1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3 *
4 * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 #include "vmwgfx_kms.h"
29 #include <drm/drm_plane_helper.h>
30 #include <drm/drm_atomic.h>
31 #include <drm/drm_atomic_helper.h>
32 #include <drm/drm_rect.h>
33
34 /* Might need a hrtimer here? */
35 #define VMWGFX_PRESENT_RATE ((HZ / 60 > 0) ? HZ / 60 : 1)
36
vmw_du_cleanup(struct vmw_display_unit * du)37 void vmw_du_cleanup(struct vmw_display_unit *du)
38 {
39 drm_plane_cleanup(&du->primary);
40 drm_plane_cleanup(&du->cursor);
41
42 drm_connector_unregister(&du->connector);
43 drm_crtc_cleanup(&du->crtc);
44 drm_encoder_cleanup(&du->encoder);
45 drm_connector_cleanup(&du->connector);
46 }
47
48 /*
49 * Display Unit Cursor functions
50 */
51
vmw_cursor_update_image(struct vmw_private * dev_priv,u32 * image,u32 width,u32 height,u32 hotspotX,u32 hotspotY)52 static int vmw_cursor_update_image(struct vmw_private *dev_priv,
53 u32 *image, u32 width, u32 height,
54 u32 hotspotX, u32 hotspotY)
55 {
56 struct {
57 u32 cmd;
58 SVGAFifoCmdDefineAlphaCursor cursor;
59 } *cmd;
60 u32 image_size = width * height * 4;
61 u32 cmd_size = sizeof(*cmd) + image_size;
62
63 if (!image)
64 return -EINVAL;
65
66 cmd = vmw_fifo_reserve(dev_priv, cmd_size);
67 if (unlikely(cmd == NULL)) {
68 DRM_ERROR("Fifo reserve failed.\n");
69 return -ENOMEM;
70 }
71
72 memset(cmd, 0, sizeof(*cmd));
73
74 memcpy(&cmd[1], image, image_size);
75
76 cmd->cmd = SVGA_CMD_DEFINE_ALPHA_CURSOR;
77 cmd->cursor.id = 0;
78 cmd->cursor.width = width;
79 cmd->cursor.height = height;
80 cmd->cursor.hotspotX = hotspotX;
81 cmd->cursor.hotspotY = hotspotY;
82
83 vmw_fifo_commit_flush(dev_priv, cmd_size);
84
85 return 0;
86 }
87
vmw_cursor_update_bo(struct vmw_private * dev_priv,struct vmw_buffer_object * bo,u32 width,u32 height,u32 hotspotX,u32 hotspotY)88 static int vmw_cursor_update_bo(struct vmw_private *dev_priv,
89 struct vmw_buffer_object *bo,
90 u32 width, u32 height,
91 u32 hotspotX, u32 hotspotY)
92 {
93 struct ttm_bo_kmap_obj map;
94 unsigned long kmap_offset;
95 unsigned long kmap_num;
96 void *virtual;
97 bool dummy;
98 int ret;
99
100 kmap_offset = 0;
101 kmap_num = (width*height*4 + PAGE_SIZE - 1) >> PAGE_SHIFT;
102
103 ret = ttm_bo_reserve(&bo->base, true, false, NULL);
104 if (unlikely(ret != 0)) {
105 DRM_ERROR("reserve failed\n");
106 return -EINVAL;
107 }
108
109 ret = ttm_bo_kmap(&bo->base, kmap_offset, kmap_num, &map);
110 if (unlikely(ret != 0))
111 goto err_unreserve;
112
113 virtual = ttm_kmap_obj_virtual(&map, &dummy);
114 ret = vmw_cursor_update_image(dev_priv, virtual, width, height,
115 hotspotX, hotspotY);
116
117 ttm_bo_kunmap(&map);
118 err_unreserve:
119 ttm_bo_unreserve(&bo->base);
120
121 return ret;
122 }
123
124
vmw_cursor_update_position(struct vmw_private * dev_priv,bool show,int x,int y)125 static void vmw_cursor_update_position(struct vmw_private *dev_priv,
126 bool show, int x, int y)
127 {
128 u32 *fifo_mem = dev_priv->mmio_virt;
129 uint32_t count;
130
131 spin_lock(&dev_priv->cursor_lock);
132 vmw_mmio_write(show ? 1 : 0, fifo_mem + SVGA_FIFO_CURSOR_ON);
133 vmw_mmio_write(x, fifo_mem + SVGA_FIFO_CURSOR_X);
134 vmw_mmio_write(y, fifo_mem + SVGA_FIFO_CURSOR_Y);
135 count = vmw_mmio_read(fifo_mem + SVGA_FIFO_CURSOR_COUNT);
136 vmw_mmio_write(++count, fifo_mem + SVGA_FIFO_CURSOR_COUNT);
137 spin_unlock(&dev_priv->cursor_lock);
138 }
139
140
vmw_kms_cursor_snoop(struct vmw_surface * srf,struct ttm_object_file * tfile,struct ttm_buffer_object * bo,SVGA3dCmdHeader * header)141 void vmw_kms_cursor_snoop(struct vmw_surface *srf,
142 struct ttm_object_file *tfile,
143 struct ttm_buffer_object *bo,
144 SVGA3dCmdHeader *header)
145 {
146 struct ttm_bo_kmap_obj map;
147 unsigned long kmap_offset;
148 unsigned long kmap_num;
149 SVGA3dCopyBox *box;
150 unsigned box_count;
151 void *virtual;
152 bool dummy;
153 struct vmw_dma_cmd {
154 SVGA3dCmdHeader header;
155 SVGA3dCmdSurfaceDMA dma;
156 } *cmd;
157 int i, ret;
158
159 cmd = container_of(header, struct vmw_dma_cmd, header);
160
161 /* No snooper installed */
162 if (!srf->snooper.image)
163 return;
164
165 if (cmd->dma.host.face != 0 || cmd->dma.host.mipmap != 0) {
166 DRM_ERROR("face and mipmap for cursors should never != 0\n");
167 return;
168 }
169
170 if (cmd->header.size < 64) {
171 DRM_ERROR("at least one full copy box must be given\n");
172 return;
173 }
174
175 box = (SVGA3dCopyBox *)&cmd[1];
176 box_count = (cmd->header.size - sizeof(SVGA3dCmdSurfaceDMA)) /
177 sizeof(SVGA3dCopyBox);
178
179 if (cmd->dma.guest.ptr.offset % PAGE_SIZE ||
180 box->x != 0 || box->y != 0 || box->z != 0 ||
181 box->srcx != 0 || box->srcy != 0 || box->srcz != 0 ||
182 box->d != 1 || box_count != 1) {
183 /* TODO handle none page aligned offsets */
184 /* TODO handle more dst & src != 0 */
185 /* TODO handle more then one copy */
186 DRM_ERROR("Cant snoop dma request for cursor!\n");
187 DRM_ERROR("(%u, %u, %u) (%u, %u, %u) (%ux%ux%u) %u %u\n",
188 box->srcx, box->srcy, box->srcz,
189 box->x, box->y, box->z,
190 box->w, box->h, box->d, box_count,
191 cmd->dma.guest.ptr.offset);
192 return;
193 }
194
195 kmap_offset = cmd->dma.guest.ptr.offset >> PAGE_SHIFT;
196 kmap_num = (64*64*4) >> PAGE_SHIFT;
197
198 ret = ttm_bo_reserve(bo, true, false, NULL);
199 if (unlikely(ret != 0)) {
200 DRM_ERROR("reserve failed\n");
201 return;
202 }
203
204 ret = ttm_bo_kmap(bo, kmap_offset, kmap_num, &map);
205 if (unlikely(ret != 0))
206 goto err_unreserve;
207
208 virtual = ttm_kmap_obj_virtual(&map, &dummy);
209
210 if (box->w == 64 && cmd->dma.guest.pitch == 64*4) {
211 memcpy(srf->snooper.image, virtual, 64*64*4);
212 } else {
213 /* Image is unsigned pointer. */
214 for (i = 0; i < box->h; i++)
215 memcpy(srf->snooper.image + i * 64,
216 virtual + i * cmd->dma.guest.pitch,
217 box->w * 4);
218 }
219
220 srf->snooper.age++;
221
222 ttm_bo_kunmap(&map);
223 err_unreserve:
224 ttm_bo_unreserve(bo);
225 }
226
227 /**
228 * vmw_kms_legacy_hotspot_clear - Clear legacy hotspots
229 *
230 * @dev_priv: Pointer to the device private struct.
231 *
232 * Clears all legacy hotspots.
233 */
vmw_kms_legacy_hotspot_clear(struct vmw_private * dev_priv)234 void vmw_kms_legacy_hotspot_clear(struct vmw_private *dev_priv)
235 {
236 struct drm_device *dev = dev_priv->dev;
237 struct vmw_display_unit *du;
238 struct drm_crtc *crtc;
239
240 drm_modeset_lock_all(dev);
241 drm_for_each_crtc(crtc, dev) {
242 du = vmw_crtc_to_du(crtc);
243
244 du->hotspot_x = 0;
245 du->hotspot_y = 0;
246 }
247 drm_modeset_unlock_all(dev);
248 }
249
vmw_kms_cursor_post_execbuf(struct vmw_private * dev_priv)250 void vmw_kms_cursor_post_execbuf(struct vmw_private *dev_priv)
251 {
252 struct drm_device *dev = dev_priv->dev;
253 struct vmw_display_unit *du;
254 struct drm_crtc *crtc;
255
256 mutex_lock(&dev->mode_config.mutex);
257
258 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
259 du = vmw_crtc_to_du(crtc);
260 if (!du->cursor_surface ||
261 du->cursor_age == du->cursor_surface->snooper.age)
262 continue;
263
264 du->cursor_age = du->cursor_surface->snooper.age;
265 vmw_cursor_update_image(dev_priv,
266 du->cursor_surface->snooper.image,
267 64, 64,
268 du->hotspot_x + du->core_hotspot_x,
269 du->hotspot_y + du->core_hotspot_y);
270 }
271
272 mutex_unlock(&dev->mode_config.mutex);
273 }
274
275
vmw_du_cursor_plane_destroy(struct drm_plane * plane)276 void vmw_du_cursor_plane_destroy(struct drm_plane *plane)
277 {
278 vmw_cursor_update_position(plane->dev->dev_private, false, 0, 0);
279
280 drm_plane_cleanup(plane);
281 }
282
283
vmw_du_primary_plane_destroy(struct drm_plane * plane)284 void vmw_du_primary_plane_destroy(struct drm_plane *plane)
285 {
286 drm_plane_cleanup(plane);
287
288 /* Planes are static in our case so we don't free it */
289 }
290
291
292 /**
293 * vmw_du_vps_unpin_surf - unpins resource associated with a framebuffer surface
294 *
295 * @vps: plane state associated with the display surface
296 * @unreference: true if we also want to unreference the display.
297 */
vmw_du_plane_unpin_surf(struct vmw_plane_state * vps,bool unreference)298 void vmw_du_plane_unpin_surf(struct vmw_plane_state *vps,
299 bool unreference)
300 {
301 if (vps->surf) {
302 if (vps->pinned) {
303 vmw_resource_unpin(&vps->surf->res);
304 vps->pinned--;
305 }
306
307 if (unreference) {
308 if (vps->pinned)
309 DRM_ERROR("Surface still pinned\n");
310 vmw_surface_unreference(&vps->surf);
311 }
312 }
313 }
314
315
316 /**
317 * vmw_du_plane_cleanup_fb - Unpins the cursor
318 *
319 * @plane: display plane
320 * @old_state: Contains the FB to clean up
321 *
322 * Unpins the framebuffer surface
323 *
324 * Returns 0 on success
325 */
326 void
vmw_du_plane_cleanup_fb(struct drm_plane * plane,struct drm_plane_state * old_state)327 vmw_du_plane_cleanup_fb(struct drm_plane *plane,
328 struct drm_plane_state *old_state)
329 {
330 struct vmw_plane_state *vps = vmw_plane_state_to_vps(old_state);
331
332 vmw_du_plane_unpin_surf(vps, false);
333 }
334
335
336 /**
337 * vmw_du_cursor_plane_prepare_fb - Readies the cursor by referencing it
338 *
339 * @plane: display plane
340 * @new_state: info on the new plane state, including the FB
341 *
342 * Returns 0 on success
343 */
344 int
vmw_du_cursor_plane_prepare_fb(struct drm_plane * plane,struct drm_plane_state * new_state)345 vmw_du_cursor_plane_prepare_fb(struct drm_plane *plane,
346 struct drm_plane_state *new_state)
347 {
348 struct drm_framebuffer *fb = new_state->fb;
349 struct vmw_plane_state *vps = vmw_plane_state_to_vps(new_state);
350
351
352 if (vps->surf)
353 vmw_surface_unreference(&vps->surf);
354
355 if (vps->bo)
356 vmw_bo_unreference(&vps->bo);
357
358 if (fb) {
359 if (vmw_framebuffer_to_vfb(fb)->bo) {
360 vps->bo = vmw_framebuffer_to_vfbd(fb)->buffer;
361 vmw_bo_reference(vps->bo);
362 } else {
363 vps->surf = vmw_framebuffer_to_vfbs(fb)->surface;
364 vmw_surface_reference(vps->surf);
365 }
366 }
367
368 return 0;
369 }
370
371
372 void
vmw_du_cursor_plane_atomic_update(struct drm_plane * plane,struct drm_plane_state * old_state)373 vmw_du_cursor_plane_atomic_update(struct drm_plane *plane,
374 struct drm_plane_state *old_state)
375 {
376 struct drm_crtc *crtc = plane->state->crtc ?: old_state->crtc;
377 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
378 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
379 struct vmw_plane_state *vps = vmw_plane_state_to_vps(plane->state);
380 s32 hotspot_x, hotspot_y;
381 int ret = 0;
382
383
384 hotspot_x = du->hotspot_x;
385 hotspot_y = du->hotspot_y;
386
387 if (plane->state->fb) {
388 hotspot_x += plane->state->fb->hot_x;
389 hotspot_y += plane->state->fb->hot_y;
390 }
391
392 du->cursor_surface = vps->surf;
393 du->cursor_bo = vps->bo;
394
395 if (vps->surf) {
396 du->cursor_age = du->cursor_surface->snooper.age;
397
398 ret = vmw_cursor_update_image(dev_priv,
399 vps->surf->snooper.image,
400 64, 64, hotspot_x,
401 hotspot_y);
402 } else if (vps->bo) {
403 ret = vmw_cursor_update_bo(dev_priv, vps->bo,
404 plane->state->crtc_w,
405 plane->state->crtc_h,
406 hotspot_x, hotspot_y);
407 } else {
408 vmw_cursor_update_position(dev_priv, false, 0, 0);
409 return;
410 }
411
412 if (!ret) {
413 du->cursor_x = plane->state->crtc_x + du->set_gui_x;
414 du->cursor_y = plane->state->crtc_y + du->set_gui_y;
415
416 vmw_cursor_update_position(dev_priv, true,
417 du->cursor_x + hotspot_x,
418 du->cursor_y + hotspot_y);
419
420 du->core_hotspot_x = hotspot_x - du->hotspot_x;
421 du->core_hotspot_y = hotspot_y - du->hotspot_y;
422 } else {
423 DRM_ERROR("Failed to update cursor image\n");
424 }
425 }
426
427
428 /**
429 * vmw_du_primary_plane_atomic_check - check if the new state is okay
430 *
431 * @plane: display plane
432 * @state: info on the new plane state, including the FB
433 *
434 * Check if the new state is settable given the current state. Other
435 * than what the atomic helper checks, we care about crtc fitting
436 * the FB and maintaining one active framebuffer.
437 *
438 * Returns 0 on success
439 */
vmw_du_primary_plane_atomic_check(struct drm_plane * plane,struct drm_plane_state * state)440 int vmw_du_primary_plane_atomic_check(struct drm_plane *plane,
441 struct drm_plane_state *state)
442 {
443 struct drm_crtc_state *crtc_state = NULL;
444 struct drm_framebuffer *new_fb = state->fb;
445 int ret;
446
447 if (state->crtc)
448 crtc_state = drm_atomic_get_new_crtc_state(state->state, state->crtc);
449
450 ret = drm_atomic_helper_check_plane_state(state, crtc_state,
451 DRM_PLANE_HELPER_NO_SCALING,
452 DRM_PLANE_HELPER_NO_SCALING,
453 false, true);
454
455 if (!ret && new_fb) {
456 struct drm_crtc *crtc = state->crtc;
457 struct vmw_connector_state *vcs;
458 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
459 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
460 struct vmw_framebuffer *vfb = vmw_framebuffer_to_vfb(new_fb);
461
462 vcs = vmw_connector_state_to_vcs(du->connector.state);
463
464 /* Only one active implicit framebuffer at a time. */
465 mutex_lock(&dev_priv->global_kms_state_mutex);
466 if (vcs->is_implicit && dev_priv->implicit_fb &&
467 !(dev_priv->num_implicit == 1 && du->active_implicit)
468 && dev_priv->implicit_fb != vfb) {
469 DRM_ERROR("Multiple implicit framebuffers "
470 "not supported.\n");
471 ret = -EINVAL;
472 }
473 mutex_unlock(&dev_priv->global_kms_state_mutex);
474 }
475
476
477 return ret;
478 }
479
480
481 /**
482 * vmw_du_cursor_plane_atomic_check - check if the new state is okay
483 *
484 * @plane: cursor plane
485 * @state: info on the new plane state
486 *
487 * This is a chance to fail if the new cursor state does not fit
488 * our requirements.
489 *
490 * Returns 0 on success
491 */
vmw_du_cursor_plane_atomic_check(struct drm_plane * plane,struct drm_plane_state * new_state)492 int vmw_du_cursor_plane_atomic_check(struct drm_plane *plane,
493 struct drm_plane_state *new_state)
494 {
495 int ret = 0;
496 struct vmw_surface *surface = NULL;
497 struct drm_framebuffer *fb = new_state->fb;
498
499 struct drm_rect src = drm_plane_state_src(new_state);
500 struct drm_rect dest = drm_plane_state_dest(new_state);
501
502 /* Turning off */
503 if (!fb)
504 return ret;
505
506 ret = drm_plane_helper_check_update(plane, new_state->crtc, fb,
507 &src, &dest,
508 DRM_MODE_ROTATE_0,
509 DRM_PLANE_HELPER_NO_SCALING,
510 DRM_PLANE_HELPER_NO_SCALING,
511 true, true, &new_state->visible);
512 if (!ret)
513 return ret;
514
515 /* A lot of the code assumes this */
516 if (new_state->crtc_w != 64 || new_state->crtc_h != 64) {
517 DRM_ERROR("Invalid cursor dimensions (%d, %d)\n",
518 new_state->crtc_w, new_state->crtc_h);
519 ret = -EINVAL;
520 }
521
522 if (!vmw_framebuffer_to_vfb(fb)->bo)
523 surface = vmw_framebuffer_to_vfbs(fb)->surface;
524
525 if (surface && !surface->snooper.image) {
526 DRM_ERROR("surface not suitable for cursor\n");
527 ret = -EINVAL;
528 }
529
530 return ret;
531 }
532
533
vmw_du_crtc_atomic_check(struct drm_crtc * crtc,struct drm_crtc_state * new_state)534 int vmw_du_crtc_atomic_check(struct drm_crtc *crtc,
535 struct drm_crtc_state *new_state)
536 {
537 struct vmw_display_unit *du = vmw_crtc_to_du(new_state->crtc);
538 int connector_mask = drm_connector_mask(&du->connector);
539 bool has_primary = new_state->plane_mask &
540 drm_plane_mask(crtc->primary);
541
542 /* We always want to have an active plane with an active CRTC */
543 if (has_primary != new_state->enable)
544 return -EINVAL;
545
546
547 if (new_state->connector_mask != connector_mask &&
548 new_state->connector_mask != 0) {
549 DRM_ERROR("Invalid connectors configuration\n");
550 return -EINVAL;
551 }
552
553 /*
554 * Our virtual device does not have a dot clock, so use the logical
555 * clock value as the dot clock.
556 */
557 if (new_state->mode.crtc_clock == 0)
558 new_state->adjusted_mode.crtc_clock = new_state->mode.clock;
559
560 return 0;
561 }
562
563
vmw_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)564 void vmw_du_crtc_atomic_begin(struct drm_crtc *crtc,
565 struct drm_crtc_state *old_crtc_state)
566 {
567 }
568
569
vmw_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)570 void vmw_du_crtc_atomic_flush(struct drm_crtc *crtc,
571 struct drm_crtc_state *old_crtc_state)
572 {
573 struct drm_pending_vblank_event *event = crtc->state->event;
574
575 if (event) {
576 crtc->state->event = NULL;
577
578 spin_lock_irq(&crtc->dev->event_lock);
579 drm_crtc_send_vblank_event(crtc, event);
580 spin_unlock_irq(&crtc->dev->event_lock);
581 }
582 }
583
584
585 /**
586 * vmw_du_crtc_duplicate_state - duplicate crtc state
587 * @crtc: DRM crtc
588 *
589 * Allocates and returns a copy of the crtc state (both common and
590 * vmw-specific) for the specified crtc.
591 *
592 * Returns: The newly allocated crtc state, or NULL on failure.
593 */
594 struct drm_crtc_state *
vmw_du_crtc_duplicate_state(struct drm_crtc * crtc)595 vmw_du_crtc_duplicate_state(struct drm_crtc *crtc)
596 {
597 struct drm_crtc_state *state;
598 struct vmw_crtc_state *vcs;
599
600 if (WARN_ON(!crtc->state))
601 return NULL;
602
603 vcs = kmemdup(crtc->state, sizeof(*vcs), GFP_KERNEL);
604
605 if (!vcs)
606 return NULL;
607
608 state = &vcs->base;
609
610 __drm_atomic_helper_crtc_duplicate_state(crtc, state);
611
612 return state;
613 }
614
615
616 /**
617 * vmw_du_crtc_reset - creates a blank vmw crtc state
618 * @crtc: DRM crtc
619 *
620 * Resets the atomic state for @crtc by freeing the state pointer (which
621 * might be NULL, e.g. at driver load time) and allocating a new empty state
622 * object.
623 */
vmw_du_crtc_reset(struct drm_crtc * crtc)624 void vmw_du_crtc_reset(struct drm_crtc *crtc)
625 {
626 struct vmw_crtc_state *vcs;
627
628
629 if (crtc->state) {
630 __drm_atomic_helper_crtc_destroy_state(crtc->state);
631
632 kfree(vmw_crtc_state_to_vcs(crtc->state));
633 }
634
635 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
636
637 if (!vcs) {
638 DRM_ERROR("Cannot allocate vmw_crtc_state\n");
639 return;
640 }
641
642 crtc->state = &vcs->base;
643 crtc->state->crtc = crtc;
644 }
645
646
647 /**
648 * vmw_du_crtc_destroy_state - destroy crtc state
649 * @crtc: DRM crtc
650 * @state: state object to destroy
651 *
652 * Destroys the crtc state (both common and vmw-specific) for the
653 * specified plane.
654 */
655 void
vmw_du_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)656 vmw_du_crtc_destroy_state(struct drm_crtc *crtc,
657 struct drm_crtc_state *state)
658 {
659 drm_atomic_helper_crtc_destroy_state(crtc, state);
660 }
661
662
663 /**
664 * vmw_du_plane_duplicate_state - duplicate plane state
665 * @plane: drm plane
666 *
667 * Allocates and returns a copy of the plane state (both common and
668 * vmw-specific) for the specified plane.
669 *
670 * Returns: The newly allocated plane state, or NULL on failure.
671 */
672 struct drm_plane_state *
vmw_du_plane_duplicate_state(struct drm_plane * plane)673 vmw_du_plane_duplicate_state(struct drm_plane *plane)
674 {
675 struct drm_plane_state *state;
676 struct vmw_plane_state *vps;
677
678 vps = kmemdup(plane->state, sizeof(*vps), GFP_KERNEL);
679
680 if (!vps)
681 return NULL;
682
683 vps->pinned = 0;
684 vps->cpp = 0;
685
686 /* Each ref counted resource needs to be acquired again */
687 if (vps->surf)
688 (void) vmw_surface_reference(vps->surf);
689
690 if (vps->bo)
691 (void) vmw_bo_reference(vps->bo);
692
693 state = &vps->base;
694
695 __drm_atomic_helper_plane_duplicate_state(plane, state);
696
697 return state;
698 }
699
700
701 /**
702 * vmw_du_plane_reset - creates a blank vmw plane state
703 * @plane: drm plane
704 *
705 * Resets the atomic state for @plane by freeing the state pointer (which might
706 * be NULL, e.g. at driver load time) and allocating a new empty state object.
707 */
vmw_du_plane_reset(struct drm_plane * plane)708 void vmw_du_plane_reset(struct drm_plane *plane)
709 {
710 struct vmw_plane_state *vps;
711
712
713 if (plane->state)
714 vmw_du_plane_destroy_state(plane, plane->state);
715
716 vps = kzalloc(sizeof(*vps), GFP_KERNEL);
717
718 if (!vps) {
719 DRM_ERROR("Cannot allocate vmw_plane_state\n");
720 return;
721 }
722
723 plane->state = &vps->base;
724 plane->state->plane = plane;
725 plane->state->rotation = DRM_MODE_ROTATE_0;
726 }
727
728
729 /**
730 * vmw_du_plane_destroy_state - destroy plane state
731 * @plane: DRM plane
732 * @state: state object to destroy
733 *
734 * Destroys the plane state (both common and vmw-specific) for the
735 * specified plane.
736 */
737 void
vmw_du_plane_destroy_state(struct drm_plane * plane,struct drm_plane_state * state)738 vmw_du_plane_destroy_state(struct drm_plane *plane,
739 struct drm_plane_state *state)
740 {
741 struct vmw_plane_state *vps = vmw_plane_state_to_vps(state);
742
743
744 /* Should have been freed by cleanup_fb */
745 if (vps->surf)
746 vmw_surface_unreference(&vps->surf);
747
748 if (vps->bo)
749 vmw_bo_unreference(&vps->bo);
750
751 drm_atomic_helper_plane_destroy_state(plane, state);
752 }
753
754
755 /**
756 * vmw_du_connector_duplicate_state - duplicate connector state
757 * @connector: DRM connector
758 *
759 * Allocates and returns a copy of the connector state (both common and
760 * vmw-specific) for the specified connector.
761 *
762 * Returns: The newly allocated connector state, or NULL on failure.
763 */
764 struct drm_connector_state *
vmw_du_connector_duplicate_state(struct drm_connector * connector)765 vmw_du_connector_duplicate_state(struct drm_connector *connector)
766 {
767 struct drm_connector_state *state;
768 struct vmw_connector_state *vcs;
769
770 if (WARN_ON(!connector->state))
771 return NULL;
772
773 vcs = kmemdup(connector->state, sizeof(*vcs), GFP_KERNEL);
774
775 if (!vcs)
776 return NULL;
777
778 state = &vcs->base;
779
780 __drm_atomic_helper_connector_duplicate_state(connector, state);
781
782 return state;
783 }
784
785
786 /**
787 * vmw_du_connector_reset - creates a blank vmw connector state
788 * @connector: DRM connector
789 *
790 * Resets the atomic state for @connector by freeing the state pointer (which
791 * might be NULL, e.g. at driver load time) and allocating a new empty state
792 * object.
793 */
vmw_du_connector_reset(struct drm_connector * connector)794 void vmw_du_connector_reset(struct drm_connector *connector)
795 {
796 struct vmw_connector_state *vcs;
797
798
799 if (connector->state) {
800 __drm_atomic_helper_connector_destroy_state(connector->state);
801
802 kfree(vmw_connector_state_to_vcs(connector->state));
803 }
804
805 vcs = kzalloc(sizeof(*vcs), GFP_KERNEL);
806
807 if (!vcs) {
808 DRM_ERROR("Cannot allocate vmw_connector_state\n");
809 return;
810 }
811
812 __drm_atomic_helper_connector_reset(connector, &vcs->base);
813 }
814
815
816 /**
817 * vmw_du_connector_destroy_state - destroy connector state
818 * @connector: DRM connector
819 * @state: state object to destroy
820 *
821 * Destroys the connector state (both common and vmw-specific) for the
822 * specified plane.
823 */
824 void
vmw_du_connector_destroy_state(struct drm_connector * connector,struct drm_connector_state * state)825 vmw_du_connector_destroy_state(struct drm_connector *connector,
826 struct drm_connector_state *state)
827 {
828 drm_atomic_helper_connector_destroy_state(connector, state);
829 }
830 /*
831 * Generic framebuffer code
832 */
833
834 /*
835 * Surface framebuffer code
836 */
837
vmw_framebuffer_surface_destroy(struct drm_framebuffer * framebuffer)838 static void vmw_framebuffer_surface_destroy(struct drm_framebuffer *framebuffer)
839 {
840 struct vmw_framebuffer_surface *vfbs =
841 vmw_framebuffer_to_vfbs(framebuffer);
842
843 drm_framebuffer_cleanup(framebuffer);
844 vmw_surface_unreference(&vfbs->surface);
845 if (vfbs->base.user_obj)
846 ttm_base_object_unref(&vfbs->base.user_obj);
847
848 kfree(vfbs);
849 }
850
vmw_framebuffer_surface_dirty(struct drm_framebuffer * framebuffer,struct drm_file * file_priv,unsigned flags,unsigned color,struct drm_clip_rect * clips,unsigned num_clips)851 static int vmw_framebuffer_surface_dirty(struct drm_framebuffer *framebuffer,
852 struct drm_file *file_priv,
853 unsigned flags, unsigned color,
854 struct drm_clip_rect *clips,
855 unsigned num_clips)
856 {
857 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
858 struct vmw_framebuffer_surface *vfbs =
859 vmw_framebuffer_to_vfbs(framebuffer);
860 struct drm_clip_rect norect;
861 int ret, inc = 1;
862
863 /* Legacy Display Unit does not support 3D */
864 if (dev_priv->active_display_unit == vmw_du_legacy)
865 return -EINVAL;
866
867 drm_modeset_lock_all(dev_priv->dev);
868
869 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
870 if (unlikely(ret != 0)) {
871 drm_modeset_unlock_all(dev_priv->dev);
872 return ret;
873 }
874
875 if (!num_clips) {
876 num_clips = 1;
877 clips = &norect;
878 norect.x1 = norect.y1 = 0;
879 norect.x2 = framebuffer->width;
880 norect.y2 = framebuffer->height;
881 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
882 num_clips /= 2;
883 inc = 2; /* skip source rects */
884 }
885
886 if (dev_priv->active_display_unit == vmw_du_screen_object)
887 ret = vmw_kms_sou_do_surface_dirty(dev_priv, &vfbs->base,
888 clips, NULL, NULL, 0, 0,
889 num_clips, inc, NULL, NULL);
890 else
891 ret = vmw_kms_stdu_surface_dirty(dev_priv, &vfbs->base,
892 clips, NULL, NULL, 0, 0,
893 num_clips, inc, NULL, NULL);
894
895 vmw_fifo_flush(dev_priv, false);
896 ttm_read_unlock(&dev_priv->reservation_sem);
897
898 drm_modeset_unlock_all(dev_priv->dev);
899
900 return 0;
901 }
902
903 /**
904 * vmw_kms_readback - Perform a readback from the screen system to
905 * a buffer-object backed framebuffer.
906 *
907 * @dev_priv: Pointer to the device private structure.
908 * @file_priv: Pointer to a struct drm_file identifying the caller.
909 * Must be set to NULL if @user_fence_rep is NULL.
910 * @vfb: Pointer to the buffer-object backed framebuffer.
911 * @user_fence_rep: User-space provided structure for fence information.
912 * Must be set to non-NULL if @file_priv is non-NULL.
913 * @vclips: Array of clip rects.
914 * @num_clips: Number of clip rects in @vclips.
915 *
916 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
917 * interrupted.
918 */
vmw_kms_readback(struct vmw_private * dev_priv,struct drm_file * file_priv,struct vmw_framebuffer * vfb,struct drm_vmw_fence_rep __user * user_fence_rep,struct drm_vmw_rect * vclips,uint32_t num_clips)919 int vmw_kms_readback(struct vmw_private *dev_priv,
920 struct drm_file *file_priv,
921 struct vmw_framebuffer *vfb,
922 struct drm_vmw_fence_rep __user *user_fence_rep,
923 struct drm_vmw_rect *vclips,
924 uint32_t num_clips)
925 {
926 switch (dev_priv->active_display_unit) {
927 case vmw_du_screen_object:
928 return vmw_kms_sou_readback(dev_priv, file_priv, vfb,
929 user_fence_rep, vclips, num_clips,
930 NULL);
931 case vmw_du_screen_target:
932 return vmw_kms_stdu_dma(dev_priv, file_priv, vfb,
933 user_fence_rep, NULL, vclips, num_clips,
934 1, false, true, NULL);
935 default:
936 WARN_ONCE(true,
937 "Readback called with invalid display system.\n");
938 }
939
940 return -ENOSYS;
941 }
942
943
944 static const struct drm_framebuffer_funcs vmw_framebuffer_surface_funcs = {
945 .destroy = vmw_framebuffer_surface_destroy,
946 .dirty = vmw_framebuffer_surface_dirty,
947 };
948
vmw_kms_new_framebuffer_surface(struct vmw_private * dev_priv,struct vmw_surface * surface,struct vmw_framebuffer ** out,const struct drm_mode_fb_cmd2 * mode_cmd,bool is_bo_proxy)949 static int vmw_kms_new_framebuffer_surface(struct vmw_private *dev_priv,
950 struct vmw_surface *surface,
951 struct vmw_framebuffer **out,
952 const struct drm_mode_fb_cmd2
953 *mode_cmd,
954 bool is_bo_proxy)
955
956 {
957 struct drm_device *dev = dev_priv->dev;
958 struct vmw_framebuffer_surface *vfbs;
959 enum SVGA3dSurfaceFormat format;
960 int ret;
961 struct drm_format_name_buf format_name;
962
963 /* 3D is only supported on HWv8 and newer hosts */
964 if (dev_priv->active_display_unit == vmw_du_legacy)
965 return -ENOSYS;
966
967 /*
968 * Sanity checks.
969 */
970
971 /* Surface must be marked as a scanout. */
972 if (unlikely(!surface->scanout))
973 return -EINVAL;
974
975 if (unlikely(surface->mip_levels[0] != 1 ||
976 surface->num_sizes != 1 ||
977 surface->base_size.width < mode_cmd->width ||
978 surface->base_size.height < mode_cmd->height ||
979 surface->base_size.depth != 1)) {
980 DRM_ERROR("Incompatible surface dimensions "
981 "for requested mode.\n");
982 return -EINVAL;
983 }
984
985 switch (mode_cmd->pixel_format) {
986 case DRM_FORMAT_ARGB8888:
987 format = SVGA3D_A8R8G8B8;
988 break;
989 case DRM_FORMAT_XRGB8888:
990 format = SVGA3D_X8R8G8B8;
991 break;
992 case DRM_FORMAT_RGB565:
993 format = SVGA3D_R5G6B5;
994 break;
995 case DRM_FORMAT_XRGB1555:
996 format = SVGA3D_A1R5G5B5;
997 break;
998 default:
999 DRM_ERROR("Invalid pixel format: %s\n",
1000 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1001 return -EINVAL;
1002 }
1003
1004 /*
1005 * For DX, surface format validation is done when surface->scanout
1006 * is set.
1007 */
1008 if (!dev_priv->has_dx && format != surface->format) {
1009 DRM_ERROR("Invalid surface format for requested mode.\n");
1010 return -EINVAL;
1011 }
1012
1013 vfbs = kzalloc(sizeof(*vfbs), GFP_KERNEL);
1014 if (!vfbs) {
1015 ret = -ENOMEM;
1016 goto out_err1;
1017 }
1018
1019 drm_helper_mode_fill_fb_struct(dev, &vfbs->base.base, mode_cmd);
1020 vfbs->surface = vmw_surface_reference(surface);
1021 vfbs->base.user_handle = mode_cmd->handles[0];
1022 vfbs->is_bo_proxy = is_bo_proxy;
1023
1024 *out = &vfbs->base;
1025
1026 ret = drm_framebuffer_init(dev, &vfbs->base.base,
1027 &vmw_framebuffer_surface_funcs);
1028 if (ret)
1029 goto out_err2;
1030
1031 return 0;
1032
1033 out_err2:
1034 vmw_surface_unreference(&surface);
1035 kfree(vfbs);
1036 out_err1:
1037 return ret;
1038 }
1039
1040 /*
1041 * Buffer-object framebuffer code
1042 */
1043
vmw_framebuffer_bo_destroy(struct drm_framebuffer * framebuffer)1044 static void vmw_framebuffer_bo_destroy(struct drm_framebuffer *framebuffer)
1045 {
1046 struct vmw_framebuffer_bo *vfbd =
1047 vmw_framebuffer_to_vfbd(framebuffer);
1048
1049 drm_framebuffer_cleanup(framebuffer);
1050 vmw_bo_unreference(&vfbd->buffer);
1051 if (vfbd->base.user_obj)
1052 ttm_base_object_unref(&vfbd->base.user_obj);
1053
1054 kfree(vfbd);
1055 }
1056
vmw_framebuffer_bo_dirty(struct drm_framebuffer * framebuffer,struct drm_file * file_priv,unsigned int flags,unsigned int color,struct drm_clip_rect * clips,unsigned int num_clips)1057 static int vmw_framebuffer_bo_dirty(struct drm_framebuffer *framebuffer,
1058 struct drm_file *file_priv,
1059 unsigned int flags, unsigned int color,
1060 struct drm_clip_rect *clips,
1061 unsigned int num_clips)
1062 {
1063 struct vmw_private *dev_priv = vmw_priv(framebuffer->dev);
1064 struct vmw_framebuffer_bo *vfbd =
1065 vmw_framebuffer_to_vfbd(framebuffer);
1066 struct drm_clip_rect norect;
1067 int ret, increment = 1;
1068
1069 drm_modeset_lock_all(dev_priv->dev);
1070
1071 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
1072 if (unlikely(ret != 0)) {
1073 drm_modeset_unlock_all(dev_priv->dev);
1074 return ret;
1075 }
1076
1077 if (!num_clips) {
1078 num_clips = 1;
1079 clips = &norect;
1080 norect.x1 = norect.y1 = 0;
1081 norect.x2 = framebuffer->width;
1082 norect.y2 = framebuffer->height;
1083 } else if (flags & DRM_MODE_FB_DIRTY_ANNOTATE_COPY) {
1084 num_clips /= 2;
1085 increment = 2;
1086 }
1087
1088 switch (dev_priv->active_display_unit) {
1089 case vmw_du_screen_target:
1090 ret = vmw_kms_stdu_dma(dev_priv, NULL, &vfbd->base, NULL,
1091 clips, NULL, num_clips, increment,
1092 true, true, NULL);
1093 break;
1094 case vmw_du_screen_object:
1095 ret = vmw_kms_sou_do_bo_dirty(dev_priv, &vfbd->base,
1096 clips, NULL, num_clips,
1097 increment, true, NULL, NULL);
1098 break;
1099 case vmw_du_legacy:
1100 ret = vmw_kms_ldu_do_bo_dirty(dev_priv, &vfbd->base, 0, 0,
1101 clips, num_clips, increment);
1102 break;
1103 default:
1104 ret = -EINVAL;
1105 WARN_ONCE(true, "Dirty called with invalid display system.\n");
1106 break;
1107 }
1108
1109 vmw_fifo_flush(dev_priv, false);
1110 ttm_read_unlock(&dev_priv->reservation_sem);
1111
1112 drm_modeset_unlock_all(dev_priv->dev);
1113
1114 return ret;
1115 }
1116
1117 static const struct drm_framebuffer_funcs vmw_framebuffer_bo_funcs = {
1118 .destroy = vmw_framebuffer_bo_destroy,
1119 .dirty = vmw_framebuffer_bo_dirty,
1120 };
1121
1122 /**
1123 * Pin the bofer in a location suitable for access by the
1124 * display system.
1125 */
vmw_framebuffer_pin(struct vmw_framebuffer * vfb)1126 static int vmw_framebuffer_pin(struct vmw_framebuffer *vfb)
1127 {
1128 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1129 struct vmw_buffer_object *buf;
1130 struct ttm_placement *placement;
1131 int ret;
1132
1133 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1134 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1135
1136 if (!buf)
1137 return 0;
1138
1139 switch (dev_priv->active_display_unit) {
1140 case vmw_du_legacy:
1141 vmw_overlay_pause_all(dev_priv);
1142 ret = vmw_bo_pin_in_start_of_vram(dev_priv, buf, false);
1143 vmw_overlay_resume_all(dev_priv);
1144 break;
1145 case vmw_du_screen_object:
1146 case vmw_du_screen_target:
1147 if (vfb->bo) {
1148 if (dev_priv->capabilities & SVGA_CAP_3D) {
1149 /*
1150 * Use surface DMA to get content to
1151 * sreen target surface.
1152 */
1153 placement = &vmw_vram_gmr_placement;
1154 } else {
1155 /* Use CPU blit. */
1156 placement = &vmw_sys_placement;
1157 }
1158 } else {
1159 /* Use surface / image update */
1160 placement = &vmw_mob_placement;
1161 }
1162
1163 return vmw_bo_pin_in_placement(dev_priv, buf, placement, false);
1164 default:
1165 return -EINVAL;
1166 }
1167
1168 return ret;
1169 }
1170
vmw_framebuffer_unpin(struct vmw_framebuffer * vfb)1171 static int vmw_framebuffer_unpin(struct vmw_framebuffer *vfb)
1172 {
1173 struct vmw_private *dev_priv = vmw_priv(vfb->base.dev);
1174 struct vmw_buffer_object *buf;
1175
1176 buf = vfb->bo ? vmw_framebuffer_to_vfbd(&vfb->base)->buffer :
1177 vmw_framebuffer_to_vfbs(&vfb->base)->surface->res.backup;
1178
1179 if (WARN_ON(!buf))
1180 return 0;
1181
1182 return vmw_bo_unpin(dev_priv, buf, false);
1183 }
1184
1185 /**
1186 * vmw_create_bo_proxy - create a proxy surface for the buffer object
1187 *
1188 * @dev: DRM device
1189 * @mode_cmd: parameters for the new surface
1190 * @bo_mob: MOB backing the buffer object
1191 * @srf_out: newly created surface
1192 *
1193 * When the content FB is a buffer object, we create a surface as a proxy to the
1194 * same buffer. This way we can do a surface copy rather than a surface DMA.
1195 * This is a more efficient approach
1196 *
1197 * RETURNS:
1198 * 0 on success, error code otherwise
1199 */
vmw_create_bo_proxy(struct drm_device * dev,const struct drm_mode_fb_cmd2 * mode_cmd,struct vmw_buffer_object * bo_mob,struct vmw_surface ** srf_out)1200 static int vmw_create_bo_proxy(struct drm_device *dev,
1201 const struct drm_mode_fb_cmd2 *mode_cmd,
1202 struct vmw_buffer_object *bo_mob,
1203 struct vmw_surface **srf_out)
1204 {
1205 uint32_t format;
1206 struct drm_vmw_size content_base_size = {0};
1207 struct vmw_resource *res;
1208 unsigned int bytes_pp;
1209 struct drm_format_name_buf format_name;
1210 int ret;
1211
1212 switch (mode_cmd->pixel_format) {
1213 case DRM_FORMAT_ARGB8888:
1214 case DRM_FORMAT_XRGB8888:
1215 format = SVGA3D_X8R8G8B8;
1216 bytes_pp = 4;
1217 break;
1218
1219 case DRM_FORMAT_RGB565:
1220 case DRM_FORMAT_XRGB1555:
1221 format = SVGA3D_R5G6B5;
1222 bytes_pp = 2;
1223 break;
1224
1225 case 8:
1226 format = SVGA3D_P8;
1227 bytes_pp = 1;
1228 break;
1229
1230 default:
1231 DRM_ERROR("Invalid framebuffer format %s\n",
1232 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1233 return -EINVAL;
1234 }
1235
1236 content_base_size.width = mode_cmd->pitches[0] / bytes_pp;
1237 content_base_size.height = mode_cmd->height;
1238 content_base_size.depth = 1;
1239
1240 ret = vmw_surface_gb_priv_define(dev,
1241 0, /* kernel visible only */
1242 0, /* flags */
1243 format,
1244 true, /* can be a scanout buffer */
1245 1, /* num of mip levels */
1246 0,
1247 0,
1248 content_base_size,
1249 SVGA3D_MS_PATTERN_NONE,
1250 SVGA3D_MS_QUALITY_NONE,
1251 srf_out);
1252 if (ret) {
1253 DRM_ERROR("Failed to allocate proxy content buffer\n");
1254 return ret;
1255 }
1256
1257 res = &(*srf_out)->res;
1258
1259 /* Reserve and switch the backing mob. */
1260 mutex_lock(&res->dev_priv->cmdbuf_mutex);
1261 (void) vmw_resource_reserve(res, false, true);
1262 vmw_bo_unreference(&res->backup);
1263 res->backup = vmw_bo_reference(bo_mob);
1264 res->backup_offset = 0;
1265 vmw_resource_unreserve(res, false, NULL, 0);
1266 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
1267
1268 return 0;
1269 }
1270
1271
1272
vmw_kms_new_framebuffer_bo(struct vmw_private * dev_priv,struct vmw_buffer_object * bo,struct vmw_framebuffer ** out,const struct drm_mode_fb_cmd2 * mode_cmd)1273 static int vmw_kms_new_framebuffer_bo(struct vmw_private *dev_priv,
1274 struct vmw_buffer_object *bo,
1275 struct vmw_framebuffer **out,
1276 const struct drm_mode_fb_cmd2
1277 *mode_cmd)
1278
1279 {
1280 struct drm_device *dev = dev_priv->dev;
1281 struct vmw_framebuffer_bo *vfbd;
1282 unsigned int requested_size;
1283 struct drm_format_name_buf format_name;
1284 int ret;
1285
1286 requested_size = mode_cmd->height * mode_cmd->pitches[0];
1287 if (unlikely(requested_size > bo->base.num_pages * PAGE_SIZE)) {
1288 DRM_ERROR("Screen buffer object size is too small "
1289 "for requested mode.\n");
1290 return -EINVAL;
1291 }
1292
1293 /* Limited framebuffer color depth support for screen objects */
1294 if (dev_priv->active_display_unit == vmw_du_screen_object) {
1295 switch (mode_cmd->pixel_format) {
1296 case DRM_FORMAT_XRGB8888:
1297 case DRM_FORMAT_ARGB8888:
1298 break;
1299 case DRM_FORMAT_XRGB1555:
1300 case DRM_FORMAT_RGB565:
1301 break;
1302 default:
1303 DRM_ERROR("Invalid pixel format: %s\n",
1304 drm_get_format_name(mode_cmd->pixel_format, &format_name));
1305 return -EINVAL;
1306 }
1307 }
1308
1309 vfbd = kzalloc(sizeof(*vfbd), GFP_KERNEL);
1310 if (!vfbd) {
1311 ret = -ENOMEM;
1312 goto out_err1;
1313 }
1314
1315 drm_helper_mode_fill_fb_struct(dev, &vfbd->base.base, mode_cmd);
1316 vfbd->base.bo = true;
1317 vfbd->buffer = vmw_bo_reference(bo);
1318 vfbd->base.user_handle = mode_cmd->handles[0];
1319 *out = &vfbd->base;
1320
1321 ret = drm_framebuffer_init(dev, &vfbd->base.base,
1322 &vmw_framebuffer_bo_funcs);
1323 if (ret)
1324 goto out_err2;
1325
1326 return 0;
1327
1328 out_err2:
1329 vmw_bo_unreference(&bo);
1330 kfree(vfbd);
1331 out_err1:
1332 return ret;
1333 }
1334
1335
1336 /**
1337 * vmw_kms_srf_ok - check if a surface can be created
1338 *
1339 * @width: requested width
1340 * @height: requested height
1341 *
1342 * Surfaces need to be less than texture size
1343 */
1344 static bool
vmw_kms_srf_ok(struct vmw_private * dev_priv,uint32_t width,uint32_t height)1345 vmw_kms_srf_ok(struct vmw_private *dev_priv, uint32_t width, uint32_t height)
1346 {
1347 if (width > dev_priv->texture_max_width ||
1348 height > dev_priv->texture_max_height)
1349 return false;
1350
1351 return true;
1352 }
1353
1354 /**
1355 * vmw_kms_new_framebuffer - Create a new framebuffer.
1356 *
1357 * @dev_priv: Pointer to device private struct.
1358 * @bo: Pointer to buffer object to wrap the kms framebuffer around.
1359 * Either @bo or @surface must be NULL.
1360 * @surface: Pointer to a surface to wrap the kms framebuffer around.
1361 * Either @bo or @surface must be NULL.
1362 * @only_2d: No presents will occur to this buffer object based framebuffer.
1363 * This helps the code to do some important optimizations.
1364 * @mode_cmd: Frame-buffer metadata.
1365 */
1366 struct vmw_framebuffer *
vmw_kms_new_framebuffer(struct vmw_private * dev_priv,struct vmw_buffer_object * bo,struct vmw_surface * surface,bool only_2d,const struct drm_mode_fb_cmd2 * mode_cmd)1367 vmw_kms_new_framebuffer(struct vmw_private *dev_priv,
1368 struct vmw_buffer_object *bo,
1369 struct vmw_surface *surface,
1370 bool only_2d,
1371 const struct drm_mode_fb_cmd2 *mode_cmd)
1372 {
1373 struct vmw_framebuffer *vfb = NULL;
1374 bool is_bo_proxy = false;
1375 int ret;
1376
1377 /*
1378 * We cannot use the SurfaceDMA command in an non-accelerated VM,
1379 * therefore, wrap the buffer object in a surface so we can use the
1380 * SurfaceCopy command.
1381 */
1382 if (vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height) &&
1383 bo && only_2d &&
1384 mode_cmd->width > 64 && /* Don't create a proxy for cursor */
1385 dev_priv->active_display_unit == vmw_du_screen_target) {
1386 ret = vmw_create_bo_proxy(dev_priv->dev, mode_cmd,
1387 bo, &surface);
1388 if (ret)
1389 return ERR_PTR(ret);
1390
1391 is_bo_proxy = true;
1392 }
1393
1394 /* Create the new framebuffer depending one what we have */
1395 if (surface) {
1396 ret = vmw_kms_new_framebuffer_surface(dev_priv, surface, &vfb,
1397 mode_cmd,
1398 is_bo_proxy);
1399
1400 /*
1401 * vmw_create_bo_proxy() adds a reference that is no longer
1402 * needed
1403 */
1404 if (is_bo_proxy)
1405 vmw_surface_unreference(&surface);
1406 } else if (bo) {
1407 ret = vmw_kms_new_framebuffer_bo(dev_priv, bo, &vfb,
1408 mode_cmd);
1409 } else {
1410 BUG();
1411 }
1412
1413 if (ret)
1414 return ERR_PTR(ret);
1415
1416 vfb->pin = vmw_framebuffer_pin;
1417 vfb->unpin = vmw_framebuffer_unpin;
1418
1419 return vfb;
1420 }
1421
1422 /*
1423 * Generic Kernel modesetting functions
1424 */
1425
vmw_kms_fb_create(struct drm_device * dev,struct drm_file * file_priv,const struct drm_mode_fb_cmd2 * mode_cmd)1426 static struct drm_framebuffer *vmw_kms_fb_create(struct drm_device *dev,
1427 struct drm_file *file_priv,
1428 const struct drm_mode_fb_cmd2 *mode_cmd)
1429 {
1430 struct vmw_private *dev_priv = vmw_priv(dev);
1431 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1432 struct vmw_framebuffer *vfb = NULL;
1433 struct vmw_surface *surface = NULL;
1434 struct vmw_buffer_object *bo = NULL;
1435 struct ttm_base_object *user_obj;
1436 int ret;
1437
1438 /*
1439 * Take a reference on the user object of the resource
1440 * backing the kms fb. This ensures that user-space handle
1441 * lookups on that resource will always work as long as
1442 * it's registered with a kms framebuffer. This is important,
1443 * since vmw_execbuf_process identifies resources in the
1444 * command stream using user-space handles.
1445 */
1446
1447 user_obj = ttm_base_object_lookup(tfile, mode_cmd->handles[0]);
1448 if (unlikely(user_obj == NULL)) {
1449 DRM_ERROR("Could not locate requested kms frame buffer.\n");
1450 return ERR_PTR(-ENOENT);
1451 }
1452
1453 /**
1454 * End conditioned code.
1455 */
1456
1457 /* returns either a bo or surface */
1458 ret = vmw_user_lookup_handle(dev_priv, tfile,
1459 mode_cmd->handles[0],
1460 &surface, &bo);
1461 if (ret)
1462 goto err_out;
1463
1464
1465 if (!bo &&
1466 !vmw_kms_srf_ok(dev_priv, mode_cmd->width, mode_cmd->height)) {
1467 DRM_ERROR("Surface size cannot exceed %dx%d",
1468 dev_priv->texture_max_width,
1469 dev_priv->texture_max_height);
1470 goto err_out;
1471 }
1472
1473
1474 vfb = vmw_kms_new_framebuffer(dev_priv, bo, surface,
1475 !(dev_priv->capabilities & SVGA_CAP_3D),
1476 mode_cmd);
1477 if (IS_ERR(vfb)) {
1478 ret = PTR_ERR(vfb);
1479 goto err_out;
1480 }
1481
1482 err_out:
1483 /* vmw_user_lookup_handle takes one ref so does new_fb */
1484 if (bo)
1485 vmw_bo_unreference(&bo);
1486 if (surface)
1487 vmw_surface_unreference(&surface);
1488
1489 if (ret) {
1490 DRM_ERROR("failed to create vmw_framebuffer: %i\n", ret);
1491 ttm_base_object_unref(&user_obj);
1492 return ERR_PTR(ret);
1493 } else
1494 vfb->user_obj = user_obj;
1495
1496 return &vfb->base;
1497 }
1498
1499 /**
1500 * vmw_kms_check_display_memory - Validates display memory required for a
1501 * topology
1502 * @dev: DRM device
1503 * @num_rects: number of drm_rect in rects
1504 * @rects: array of drm_rect representing the topology to validate indexed by
1505 * crtc index.
1506 *
1507 * Returns:
1508 * 0 on success otherwise negative error code
1509 */
vmw_kms_check_display_memory(struct drm_device * dev,uint32_t num_rects,struct drm_rect * rects)1510 static int vmw_kms_check_display_memory(struct drm_device *dev,
1511 uint32_t num_rects,
1512 struct drm_rect *rects)
1513 {
1514 struct vmw_private *dev_priv = vmw_priv(dev);
1515 struct drm_rect bounding_box = {0};
1516 u64 total_pixels = 0, pixel_mem, bb_mem;
1517 int i;
1518
1519 for (i = 0; i < num_rects; i++) {
1520 /*
1521 * For STDU only individual screen (screen target) is limited by
1522 * SCREENTARGET_MAX_WIDTH/HEIGHT registers.
1523 */
1524 if (dev_priv->active_display_unit == vmw_du_screen_target &&
1525 (drm_rect_width(&rects[i]) > dev_priv->stdu_max_width ||
1526 drm_rect_height(&rects[i]) > dev_priv->stdu_max_height)) {
1527 DRM_ERROR("Screen size not supported.\n");
1528 return -EINVAL;
1529 }
1530
1531 /* Bounding box upper left is at (0,0). */
1532 if (rects[i].x2 > bounding_box.x2)
1533 bounding_box.x2 = rects[i].x2;
1534
1535 if (rects[i].y2 > bounding_box.y2)
1536 bounding_box.y2 = rects[i].y2;
1537
1538 total_pixels += (u64) drm_rect_width(&rects[i]) *
1539 (u64) drm_rect_height(&rects[i]);
1540 }
1541
1542 /* Virtual svga device primary limits are always in 32-bpp. */
1543 pixel_mem = total_pixels * 4;
1544
1545 /*
1546 * For HV10 and below prim_bb_mem is vram size. When
1547 * SVGA_REG_MAX_PRIMARY_BOUNDING_BOX_MEM is not present vram size is
1548 * limit on primary bounding box
1549 */
1550 if (pixel_mem > dev_priv->prim_bb_mem) {
1551 DRM_ERROR("Combined output size too large.\n");
1552 return -EINVAL;
1553 }
1554
1555 /* SVGA_CAP_NO_BB_RESTRICTION is available for STDU only. */
1556 if (dev_priv->active_display_unit != vmw_du_screen_target ||
1557 !(dev_priv->capabilities & SVGA_CAP_NO_BB_RESTRICTION)) {
1558 bb_mem = (u64) bounding_box.x2 * bounding_box.y2 * 4;
1559
1560 if (bb_mem > dev_priv->prim_bb_mem) {
1561 DRM_ERROR("Topology is beyond supported limits.\n");
1562 return -EINVAL;
1563 }
1564 }
1565
1566 return 0;
1567 }
1568
1569 /**
1570 * vmw_kms_check_topology - Validates topology in drm_atomic_state
1571 * @dev: DRM device
1572 * @state: the driver state object
1573 *
1574 * Returns:
1575 * 0 on success otherwise negative error code
1576 */
vmw_kms_check_topology(struct drm_device * dev,struct drm_atomic_state * state)1577 static int vmw_kms_check_topology(struct drm_device *dev,
1578 struct drm_atomic_state *state)
1579 {
1580 struct vmw_private *dev_priv = vmw_priv(dev);
1581 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
1582 struct drm_rect *rects;
1583 struct drm_crtc *crtc;
1584 uint32_t i;
1585 int ret = 0;
1586
1587 rects = kcalloc(dev->mode_config.num_crtc, sizeof(struct drm_rect),
1588 GFP_KERNEL);
1589 if (!rects)
1590 return -ENOMEM;
1591
1592 mutex_lock(&dev_priv->requested_layout_mutex);
1593
1594 drm_for_each_crtc(crtc, dev) {
1595 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1596 struct drm_crtc_state *crtc_state = crtc->state;
1597
1598 i = drm_crtc_index(crtc);
1599
1600 if (crtc_state && crtc_state->enable) {
1601 rects[i].x1 = du->gui_x;
1602 rects[i].y1 = du->gui_y;
1603 rects[i].x2 = du->gui_x + crtc_state->mode.hdisplay;
1604 rects[i].y2 = du->gui_y + crtc_state->mode.vdisplay;
1605 }
1606 }
1607
1608 /* Determine change to topology due to new atomic state */
1609 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state,
1610 new_crtc_state, i) {
1611 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
1612 struct drm_connector *connector;
1613 struct drm_connector_state *conn_state;
1614 struct vmw_connector_state *vmw_conn_state;
1615
1616 if (!new_crtc_state->enable) {
1617 rects[i].x1 = 0;
1618 rects[i].y1 = 0;
1619 rects[i].x2 = 0;
1620 rects[i].y2 = 0;
1621 continue;
1622 }
1623
1624 if (!du->pref_active) {
1625 ret = -EINVAL;
1626 goto clean;
1627 }
1628
1629 /*
1630 * For vmwgfx each crtc has only one connector attached and it
1631 * is not changed so don't really need to check the
1632 * crtc->connector_mask and iterate over it.
1633 */
1634 connector = &du->connector;
1635 conn_state = drm_atomic_get_connector_state(state, connector);
1636 if (IS_ERR(conn_state)) {
1637 ret = PTR_ERR(conn_state);
1638 goto clean;
1639 }
1640
1641 vmw_conn_state = vmw_connector_state_to_vcs(conn_state);
1642 vmw_conn_state->gui_x = du->gui_x;
1643 vmw_conn_state->gui_y = du->gui_y;
1644
1645 rects[i].x1 = du->gui_x;
1646 rects[i].y1 = du->gui_y;
1647 rects[i].x2 = du->gui_x + new_crtc_state->mode.hdisplay;
1648 rects[i].y2 = du->gui_y + new_crtc_state->mode.vdisplay;
1649 }
1650
1651 ret = vmw_kms_check_display_memory(dev, dev->mode_config.num_crtc,
1652 rects);
1653
1654 clean:
1655 mutex_unlock(&dev_priv->requested_layout_mutex);
1656 kfree(rects);
1657 return ret;
1658 }
1659
1660 /**
1661 * vmw_kms_atomic_check_modeset- validate state object for modeset changes
1662 *
1663 * @dev: DRM device
1664 * @state: the driver state object
1665 *
1666 * This is a simple wrapper around drm_atomic_helper_check_modeset() for
1667 * us to assign a value to mode->crtc_clock so that
1668 * drm_calc_timestamping_constants() won't throw an error message
1669 *
1670 * Returns:
1671 * Zero for success or -errno
1672 */
1673 static int
vmw_kms_atomic_check_modeset(struct drm_device * dev,struct drm_atomic_state * state)1674 vmw_kms_atomic_check_modeset(struct drm_device *dev,
1675 struct drm_atomic_state *state)
1676 {
1677 struct drm_crtc *crtc;
1678 struct drm_crtc_state *crtc_state;
1679 bool need_modeset = false;
1680 int i, ret;
1681
1682 ret = drm_atomic_helper_check(dev, state);
1683 if (ret)
1684 return ret;
1685
1686 if (!state->allow_modeset)
1687 return ret;
1688
1689 /*
1690 * Legacy path do not set allow_modeset properly like
1691 * @drm_atomic_helper_update_plane, This will result in unnecessary call
1692 * to vmw_kms_check_topology. So extra set of check.
1693 */
1694 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
1695 if (drm_atomic_crtc_needs_modeset(crtc_state))
1696 need_modeset = true;
1697 }
1698
1699 if (need_modeset)
1700 return vmw_kms_check_topology(dev, state);
1701
1702 return ret;
1703 }
1704
1705 static const struct drm_mode_config_funcs vmw_kms_funcs = {
1706 .fb_create = vmw_kms_fb_create,
1707 .atomic_check = vmw_kms_atomic_check_modeset,
1708 .atomic_commit = drm_atomic_helper_commit,
1709 };
1710
vmw_kms_generic_present(struct vmw_private * dev_priv,struct drm_file * file_priv,struct vmw_framebuffer * vfb,struct vmw_surface * surface,uint32_t sid,int32_t destX,int32_t destY,struct drm_vmw_rect * clips,uint32_t num_clips)1711 static int vmw_kms_generic_present(struct vmw_private *dev_priv,
1712 struct drm_file *file_priv,
1713 struct vmw_framebuffer *vfb,
1714 struct vmw_surface *surface,
1715 uint32_t sid,
1716 int32_t destX, int32_t destY,
1717 struct drm_vmw_rect *clips,
1718 uint32_t num_clips)
1719 {
1720 return vmw_kms_sou_do_surface_dirty(dev_priv, vfb, NULL, clips,
1721 &surface->res, destX, destY,
1722 num_clips, 1, NULL, NULL);
1723 }
1724
1725
vmw_kms_present(struct vmw_private * dev_priv,struct drm_file * file_priv,struct vmw_framebuffer * vfb,struct vmw_surface * surface,uint32_t sid,int32_t destX,int32_t destY,struct drm_vmw_rect * clips,uint32_t num_clips)1726 int vmw_kms_present(struct vmw_private *dev_priv,
1727 struct drm_file *file_priv,
1728 struct vmw_framebuffer *vfb,
1729 struct vmw_surface *surface,
1730 uint32_t sid,
1731 int32_t destX, int32_t destY,
1732 struct drm_vmw_rect *clips,
1733 uint32_t num_clips)
1734 {
1735 int ret;
1736
1737 switch (dev_priv->active_display_unit) {
1738 case vmw_du_screen_target:
1739 ret = vmw_kms_stdu_surface_dirty(dev_priv, vfb, NULL, clips,
1740 &surface->res, destX, destY,
1741 num_clips, 1, NULL, NULL);
1742 break;
1743 case vmw_du_screen_object:
1744 ret = vmw_kms_generic_present(dev_priv, file_priv, vfb, surface,
1745 sid, destX, destY, clips,
1746 num_clips);
1747 break;
1748 default:
1749 WARN_ONCE(true,
1750 "Present called with invalid display system.\n");
1751 ret = -ENOSYS;
1752 break;
1753 }
1754 if (ret)
1755 return ret;
1756
1757 vmw_fifo_flush(dev_priv, false);
1758
1759 return 0;
1760 }
1761
1762 static void
vmw_kms_create_hotplug_mode_update_property(struct vmw_private * dev_priv)1763 vmw_kms_create_hotplug_mode_update_property(struct vmw_private *dev_priv)
1764 {
1765 if (dev_priv->hotplug_mode_update_property)
1766 return;
1767
1768 dev_priv->hotplug_mode_update_property =
1769 drm_property_create_range(dev_priv->dev,
1770 DRM_MODE_PROP_IMMUTABLE,
1771 "hotplug_mode_update", 0, 1);
1772
1773 if (!dev_priv->hotplug_mode_update_property)
1774 return;
1775
1776 }
1777
vmw_kms_init(struct vmw_private * dev_priv)1778 int vmw_kms_init(struct vmw_private *dev_priv)
1779 {
1780 struct drm_device *dev = dev_priv->dev;
1781 int ret;
1782
1783 drm_mode_config_init(dev);
1784 dev->mode_config.funcs = &vmw_kms_funcs;
1785 dev->mode_config.min_width = 1;
1786 dev->mode_config.min_height = 1;
1787 dev->mode_config.max_width = dev_priv->texture_max_width;
1788 dev->mode_config.max_height = dev_priv->texture_max_height;
1789
1790 drm_mode_create_suggested_offset_properties(dev);
1791 vmw_kms_create_hotplug_mode_update_property(dev_priv);
1792
1793 ret = vmw_kms_stdu_init_display(dev_priv);
1794 if (ret) {
1795 ret = vmw_kms_sou_init_display(dev_priv);
1796 if (ret) /* Fallback */
1797 ret = vmw_kms_ldu_init_display(dev_priv);
1798 }
1799
1800 return ret;
1801 }
1802
vmw_kms_close(struct vmw_private * dev_priv)1803 int vmw_kms_close(struct vmw_private *dev_priv)
1804 {
1805 int ret = 0;
1806
1807 /*
1808 * Docs says we should take the lock before calling this function
1809 * but since it destroys encoders and our destructor calls
1810 * drm_encoder_cleanup which takes the lock we deadlock.
1811 */
1812 drm_mode_config_cleanup(dev_priv->dev);
1813 if (dev_priv->active_display_unit == vmw_du_legacy)
1814 ret = vmw_kms_ldu_close_display(dev_priv);
1815
1816 return ret;
1817 }
1818
vmw_kms_cursor_bypass_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)1819 int vmw_kms_cursor_bypass_ioctl(struct drm_device *dev, void *data,
1820 struct drm_file *file_priv)
1821 {
1822 struct drm_vmw_cursor_bypass_arg *arg = data;
1823 struct vmw_display_unit *du;
1824 struct drm_crtc *crtc;
1825 int ret = 0;
1826
1827
1828 mutex_lock(&dev->mode_config.mutex);
1829 if (arg->flags & DRM_VMW_CURSOR_BYPASS_ALL) {
1830
1831 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1832 du = vmw_crtc_to_du(crtc);
1833 du->hotspot_x = arg->xhot;
1834 du->hotspot_y = arg->yhot;
1835 }
1836
1837 mutex_unlock(&dev->mode_config.mutex);
1838 return 0;
1839 }
1840
1841 crtc = drm_crtc_find(dev, file_priv, arg->crtc_id);
1842 if (!crtc) {
1843 ret = -ENOENT;
1844 goto out;
1845 }
1846
1847 du = vmw_crtc_to_du(crtc);
1848
1849 du->hotspot_x = arg->xhot;
1850 du->hotspot_y = arg->yhot;
1851
1852 out:
1853 mutex_unlock(&dev->mode_config.mutex);
1854
1855 return ret;
1856 }
1857
vmw_kms_write_svga(struct vmw_private * vmw_priv,unsigned width,unsigned height,unsigned pitch,unsigned bpp,unsigned depth)1858 int vmw_kms_write_svga(struct vmw_private *vmw_priv,
1859 unsigned width, unsigned height, unsigned pitch,
1860 unsigned bpp, unsigned depth)
1861 {
1862 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1863 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK, pitch);
1864 else if (vmw_fifo_have_pitchlock(vmw_priv))
1865 vmw_mmio_write(pitch, vmw_priv->mmio_virt +
1866 SVGA_FIFO_PITCHLOCK);
1867 vmw_write(vmw_priv, SVGA_REG_WIDTH, width);
1868 vmw_write(vmw_priv, SVGA_REG_HEIGHT, height);
1869 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, bpp);
1870
1871 if (vmw_read(vmw_priv, SVGA_REG_DEPTH) != depth) {
1872 DRM_ERROR("Invalid depth %u for %u bpp, host expects %u\n",
1873 depth, bpp, vmw_read(vmw_priv, SVGA_REG_DEPTH));
1874 return -EINVAL;
1875 }
1876
1877 return 0;
1878 }
1879
vmw_kms_save_vga(struct vmw_private * vmw_priv)1880 int vmw_kms_save_vga(struct vmw_private *vmw_priv)
1881 {
1882 struct vmw_vga_topology_state *save;
1883 uint32_t i;
1884
1885 vmw_priv->vga_width = vmw_read(vmw_priv, SVGA_REG_WIDTH);
1886 vmw_priv->vga_height = vmw_read(vmw_priv, SVGA_REG_HEIGHT);
1887 vmw_priv->vga_bpp = vmw_read(vmw_priv, SVGA_REG_BITS_PER_PIXEL);
1888 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1889 vmw_priv->vga_pitchlock =
1890 vmw_read(vmw_priv, SVGA_REG_PITCHLOCK);
1891 else if (vmw_fifo_have_pitchlock(vmw_priv))
1892 vmw_priv->vga_pitchlock = vmw_mmio_read(vmw_priv->mmio_virt +
1893 SVGA_FIFO_PITCHLOCK);
1894
1895 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1896 return 0;
1897
1898 vmw_priv->num_displays = vmw_read(vmw_priv,
1899 SVGA_REG_NUM_GUEST_DISPLAYS);
1900
1901 if (vmw_priv->num_displays == 0)
1902 vmw_priv->num_displays = 1;
1903
1904 for (i = 0; i < vmw_priv->num_displays; ++i) {
1905 save = &vmw_priv->vga_save[i];
1906 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1907 save->primary = vmw_read(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY);
1908 save->pos_x = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_X);
1909 save->pos_y = vmw_read(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y);
1910 save->width = vmw_read(vmw_priv, SVGA_REG_DISPLAY_WIDTH);
1911 save->height = vmw_read(vmw_priv, SVGA_REG_DISPLAY_HEIGHT);
1912 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1913 if (i == 0 && vmw_priv->num_displays == 1 &&
1914 save->width == 0 && save->height == 0) {
1915
1916 /*
1917 * It should be fairly safe to assume that these
1918 * values are uninitialized.
1919 */
1920
1921 save->width = vmw_priv->vga_width - save->pos_x;
1922 save->height = vmw_priv->vga_height - save->pos_y;
1923 }
1924 }
1925
1926 return 0;
1927 }
1928
vmw_kms_restore_vga(struct vmw_private * vmw_priv)1929 int vmw_kms_restore_vga(struct vmw_private *vmw_priv)
1930 {
1931 struct vmw_vga_topology_state *save;
1932 uint32_t i;
1933
1934 vmw_write(vmw_priv, SVGA_REG_WIDTH, vmw_priv->vga_width);
1935 vmw_write(vmw_priv, SVGA_REG_HEIGHT, vmw_priv->vga_height);
1936 vmw_write(vmw_priv, SVGA_REG_BITS_PER_PIXEL, vmw_priv->vga_bpp);
1937 if (vmw_priv->capabilities & SVGA_CAP_PITCHLOCK)
1938 vmw_write(vmw_priv, SVGA_REG_PITCHLOCK,
1939 vmw_priv->vga_pitchlock);
1940 else if (vmw_fifo_have_pitchlock(vmw_priv))
1941 vmw_mmio_write(vmw_priv->vga_pitchlock,
1942 vmw_priv->mmio_virt + SVGA_FIFO_PITCHLOCK);
1943
1944 if (!(vmw_priv->capabilities & SVGA_CAP_DISPLAY_TOPOLOGY))
1945 return 0;
1946
1947 for (i = 0; i < vmw_priv->num_displays; ++i) {
1948 save = &vmw_priv->vga_save[i];
1949 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, i);
1950 vmw_write(vmw_priv, SVGA_REG_DISPLAY_IS_PRIMARY, save->primary);
1951 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_X, save->pos_x);
1952 vmw_write(vmw_priv, SVGA_REG_DISPLAY_POSITION_Y, save->pos_y);
1953 vmw_write(vmw_priv, SVGA_REG_DISPLAY_WIDTH, save->width);
1954 vmw_write(vmw_priv, SVGA_REG_DISPLAY_HEIGHT, save->height);
1955 vmw_write(vmw_priv, SVGA_REG_DISPLAY_ID, SVGA_ID_INVALID);
1956 }
1957
1958 return 0;
1959 }
1960
vmw_kms_validate_mode_vram(struct vmw_private * dev_priv,uint32_t pitch,uint32_t height)1961 bool vmw_kms_validate_mode_vram(struct vmw_private *dev_priv,
1962 uint32_t pitch,
1963 uint32_t height)
1964 {
1965 return ((u64) pitch * (u64) height) < (u64)
1966 ((dev_priv->active_display_unit == vmw_du_screen_target) ?
1967 dev_priv->prim_bb_mem : dev_priv->vram_size);
1968 }
1969
1970
1971 /**
1972 * Function called by DRM code called with vbl_lock held.
1973 */
vmw_get_vblank_counter(struct drm_device * dev,unsigned int pipe)1974 u32 vmw_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
1975 {
1976 return 0;
1977 }
1978
1979 /**
1980 * Function called by DRM code called with vbl_lock held.
1981 */
vmw_enable_vblank(struct drm_device * dev,unsigned int pipe)1982 int vmw_enable_vblank(struct drm_device *dev, unsigned int pipe)
1983 {
1984 return -EINVAL;
1985 }
1986
1987 /**
1988 * Function called by DRM code called with vbl_lock held.
1989 */
vmw_disable_vblank(struct drm_device * dev,unsigned int pipe)1990 void vmw_disable_vblank(struct drm_device *dev, unsigned int pipe)
1991 {
1992 }
1993
1994 /**
1995 * vmw_du_update_layout - Update the display unit with topology from resolution
1996 * plugin and generate DRM uevent
1997 * @dev_priv: device private
1998 * @num_rects: number of drm_rect in rects
1999 * @rects: toplogy to update
2000 */
vmw_du_update_layout(struct vmw_private * dev_priv,unsigned int num_rects,struct drm_rect * rects)2001 static int vmw_du_update_layout(struct vmw_private *dev_priv,
2002 unsigned int num_rects, struct drm_rect *rects)
2003 {
2004 struct drm_device *dev = dev_priv->dev;
2005 struct vmw_display_unit *du;
2006 struct drm_connector *con;
2007 struct drm_connector_list_iter conn_iter;
2008
2009 /*
2010 * Currently only gui_x/y is protected with requested_layout_mutex.
2011 */
2012 mutex_lock(&dev_priv->requested_layout_mutex);
2013 drm_connector_list_iter_begin(dev, &conn_iter);
2014 drm_for_each_connector_iter(con, &conn_iter) {
2015 du = vmw_connector_to_du(con);
2016 if (num_rects > du->unit) {
2017 du->pref_width = drm_rect_width(&rects[du->unit]);
2018 du->pref_height = drm_rect_height(&rects[du->unit]);
2019 du->pref_active = true;
2020 du->gui_x = rects[du->unit].x1;
2021 du->gui_y = rects[du->unit].y1;
2022 } else {
2023 du->pref_width = 800;
2024 du->pref_height = 600;
2025 du->pref_active = false;
2026 du->gui_x = 0;
2027 du->gui_y = 0;
2028 }
2029 }
2030 drm_connector_list_iter_end(&conn_iter);
2031 mutex_unlock(&dev_priv->requested_layout_mutex);
2032
2033 mutex_lock(&dev->mode_config.mutex);
2034 list_for_each_entry(con, &dev->mode_config.connector_list, head) {
2035 du = vmw_connector_to_du(con);
2036 if (num_rects > du->unit) {
2037 drm_object_property_set_value
2038 (&con->base, dev->mode_config.suggested_x_property,
2039 du->gui_x);
2040 drm_object_property_set_value
2041 (&con->base, dev->mode_config.suggested_y_property,
2042 du->gui_y);
2043 } else {
2044 drm_object_property_set_value
2045 (&con->base, dev->mode_config.suggested_x_property,
2046 0);
2047 drm_object_property_set_value
2048 (&con->base, dev->mode_config.suggested_y_property,
2049 0);
2050 }
2051 con->status = vmw_du_connector_detect(con, true);
2052 }
2053 mutex_unlock(&dev->mode_config.mutex);
2054
2055 drm_sysfs_hotplug_event(dev);
2056
2057 return 0;
2058 }
2059
vmw_du_crtc_gamma_set(struct drm_crtc * crtc,u16 * r,u16 * g,u16 * b,uint32_t size,struct drm_modeset_acquire_ctx * ctx)2060 int vmw_du_crtc_gamma_set(struct drm_crtc *crtc,
2061 u16 *r, u16 *g, u16 *b,
2062 uint32_t size,
2063 struct drm_modeset_acquire_ctx *ctx)
2064 {
2065 struct vmw_private *dev_priv = vmw_priv(crtc->dev);
2066 int i;
2067
2068 for (i = 0; i < size; i++) {
2069 DRM_DEBUG("%d r/g/b = 0x%04x / 0x%04x / 0x%04x\n", i,
2070 r[i], g[i], b[i]);
2071 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 0, r[i] >> 8);
2072 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 1, g[i] >> 8);
2073 vmw_write(dev_priv, SVGA_PALETTE_BASE + i * 3 + 2, b[i] >> 8);
2074 }
2075
2076 return 0;
2077 }
2078
vmw_du_connector_dpms(struct drm_connector * connector,int mode)2079 int vmw_du_connector_dpms(struct drm_connector *connector, int mode)
2080 {
2081 return 0;
2082 }
2083
2084 enum drm_connector_status
vmw_du_connector_detect(struct drm_connector * connector,bool force)2085 vmw_du_connector_detect(struct drm_connector *connector, bool force)
2086 {
2087 uint32_t num_displays;
2088 struct drm_device *dev = connector->dev;
2089 struct vmw_private *dev_priv = vmw_priv(dev);
2090 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2091
2092 num_displays = vmw_read(dev_priv, SVGA_REG_NUM_DISPLAYS);
2093
2094 return ((vmw_connector_to_du(connector)->unit < num_displays &&
2095 du->pref_active) ?
2096 connector_status_connected : connector_status_disconnected);
2097 }
2098
2099 static struct drm_display_mode vmw_kms_connector_builtin[] = {
2100 /* 640x480@60Hz */
2101 { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
2102 752, 800, 0, 480, 489, 492, 525, 0,
2103 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2104 /* 800x600@60Hz */
2105 { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
2106 968, 1056, 0, 600, 601, 605, 628, 0,
2107 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2108 /* 1024x768@60Hz */
2109 { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
2110 1184, 1344, 0, 768, 771, 777, 806, 0,
2111 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
2112 /* 1152x864@75Hz */
2113 { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
2114 1344, 1600, 0, 864, 865, 868, 900, 0,
2115 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2116 /* 1280x768@60Hz */
2117 { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
2118 1472, 1664, 0, 768, 771, 778, 798, 0,
2119 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2120 /* 1280x800@60Hz */
2121 { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
2122 1480, 1680, 0, 800, 803, 809, 831, 0,
2123 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
2124 /* 1280x960@60Hz */
2125 { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
2126 1488, 1800, 0, 960, 961, 964, 1000, 0,
2127 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2128 /* 1280x1024@60Hz */
2129 { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
2130 1440, 1688, 0, 1024, 1025, 1028, 1066, 0,
2131 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2132 /* 1360x768@60Hz */
2133 { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
2134 1536, 1792, 0, 768, 771, 777, 795, 0,
2135 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2136 /* 1440x1050@60Hz */
2137 { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
2138 1632, 1864, 0, 1050, 1053, 1057, 1089, 0,
2139 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2140 /* 1440x900@60Hz */
2141 { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
2142 1672, 1904, 0, 900, 903, 909, 934, 0,
2143 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2144 /* 1600x1200@60Hz */
2145 { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
2146 1856, 2160, 0, 1200, 1201, 1204, 1250, 0,
2147 DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
2148 /* 1680x1050@60Hz */
2149 { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
2150 1960, 2240, 0, 1050, 1053, 1059, 1089, 0,
2151 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2152 /* 1792x1344@60Hz */
2153 { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
2154 2120, 2448, 0, 1344, 1345, 1348, 1394, 0,
2155 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2156 /* 1853x1392@60Hz */
2157 { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
2158 2176, 2528, 0, 1392, 1393, 1396, 1439, 0,
2159 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2160 /* 1920x1200@60Hz */
2161 { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
2162 2256, 2592, 0, 1200, 1203, 1209, 1245, 0,
2163 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2164 /* 1920x1440@60Hz */
2165 { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
2166 2256, 2600, 0, 1440, 1441, 1444, 1500, 0,
2167 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2168 /* 2560x1600@60Hz */
2169 { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
2170 3032, 3504, 0, 1600, 1603, 1609, 1658, 0,
2171 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
2172 /* Terminate */
2173 { DRM_MODE("", 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) },
2174 };
2175
2176 /**
2177 * vmw_guess_mode_timing - Provide fake timings for a
2178 * 60Hz vrefresh mode.
2179 *
2180 * @mode - Pointer to a struct drm_display_mode with hdisplay and vdisplay
2181 * members filled in.
2182 */
vmw_guess_mode_timing(struct drm_display_mode * mode)2183 void vmw_guess_mode_timing(struct drm_display_mode *mode)
2184 {
2185 mode->hsync_start = mode->hdisplay + 50;
2186 mode->hsync_end = mode->hsync_start + 50;
2187 mode->htotal = mode->hsync_end + 50;
2188
2189 mode->vsync_start = mode->vdisplay + 50;
2190 mode->vsync_end = mode->vsync_start + 50;
2191 mode->vtotal = mode->vsync_end + 50;
2192
2193 mode->clock = (u32)mode->htotal * (u32)mode->vtotal / 100 * 6;
2194 mode->vrefresh = drm_mode_vrefresh(mode);
2195 }
2196
2197
vmw_du_connector_fill_modes(struct drm_connector * connector,uint32_t max_width,uint32_t max_height)2198 int vmw_du_connector_fill_modes(struct drm_connector *connector,
2199 uint32_t max_width, uint32_t max_height)
2200 {
2201 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2202 struct drm_device *dev = connector->dev;
2203 struct vmw_private *dev_priv = vmw_priv(dev);
2204 struct drm_display_mode *mode = NULL;
2205 struct drm_display_mode *bmode;
2206 struct drm_display_mode prefmode = { DRM_MODE("preferred",
2207 DRM_MODE_TYPE_DRIVER | DRM_MODE_TYPE_PREFERRED,
2208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
2209 DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC)
2210 };
2211 int i;
2212 u32 assumed_bpp = 4;
2213
2214 if (dev_priv->assume_16bpp)
2215 assumed_bpp = 2;
2216
2217 max_width = min(max_width, dev_priv->texture_max_width);
2218 max_height = min(max_height, dev_priv->texture_max_height);
2219
2220 /*
2221 * For STDU extra limit for a mode on SVGA_REG_SCREENTARGET_MAX_WIDTH/
2222 * HEIGHT registers.
2223 */
2224 if (dev_priv->active_display_unit == vmw_du_screen_target) {
2225 max_width = min(max_width, dev_priv->stdu_max_width);
2226 max_height = min(max_height, dev_priv->stdu_max_height);
2227 }
2228
2229 /* Add preferred mode */
2230 mode = drm_mode_duplicate(dev, &prefmode);
2231 if (!mode)
2232 return 0;
2233 mode->hdisplay = du->pref_width;
2234 mode->vdisplay = du->pref_height;
2235 vmw_guess_mode_timing(mode);
2236
2237 if (vmw_kms_validate_mode_vram(dev_priv,
2238 mode->hdisplay * assumed_bpp,
2239 mode->vdisplay)) {
2240 drm_mode_probed_add(connector, mode);
2241 } else {
2242 drm_mode_destroy(dev, mode);
2243 mode = NULL;
2244 }
2245
2246 if (du->pref_mode) {
2247 list_del_init(&du->pref_mode->head);
2248 drm_mode_destroy(dev, du->pref_mode);
2249 }
2250
2251 /* mode might be null here, this is intended */
2252 du->pref_mode = mode;
2253
2254 for (i = 0; vmw_kms_connector_builtin[i].type != 0; i++) {
2255 bmode = &vmw_kms_connector_builtin[i];
2256 if (bmode->hdisplay > max_width ||
2257 bmode->vdisplay > max_height)
2258 continue;
2259
2260 if (!vmw_kms_validate_mode_vram(dev_priv,
2261 bmode->hdisplay * assumed_bpp,
2262 bmode->vdisplay))
2263 continue;
2264
2265 mode = drm_mode_duplicate(dev, bmode);
2266 if (!mode)
2267 return 0;
2268 mode->vrefresh = drm_mode_vrefresh(mode);
2269
2270 drm_mode_probed_add(connector, mode);
2271 }
2272
2273 drm_connector_list_update(connector);
2274 /* Move the prefered mode first, help apps pick the right mode. */
2275 drm_mode_sort(&connector->modes);
2276
2277 return 1;
2278 }
2279
vmw_du_connector_set_property(struct drm_connector * connector,struct drm_property * property,uint64_t val)2280 int vmw_du_connector_set_property(struct drm_connector *connector,
2281 struct drm_property *property,
2282 uint64_t val)
2283 {
2284 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2285 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2286
2287 if (property == dev_priv->implicit_placement_property)
2288 du->is_implicit = val;
2289
2290 return 0;
2291 }
2292
2293
2294
2295 /**
2296 * vmw_du_connector_atomic_set_property - Atomic version of get property
2297 *
2298 * @crtc - crtc the property is associated with
2299 *
2300 * Returns:
2301 * Zero on success, negative errno on failure.
2302 */
2303 int
vmw_du_connector_atomic_set_property(struct drm_connector * connector,struct drm_connector_state * state,struct drm_property * property,uint64_t val)2304 vmw_du_connector_atomic_set_property(struct drm_connector *connector,
2305 struct drm_connector_state *state,
2306 struct drm_property *property,
2307 uint64_t val)
2308 {
2309 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2310 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2311 struct vmw_display_unit *du = vmw_connector_to_du(connector);
2312
2313
2314 if (property == dev_priv->implicit_placement_property) {
2315 vcs->is_implicit = val;
2316
2317 /*
2318 * We should really be doing a drm_atomic_commit() to
2319 * commit the new state, but since this doesn't cause
2320 * an immedate state change, this is probably ok
2321 */
2322 du->is_implicit = vcs->is_implicit;
2323 } else {
2324 return -EINVAL;
2325 }
2326
2327 return 0;
2328 }
2329
2330
2331 /**
2332 * vmw_du_connector_atomic_get_property - Atomic version of get property
2333 *
2334 * @connector - connector the property is associated with
2335 *
2336 * Returns:
2337 * Zero on success, negative errno on failure.
2338 */
2339 int
vmw_du_connector_atomic_get_property(struct drm_connector * connector,const struct drm_connector_state * state,struct drm_property * property,uint64_t * val)2340 vmw_du_connector_atomic_get_property(struct drm_connector *connector,
2341 const struct drm_connector_state *state,
2342 struct drm_property *property,
2343 uint64_t *val)
2344 {
2345 struct vmw_private *dev_priv = vmw_priv(connector->dev);
2346 struct vmw_connector_state *vcs = vmw_connector_state_to_vcs(state);
2347
2348 if (property == dev_priv->implicit_placement_property)
2349 *val = vcs->is_implicit;
2350 else {
2351 DRM_ERROR("Invalid Property %s\n", property->name);
2352 return -EINVAL;
2353 }
2354
2355 return 0;
2356 }
2357
2358 /**
2359 * vmw_kms_update_layout_ioctl - Handler for DRM_VMW_UPDATE_LAYOUT ioctl
2360 * @dev: drm device for the ioctl
2361 * @data: data pointer for the ioctl
2362 * @file_priv: drm file for the ioctl call
2363 *
2364 * Update preferred topology of display unit as per ioctl request. The topology
2365 * is expressed as array of drm_vmw_rect.
2366 * e.g.
2367 * [0 0 640 480] [640 0 800 600] [0 480 640 480]
2368 *
2369 * NOTE:
2370 * The x and y offset (upper left) in drm_vmw_rect cannot be less than 0. Beside
2371 * device limit on topology, x + w and y + h (lower right) cannot be greater
2372 * than INT_MAX. So topology beyond these limits will return with error.
2373 *
2374 * Returns:
2375 * Zero on success, negative errno on failure.
2376 */
vmw_kms_update_layout_ioctl(struct drm_device * dev,void * data,struct drm_file * file_priv)2377 int vmw_kms_update_layout_ioctl(struct drm_device *dev, void *data,
2378 struct drm_file *file_priv)
2379 {
2380 struct vmw_private *dev_priv = vmw_priv(dev);
2381 struct drm_mode_config *mode_config = &dev->mode_config;
2382 struct drm_vmw_update_layout_arg *arg =
2383 (struct drm_vmw_update_layout_arg *)data;
2384 void __user *user_rects;
2385 struct drm_vmw_rect *rects;
2386 struct drm_rect *drm_rects;
2387 unsigned rects_size;
2388 int ret, i;
2389
2390 if (!arg->num_outputs) {
2391 struct drm_rect def_rect = {0, 0, 800, 600};
2392 vmw_du_update_layout(dev_priv, 1, &def_rect);
2393 return 0;
2394 }
2395
2396 rects_size = arg->num_outputs * sizeof(struct drm_vmw_rect);
2397 rects = kcalloc(arg->num_outputs, sizeof(struct drm_vmw_rect),
2398 GFP_KERNEL);
2399 if (unlikely(!rects))
2400 return -ENOMEM;
2401
2402 user_rects = (void __user *)(unsigned long)arg->rects;
2403 ret = copy_from_user(rects, user_rects, rects_size);
2404 if (unlikely(ret != 0)) {
2405 DRM_ERROR("Failed to get rects.\n");
2406 ret = -EFAULT;
2407 goto out_free;
2408 }
2409
2410 drm_rects = (struct drm_rect *)rects;
2411
2412 for (i = 0; i < arg->num_outputs; i++) {
2413 struct drm_vmw_rect curr_rect;
2414
2415 /* Verify user-space for overflow as kernel use drm_rect */
2416 if ((rects[i].x + rects[i].w > INT_MAX) ||
2417 (rects[i].y + rects[i].h > INT_MAX)) {
2418 ret = -ERANGE;
2419 goto out_free;
2420 }
2421
2422 curr_rect = rects[i];
2423 drm_rects[i].x1 = curr_rect.x;
2424 drm_rects[i].y1 = curr_rect.y;
2425 drm_rects[i].x2 = curr_rect.x + curr_rect.w;
2426 drm_rects[i].y2 = curr_rect.y + curr_rect.h;
2427
2428 /*
2429 * Currently this check is limiting the topology within
2430 * mode_config->max (which actually is max texture size
2431 * supported by virtual device). This limit is here to address
2432 * window managers that create a big framebuffer for whole
2433 * topology.
2434 */
2435 if (drm_rects[i].x1 < 0 || drm_rects[i].y1 < 0 ||
2436 drm_rects[i].x2 > mode_config->max_width ||
2437 drm_rects[i].y2 > mode_config->max_height) {
2438 DRM_ERROR("Invalid GUI layout.\n");
2439 ret = -EINVAL;
2440 goto out_free;
2441 }
2442 }
2443
2444 ret = vmw_kms_check_display_memory(dev, arg->num_outputs, drm_rects);
2445
2446 if (ret == 0)
2447 vmw_du_update_layout(dev_priv, arg->num_outputs, drm_rects);
2448
2449 out_free:
2450 kfree(rects);
2451 return ret;
2452 }
2453
2454 /**
2455 * vmw_kms_helper_dirty - Helper to build commands and perform actions based
2456 * on a set of cliprects and a set of display units.
2457 *
2458 * @dev_priv: Pointer to a device private structure.
2459 * @framebuffer: Pointer to the framebuffer on which to perform the actions.
2460 * @clips: A set of struct drm_clip_rect. Either this os @vclips must be NULL.
2461 * Cliprects are given in framebuffer coordinates.
2462 * @vclips: A set of struct drm_vmw_rect cliprects. Either this or @clips must
2463 * be NULL. Cliprects are given in source coordinates.
2464 * @dest_x: X coordinate offset for the crtc / destination clip rects.
2465 * @dest_y: Y coordinate offset for the crtc / destination clip rects.
2466 * @num_clips: Number of cliprects in the @clips or @vclips array.
2467 * @increment: Integer with which to increment the clip counter when looping.
2468 * Used to skip a predetermined number of clip rects.
2469 * @dirty: Closure structure. See the description of struct vmw_kms_dirty.
2470 */
vmw_kms_helper_dirty(struct vmw_private * dev_priv,struct vmw_framebuffer * framebuffer,const struct drm_clip_rect * clips,const struct drm_vmw_rect * vclips,s32 dest_x,s32 dest_y,int num_clips,int increment,struct vmw_kms_dirty * dirty)2471 int vmw_kms_helper_dirty(struct vmw_private *dev_priv,
2472 struct vmw_framebuffer *framebuffer,
2473 const struct drm_clip_rect *clips,
2474 const struct drm_vmw_rect *vclips,
2475 s32 dest_x, s32 dest_y,
2476 int num_clips,
2477 int increment,
2478 struct vmw_kms_dirty *dirty)
2479 {
2480 struct vmw_display_unit *units[VMWGFX_NUM_DISPLAY_UNITS];
2481 struct drm_crtc *crtc;
2482 u32 num_units = 0;
2483 u32 i, k;
2484
2485 dirty->dev_priv = dev_priv;
2486
2487 /* If crtc is passed, no need to iterate over other display units */
2488 if (dirty->crtc) {
2489 units[num_units++] = vmw_crtc_to_du(dirty->crtc);
2490 } else {
2491 list_for_each_entry(crtc, &dev_priv->dev->mode_config.crtc_list,
2492 head) {
2493 struct drm_plane *plane = crtc->primary;
2494
2495 if (plane->state->fb == &framebuffer->base)
2496 units[num_units++] = vmw_crtc_to_du(crtc);
2497 }
2498 }
2499
2500 for (k = 0; k < num_units; k++) {
2501 struct vmw_display_unit *unit = units[k];
2502 s32 crtc_x = unit->crtc.x;
2503 s32 crtc_y = unit->crtc.y;
2504 s32 crtc_width = unit->crtc.mode.hdisplay;
2505 s32 crtc_height = unit->crtc.mode.vdisplay;
2506 const struct drm_clip_rect *clips_ptr = clips;
2507 const struct drm_vmw_rect *vclips_ptr = vclips;
2508
2509 dirty->unit = unit;
2510 if (dirty->fifo_reserve_size > 0) {
2511 dirty->cmd = vmw_fifo_reserve(dev_priv,
2512 dirty->fifo_reserve_size);
2513 if (!dirty->cmd) {
2514 DRM_ERROR("Couldn't reserve fifo space "
2515 "for dirty blits.\n");
2516 return -ENOMEM;
2517 }
2518 memset(dirty->cmd, 0, dirty->fifo_reserve_size);
2519 }
2520 dirty->num_hits = 0;
2521 for (i = 0; i < num_clips; i++, clips_ptr += increment,
2522 vclips_ptr += increment) {
2523 s32 clip_left;
2524 s32 clip_top;
2525
2526 /*
2527 * Select clip array type. Note that integer type
2528 * in @clips is unsigned short, whereas in @vclips
2529 * it's 32-bit.
2530 */
2531 if (clips) {
2532 dirty->fb_x = (s32) clips_ptr->x1;
2533 dirty->fb_y = (s32) clips_ptr->y1;
2534 dirty->unit_x2 = (s32) clips_ptr->x2 + dest_x -
2535 crtc_x;
2536 dirty->unit_y2 = (s32) clips_ptr->y2 + dest_y -
2537 crtc_y;
2538 } else {
2539 dirty->fb_x = vclips_ptr->x;
2540 dirty->fb_y = vclips_ptr->y;
2541 dirty->unit_x2 = dirty->fb_x + vclips_ptr->w +
2542 dest_x - crtc_x;
2543 dirty->unit_y2 = dirty->fb_y + vclips_ptr->h +
2544 dest_y - crtc_y;
2545 }
2546
2547 dirty->unit_x1 = dirty->fb_x + dest_x - crtc_x;
2548 dirty->unit_y1 = dirty->fb_y + dest_y - crtc_y;
2549
2550 /* Skip this clip if it's outside the crtc region */
2551 if (dirty->unit_x1 >= crtc_width ||
2552 dirty->unit_y1 >= crtc_height ||
2553 dirty->unit_x2 <= 0 || dirty->unit_y2 <= 0)
2554 continue;
2555
2556 /* Clip right and bottom to crtc limits */
2557 dirty->unit_x2 = min_t(s32, dirty->unit_x2,
2558 crtc_width);
2559 dirty->unit_y2 = min_t(s32, dirty->unit_y2,
2560 crtc_height);
2561
2562 /* Clip left and top to crtc limits */
2563 clip_left = min_t(s32, dirty->unit_x1, 0);
2564 clip_top = min_t(s32, dirty->unit_y1, 0);
2565 dirty->unit_x1 -= clip_left;
2566 dirty->unit_y1 -= clip_top;
2567 dirty->fb_x -= clip_left;
2568 dirty->fb_y -= clip_top;
2569
2570 dirty->clip(dirty);
2571 }
2572
2573 dirty->fifo_commit(dirty);
2574 }
2575
2576 return 0;
2577 }
2578
2579 /**
2580 * vmw_kms_helper_buffer_prepare - Reserve and validate a buffer object before
2581 * command submission.
2582 *
2583 * @dev_priv. Pointer to a device private structure.
2584 * @buf: The buffer object
2585 * @interruptible: Whether to perform waits as interruptible.
2586 * @validate_as_mob: Whether the buffer should be validated as a MOB. If false,
2587 * The buffer will be validated as a GMR. Already pinned buffers will not be
2588 * validated.
2589 *
2590 * Returns 0 on success, negative error code on failure, -ERESTARTSYS if
2591 * interrupted by a signal.
2592 */
vmw_kms_helper_buffer_prepare(struct vmw_private * dev_priv,struct vmw_buffer_object * buf,bool interruptible,bool validate_as_mob,bool for_cpu_blit)2593 int vmw_kms_helper_buffer_prepare(struct vmw_private *dev_priv,
2594 struct vmw_buffer_object *buf,
2595 bool interruptible,
2596 bool validate_as_mob,
2597 bool for_cpu_blit)
2598 {
2599 struct ttm_operation_ctx ctx = {
2600 .interruptible = interruptible,
2601 .no_wait_gpu = false};
2602 struct ttm_buffer_object *bo = &buf->base;
2603 int ret;
2604
2605 ttm_bo_reserve(bo, false, false, NULL);
2606 if (for_cpu_blit)
2607 ret = ttm_bo_validate(bo, &vmw_nonfixed_placement, &ctx);
2608 else
2609 ret = vmw_validate_single_buffer(dev_priv, bo, interruptible,
2610 validate_as_mob);
2611 if (ret)
2612 ttm_bo_unreserve(bo);
2613
2614 return ret;
2615 }
2616
2617 /**
2618 * vmw_kms_helper_buffer_revert - Undo the actions of
2619 * vmw_kms_helper_buffer_prepare.
2620 *
2621 * @res: Pointer to the buffer object.
2622 *
2623 * Helper to be used if an error forces the caller to undo the actions of
2624 * vmw_kms_helper_buffer_prepare.
2625 */
vmw_kms_helper_buffer_revert(struct vmw_buffer_object * buf)2626 void vmw_kms_helper_buffer_revert(struct vmw_buffer_object *buf)
2627 {
2628 if (buf)
2629 ttm_bo_unreserve(&buf->base);
2630 }
2631
2632 /**
2633 * vmw_kms_helper_buffer_finish - Unreserve and fence a buffer object after
2634 * kms command submission.
2635 *
2636 * @dev_priv: Pointer to a device private structure.
2637 * @file_priv: Pointer to a struct drm_file representing the caller's
2638 * connection. Must be set to NULL if @user_fence_rep is NULL, and conversely
2639 * if non-NULL, @user_fence_rep must be non-NULL.
2640 * @buf: The buffer object.
2641 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2642 * ref-counted fence pointer is returned here.
2643 * @user_fence_rep: Optional pointer to a user-space provided struct
2644 * drm_vmw_fence_rep. If provided, @file_priv must also be provided and the
2645 * function copies fence data to user-space in a fail-safe manner.
2646 */
vmw_kms_helper_buffer_finish(struct vmw_private * dev_priv,struct drm_file * file_priv,struct vmw_buffer_object * buf,struct vmw_fence_obj ** out_fence,struct drm_vmw_fence_rep __user * user_fence_rep)2647 void vmw_kms_helper_buffer_finish(struct vmw_private *dev_priv,
2648 struct drm_file *file_priv,
2649 struct vmw_buffer_object *buf,
2650 struct vmw_fence_obj **out_fence,
2651 struct drm_vmw_fence_rep __user *
2652 user_fence_rep)
2653 {
2654 struct vmw_fence_obj *fence;
2655 uint32_t handle;
2656 int ret;
2657
2658 ret = vmw_execbuf_fence_commands(file_priv, dev_priv, &fence,
2659 file_priv ? &handle : NULL);
2660 if (buf)
2661 vmw_bo_fence_single(&buf->base, fence);
2662 if (file_priv)
2663 vmw_execbuf_copy_fence_user(dev_priv, vmw_fpriv(file_priv),
2664 ret, user_fence_rep, fence,
2665 handle, -1, NULL);
2666 if (out_fence)
2667 *out_fence = fence;
2668 else
2669 vmw_fence_obj_unreference(&fence);
2670
2671 vmw_kms_helper_buffer_revert(buf);
2672 }
2673
2674
2675 /**
2676 * vmw_kms_helper_resource_revert - Undo the actions of
2677 * vmw_kms_helper_resource_prepare.
2678 *
2679 * @res: Pointer to the resource. Typically a surface.
2680 *
2681 * Helper to be used if an error forces the caller to undo the actions of
2682 * vmw_kms_helper_resource_prepare.
2683 */
vmw_kms_helper_resource_revert(struct vmw_validation_ctx * ctx)2684 void vmw_kms_helper_resource_revert(struct vmw_validation_ctx *ctx)
2685 {
2686 struct vmw_resource *res = ctx->res;
2687
2688 vmw_kms_helper_buffer_revert(ctx->buf);
2689 vmw_bo_unreference(&ctx->buf);
2690 vmw_resource_unreserve(res, false, NULL, 0);
2691 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2692 }
2693
2694 /**
2695 * vmw_kms_helper_resource_prepare - Reserve and validate a resource before
2696 * command submission.
2697 *
2698 * @res: Pointer to the resource. Typically a surface.
2699 * @interruptible: Whether to perform waits as interruptible.
2700 *
2701 * Reserves and validates also the backup buffer if a guest-backed resource.
2702 * Returns 0 on success, negative error code on failure. -ERESTARTSYS if
2703 * interrupted by a signal.
2704 */
vmw_kms_helper_resource_prepare(struct vmw_resource * res,bool interruptible,struct vmw_validation_ctx * ctx)2705 int vmw_kms_helper_resource_prepare(struct vmw_resource *res,
2706 bool interruptible,
2707 struct vmw_validation_ctx *ctx)
2708 {
2709 int ret = 0;
2710
2711 ctx->buf = NULL;
2712 ctx->res = res;
2713
2714 if (interruptible)
2715 ret = mutex_lock_interruptible(&res->dev_priv->cmdbuf_mutex);
2716 else
2717 mutex_lock(&res->dev_priv->cmdbuf_mutex);
2718
2719 if (unlikely(ret != 0))
2720 return -ERESTARTSYS;
2721
2722 ret = vmw_resource_reserve(res, interruptible, false);
2723 if (ret)
2724 goto out_unlock;
2725
2726 if (res->backup) {
2727 ret = vmw_kms_helper_buffer_prepare(res->dev_priv, res->backup,
2728 interruptible,
2729 res->dev_priv->has_mob,
2730 false);
2731 if (ret)
2732 goto out_unreserve;
2733
2734 ctx->buf = vmw_bo_reference(res->backup);
2735 }
2736 ret = vmw_resource_validate(res);
2737 if (ret)
2738 goto out_revert;
2739 return 0;
2740
2741 out_revert:
2742 vmw_kms_helper_buffer_revert(ctx->buf);
2743 out_unreserve:
2744 vmw_resource_unreserve(res, false, NULL, 0);
2745 out_unlock:
2746 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2747 return ret;
2748 }
2749
2750 /**
2751 * vmw_kms_helper_resource_finish - Unreserve and fence a resource after
2752 * kms command submission.
2753 *
2754 * @res: Pointer to the resource. Typically a surface.
2755 * @out_fence: Optional pointer to a fence pointer. If non-NULL, a
2756 * ref-counted fence pointer is returned here.
2757 */
vmw_kms_helper_resource_finish(struct vmw_validation_ctx * ctx,struct vmw_fence_obj ** out_fence)2758 void vmw_kms_helper_resource_finish(struct vmw_validation_ctx *ctx,
2759 struct vmw_fence_obj **out_fence)
2760 {
2761 struct vmw_resource *res = ctx->res;
2762
2763 if (ctx->buf || out_fence)
2764 vmw_kms_helper_buffer_finish(res->dev_priv, NULL, ctx->buf,
2765 out_fence, NULL);
2766
2767 vmw_bo_unreference(&ctx->buf);
2768 vmw_resource_unreserve(res, false, NULL, 0);
2769 mutex_unlock(&res->dev_priv->cmdbuf_mutex);
2770 }
2771
2772 /**
2773 * vmw_kms_update_proxy - Helper function to update a proxy surface from
2774 * its backing MOB.
2775 *
2776 * @res: Pointer to the surface resource
2777 * @clips: Clip rects in framebuffer (surface) space.
2778 * @num_clips: Number of clips in @clips.
2779 * @increment: Integer with which to increment the clip counter when looping.
2780 * Used to skip a predetermined number of clip rects.
2781 *
2782 * This function makes sure the proxy surface is updated from its backing MOB
2783 * using the region given by @clips. The surface resource @res and its backing
2784 * MOB needs to be reserved and validated on call.
2785 */
vmw_kms_update_proxy(struct vmw_resource * res,const struct drm_clip_rect * clips,unsigned num_clips,int increment)2786 int vmw_kms_update_proxy(struct vmw_resource *res,
2787 const struct drm_clip_rect *clips,
2788 unsigned num_clips,
2789 int increment)
2790 {
2791 struct vmw_private *dev_priv = res->dev_priv;
2792 struct drm_vmw_size *size = &vmw_res_to_srf(res)->base_size;
2793 struct {
2794 SVGA3dCmdHeader header;
2795 SVGA3dCmdUpdateGBImage body;
2796 } *cmd;
2797 SVGA3dBox *box;
2798 size_t copy_size = 0;
2799 int i;
2800
2801 if (!clips)
2802 return 0;
2803
2804 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd) * num_clips);
2805 if (!cmd) {
2806 DRM_ERROR("Couldn't reserve fifo space for proxy surface "
2807 "update.\n");
2808 return -ENOMEM;
2809 }
2810
2811 for (i = 0; i < num_clips; ++i, clips += increment, ++cmd) {
2812 box = &cmd->body.box;
2813
2814 cmd->header.id = SVGA_3D_CMD_UPDATE_GB_IMAGE;
2815 cmd->header.size = sizeof(cmd->body);
2816 cmd->body.image.sid = res->id;
2817 cmd->body.image.face = 0;
2818 cmd->body.image.mipmap = 0;
2819
2820 if (clips->x1 > size->width || clips->x2 > size->width ||
2821 clips->y1 > size->height || clips->y2 > size->height) {
2822 DRM_ERROR("Invalid clips outsize of framebuffer.\n");
2823 return -EINVAL;
2824 }
2825
2826 box->x = clips->x1;
2827 box->y = clips->y1;
2828 box->z = 0;
2829 box->w = clips->x2 - clips->x1;
2830 box->h = clips->y2 - clips->y1;
2831 box->d = 1;
2832
2833 copy_size += sizeof(*cmd);
2834 }
2835
2836 vmw_fifo_commit(dev_priv, copy_size);
2837
2838 return 0;
2839 }
2840
vmw_kms_fbdev_init_data(struct vmw_private * dev_priv,unsigned unit,u32 max_width,u32 max_height,struct drm_connector ** p_con,struct drm_crtc ** p_crtc,struct drm_display_mode ** p_mode)2841 int vmw_kms_fbdev_init_data(struct vmw_private *dev_priv,
2842 unsigned unit,
2843 u32 max_width,
2844 u32 max_height,
2845 struct drm_connector **p_con,
2846 struct drm_crtc **p_crtc,
2847 struct drm_display_mode **p_mode)
2848 {
2849 struct drm_connector *con;
2850 struct vmw_display_unit *du;
2851 struct drm_display_mode *mode;
2852 int i = 0;
2853 int ret = 0;
2854
2855 mutex_lock(&dev_priv->dev->mode_config.mutex);
2856 list_for_each_entry(con, &dev_priv->dev->mode_config.connector_list,
2857 head) {
2858 if (i == unit)
2859 break;
2860
2861 ++i;
2862 }
2863
2864 if (i != unit) {
2865 DRM_ERROR("Could not find initial display unit.\n");
2866 ret = -EINVAL;
2867 goto out_unlock;
2868 }
2869
2870 if (list_empty(&con->modes))
2871 (void) vmw_du_connector_fill_modes(con, max_width, max_height);
2872
2873 if (list_empty(&con->modes)) {
2874 DRM_ERROR("Could not find initial display mode.\n");
2875 ret = -EINVAL;
2876 goto out_unlock;
2877 }
2878
2879 du = vmw_connector_to_du(con);
2880 *p_con = con;
2881 *p_crtc = &du->crtc;
2882
2883 list_for_each_entry(mode, &con->modes, head) {
2884 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2885 break;
2886 }
2887
2888 if (mode->type & DRM_MODE_TYPE_PREFERRED)
2889 *p_mode = mode;
2890 else {
2891 WARN_ONCE(true, "Could not find initial preferred mode.\n");
2892 *p_mode = list_first_entry(&con->modes,
2893 struct drm_display_mode,
2894 head);
2895 }
2896
2897 out_unlock:
2898 mutex_unlock(&dev_priv->dev->mode_config.mutex);
2899
2900 return ret;
2901 }
2902
2903 /**
2904 * vmw_kms_del_active - unregister a crtc binding to the implicit framebuffer
2905 *
2906 * @dev_priv: Pointer to a device private struct.
2907 * @du: The display unit of the crtc.
2908 */
vmw_kms_del_active(struct vmw_private * dev_priv,struct vmw_display_unit * du)2909 void vmw_kms_del_active(struct vmw_private *dev_priv,
2910 struct vmw_display_unit *du)
2911 {
2912 mutex_lock(&dev_priv->global_kms_state_mutex);
2913 if (du->active_implicit) {
2914 if (--(dev_priv->num_implicit) == 0)
2915 dev_priv->implicit_fb = NULL;
2916 du->active_implicit = false;
2917 }
2918 mutex_unlock(&dev_priv->global_kms_state_mutex);
2919 }
2920
2921 /**
2922 * vmw_kms_add_active - register a crtc binding to an implicit framebuffer
2923 *
2924 * @vmw_priv: Pointer to a device private struct.
2925 * @du: The display unit of the crtc.
2926 * @vfb: The implicit framebuffer
2927 *
2928 * Registers a binding to an implicit framebuffer.
2929 */
vmw_kms_add_active(struct vmw_private * dev_priv,struct vmw_display_unit * du,struct vmw_framebuffer * vfb)2930 void vmw_kms_add_active(struct vmw_private *dev_priv,
2931 struct vmw_display_unit *du,
2932 struct vmw_framebuffer *vfb)
2933 {
2934 mutex_lock(&dev_priv->global_kms_state_mutex);
2935 WARN_ON_ONCE(!dev_priv->num_implicit && dev_priv->implicit_fb);
2936
2937 if (!du->active_implicit && du->is_implicit) {
2938 dev_priv->implicit_fb = vfb;
2939 du->active_implicit = true;
2940 dev_priv->num_implicit++;
2941 }
2942 mutex_unlock(&dev_priv->global_kms_state_mutex);
2943 }
2944
2945 /**
2946 * vmw_kms_screen_object_flippable - Check whether we can page-flip a crtc.
2947 *
2948 * @dev_priv: Pointer to device-private struct.
2949 * @crtc: The crtc we want to flip.
2950 *
2951 * Returns true or false depending whether it's OK to flip this crtc
2952 * based on the criterion that we must not have more than one implicit
2953 * frame-buffer at any one time.
2954 */
vmw_kms_crtc_flippable(struct vmw_private * dev_priv,struct drm_crtc * crtc)2955 bool vmw_kms_crtc_flippable(struct vmw_private *dev_priv,
2956 struct drm_crtc *crtc)
2957 {
2958 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2959 bool ret;
2960
2961 mutex_lock(&dev_priv->global_kms_state_mutex);
2962 ret = !du->is_implicit || dev_priv->num_implicit == 1;
2963 mutex_unlock(&dev_priv->global_kms_state_mutex);
2964
2965 return ret;
2966 }
2967
2968 /**
2969 * vmw_kms_update_implicit_fb - Update the implicit fb.
2970 *
2971 * @dev_priv: Pointer to device-private struct.
2972 * @crtc: The crtc the new implicit frame-buffer is bound to.
2973 */
vmw_kms_update_implicit_fb(struct vmw_private * dev_priv,struct drm_crtc * crtc)2974 void vmw_kms_update_implicit_fb(struct vmw_private *dev_priv,
2975 struct drm_crtc *crtc)
2976 {
2977 struct vmw_display_unit *du = vmw_crtc_to_du(crtc);
2978 struct drm_plane *plane = crtc->primary;
2979 struct vmw_framebuffer *vfb;
2980
2981 mutex_lock(&dev_priv->global_kms_state_mutex);
2982
2983 if (!du->is_implicit)
2984 goto out_unlock;
2985
2986 vfb = vmw_framebuffer_to_vfb(plane->state->fb);
2987 WARN_ON_ONCE(dev_priv->num_implicit != 1 &&
2988 dev_priv->implicit_fb != vfb);
2989
2990 dev_priv->implicit_fb = vfb;
2991 out_unlock:
2992 mutex_unlock(&dev_priv->global_kms_state_mutex);
2993 }
2994
2995 /**
2996 * vmw_kms_create_implicit_placement_proparty - Set up the implicit placement
2997 * property.
2998 *
2999 * @dev_priv: Pointer to a device private struct.
3000 * @immutable: Whether the property is immutable.
3001 *
3002 * Sets up the implicit placement property unless it's already set up.
3003 */
3004 void
vmw_kms_create_implicit_placement_property(struct vmw_private * dev_priv,bool immutable)3005 vmw_kms_create_implicit_placement_property(struct vmw_private *dev_priv,
3006 bool immutable)
3007 {
3008 if (dev_priv->implicit_placement_property)
3009 return;
3010
3011 dev_priv->implicit_placement_property =
3012 drm_property_create_range(dev_priv->dev,
3013 immutable ?
3014 DRM_MODE_PROP_IMMUTABLE : 0,
3015 "implicit_placement", 0, 1);
3016
3017 }
3018
3019
3020 /**
3021 * vmw_kms_set_config - Wrapper around drm_atomic_helper_set_config
3022 *
3023 * @set: The configuration to set.
3024 *
3025 * The vmwgfx Xorg driver doesn't assign the mode::type member, which
3026 * when drm_mode_set_crtcinfo is called as part of the configuration setting
3027 * causes it to return incorrect crtc dimensions causing severe problems in
3028 * the vmwgfx modesetting. So explicitly clear that member before calling
3029 * into drm_atomic_helper_set_config.
3030 */
vmw_kms_set_config(struct drm_mode_set * set,struct drm_modeset_acquire_ctx * ctx)3031 int vmw_kms_set_config(struct drm_mode_set *set,
3032 struct drm_modeset_acquire_ctx *ctx)
3033 {
3034 if (set && set->mode)
3035 set->mode->type = 0;
3036
3037 return drm_atomic_helper_set_config(set, ctx);
3038 }
3039
3040
3041 /**
3042 * vmw_kms_suspend - Save modesetting state and turn modesetting off.
3043 *
3044 * @dev: Pointer to the drm device
3045 * Return: 0 on success. Negative error code on failure.
3046 */
vmw_kms_suspend(struct drm_device * dev)3047 int vmw_kms_suspend(struct drm_device *dev)
3048 {
3049 struct vmw_private *dev_priv = vmw_priv(dev);
3050
3051 dev_priv->suspend_state = drm_atomic_helper_suspend(dev);
3052 if (IS_ERR(dev_priv->suspend_state)) {
3053 int ret = PTR_ERR(dev_priv->suspend_state);
3054
3055 DRM_ERROR("Failed kms suspend: %d\n", ret);
3056 dev_priv->suspend_state = NULL;
3057
3058 return ret;
3059 }
3060
3061 return 0;
3062 }
3063
3064
3065 /**
3066 * vmw_kms_resume - Re-enable modesetting and restore state
3067 *
3068 * @dev: Pointer to the drm device
3069 * Return: 0 on success. Negative error code on failure.
3070 *
3071 * State is resumed from a previous vmw_kms_suspend(). It's illegal
3072 * to call this function without a previous vmw_kms_suspend().
3073 */
vmw_kms_resume(struct drm_device * dev)3074 int vmw_kms_resume(struct drm_device *dev)
3075 {
3076 struct vmw_private *dev_priv = vmw_priv(dev);
3077 int ret;
3078
3079 if (WARN_ON(!dev_priv->suspend_state))
3080 return 0;
3081
3082 ret = drm_atomic_helper_resume(dev, dev_priv->suspend_state);
3083 dev_priv->suspend_state = NULL;
3084
3085 return ret;
3086 }
3087
3088 /**
3089 * vmw_kms_lost_device - Notify kms that modesetting capabilities will be lost
3090 *
3091 * @dev: Pointer to the drm device
3092 */
vmw_kms_lost_device(struct drm_device * dev)3093 void vmw_kms_lost_device(struct drm_device *dev)
3094 {
3095 drm_atomic_helper_shutdown(dev);
3096 }
3097