1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_NR_STAT,
37 };
38 
39 enum memcg_memory_event {
40 	MEMCG_LOW,
41 	MEMCG_HIGH,
42 	MEMCG_MAX,
43 	MEMCG_OOM,
44 	MEMCG_OOM_KILL,
45 	MEMCG_SWAP_HIGH,
46 	MEMCG_SWAP_MAX,
47 	MEMCG_SWAP_FAIL,
48 	MEMCG_NR_MEMORY_EVENTS,
49 };
50 
51 struct mem_cgroup_reclaim_cookie {
52 	pg_data_t *pgdat;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 
58 #define MEM_CGROUP_ID_SHIFT	16
59 #define MEM_CGROUP_ID_MAX	USHRT_MAX
60 
61 struct mem_cgroup_id {
62 	int id;
63 	refcount_t ref;
64 };
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
68  * it will be incremented by the number of pages. This counter is used
69  * to trigger some periodic events. This is straightforward and better
70  * than using jiffies etc. to handle periodic memcg event.
71  */
72 enum mem_cgroup_events_target {
73 	MEM_CGROUP_TARGET_THRESH,
74 	MEM_CGROUP_TARGET_SOFTLIMIT,
75 	MEM_CGROUP_NTARGETS,
76 };
77 
78 struct memcg_vmstats_percpu {
79 	long stat[MEMCG_NR_STAT];
80 	unsigned long events[NR_VM_EVENT_ITEMS];
81 	unsigned long nr_page_events;
82 	unsigned long targets[MEM_CGROUP_NTARGETS];
83 };
84 
85 struct mem_cgroup_reclaim_iter {
86 	struct mem_cgroup *position;
87 	/* scan generation, increased every round-trip */
88 	unsigned int generation;
89 };
90 
91 struct lruvec_stat {
92 	long count[NR_VM_NODE_STAT_ITEMS];
93 };
94 
95 /*
96  * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
97  * which have elements charged to this memcg.
98  */
99 struct memcg_shrinker_map {
100 	struct rcu_head rcu;
101 	unsigned long map[];
102 };
103 
104 /*
105  * per-node information in memory controller.
106  */
107 struct mem_cgroup_per_node {
108 	struct lruvec		lruvec;
109 
110 	/* Legacy local VM stats */
111 	struct lruvec_stat __percpu *lruvec_stat_local;
112 
113 	/* Subtree VM stats (batched updates) */
114 	struct lruvec_stat __percpu *lruvec_stat_cpu;
115 	atomic_long_t		lruvec_stat[NR_VM_NODE_STAT_ITEMS];
116 
117 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
118 
119 	struct mem_cgroup_reclaim_iter	iter;
120 
121 	struct memcg_shrinker_map __rcu	*shrinker_map;
122 
123 	struct rb_node		tree_node;	/* RB tree node */
124 	unsigned long		usage_in_excess;/* Set to the value by which */
125 						/* the soft limit is exceeded*/
126 	bool			on_tree;
127 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
128 						/* use container_of	   */
129 };
130 
131 struct mem_cgroup_threshold {
132 	struct eventfd_ctx *eventfd;
133 	unsigned long threshold;
134 };
135 
136 /* For threshold */
137 struct mem_cgroup_threshold_ary {
138 	/* An array index points to threshold just below or equal to usage. */
139 	int current_threshold;
140 	/* Size of entries[] */
141 	unsigned int size;
142 	/* Array of thresholds */
143 	struct mem_cgroup_threshold entries[];
144 };
145 
146 struct mem_cgroup_thresholds {
147 	/* Primary thresholds array */
148 	struct mem_cgroup_threshold_ary *primary;
149 	/*
150 	 * Spare threshold array.
151 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
152 	 * It must be able to store at least primary->size - 1 entries.
153 	 */
154 	struct mem_cgroup_threshold_ary *spare;
155 };
156 
157 enum memcg_kmem_state {
158 	KMEM_NONE,
159 	KMEM_ALLOCATED,
160 	KMEM_ONLINE,
161 };
162 
163 #if defined(CONFIG_SMP)
164 struct memcg_padding {
165 	char x[0];
166 } ____cacheline_internodealigned_in_smp;
167 #define MEMCG_PADDING(name)      struct memcg_padding name;
168 #else
169 #define MEMCG_PADDING(name)
170 #endif
171 
172 /*
173  * Remember four most recent foreign writebacks with dirty pages in this
174  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
175  * one in a given round, we're likely to catch it later if it keeps
176  * foreign-dirtying, so a fairly low count should be enough.
177  *
178  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
179  */
180 #define MEMCG_CGWB_FRN_CNT	4
181 
182 struct memcg_cgwb_frn {
183 	u64 bdi_id;			/* bdi->id of the foreign inode */
184 	int memcg_id;			/* memcg->css.id of foreign inode */
185 	u64 at;				/* jiffies_64 at the time of dirtying */
186 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
187 };
188 
189 /*
190  * Bucket for arbitrarily byte-sized objects charged to a memory
191  * cgroup. The bucket can be reparented in one piece when the cgroup
192  * is destroyed, without having to round up the individual references
193  * of all live memory objects in the wild.
194  */
195 struct obj_cgroup {
196 	struct percpu_ref refcnt;
197 	struct mem_cgroup *memcg;
198 	atomic_t nr_charged_bytes;
199 	union {
200 		struct list_head list;
201 		struct rcu_head rcu;
202 	};
203 };
204 
205 /*
206  * The memory controller data structure. The memory controller controls both
207  * page cache and RSS per cgroup. We would eventually like to provide
208  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209  * to help the administrator determine what knobs to tune.
210  */
211 struct mem_cgroup {
212 	struct cgroup_subsys_state css;
213 
214 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
215 	struct mem_cgroup_id id;
216 
217 	/* Accounted resources */
218 	struct page_counter memory;		/* Both v1 & v2 */
219 
220 	union {
221 		struct page_counter swap;	/* v2 only */
222 		struct page_counter memsw;	/* v1 only */
223 	};
224 
225 	/* Legacy consumer-oriented counters */
226 	struct page_counter kmem;		/* v1 only */
227 	struct page_counter tcpmem;		/* v1 only */
228 
229 	/* Range enforcement for interrupt charges */
230 	struct work_struct high_work;
231 
232 	unsigned long soft_limit;
233 
234 	/* vmpressure notifications */
235 	struct vmpressure vmpressure;
236 
237 	/*
238 	 * Should the accounting and control be hierarchical, per subtree?
239 	 */
240 	bool use_hierarchy;
241 
242 	/*
243 	 * Should the OOM killer kill all belonging tasks, had it kill one?
244 	 */
245 	bool oom_group;
246 
247 	/* protected by memcg_oom_lock */
248 	bool		oom_lock;
249 	int		under_oom;
250 
251 	int	swappiness;
252 	/* OOM-Killer disable */
253 	int		oom_kill_disable;
254 
255 	/* memory.events and memory.events.local */
256 	struct cgroup_file events_file;
257 	struct cgroup_file events_local_file;
258 
259 	/* handle for "memory.swap.events" */
260 	struct cgroup_file swap_events_file;
261 
262 	/* protect arrays of thresholds */
263 	struct mutex thresholds_lock;
264 
265 	/* thresholds for memory usage. RCU-protected */
266 	struct mem_cgroup_thresholds thresholds;
267 
268 	/* thresholds for mem+swap usage. RCU-protected */
269 	struct mem_cgroup_thresholds memsw_thresholds;
270 
271 	/* For oom notifier event fd */
272 	struct list_head oom_notify;
273 
274 	/*
275 	 * Should we move charges of a task when a task is moved into this
276 	 * mem_cgroup ? And what type of charges should we move ?
277 	 */
278 	unsigned long move_charge_at_immigrate;
279 	/* taken only while moving_account > 0 */
280 	spinlock_t		move_lock;
281 	unsigned long		move_lock_flags;
282 
283 	MEMCG_PADDING(_pad1_);
284 
285 	atomic_long_t		vmstats[MEMCG_NR_STAT];
286 	atomic_long_t		vmevents[NR_VM_EVENT_ITEMS];
287 
288 	/* memory.events */
289 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
290 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
291 
292 	unsigned long		socket_pressure;
293 
294 	/* Legacy tcp memory accounting */
295 	bool			tcpmem_active;
296 	int			tcpmem_pressure;
297 
298 #ifdef CONFIG_MEMCG_KMEM
299         /* Index in the kmem_cache->memcg_params.memcg_caches array */
300 	int kmemcg_id;
301 	enum memcg_kmem_state kmem_state;
302 	struct obj_cgroup __rcu *objcg;
303 	struct list_head objcg_list; /* list of inherited objcgs */
304 #endif
305 
306 	MEMCG_PADDING(_pad2_);
307 
308 	/*
309 	 * set > 0 if pages under this cgroup are moving to other cgroup.
310 	 */
311 	atomic_t		moving_account;
312 	struct task_struct	*move_lock_task;
313 
314 	/* Legacy local VM stats and events */
315 	struct memcg_vmstats_percpu __percpu *vmstats_local;
316 
317 	/* Subtree VM stats and events (batched updates) */
318 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
319 
320 #ifdef CONFIG_CGROUP_WRITEBACK
321 	struct list_head cgwb_list;
322 	struct wb_domain cgwb_domain;
323 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
324 #endif
325 
326 	/* List of events which userspace want to receive */
327 	struct list_head event_list;
328 	spinlock_t event_list_lock;
329 
330 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 	struct deferred_split deferred_split_queue;
332 #endif
333 
334 	struct mem_cgroup_per_node *nodeinfo[0];
335 	/* WARNING: nodeinfo must be the last member here */
336 };
337 
338 /*
339  * size of first charge trial. "32" comes from vmscan.c's magic value.
340  * TODO: maybe necessary to use big numbers in big irons.
341  */
342 #define MEMCG_CHARGE_BATCH 32U
343 
344 extern struct mem_cgroup *root_mem_cgroup;
345 
memcg_stat_item_in_bytes(int idx)346 static __always_inline bool memcg_stat_item_in_bytes(int idx)
347 {
348 	if (idx == MEMCG_PERCPU_B)
349 		return true;
350 	return vmstat_item_in_bytes(idx);
351 }
352 
mem_cgroup_is_root(struct mem_cgroup * memcg)353 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
354 {
355 	return (memcg == root_mem_cgroup);
356 }
357 
mem_cgroup_disabled(void)358 static inline bool mem_cgroup_disabled(void)
359 {
360 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
361 }
362 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,bool in_low_reclaim)363 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
364 						  struct mem_cgroup *memcg,
365 						  bool in_low_reclaim)
366 {
367 	if (mem_cgroup_disabled())
368 		return 0;
369 
370 	/*
371 	 * There is no reclaim protection applied to a targeted reclaim.
372 	 * We are special casing this specific case here because
373 	 * mem_cgroup_protected calculation is not robust enough to keep
374 	 * the protection invariant for calculated effective values for
375 	 * parallel reclaimers with different reclaim target. This is
376 	 * especially a problem for tail memcgs (as they have pages on LRU)
377 	 * which would want to have effective values 0 for targeted reclaim
378 	 * but a different value for external reclaim.
379 	 *
380 	 * Example
381 	 * Let's have global and A's reclaim in parallel:
382 	 *  |
383 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
384 	 *  |\
385 	 *  | C (low = 1G, usage = 2.5G)
386 	 *  B (low = 1G, usage = 0.5G)
387 	 *
388 	 * For the global reclaim
389 	 * A.elow = A.low
390 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
391 	 * C.elow = min(C.usage, C.low)
392 	 *
393 	 * With the effective values resetting we have A reclaim
394 	 * A.elow = 0
395 	 * B.elow = B.low
396 	 * C.elow = C.low
397 	 *
398 	 * If the global reclaim races with A's reclaim then
399 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
400 	 * is possible and reclaiming B would be violating the protection.
401 	 *
402 	 */
403 	if (root == memcg)
404 		return 0;
405 
406 	if (in_low_reclaim)
407 		return READ_ONCE(memcg->memory.emin);
408 
409 	return max(READ_ONCE(memcg->memory.emin),
410 		   READ_ONCE(memcg->memory.elow));
411 }
412 
413 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
414 				     struct mem_cgroup *memcg);
415 
mem_cgroup_supports_protection(struct mem_cgroup * memcg)416 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
417 {
418 	/*
419 	 * The root memcg doesn't account charges, and doesn't support
420 	 * protection.
421 	 */
422 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
423 
424 }
425 
mem_cgroup_below_low(struct mem_cgroup * memcg)426 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
427 {
428 	if (!mem_cgroup_supports_protection(memcg))
429 		return false;
430 
431 	return READ_ONCE(memcg->memory.elow) >=
432 		page_counter_read(&memcg->memory);
433 }
434 
mem_cgroup_below_min(struct mem_cgroup * memcg)435 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
436 {
437 	if (!mem_cgroup_supports_protection(memcg))
438 		return false;
439 
440 	return READ_ONCE(memcg->memory.emin) >=
441 		page_counter_read(&memcg->memory);
442 }
443 
444 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
445 
446 void mem_cgroup_uncharge(struct page *page);
447 void mem_cgroup_uncharge_list(struct list_head *page_list);
448 
449 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
450 
451 static struct mem_cgroup_per_node *
mem_cgroup_nodeinfo(struct mem_cgroup * memcg,int nid)452 mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
453 {
454 	return memcg->nodeinfo[nid];
455 }
456 
457 /**
458  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
459  * @memcg: memcg of the wanted lruvec
460  *
461  * Returns the lru list vector holding pages for a given @memcg &
462  * @node combination. This can be the node lruvec, if the memory
463  * controller is disabled.
464  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)465 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
466 					       struct pglist_data *pgdat)
467 {
468 	struct mem_cgroup_per_node *mz;
469 	struct lruvec *lruvec;
470 
471 	if (mem_cgroup_disabled()) {
472 		lruvec = &pgdat->__lruvec;
473 		goto out;
474 	}
475 
476 	if (!memcg)
477 		memcg = root_mem_cgroup;
478 
479 	mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
480 	lruvec = &mz->lruvec;
481 out:
482 	/*
483 	 * Since a node can be onlined after the mem_cgroup was created,
484 	 * we have to be prepared to initialize lruvec->pgdat here;
485 	 * and if offlined then reonlined, we need to reinitialize it.
486 	 */
487 	if (unlikely(lruvec->pgdat != pgdat))
488 		lruvec->pgdat = pgdat;
489 	return lruvec;
490 }
491 
492 struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
493 
494 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
495 
496 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
497 
498 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
499 
500 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)501 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
502 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
503 }
504 
obj_cgroup_tryget(struct obj_cgroup * objcg)505 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
506 {
507 	return percpu_ref_tryget(&objcg->refcnt);
508 }
509 
obj_cgroup_get(struct obj_cgroup * objcg)510 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
511 {
512 	percpu_ref_get(&objcg->refcnt);
513 }
514 
obj_cgroup_put(struct obj_cgroup * objcg)515 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
516 {
517 	percpu_ref_put(&objcg->refcnt);
518 }
519 
520 /*
521  * After the initialization objcg->memcg is always pointing at
522  * a valid memcg, but can be atomically swapped to the parent memcg.
523  *
524  * The caller must ensure that the returned memcg won't be released:
525  * e.g. acquire the rcu_read_lock or css_set_lock.
526  */
obj_cgroup_memcg(struct obj_cgroup * objcg)527 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
528 {
529 	return READ_ONCE(objcg->memcg);
530 }
531 
mem_cgroup_put(struct mem_cgroup * memcg)532 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
533 {
534 	if (memcg)
535 		css_put(&memcg->css);
536 }
537 
538 #define mem_cgroup_from_counter(counter, member)	\
539 	container_of(counter, struct mem_cgroup, member)
540 
541 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
542 				   struct mem_cgroup *,
543 				   struct mem_cgroup_reclaim_cookie *);
544 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
545 int mem_cgroup_scan_tasks(struct mem_cgroup *,
546 			  int (*)(struct task_struct *, void *), void *);
547 
mem_cgroup_id(struct mem_cgroup * memcg)548 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
549 {
550 	if (mem_cgroup_disabled())
551 		return 0;
552 
553 	return memcg->id.id;
554 }
555 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
556 
mem_cgroup_from_seq(struct seq_file * m)557 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
558 {
559 	return mem_cgroup_from_css(seq_css(m));
560 }
561 
lruvec_memcg(struct lruvec * lruvec)562 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
563 {
564 	struct mem_cgroup_per_node *mz;
565 
566 	if (mem_cgroup_disabled())
567 		return NULL;
568 
569 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
570 	return mz->memcg;
571 }
572 
573 /**
574  * parent_mem_cgroup - find the accounting parent of a memcg
575  * @memcg: memcg whose parent to find
576  *
577  * Returns the parent memcg, or NULL if this is the root or the memory
578  * controller is in legacy no-hierarchy mode.
579  */
parent_mem_cgroup(struct mem_cgroup * memcg)580 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
581 {
582 	if (!memcg->memory.parent)
583 		return NULL;
584 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
585 }
586 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)587 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
588 			      struct mem_cgroup *root)
589 {
590 	if (root == memcg)
591 		return true;
592 	if (!root->use_hierarchy)
593 		return false;
594 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
595 }
596 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)597 static inline bool mm_match_cgroup(struct mm_struct *mm,
598 				   struct mem_cgroup *memcg)
599 {
600 	struct mem_cgroup *task_memcg;
601 	bool match = false;
602 
603 	rcu_read_lock();
604 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
605 	if (task_memcg)
606 		match = mem_cgroup_is_descendant(task_memcg, memcg);
607 	rcu_read_unlock();
608 	return match;
609 }
610 
611 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
612 ino_t page_cgroup_ino(struct page *page);
613 
mem_cgroup_online(struct mem_cgroup * memcg)614 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
615 {
616 	if (mem_cgroup_disabled())
617 		return true;
618 	return !!(memcg->css.flags & CSS_ONLINE);
619 }
620 
621 /*
622  * For memory reclaim.
623  */
624 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
625 
626 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
627 		int zid, int nr_pages);
628 
629 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)630 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
631 		enum lru_list lru, int zone_idx)
632 {
633 	struct mem_cgroup_per_node *mz;
634 
635 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
636 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
637 }
638 
639 void mem_cgroup_handle_over_high(void);
640 
641 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
642 
643 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
644 
645 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
646 				struct task_struct *p);
647 
648 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
649 
mem_cgroup_enter_user_fault(void)650 static inline void mem_cgroup_enter_user_fault(void)
651 {
652 	WARN_ON(current->in_user_fault);
653 	current->in_user_fault = 1;
654 }
655 
mem_cgroup_exit_user_fault(void)656 static inline void mem_cgroup_exit_user_fault(void)
657 {
658 	WARN_ON(!current->in_user_fault);
659 	current->in_user_fault = 0;
660 }
661 
task_in_memcg_oom(struct task_struct * p)662 static inline bool task_in_memcg_oom(struct task_struct *p)
663 {
664 	return p->memcg_in_oom;
665 }
666 
667 bool mem_cgroup_oom_synchronize(bool wait);
668 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
669 					    struct mem_cgroup *oom_domain);
670 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
671 
672 #ifdef CONFIG_MEMCG_SWAP
673 extern bool cgroup_memory_noswap;
674 #endif
675 
676 struct mem_cgroup *lock_page_memcg(struct page *page);
677 void __unlock_page_memcg(struct mem_cgroup *memcg);
678 void unlock_page_memcg(struct page *page);
679 
680 /*
681  * idx can be of type enum memcg_stat_item or node_stat_item.
682  * Keep in sync with memcg_exact_page_state().
683  */
memcg_page_state(struct mem_cgroup * memcg,int idx)684 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
685 {
686 	long x = atomic_long_read(&memcg->vmstats[idx]);
687 #ifdef CONFIG_SMP
688 	if (x < 0)
689 		x = 0;
690 #endif
691 	return x;
692 }
693 
694 /*
695  * idx can be of type enum memcg_stat_item or node_stat_item.
696  * Keep in sync with memcg_exact_page_state().
697  */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)698 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
699 						   int idx)
700 {
701 	long x = 0;
702 	int cpu;
703 
704 	for_each_possible_cpu(cpu)
705 		x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
706 #ifdef CONFIG_SMP
707 	if (x < 0)
708 		x = 0;
709 #endif
710 	return x;
711 }
712 
713 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
714 
715 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)716 static inline void mod_memcg_state(struct mem_cgroup *memcg,
717 				   int idx, int val)
718 {
719 	unsigned long flags;
720 
721 	local_irq_save(flags);
722 	__mod_memcg_state(memcg, idx, val);
723 	local_irq_restore(flags);
724 }
725 
726 /**
727  * mod_memcg_page_state - update page state statistics
728  * @page: the page
729  * @idx: page state item to account
730  * @val: number of pages (positive or negative)
731  *
732  * The @page must be locked or the caller must use lock_page_memcg()
733  * to prevent double accounting when the page is concurrently being
734  * moved to another memcg:
735  *
736  *   lock_page(page) or lock_page_memcg(page)
737  *   if (TestClearPageState(page))
738  *     mod_memcg_page_state(page, state, -1);
739  *   unlock_page(page) or unlock_page_memcg(page)
740  *
741  * Kernel pages are an exception to this, since they'll never move.
742  */
__mod_memcg_page_state(struct page * page,int idx,int val)743 static inline void __mod_memcg_page_state(struct page *page,
744 					  int idx, int val)
745 {
746 	if (page->mem_cgroup)
747 		__mod_memcg_state(page->mem_cgroup, idx, val);
748 }
749 
mod_memcg_page_state(struct page * page,int idx,int val)750 static inline void mod_memcg_page_state(struct page *page,
751 					int idx, int val)
752 {
753 	if (page->mem_cgroup)
754 		mod_memcg_state(page->mem_cgroup, idx, val);
755 }
756 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)757 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
758 					      enum node_stat_item idx)
759 {
760 	struct mem_cgroup_per_node *pn;
761 	long x;
762 
763 	if (mem_cgroup_disabled())
764 		return node_page_state(lruvec_pgdat(lruvec), idx);
765 
766 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
767 	x = atomic_long_read(&pn->lruvec_stat[idx]);
768 #ifdef CONFIG_SMP
769 	if (x < 0)
770 		x = 0;
771 #endif
772 	return x;
773 }
774 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)775 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
776 						    enum node_stat_item idx)
777 {
778 	struct mem_cgroup_per_node *pn;
779 	long x = 0;
780 	int cpu;
781 
782 	if (mem_cgroup_disabled())
783 		return node_page_state(lruvec_pgdat(lruvec), idx);
784 
785 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
786 	for_each_possible_cpu(cpu)
787 		x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
788 #ifdef CONFIG_SMP
789 	if (x < 0)
790 		x = 0;
791 #endif
792 	return x;
793 }
794 
795 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
796 			      int val);
797 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
798 			int val);
799 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
800 
801 void mod_memcg_obj_state(void *p, int idx, int val);
802 
mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)803 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
804 					 int val)
805 {
806 	unsigned long flags;
807 
808 	local_irq_save(flags);
809 	__mod_lruvec_slab_state(p, idx, val);
810 	local_irq_restore(flags);
811 }
812 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)813 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
814 					  enum node_stat_item idx, int val)
815 {
816 	unsigned long flags;
817 
818 	local_irq_save(flags);
819 	__mod_memcg_lruvec_state(lruvec, idx, val);
820 	local_irq_restore(flags);
821 }
822 
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)823 static inline void mod_lruvec_state(struct lruvec *lruvec,
824 				    enum node_stat_item idx, int val)
825 {
826 	unsigned long flags;
827 
828 	local_irq_save(flags);
829 	__mod_lruvec_state(lruvec, idx, val);
830 	local_irq_restore(flags);
831 }
832 
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)833 static inline void __mod_lruvec_page_state(struct page *page,
834 					   enum node_stat_item idx, int val)
835 {
836 	struct page *head = compound_head(page); /* rmap on tail pages */
837 	pg_data_t *pgdat = page_pgdat(page);
838 	struct lruvec *lruvec;
839 
840 	/* Untracked pages have no memcg, no lruvec. Update only the node */
841 	if (!head->mem_cgroup) {
842 		__mod_node_page_state(pgdat, idx, val);
843 		return;
844 	}
845 
846 	lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
847 	__mod_lruvec_state(lruvec, idx, val);
848 }
849 
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)850 static inline void mod_lruvec_page_state(struct page *page,
851 					 enum node_stat_item idx, int val)
852 {
853 	unsigned long flags;
854 
855 	local_irq_save(flags);
856 	__mod_lruvec_page_state(page, idx, val);
857 	local_irq_restore(flags);
858 }
859 
860 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
861 						gfp_t gfp_mask,
862 						unsigned long *total_scanned);
863 
864 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
865 			  unsigned long count);
866 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)867 static inline void count_memcg_events(struct mem_cgroup *memcg,
868 				      enum vm_event_item idx,
869 				      unsigned long count)
870 {
871 	unsigned long flags;
872 
873 	local_irq_save(flags);
874 	__count_memcg_events(memcg, idx, count);
875 	local_irq_restore(flags);
876 }
877 
count_memcg_page_event(struct page * page,enum vm_event_item idx)878 static inline void count_memcg_page_event(struct page *page,
879 					  enum vm_event_item idx)
880 {
881 	if (page->mem_cgroup)
882 		count_memcg_events(page->mem_cgroup, idx, 1);
883 }
884 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)885 static inline void count_memcg_event_mm(struct mm_struct *mm,
886 					enum vm_event_item idx)
887 {
888 	struct mem_cgroup *memcg;
889 
890 	if (mem_cgroup_disabled())
891 		return;
892 
893 	rcu_read_lock();
894 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
895 	if (likely(memcg))
896 		count_memcg_events(memcg, idx, 1);
897 	rcu_read_unlock();
898 }
899 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)900 static inline void memcg_memory_event(struct mem_cgroup *memcg,
901 				      enum memcg_memory_event event)
902 {
903 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
904 			  event == MEMCG_SWAP_FAIL;
905 
906 	atomic_long_inc(&memcg->memory_events_local[event]);
907 	if (!swap_event)
908 		cgroup_file_notify(&memcg->events_local_file);
909 
910 	do {
911 		atomic_long_inc(&memcg->memory_events[event]);
912 		if (swap_event)
913 			cgroup_file_notify(&memcg->swap_events_file);
914 		else
915 			cgroup_file_notify(&memcg->events_file);
916 
917 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
918 			break;
919 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
920 			break;
921 	} while ((memcg = parent_mem_cgroup(memcg)) &&
922 		 !mem_cgroup_is_root(memcg));
923 }
924 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)925 static inline void memcg_memory_event_mm(struct mm_struct *mm,
926 					 enum memcg_memory_event event)
927 {
928 	struct mem_cgroup *memcg;
929 
930 	if (mem_cgroup_disabled())
931 		return;
932 
933 	rcu_read_lock();
934 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
935 	if (likely(memcg))
936 		memcg_memory_event(memcg, event);
937 	rcu_read_unlock();
938 }
939 
940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
941 void mem_cgroup_split_huge_fixup(struct page *head);
942 #endif
943 
944 #else /* CONFIG_MEMCG */
945 
946 #define MEM_CGROUP_ID_SHIFT	0
947 #define MEM_CGROUP_ID_MAX	0
948 
949 struct mem_cgroup;
950 
mem_cgroup_is_root(struct mem_cgroup * memcg)951 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
952 {
953 	return true;
954 }
955 
mem_cgroup_disabled(void)956 static inline bool mem_cgroup_disabled(void)
957 {
958 	return true;
959 }
960 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)961 static inline void memcg_memory_event(struct mem_cgroup *memcg,
962 				      enum memcg_memory_event event)
963 {
964 }
965 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)966 static inline void memcg_memory_event_mm(struct mm_struct *mm,
967 					 enum memcg_memory_event event)
968 {
969 }
970 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,bool in_low_reclaim)971 static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
972 						  struct mem_cgroup *memcg,
973 						  bool in_low_reclaim)
974 {
975 	return 0;
976 }
977 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)978 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
979 						   struct mem_cgroup *memcg)
980 {
981 }
982 
mem_cgroup_below_low(struct mem_cgroup * memcg)983 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
984 {
985 	return false;
986 }
987 
mem_cgroup_below_min(struct mem_cgroup * memcg)988 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
989 {
990 	return false;
991 }
992 
mem_cgroup_charge(struct page * page,struct mm_struct * mm,gfp_t gfp_mask)993 static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
994 				    gfp_t gfp_mask)
995 {
996 	return 0;
997 }
998 
mem_cgroup_uncharge(struct page * page)999 static inline void mem_cgroup_uncharge(struct page *page)
1000 {
1001 }
1002 
mem_cgroup_uncharge_list(struct list_head * page_list)1003 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1004 {
1005 }
1006 
mem_cgroup_migrate(struct page * old,struct page * new)1007 static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1008 {
1009 }
1010 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1011 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1012 					       struct pglist_data *pgdat)
1013 {
1014 	return &pgdat->__lruvec;
1015 }
1016 
mem_cgroup_page_lruvec(struct page * page,struct pglist_data * pgdat)1017 static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
1018 						    struct pglist_data *pgdat)
1019 {
1020 	return &pgdat->__lruvec;
1021 }
1022 
parent_mem_cgroup(struct mem_cgroup * memcg)1023 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1024 {
1025 	return NULL;
1026 }
1027 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1028 static inline bool mm_match_cgroup(struct mm_struct *mm,
1029 		struct mem_cgroup *memcg)
1030 {
1031 	return true;
1032 }
1033 
get_mem_cgroup_from_mm(struct mm_struct * mm)1034 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1035 {
1036 	return NULL;
1037 }
1038 
get_mem_cgroup_from_page(struct page * page)1039 static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1040 {
1041 	return NULL;
1042 }
1043 
mem_cgroup_put(struct mem_cgroup * memcg)1044 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1045 {
1046 }
1047 
1048 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1049 mem_cgroup_iter(struct mem_cgroup *root,
1050 		struct mem_cgroup *prev,
1051 		struct mem_cgroup_reclaim_cookie *reclaim)
1052 {
1053 	return NULL;
1054 }
1055 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1056 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1057 					 struct mem_cgroup *prev)
1058 {
1059 }
1060 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1061 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1062 		int (*fn)(struct task_struct *, void *), void *arg)
1063 {
1064 	return 0;
1065 }
1066 
mem_cgroup_id(struct mem_cgroup * memcg)1067 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1068 {
1069 	return 0;
1070 }
1071 
mem_cgroup_from_id(unsigned short id)1072 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1073 {
1074 	WARN_ON_ONCE(id);
1075 	/* XXX: This should always return root_mem_cgroup */
1076 	return NULL;
1077 }
1078 
mem_cgroup_from_seq(struct seq_file * m)1079 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1080 {
1081 	return NULL;
1082 }
1083 
lruvec_memcg(struct lruvec * lruvec)1084 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1085 {
1086 	return NULL;
1087 }
1088 
mem_cgroup_online(struct mem_cgroup * memcg)1089 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1090 {
1091 	return true;
1092 }
1093 
1094 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1095 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1096 		enum lru_list lru, int zone_idx)
1097 {
1098 	return 0;
1099 }
1100 
mem_cgroup_get_max(struct mem_cgroup * memcg)1101 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1102 {
1103 	return 0;
1104 }
1105 
mem_cgroup_size(struct mem_cgroup * memcg)1106 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1107 {
1108 	return 0;
1109 }
1110 
1111 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1112 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1113 {
1114 }
1115 
1116 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1117 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1118 {
1119 }
1120 
lock_page_memcg(struct page * page)1121 static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1122 {
1123 	return NULL;
1124 }
1125 
__unlock_page_memcg(struct mem_cgroup * memcg)1126 static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
1127 {
1128 }
1129 
unlock_page_memcg(struct page * page)1130 static inline void unlock_page_memcg(struct page *page)
1131 {
1132 }
1133 
mem_cgroup_handle_over_high(void)1134 static inline void mem_cgroup_handle_over_high(void)
1135 {
1136 }
1137 
mem_cgroup_enter_user_fault(void)1138 static inline void mem_cgroup_enter_user_fault(void)
1139 {
1140 }
1141 
mem_cgroup_exit_user_fault(void)1142 static inline void mem_cgroup_exit_user_fault(void)
1143 {
1144 }
1145 
task_in_memcg_oom(struct task_struct * p)1146 static inline bool task_in_memcg_oom(struct task_struct *p)
1147 {
1148 	return false;
1149 }
1150 
mem_cgroup_oom_synchronize(bool wait)1151 static inline bool mem_cgroup_oom_synchronize(bool wait)
1152 {
1153 	return false;
1154 }
1155 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1156 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1157 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1158 {
1159 	return NULL;
1160 }
1161 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1162 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1163 {
1164 }
1165 
memcg_page_state(struct mem_cgroup * memcg,int idx)1166 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1167 {
1168 	return 0;
1169 }
1170 
memcg_page_state_local(struct mem_cgroup * memcg,int idx)1171 static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1172 						   int idx)
1173 {
1174 	return 0;
1175 }
1176 
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1177 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1178 				     int idx,
1179 				     int nr)
1180 {
1181 }
1182 
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1183 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1184 				   int idx,
1185 				   int nr)
1186 {
1187 }
1188 
__mod_memcg_page_state(struct page * page,int idx,int nr)1189 static inline void __mod_memcg_page_state(struct page *page,
1190 					  int idx,
1191 					  int nr)
1192 {
1193 }
1194 
mod_memcg_page_state(struct page * page,int idx,int nr)1195 static inline void mod_memcg_page_state(struct page *page,
1196 					int idx,
1197 					int nr)
1198 {
1199 }
1200 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1201 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1202 					      enum node_stat_item idx)
1203 {
1204 	return node_page_state(lruvec_pgdat(lruvec), idx);
1205 }
1206 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1207 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1208 						    enum node_stat_item idx)
1209 {
1210 	return node_page_state(lruvec_pgdat(lruvec), idx);
1211 }
1212 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1213 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1214 					    enum node_stat_item idx, int val)
1215 {
1216 }
1217 
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1218 static inline void __mod_lruvec_state(struct lruvec *lruvec,
1219 				      enum node_stat_item idx, int val)
1220 {
1221 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1222 }
1223 
mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1224 static inline void mod_lruvec_state(struct lruvec *lruvec,
1225 				    enum node_stat_item idx, int val)
1226 {
1227 	mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1228 }
1229 
__mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1230 static inline void __mod_lruvec_page_state(struct page *page,
1231 					   enum node_stat_item idx, int val)
1232 {
1233 	__mod_node_page_state(page_pgdat(page), idx, val);
1234 }
1235 
mod_lruvec_page_state(struct page * page,enum node_stat_item idx,int val)1236 static inline void mod_lruvec_page_state(struct page *page,
1237 					 enum node_stat_item idx, int val)
1238 {
1239 	mod_node_page_state(page_pgdat(page), idx, val);
1240 }
1241 
__mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)1242 static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1243 					   int val)
1244 {
1245 	struct page *page = virt_to_head_page(p);
1246 
1247 	__mod_node_page_state(page_pgdat(page), idx, val);
1248 }
1249 
mod_lruvec_slab_state(void * p,enum node_stat_item idx,int val)1250 static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1251 					 int val)
1252 {
1253 	struct page *page = virt_to_head_page(p);
1254 
1255 	mod_node_page_state(page_pgdat(page), idx, val);
1256 }
1257 
mod_memcg_obj_state(void * p,int idx,int val)1258 static inline void mod_memcg_obj_state(void *p, int idx, int val)
1259 {
1260 }
1261 
1262 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1263 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1264 					    gfp_t gfp_mask,
1265 					    unsigned long *total_scanned)
1266 {
1267 	return 0;
1268 }
1269 
mem_cgroup_split_huge_fixup(struct page * head)1270 static inline void mem_cgroup_split_huge_fixup(struct page *head)
1271 {
1272 }
1273 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1274 static inline void count_memcg_events(struct mem_cgroup *memcg,
1275 				      enum vm_event_item idx,
1276 				      unsigned long count)
1277 {
1278 }
1279 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1280 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1281 					enum vm_event_item idx,
1282 					unsigned long count)
1283 {
1284 }
1285 
count_memcg_page_event(struct page * page,int idx)1286 static inline void count_memcg_page_event(struct page *page,
1287 					  int idx)
1288 {
1289 }
1290 
1291 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1292 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1293 {
1294 }
1295 #endif /* CONFIG_MEMCG */
1296 
1297 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_state(struct mem_cgroup * memcg,int idx)1298 static inline void __inc_memcg_state(struct mem_cgroup *memcg,
1299 				     int idx)
1300 {
1301 	__mod_memcg_state(memcg, idx, 1);
1302 }
1303 
1304 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_state(struct mem_cgroup * memcg,int idx)1305 static inline void __dec_memcg_state(struct mem_cgroup *memcg,
1306 				     int idx)
1307 {
1308 	__mod_memcg_state(memcg, idx, -1);
1309 }
1310 
1311 /* idx can be of type enum memcg_stat_item or node_stat_item */
__inc_memcg_page_state(struct page * page,int idx)1312 static inline void __inc_memcg_page_state(struct page *page,
1313 					  int idx)
1314 {
1315 	__mod_memcg_page_state(page, idx, 1);
1316 }
1317 
1318 /* idx can be of type enum memcg_stat_item or node_stat_item */
__dec_memcg_page_state(struct page * page,int idx)1319 static inline void __dec_memcg_page_state(struct page *page,
1320 					  int idx)
1321 {
1322 	__mod_memcg_page_state(page, idx, -1);
1323 }
1324 
__inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1325 static inline void __inc_lruvec_state(struct lruvec *lruvec,
1326 				      enum node_stat_item idx)
1327 {
1328 	__mod_lruvec_state(lruvec, idx, 1);
1329 }
1330 
__dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1331 static inline void __dec_lruvec_state(struct lruvec *lruvec,
1332 				      enum node_stat_item idx)
1333 {
1334 	__mod_lruvec_state(lruvec, idx, -1);
1335 }
1336 
__inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1337 static inline void __inc_lruvec_page_state(struct page *page,
1338 					   enum node_stat_item idx)
1339 {
1340 	__mod_lruvec_page_state(page, idx, 1);
1341 }
1342 
__dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1343 static inline void __dec_lruvec_page_state(struct page *page,
1344 					   enum node_stat_item idx)
1345 {
1346 	__mod_lruvec_page_state(page, idx, -1);
1347 }
1348 
__inc_lruvec_slab_state(void * p,enum node_stat_item idx)1349 static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1350 {
1351 	__mod_lruvec_slab_state(p, idx, 1);
1352 }
1353 
__dec_lruvec_slab_state(void * p,enum node_stat_item idx)1354 static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1355 {
1356 	__mod_lruvec_slab_state(p, idx, -1);
1357 }
1358 
1359 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_state(struct mem_cgroup * memcg,int idx)1360 static inline void inc_memcg_state(struct mem_cgroup *memcg,
1361 				   int idx)
1362 {
1363 	mod_memcg_state(memcg, idx, 1);
1364 }
1365 
1366 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_state(struct mem_cgroup * memcg,int idx)1367 static inline void dec_memcg_state(struct mem_cgroup *memcg,
1368 				   int idx)
1369 {
1370 	mod_memcg_state(memcg, idx, -1);
1371 }
1372 
1373 /* idx can be of type enum memcg_stat_item or node_stat_item */
inc_memcg_page_state(struct page * page,int idx)1374 static inline void inc_memcg_page_state(struct page *page,
1375 					int idx)
1376 {
1377 	mod_memcg_page_state(page, idx, 1);
1378 }
1379 
1380 /* idx can be of type enum memcg_stat_item or node_stat_item */
dec_memcg_page_state(struct page * page,int idx)1381 static inline void dec_memcg_page_state(struct page *page,
1382 					int idx)
1383 {
1384 	mod_memcg_page_state(page, idx, -1);
1385 }
1386 
inc_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1387 static inline void inc_lruvec_state(struct lruvec *lruvec,
1388 				    enum node_stat_item idx)
1389 {
1390 	mod_lruvec_state(lruvec, idx, 1);
1391 }
1392 
dec_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx)1393 static inline void dec_lruvec_state(struct lruvec *lruvec,
1394 				    enum node_stat_item idx)
1395 {
1396 	mod_lruvec_state(lruvec, idx, -1);
1397 }
1398 
inc_lruvec_page_state(struct page * page,enum node_stat_item idx)1399 static inline void inc_lruvec_page_state(struct page *page,
1400 					 enum node_stat_item idx)
1401 {
1402 	mod_lruvec_page_state(page, idx, 1);
1403 }
1404 
dec_lruvec_page_state(struct page * page,enum node_stat_item idx)1405 static inline void dec_lruvec_page_state(struct page *page,
1406 					 enum node_stat_item idx)
1407 {
1408 	mod_lruvec_page_state(page, idx, -1);
1409 }
1410 
parent_lruvec(struct lruvec * lruvec)1411 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1412 {
1413 	struct mem_cgroup *memcg;
1414 
1415 	memcg = lruvec_memcg(lruvec);
1416 	if (!memcg)
1417 		return NULL;
1418 	memcg = parent_mem_cgroup(memcg);
1419 	if (!memcg)
1420 		return NULL;
1421 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1422 }
1423 
1424 #ifdef CONFIG_CGROUP_WRITEBACK
1425 
1426 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1427 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1428 			 unsigned long *pheadroom, unsigned long *pdirty,
1429 			 unsigned long *pwriteback);
1430 
1431 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1432 					     struct bdi_writeback *wb);
1433 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1434 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1435 						  struct bdi_writeback *wb)
1436 {
1437 	if (mem_cgroup_disabled())
1438 		return;
1439 
1440 	if (unlikely(&page->mem_cgroup->css != wb->memcg_css))
1441 		mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1442 }
1443 
1444 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1445 
1446 #else	/* CONFIG_CGROUP_WRITEBACK */
1447 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1448 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1449 {
1450 	return NULL;
1451 }
1452 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1453 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1454 				       unsigned long *pfilepages,
1455 				       unsigned long *pheadroom,
1456 				       unsigned long *pdirty,
1457 				       unsigned long *pwriteback)
1458 {
1459 }
1460 
mem_cgroup_track_foreign_dirty(struct page * page,struct bdi_writeback * wb)1461 static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1462 						  struct bdi_writeback *wb)
1463 {
1464 }
1465 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1466 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1467 {
1468 }
1469 
1470 #endif	/* CONFIG_CGROUP_WRITEBACK */
1471 
1472 struct sock;
1473 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1474 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1475 #ifdef CONFIG_MEMCG
1476 extern struct static_key_false memcg_sockets_enabled_key;
1477 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1478 void mem_cgroup_sk_alloc(struct sock *sk);
1479 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1480 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1481 {
1482 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1483 		return true;
1484 	do {
1485 		if (time_before(jiffies, memcg->socket_pressure))
1486 			return true;
1487 	} while ((memcg = parent_mem_cgroup(memcg)));
1488 	return false;
1489 }
1490 
1491 extern int memcg_expand_shrinker_maps(int new_id);
1492 
1493 extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1494 				   int nid, int shrinker_id);
1495 #else
1496 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1497 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1498 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1499 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1500 {
1501 	return false;
1502 }
1503 
memcg_set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1504 static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1505 					  int nid, int shrinker_id)
1506 {
1507 }
1508 #endif
1509 
1510 #ifdef CONFIG_MEMCG_KMEM
1511 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1512 			unsigned int nr_pages);
1513 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
1514 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1515 void __memcg_kmem_uncharge_page(struct page *page, int order);
1516 
1517 struct obj_cgroup *get_obj_cgroup_from_current(void);
1518 
1519 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1520 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1521 
1522 extern struct static_key_false memcg_kmem_enabled_key;
1523 
1524 extern int memcg_nr_cache_ids;
1525 void memcg_get_cache_ids(void);
1526 void memcg_put_cache_ids(void);
1527 
1528 /*
1529  * Helper macro to loop through all memcg-specific caches. Callers must still
1530  * check if the cache is valid (it is either valid or NULL).
1531  * the slab_mutex must be held when looping through those caches
1532  */
1533 #define for_each_memcg_cache_index(_idx)	\
1534 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1535 
memcg_kmem_enabled(void)1536 static inline bool memcg_kmem_enabled(void)
1537 {
1538 	return static_branch_likely(&memcg_kmem_enabled_key);
1539 }
1540 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1541 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1542 					 int order)
1543 {
1544 	if (memcg_kmem_enabled())
1545 		return __memcg_kmem_charge_page(page, gfp, order);
1546 	return 0;
1547 }
1548 
memcg_kmem_uncharge_page(struct page * page,int order)1549 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1550 {
1551 	if (memcg_kmem_enabled())
1552 		__memcg_kmem_uncharge_page(page, order);
1553 }
1554 
memcg_kmem_charge(struct mem_cgroup * memcg,gfp_t gfp,unsigned int nr_pages)1555 static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1556 				    unsigned int nr_pages)
1557 {
1558 	if (memcg_kmem_enabled())
1559 		return __memcg_kmem_charge(memcg, gfp, nr_pages);
1560 	return 0;
1561 }
1562 
memcg_kmem_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1563 static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1564 				       unsigned int nr_pages)
1565 {
1566 	if (memcg_kmem_enabled())
1567 		__memcg_kmem_uncharge(memcg, nr_pages);
1568 }
1569 
1570 /*
1571  * helper for accessing a memcg's index. It will be used as an index in the
1572  * child cache array in kmem_cache, and also to derive its name. This function
1573  * will return -1 when this is not a kmem-limited memcg.
1574  */
memcg_cache_id(struct mem_cgroup * memcg)1575 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1576 {
1577 	return memcg ? memcg->kmemcg_id : -1;
1578 }
1579 
1580 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1581 
1582 #else
1583 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1584 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1585 					 int order)
1586 {
1587 	return 0;
1588 }
1589 
memcg_kmem_uncharge_page(struct page * page,int order)1590 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1591 {
1592 }
1593 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1594 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1595 					   int order)
1596 {
1597 	return 0;
1598 }
1599 
__memcg_kmem_uncharge_page(struct page * page,int order)1600 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1601 {
1602 }
1603 
1604 #define for_each_memcg_cache_index(_idx)	\
1605 	for (; NULL; )
1606 
memcg_kmem_enabled(void)1607 static inline bool memcg_kmem_enabled(void)
1608 {
1609 	return false;
1610 }
1611 
memcg_cache_id(struct mem_cgroup * memcg)1612 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1613 {
1614 	return -1;
1615 }
1616 
memcg_get_cache_ids(void)1617 static inline void memcg_get_cache_ids(void)
1618 {
1619 }
1620 
memcg_put_cache_ids(void)1621 static inline void memcg_put_cache_ids(void)
1622 {
1623 }
1624 
mem_cgroup_from_obj(void * p)1625 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1626 {
1627        return NULL;
1628 }
1629 
1630 #endif /* CONFIG_MEMCG_KMEM */
1631 
1632 #endif /* _LINUX_MEMCONTROL_H */
1633