * ttm)689 static void vmw_ttm_unpopulate(struct ttm_tt *ttm)
690 {
691 struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt,
692 dma_ttm.ttm);
693 struct vmw_private *dev_priv = vmw_tt->dev_priv;
694 struct ttm_mem_global *glob = vmw_mem_glob(dev_priv);
695
696
697 if (vmw_tt->mob) {
698 vmw_mob_destroy(vmw_tt->mob);
699 vmw_tt->mob = NULL;
700 }
701
702 vmw_ttm_unmap_dma(vmw_tt);
703 if (dev_priv->map_mode == vmw_dma_alloc_coherent) {
704 size_t size =
705 ttm_round_pot(ttm->num_pages * sizeof(dma_addr_t));
706
707 ttm_dma_unpopulate(&vmw_tt->dma_ttm, dev_priv->dev->dev);
708 ttm_mem_global_free(glob, size);
709 } else
710 ttm_pool_unpopulate(ttm);
711 }
712
713 static struct ttm_backend_func vmw_ttm_func = {
714 .bind = vmw_ttm_bind,
715 .unbind = vmw_ttm_unbind,
716 .destroy = vmw_ttm_destroy,
717 };
718
vmw_ttm_tt_create(struct ttm_buffer_object * bo,uint32_t page_flags)719 static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo,
720 uint32_t page_flags)
721 {
722 struct vmw_ttm_tt *vmw_be;
723 int ret;
724
725 vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL);
726 if (!vmw_be)
727 return NULL;
728
729 vmw_be->dma_ttm.ttm.func = &vmw_ttm_func;
730 vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev);
731 vmw_be->mob = NULL;
732
733 if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent)
734 ret = ttm_dma_tt_init(&vmw_be->dma_ttm, bo, page_flags);
735 else
736 ret = ttm_tt_init(&vmw_be->dma_ttm.ttm, bo, page_flags);
737 if (unlikely(ret != 0))
738 goto out_no_init;
739
740 return &vmw_be->dma_ttm.ttm;
741 out_no_init:
742 kfree(vmw_be);
743 return NULL;
744 }
745
vmw_invalidate_caches(struct ttm_bo_device * bdev,uint32_t flags)746 static int vmw_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
747 {
748 return 0;
749 }
750
vmw_init_mem_type(struct ttm_bo_device * bdev,uint32_t type,struct ttm_mem_type_manager * man)751 static int vmw_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
752 struct ttm_mem_type_manager *man)
753 {
754 switch (type) {
755 case TTM_PL_SYSTEM:
756 /* System memory */
757
758 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
759 man->available_caching = TTM_PL_FLAG_CACHED;
760 man->default_caching = TTM_PL_FLAG_CACHED;
761 break;
762 case TTM_PL_VRAM:
763 /* "On-card" video ram */
764 man->func = &ttm_bo_manager_func;
765 man->gpu_offset = 0;
766 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_MAPPABLE;
767 man->available_caching = TTM_PL_FLAG_CACHED;
768 man->default_caching = TTM_PL_FLAG_CACHED;
769 break;
770 case VMW_PL_GMR:
771 case VMW_PL_MOB:
772 /*
773 * "Guest Memory Regions" is an aperture like feature with
774 * one slot per bo. There is an upper limit of the number of
775 * slots as well as the bo size.
776 */
777 man->func = &vmw_gmrid_manager_func;
778 man->gpu_offset = 0;
779 man->flags = TTM_MEMTYPE_FLAG_CMA | TTM_MEMTYPE_FLAG_MAPPABLE;
780 man->available_caching = TTM_PL_FLAG_CACHED;
781 man->default_caching = TTM_PL_FLAG_CACHED;
782 break;
783 default:
784 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
785 return -EINVAL;
786 }
787 return 0;
788 }
789
vmw_evict_flags(struct ttm_buffer_object * bo,struct ttm_placement * placement)790 static void vmw_evict_flags(struct ttm_buffer_object *bo,
791 struct ttm_placement *placement)
792 {
793 *placement = vmw_sys_placement;
794 }
795
vmw_verify_access(struct ttm_buffer_object * bo,struct file * filp)796 static int vmw_verify_access(struct ttm_buffer_object *bo, struct file *filp)
797 {
798 struct ttm_object_file *tfile =
799 vmw_fpriv((struct drm_file *)filp->private_data)->tfile;
800
801 return vmw_user_bo_verify_access(bo, tfile);
802 }
803
vmw_ttm_io_mem_reserve(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)804 static int vmw_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
805 {
806 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
807 struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev);
808
809 mem->bus.addr = NULL;
810 mem->bus.is_iomem = false;
811 mem->bus.offset = 0;
812 mem->bus.size = mem->num_pages << PAGE_SHIFT;
813 mem->bus.base = 0;
814 if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
815 return -EINVAL;
816 switch (mem->mem_type) {
817 case TTM_PL_SYSTEM:
818 case VMW_PL_GMR:
819 case VMW_PL_MOB:
820 return 0;
821 case TTM_PL_VRAM:
822 mem->bus.offset = mem->start << PAGE_SHIFT;
823 mem->bus.base = dev_priv->vram_start;
824 mem->bus.is_iomem = true;
825 break;
826 default:
827 return -EINVAL;
828 }
829 return 0;
830 }
831
vmw_ttm_io_mem_free(struct ttm_bo_device * bdev,struct ttm_mem_reg * mem)832 static void vmw_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
833 {
834 }
835
vmw_ttm_fault_reserve_notify(struct ttm_buffer_object * bo)836 static int vmw_ttm_fault_reserve_notify(struct ttm_buffer_object *bo)
837 {
838 return 0;
839 }
840
841 /**
842 * vmw_move_notify - TTM move_notify_callback
843 *
844 * @bo: The TTM buffer object about to move.
845 * @mem: The struct ttm_mem_reg indicating to what memory
846 * region the move is taking place.
847 *
848 * Calls move_notify for all subsystems needing it.
849 * (currently only resources).
850 */
vmw_move_notify(struct ttm_buffer_object * bo,bool evict,struct ttm_mem_reg * mem)851 static void vmw_move_notify(struct ttm_buffer_object *bo,
852 bool evict,
853 struct ttm_mem_reg *mem)
854 {
855 vmw_bo_move_notify(bo, mem);
856 vmw_query_move_notify(bo, mem);
857 }
858
859
860 /**
861 * vmw_swap_notify - TTM move_notify_callback
862 *
863 * @bo: The TTM buffer object about to be swapped out.
864 */
vmw_swap_notify(struct ttm_buffer_object * bo)865 static void vmw_swap_notify(struct ttm_buffer_object *bo)
866 {
867 vmw_bo_swap_notify(bo);
868 (void) ttm_bo_wait(bo, false, false);
869 }
870
871
872 struct ttm_bo_driver vmw_bo_driver = {
873 .ttm_tt_create = &vmw_ttm_tt_create,
874 .ttm_tt_populate = &vmw_ttm_populate,
875 .ttm_tt_unpopulate = &vmw_ttm_unpopulate,
876 .invalidate_caches = vmw_invalidate_caches,
877 .init_mem_type = vmw_init_mem_type,
878 .eviction_valuable = ttm_bo_eviction_valuable,
879 .evict_flags = vmw_evict_flags,
880 .move = NULL,
881 .verify_access = vmw_verify_access,
882 .move_notify = vmw_move_notify,
883 .swap_notify = vmw_swap_notify,
884 .fault_reserve_notify = &vmw_ttm_fault_reserve_notify,
885 .io_mem_reserve = &vmw_ttm_io_mem_reserve,
886 .io_mem_free = &vmw_ttm_io_mem_free,
887 };
888