1 /*
2  * VME Bridge Framework
3  *
4  * Author: Martyn Welch <martyn.welch@ge.com>
5  * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
6  *
7  * Based on work by Tom Armistead and Ajit Prem
8  * Copyright 2004 Motorola Inc.
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15 
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/pci.h>
23 #include <linux/poll.h>
24 #include <linux/highmem.h>
25 #include <linux/interrupt.h>
26 #include <linux/pagemap.h>
27 #include <linux/device.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/syscalls.h>
30 #include <linux/mutex.h>
31 #include <linux/spinlock.h>
32 #include <linux/slab.h>
33 #include <linux/vme.h>
34 
35 #include "vme_bridge.h"
36 
37 /* Bitmask and list of registered buses both protected by common mutex */
38 static unsigned int vme_bus_numbers;
39 static LIST_HEAD(vme_bus_list);
40 static DEFINE_MUTEX(vme_buses_lock);
41 
42 static int __init vme_init(void);
43 
dev_to_vme_dev(struct device * dev)44 static struct vme_dev *dev_to_vme_dev(struct device *dev)
45 {
46 	return container_of(dev, struct vme_dev, dev);
47 }
48 
49 /*
50  * Find the bridge that the resource is associated with.
51  */
find_bridge(struct vme_resource * resource)52 static struct vme_bridge *find_bridge(struct vme_resource *resource)
53 {
54 	/* Get list to search */
55 	switch (resource->type) {
56 	case VME_MASTER:
57 		return list_entry(resource->entry, struct vme_master_resource,
58 			list)->parent;
59 		break;
60 	case VME_SLAVE:
61 		return list_entry(resource->entry, struct vme_slave_resource,
62 			list)->parent;
63 		break;
64 	case VME_DMA:
65 		return list_entry(resource->entry, struct vme_dma_resource,
66 			list)->parent;
67 		break;
68 	case VME_LM:
69 		return list_entry(resource->entry, struct vme_lm_resource,
70 			list)->parent;
71 		break;
72 	default:
73 		printk(KERN_ERR "Unknown resource type\n");
74 		return NULL;
75 		break;
76 	}
77 }
78 
79 /**
80  * vme_free_consistent - Allocate contiguous memory.
81  * @resource: Pointer to VME resource.
82  * @size: Size of allocation required.
83  * @dma: Pointer to variable to store physical address of allocation.
84  *
85  * Allocate a contiguous block of memory for use by the driver. This is used to
86  * create the buffers for the slave windows.
87  *
88  * Return: Virtual address of allocation on success, NULL on failure.
89  */
vme_alloc_consistent(struct vme_resource * resource,size_t size,dma_addr_t * dma)90 void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
91 	dma_addr_t *dma)
92 {
93 	struct vme_bridge *bridge;
94 
95 	if (!resource) {
96 		printk(KERN_ERR "No resource\n");
97 		return NULL;
98 	}
99 
100 	bridge = find_bridge(resource);
101 	if (!bridge) {
102 		printk(KERN_ERR "Can't find bridge\n");
103 		return NULL;
104 	}
105 
106 	if (!bridge->parent) {
107 		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
108 		return NULL;
109 	}
110 
111 	if (!bridge->alloc_consistent) {
112 		printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
113 		       bridge->name);
114 		return NULL;
115 	}
116 
117 	return bridge->alloc_consistent(bridge->parent, size, dma);
118 }
119 EXPORT_SYMBOL(vme_alloc_consistent);
120 
121 /**
122  * vme_free_consistent - Free previously allocated memory.
123  * @resource: Pointer to VME resource.
124  * @size: Size of allocation to free.
125  * @vaddr: Virtual address of allocation.
126  * @dma: Physical address of allocation.
127  *
128  * Free previously allocated block of contiguous memory.
129  */
vme_free_consistent(struct vme_resource * resource,size_t size,void * vaddr,dma_addr_t dma)130 void vme_free_consistent(struct vme_resource *resource, size_t size,
131 	void *vaddr, dma_addr_t dma)
132 {
133 	struct vme_bridge *bridge;
134 
135 	if (!resource) {
136 		printk(KERN_ERR "No resource\n");
137 		return;
138 	}
139 
140 	bridge = find_bridge(resource);
141 	if (!bridge) {
142 		printk(KERN_ERR "Can't find bridge\n");
143 		return;
144 	}
145 
146 	if (!bridge->parent) {
147 		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
148 		return;
149 	}
150 
151 	if (!bridge->free_consistent) {
152 		printk(KERN_ERR "free_consistent not supported by bridge %s\n",
153 		       bridge->name);
154 		return;
155 	}
156 
157 	bridge->free_consistent(bridge->parent, size, vaddr, dma);
158 }
159 EXPORT_SYMBOL(vme_free_consistent);
160 
161 /**
162  * vme_get_size - Helper function returning size of a VME window
163  * @resource: Pointer to VME slave or master resource.
164  *
165  * Determine the size of the VME window provided. This is a helper
166  * function, wrappering the call to vme_master_get or vme_slave_get
167  * depending on the type of window resource handed to it.
168  *
169  * Return: Size of the window on success, zero on failure.
170  */
vme_get_size(struct vme_resource * resource)171 size_t vme_get_size(struct vme_resource *resource)
172 {
173 	int enabled, retval;
174 	unsigned long long base, size;
175 	dma_addr_t buf_base;
176 	u32 aspace, cycle, dwidth;
177 
178 	switch (resource->type) {
179 	case VME_MASTER:
180 		retval = vme_master_get(resource, &enabled, &base, &size,
181 			&aspace, &cycle, &dwidth);
182 		if (retval)
183 			return 0;
184 
185 		return size;
186 		break;
187 	case VME_SLAVE:
188 		retval = vme_slave_get(resource, &enabled, &base, &size,
189 			&buf_base, &aspace, &cycle);
190 		if (retval)
191 			return 0;
192 
193 		return size;
194 		break;
195 	case VME_DMA:
196 		return 0;
197 		break;
198 	default:
199 		printk(KERN_ERR "Unknown resource type\n");
200 		return 0;
201 		break;
202 	}
203 }
204 EXPORT_SYMBOL(vme_get_size);
205 
vme_check_window(u32 aspace,unsigned long long vme_base,unsigned long long size)206 int vme_check_window(u32 aspace, unsigned long long vme_base,
207 		     unsigned long long size)
208 {
209 	int retval = 0;
210 
211 	if (vme_base + size < size)
212 		return -EINVAL;
213 
214 	switch (aspace) {
215 	case VME_A16:
216 		if (vme_base + size > VME_A16_MAX)
217 			retval = -EFAULT;
218 		break;
219 	case VME_A24:
220 		if (vme_base + size > VME_A24_MAX)
221 			retval = -EFAULT;
222 		break;
223 	case VME_A32:
224 		if (vme_base + size > VME_A32_MAX)
225 			retval = -EFAULT;
226 		break;
227 	case VME_A64:
228 		/* The VME_A64_MAX limit is actually U64_MAX + 1 */
229 		break;
230 	case VME_CRCSR:
231 		if (vme_base + size > VME_CRCSR_MAX)
232 			retval = -EFAULT;
233 		break;
234 	case VME_USER1:
235 	case VME_USER2:
236 	case VME_USER3:
237 	case VME_USER4:
238 		/* User Defined */
239 		break;
240 	default:
241 		printk(KERN_ERR "Invalid address space\n");
242 		retval = -EINVAL;
243 		break;
244 	}
245 
246 	return retval;
247 }
248 EXPORT_SYMBOL(vme_check_window);
249 
vme_get_aspace(int am)250 static u32 vme_get_aspace(int am)
251 {
252 	switch (am) {
253 	case 0x29:
254 	case 0x2D:
255 		return VME_A16;
256 	case 0x38:
257 	case 0x39:
258 	case 0x3A:
259 	case 0x3B:
260 	case 0x3C:
261 	case 0x3D:
262 	case 0x3E:
263 	case 0x3F:
264 		return VME_A24;
265 	case 0x8:
266 	case 0x9:
267 	case 0xA:
268 	case 0xB:
269 	case 0xC:
270 	case 0xD:
271 	case 0xE:
272 	case 0xF:
273 		return VME_A32;
274 	case 0x0:
275 	case 0x1:
276 	case 0x3:
277 		return VME_A64;
278 	}
279 
280 	return 0;
281 }
282 
283 /**
284  * vme_slave_request - Request a VME slave window resource.
285  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
286  * @address: Required VME address space.
287  * @cycle: Required VME data transfer cycle type.
288  *
289  * Request use of a VME window resource capable of being set for the requested
290  * address space and data transfer cycle.
291  *
292  * Return: Pointer to VME resource on success, NULL on failure.
293  */
vme_slave_request(struct vme_dev * vdev,u32 address,u32 cycle)294 struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
295 	u32 cycle)
296 {
297 	struct vme_bridge *bridge;
298 	struct list_head *slave_pos = NULL;
299 	struct vme_slave_resource *allocated_image = NULL;
300 	struct vme_slave_resource *slave_image = NULL;
301 	struct vme_resource *resource = NULL;
302 
303 	bridge = vdev->bridge;
304 	if (!bridge) {
305 		printk(KERN_ERR "Can't find VME bus\n");
306 		goto err_bus;
307 	}
308 
309 	/* Loop through slave resources */
310 	list_for_each(slave_pos, &bridge->slave_resources) {
311 		slave_image = list_entry(slave_pos,
312 			struct vme_slave_resource, list);
313 
314 		if (!slave_image) {
315 			printk(KERN_ERR "Registered NULL Slave resource\n");
316 			continue;
317 		}
318 
319 		/* Find an unlocked and compatible image */
320 		mutex_lock(&slave_image->mtx);
321 		if (((slave_image->address_attr & address) == address) &&
322 			((slave_image->cycle_attr & cycle) == cycle) &&
323 			(slave_image->locked == 0)) {
324 
325 			slave_image->locked = 1;
326 			mutex_unlock(&slave_image->mtx);
327 			allocated_image = slave_image;
328 			break;
329 		}
330 		mutex_unlock(&slave_image->mtx);
331 	}
332 
333 	/* No free image */
334 	if (!allocated_image)
335 		goto err_image;
336 
337 	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
338 	if (!resource)
339 		goto err_alloc;
340 
341 	resource->type = VME_SLAVE;
342 	resource->entry = &allocated_image->list;
343 
344 	return resource;
345 
346 err_alloc:
347 	/* Unlock image */
348 	mutex_lock(&slave_image->mtx);
349 	slave_image->locked = 0;
350 	mutex_unlock(&slave_image->mtx);
351 err_image:
352 err_bus:
353 	return NULL;
354 }
355 EXPORT_SYMBOL(vme_slave_request);
356 
357 /**
358  * vme_slave_set - Set VME slave window configuration.
359  * @resource: Pointer to VME slave resource.
360  * @enabled: State to which the window should be configured.
361  * @vme_base: Base address for the window.
362  * @size: Size of the VME window.
363  * @buf_base: Based address of buffer used to provide VME slave window storage.
364  * @aspace: VME address space for the VME window.
365  * @cycle: VME data transfer cycle type for the VME window.
366  *
367  * Set configuration for provided VME slave window.
368  *
369  * Return: Zero on success, -EINVAL if operation is not supported on this
370  *         device, if an invalid resource has been provided or invalid
371  *         attributes are provided. Hardware specific errors may also be
372  *         returned.
373  */
vme_slave_set(struct vme_resource * resource,int enabled,unsigned long long vme_base,unsigned long long size,dma_addr_t buf_base,u32 aspace,u32 cycle)374 int vme_slave_set(struct vme_resource *resource, int enabled,
375 	unsigned long long vme_base, unsigned long long size,
376 	dma_addr_t buf_base, u32 aspace, u32 cycle)
377 {
378 	struct vme_bridge *bridge = find_bridge(resource);
379 	struct vme_slave_resource *image;
380 	int retval;
381 
382 	if (resource->type != VME_SLAVE) {
383 		printk(KERN_ERR "Not a slave resource\n");
384 		return -EINVAL;
385 	}
386 
387 	image = list_entry(resource->entry, struct vme_slave_resource, list);
388 
389 	if (!bridge->slave_set) {
390 		printk(KERN_ERR "Function not supported\n");
391 		return -ENOSYS;
392 	}
393 
394 	if (!(((image->address_attr & aspace) == aspace) &&
395 		((image->cycle_attr & cycle) == cycle))) {
396 		printk(KERN_ERR "Invalid attributes\n");
397 		return -EINVAL;
398 	}
399 
400 	retval = vme_check_window(aspace, vme_base, size);
401 	if (retval)
402 		return retval;
403 
404 	return bridge->slave_set(image, enabled, vme_base, size, buf_base,
405 		aspace, cycle);
406 }
407 EXPORT_SYMBOL(vme_slave_set);
408 
409 /**
410  * vme_slave_get - Retrieve VME slave window configuration.
411  * @resource: Pointer to VME slave resource.
412  * @enabled: Pointer to variable for storing state.
413  * @vme_base: Pointer to variable for storing window base address.
414  * @size: Pointer to variable for storing window size.
415  * @buf_base: Pointer to variable for storing slave buffer base address.
416  * @aspace: Pointer to variable for storing VME address space.
417  * @cycle: Pointer to variable for storing VME data transfer cycle type.
418  *
419  * Return configuration for provided VME slave window.
420  *
421  * Return: Zero on success, -EINVAL if operation is not supported on this
422  *         device or if an invalid resource has been provided.
423  */
vme_slave_get(struct vme_resource * resource,int * enabled,unsigned long long * vme_base,unsigned long long * size,dma_addr_t * buf_base,u32 * aspace,u32 * cycle)424 int vme_slave_get(struct vme_resource *resource, int *enabled,
425 	unsigned long long *vme_base, unsigned long long *size,
426 	dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
427 {
428 	struct vme_bridge *bridge = find_bridge(resource);
429 	struct vme_slave_resource *image;
430 
431 	if (resource->type != VME_SLAVE) {
432 		printk(KERN_ERR "Not a slave resource\n");
433 		return -EINVAL;
434 	}
435 
436 	image = list_entry(resource->entry, struct vme_slave_resource, list);
437 
438 	if (!bridge->slave_get) {
439 		printk(KERN_ERR "vme_slave_get not supported\n");
440 		return -EINVAL;
441 	}
442 
443 	return bridge->slave_get(image, enabled, vme_base, size, buf_base,
444 		aspace, cycle);
445 }
446 EXPORT_SYMBOL(vme_slave_get);
447 
448 /**
449  * vme_slave_free - Free VME slave window
450  * @resource: Pointer to VME slave resource.
451  *
452  * Free the provided slave resource so that it may be reallocated.
453  */
vme_slave_free(struct vme_resource * resource)454 void vme_slave_free(struct vme_resource *resource)
455 {
456 	struct vme_slave_resource *slave_image;
457 
458 	if (resource->type != VME_SLAVE) {
459 		printk(KERN_ERR "Not a slave resource\n");
460 		return;
461 	}
462 
463 	slave_image = list_entry(resource->entry, struct vme_slave_resource,
464 		list);
465 	if (!slave_image) {
466 		printk(KERN_ERR "Can't find slave resource\n");
467 		return;
468 	}
469 
470 	/* Unlock image */
471 	mutex_lock(&slave_image->mtx);
472 	if (slave_image->locked == 0)
473 		printk(KERN_ERR "Image is already free\n");
474 
475 	slave_image->locked = 0;
476 	mutex_unlock(&slave_image->mtx);
477 
478 	/* Free up resource memory */
479 	kfree(resource);
480 }
481 EXPORT_SYMBOL(vme_slave_free);
482 
483 /**
484  * vme_master_request - Request a VME master window resource.
485  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
486  * @address: Required VME address space.
487  * @cycle: Required VME data transfer cycle type.
488  * @dwidth: Required VME data transfer width.
489  *
490  * Request use of a VME window resource capable of being set for the requested
491  * address space, data transfer cycle and width.
492  *
493  * Return: Pointer to VME resource on success, NULL on failure.
494  */
vme_master_request(struct vme_dev * vdev,u32 address,u32 cycle,u32 dwidth)495 struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
496 	u32 cycle, u32 dwidth)
497 {
498 	struct vme_bridge *bridge;
499 	struct list_head *master_pos = NULL;
500 	struct vme_master_resource *allocated_image = NULL;
501 	struct vme_master_resource *master_image = NULL;
502 	struct vme_resource *resource = NULL;
503 
504 	bridge = vdev->bridge;
505 	if (!bridge) {
506 		printk(KERN_ERR "Can't find VME bus\n");
507 		goto err_bus;
508 	}
509 
510 	/* Loop through master resources */
511 	list_for_each(master_pos, &bridge->master_resources) {
512 		master_image = list_entry(master_pos,
513 			struct vme_master_resource, list);
514 
515 		if (!master_image) {
516 			printk(KERN_WARNING "Registered NULL master resource\n");
517 			continue;
518 		}
519 
520 		/* Find an unlocked and compatible image */
521 		spin_lock(&master_image->lock);
522 		if (((master_image->address_attr & address) == address) &&
523 			((master_image->cycle_attr & cycle) == cycle) &&
524 			((master_image->width_attr & dwidth) == dwidth) &&
525 			(master_image->locked == 0)) {
526 
527 			master_image->locked = 1;
528 			spin_unlock(&master_image->lock);
529 			allocated_image = master_image;
530 			break;
531 		}
532 		spin_unlock(&master_image->lock);
533 	}
534 
535 	/* Check to see if we found a resource */
536 	if (!allocated_image) {
537 		printk(KERN_ERR "Can't find a suitable resource\n");
538 		goto err_image;
539 	}
540 
541 	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
542 	if (!resource)
543 		goto err_alloc;
544 
545 	resource->type = VME_MASTER;
546 	resource->entry = &allocated_image->list;
547 
548 	return resource;
549 
550 err_alloc:
551 	/* Unlock image */
552 	spin_lock(&master_image->lock);
553 	master_image->locked = 0;
554 	spin_unlock(&master_image->lock);
555 err_image:
556 err_bus:
557 	return NULL;
558 }
559 EXPORT_SYMBOL(vme_master_request);
560 
561 /**
562  * vme_master_set - Set VME master window configuration.
563  * @resource: Pointer to VME master resource.
564  * @enabled: State to which the window should be configured.
565  * @vme_base: Base address for the window.
566  * @size: Size of the VME window.
567  * @aspace: VME address space for the VME window.
568  * @cycle: VME data transfer cycle type for the VME window.
569  * @dwidth: VME data transfer width for the VME window.
570  *
571  * Set configuration for provided VME master window.
572  *
573  * Return: Zero on success, -EINVAL if operation is not supported on this
574  *         device, if an invalid resource has been provided or invalid
575  *         attributes are provided. Hardware specific errors may also be
576  *         returned.
577  */
vme_master_set(struct vme_resource * resource,int enabled,unsigned long long vme_base,unsigned long long size,u32 aspace,u32 cycle,u32 dwidth)578 int vme_master_set(struct vme_resource *resource, int enabled,
579 	unsigned long long vme_base, unsigned long long size, u32 aspace,
580 	u32 cycle, u32 dwidth)
581 {
582 	struct vme_bridge *bridge = find_bridge(resource);
583 	struct vme_master_resource *image;
584 	int retval;
585 
586 	if (resource->type != VME_MASTER) {
587 		printk(KERN_ERR "Not a master resource\n");
588 		return -EINVAL;
589 	}
590 
591 	image = list_entry(resource->entry, struct vme_master_resource, list);
592 
593 	if (!bridge->master_set) {
594 		printk(KERN_WARNING "vme_master_set not supported\n");
595 		return -EINVAL;
596 	}
597 
598 	if (!(((image->address_attr & aspace) == aspace) &&
599 		((image->cycle_attr & cycle) == cycle) &&
600 		((image->width_attr & dwidth) == dwidth))) {
601 		printk(KERN_WARNING "Invalid attributes\n");
602 		return -EINVAL;
603 	}
604 
605 	retval = vme_check_window(aspace, vme_base, size);
606 	if (retval)
607 		return retval;
608 
609 	return bridge->master_set(image, enabled, vme_base, size, aspace,
610 		cycle, dwidth);
611 }
612 EXPORT_SYMBOL(vme_master_set);
613 
614 /**
615  * vme_master_get - Retrieve VME master window configuration.
616  * @resource: Pointer to VME master resource.
617  * @enabled: Pointer to variable for storing state.
618  * @vme_base: Pointer to variable for storing window base address.
619  * @size: Pointer to variable for storing window size.
620  * @aspace: Pointer to variable for storing VME address space.
621  * @cycle: Pointer to variable for storing VME data transfer cycle type.
622  * @dwidth: Pointer to variable for storing VME data transfer width.
623  *
624  * Return configuration for provided VME master window.
625  *
626  * Return: Zero on success, -EINVAL if operation is not supported on this
627  *         device or if an invalid resource has been provided.
628  */
vme_master_get(struct vme_resource * resource,int * enabled,unsigned long long * vme_base,unsigned long long * size,u32 * aspace,u32 * cycle,u32 * dwidth)629 int vme_master_get(struct vme_resource *resource, int *enabled,
630 	unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
631 	u32 *cycle, u32 *dwidth)
632 {
633 	struct vme_bridge *bridge = find_bridge(resource);
634 	struct vme_master_resource *image;
635 
636 	if (resource->type != VME_MASTER) {
637 		printk(KERN_ERR "Not a master resource\n");
638 		return -EINVAL;
639 	}
640 
641 	image = list_entry(resource->entry, struct vme_master_resource, list);
642 
643 	if (!bridge->master_get) {
644 		printk(KERN_WARNING "%s not supported\n", __func__);
645 		return -EINVAL;
646 	}
647 
648 	return bridge->master_get(image, enabled, vme_base, size, aspace,
649 		cycle, dwidth);
650 }
651 EXPORT_SYMBOL(vme_master_get);
652 
653 /**
654  * vme_master_write - Read data from VME space into a buffer.
655  * @resource: Pointer to VME master resource.
656  * @buf: Pointer to buffer where data should be transferred.
657  * @count: Number of bytes to transfer.
658  * @offset: Offset into VME master window at which to start transfer.
659  *
660  * Perform read of count bytes of data from location on VME bus which maps into
661  * the VME master window at offset to buf.
662  *
663  * Return: Number of bytes read, -EINVAL if resource is not a VME master
664  *         resource or read operation is not supported. -EFAULT returned if
665  *         invalid offset is provided. Hardware specific errors may also be
666  *         returned.
667  */
vme_master_read(struct vme_resource * resource,void * buf,size_t count,loff_t offset)668 ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
669 	loff_t offset)
670 {
671 	struct vme_bridge *bridge = find_bridge(resource);
672 	struct vme_master_resource *image;
673 	size_t length;
674 
675 	if (!bridge->master_read) {
676 		printk(KERN_WARNING "Reading from resource not supported\n");
677 		return -EINVAL;
678 	}
679 
680 	if (resource->type != VME_MASTER) {
681 		printk(KERN_ERR "Not a master resource\n");
682 		return -EINVAL;
683 	}
684 
685 	image = list_entry(resource->entry, struct vme_master_resource, list);
686 
687 	length = vme_get_size(resource);
688 
689 	if (offset > length) {
690 		printk(KERN_WARNING "Invalid Offset\n");
691 		return -EFAULT;
692 	}
693 
694 	if ((offset + count) > length)
695 		count = length - offset;
696 
697 	return bridge->master_read(image, buf, count, offset);
698 
699 }
700 EXPORT_SYMBOL(vme_master_read);
701 
702 /**
703  * vme_master_write - Write data out to VME space from a buffer.
704  * @resource: Pointer to VME master resource.
705  * @buf: Pointer to buffer holding data to transfer.
706  * @count: Number of bytes to transfer.
707  * @offset: Offset into VME master window at which to start transfer.
708  *
709  * Perform write of count bytes of data from buf to location on VME bus which
710  * maps into the VME master window at offset.
711  *
712  * Return: Number of bytes written, -EINVAL if resource is not a VME master
713  *         resource or write operation is not supported. -EFAULT returned if
714  *         invalid offset is provided. Hardware specific errors may also be
715  *         returned.
716  */
vme_master_write(struct vme_resource * resource,void * buf,size_t count,loff_t offset)717 ssize_t vme_master_write(struct vme_resource *resource, void *buf,
718 	size_t count, loff_t offset)
719 {
720 	struct vme_bridge *bridge = find_bridge(resource);
721 	struct vme_master_resource *image;
722 	size_t length;
723 
724 	if (!bridge->master_write) {
725 		printk(KERN_WARNING "Writing to resource not supported\n");
726 		return -EINVAL;
727 	}
728 
729 	if (resource->type != VME_MASTER) {
730 		printk(KERN_ERR "Not a master resource\n");
731 		return -EINVAL;
732 	}
733 
734 	image = list_entry(resource->entry, struct vme_master_resource, list);
735 
736 	length = vme_get_size(resource);
737 
738 	if (offset > length) {
739 		printk(KERN_WARNING "Invalid Offset\n");
740 		return -EFAULT;
741 	}
742 
743 	if ((offset + count) > length)
744 		count = length - offset;
745 
746 	return bridge->master_write(image, buf, count, offset);
747 }
748 EXPORT_SYMBOL(vme_master_write);
749 
750 /**
751  * vme_master_rmw - Perform read-modify-write cycle.
752  * @resource: Pointer to VME master resource.
753  * @mask: Bits to be compared and swapped in operation.
754  * @compare: Bits to be compared with data read from offset.
755  * @swap: Bits to be swapped in data read from offset.
756  * @offset: Offset into VME master window at which to perform operation.
757  *
758  * Perform read-modify-write cycle on provided location:
759  * - Location on VME bus is read.
760  * - Bits selected by mask are compared with compare.
761  * - Where a selected bit matches that in compare and are selected in swap,
762  * the bit is swapped.
763  * - Result written back to location on VME bus.
764  *
765  * Return: Bytes written on success, -EINVAL if resource is not a VME master
766  *         resource or RMW operation is not supported. Hardware specific
767  *         errors may also be returned.
768  */
vme_master_rmw(struct vme_resource * resource,unsigned int mask,unsigned int compare,unsigned int swap,loff_t offset)769 unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
770 	unsigned int compare, unsigned int swap, loff_t offset)
771 {
772 	struct vme_bridge *bridge = find_bridge(resource);
773 	struct vme_master_resource *image;
774 
775 	if (!bridge->master_rmw) {
776 		printk(KERN_WARNING "Writing to resource not supported\n");
777 		return -EINVAL;
778 	}
779 
780 	if (resource->type != VME_MASTER) {
781 		printk(KERN_ERR "Not a master resource\n");
782 		return -EINVAL;
783 	}
784 
785 	image = list_entry(resource->entry, struct vme_master_resource, list);
786 
787 	return bridge->master_rmw(image, mask, compare, swap, offset);
788 }
789 EXPORT_SYMBOL(vme_master_rmw);
790 
791 /**
792  * vme_master_mmap - Mmap region of VME master window.
793  * @resource: Pointer to VME master resource.
794  * @vma: Pointer to definition of user mapping.
795  *
796  * Memory map a region of the VME master window into user space.
797  *
798  * Return: Zero on success, -EINVAL if resource is not a VME master
799  *         resource or -EFAULT if map exceeds window size. Other generic mmap
800  *         errors may also be returned.
801  */
vme_master_mmap(struct vme_resource * resource,struct vm_area_struct * vma)802 int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
803 {
804 	struct vme_master_resource *image;
805 	phys_addr_t phys_addr;
806 	unsigned long vma_size;
807 
808 	if (resource->type != VME_MASTER) {
809 		pr_err("Not a master resource\n");
810 		return -EINVAL;
811 	}
812 
813 	image = list_entry(resource->entry, struct vme_master_resource, list);
814 	phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
815 	vma_size = vma->vm_end - vma->vm_start;
816 
817 	if (phys_addr + vma_size > image->bus_resource.end + 1) {
818 		pr_err("Map size cannot exceed the window size\n");
819 		return -EFAULT;
820 	}
821 
822 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
823 
824 	return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
825 }
826 EXPORT_SYMBOL(vme_master_mmap);
827 
828 /**
829  * vme_master_free - Free VME master window
830  * @resource: Pointer to VME master resource.
831  *
832  * Free the provided master resource so that it may be reallocated.
833  */
vme_master_free(struct vme_resource * resource)834 void vme_master_free(struct vme_resource *resource)
835 {
836 	struct vme_master_resource *master_image;
837 
838 	if (resource->type != VME_MASTER) {
839 		printk(KERN_ERR "Not a master resource\n");
840 		return;
841 	}
842 
843 	master_image = list_entry(resource->entry, struct vme_master_resource,
844 		list);
845 	if (!master_image) {
846 		printk(KERN_ERR "Can't find master resource\n");
847 		return;
848 	}
849 
850 	/* Unlock image */
851 	spin_lock(&master_image->lock);
852 	if (master_image->locked == 0)
853 		printk(KERN_ERR "Image is already free\n");
854 
855 	master_image->locked = 0;
856 	spin_unlock(&master_image->lock);
857 
858 	/* Free up resource memory */
859 	kfree(resource);
860 }
861 EXPORT_SYMBOL(vme_master_free);
862 
863 /**
864  * vme_dma_request - Request a DMA controller.
865  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
866  * @route: Required src/destination combination.
867  *
868  * Request a VME DMA controller with capability to perform transfers bewteen
869  * requested source/destination combination.
870  *
871  * Return: Pointer to VME DMA resource on success, NULL on failure.
872  */
vme_dma_request(struct vme_dev * vdev,u32 route)873 struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
874 {
875 	struct vme_bridge *bridge;
876 	struct list_head *dma_pos = NULL;
877 	struct vme_dma_resource *allocated_ctrlr = NULL;
878 	struct vme_dma_resource *dma_ctrlr = NULL;
879 	struct vme_resource *resource = NULL;
880 
881 	/* XXX Not checking resource attributes */
882 	printk(KERN_ERR "No VME resource Attribute tests done\n");
883 
884 	bridge = vdev->bridge;
885 	if (!bridge) {
886 		printk(KERN_ERR "Can't find VME bus\n");
887 		goto err_bus;
888 	}
889 
890 	/* Loop through DMA resources */
891 	list_for_each(dma_pos, &bridge->dma_resources) {
892 		dma_ctrlr = list_entry(dma_pos,
893 			struct vme_dma_resource, list);
894 		if (!dma_ctrlr) {
895 			printk(KERN_ERR "Registered NULL DMA resource\n");
896 			continue;
897 		}
898 
899 		/* Find an unlocked and compatible controller */
900 		mutex_lock(&dma_ctrlr->mtx);
901 		if (((dma_ctrlr->route_attr & route) == route) &&
902 			(dma_ctrlr->locked == 0)) {
903 
904 			dma_ctrlr->locked = 1;
905 			mutex_unlock(&dma_ctrlr->mtx);
906 			allocated_ctrlr = dma_ctrlr;
907 			break;
908 		}
909 		mutex_unlock(&dma_ctrlr->mtx);
910 	}
911 
912 	/* Check to see if we found a resource */
913 	if (!allocated_ctrlr)
914 		goto err_ctrlr;
915 
916 	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
917 	if (!resource)
918 		goto err_alloc;
919 
920 	resource->type = VME_DMA;
921 	resource->entry = &allocated_ctrlr->list;
922 
923 	return resource;
924 
925 err_alloc:
926 	/* Unlock image */
927 	mutex_lock(&dma_ctrlr->mtx);
928 	dma_ctrlr->locked = 0;
929 	mutex_unlock(&dma_ctrlr->mtx);
930 err_ctrlr:
931 err_bus:
932 	return NULL;
933 }
934 EXPORT_SYMBOL(vme_dma_request);
935 
936 /**
937  * vme_new_dma_list - Create new VME DMA list.
938  * @resource: Pointer to VME DMA resource.
939  *
940  * Create a new VME DMA list. It is the responsibility of the user to free
941  * the list once it is no longer required with vme_dma_list_free().
942  *
943  * Return: Pointer to new VME DMA list, NULL on allocation failure or invalid
944  *         VME DMA resource.
945  */
vme_new_dma_list(struct vme_resource * resource)946 struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
947 {
948 	struct vme_dma_list *dma_list;
949 
950 	if (resource->type != VME_DMA) {
951 		printk(KERN_ERR "Not a DMA resource\n");
952 		return NULL;
953 	}
954 
955 	dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL);
956 	if (!dma_list)
957 		return NULL;
958 
959 	INIT_LIST_HEAD(&dma_list->entries);
960 	dma_list->parent = list_entry(resource->entry,
961 				      struct vme_dma_resource,
962 				      list);
963 	mutex_init(&dma_list->mtx);
964 
965 	return dma_list;
966 }
967 EXPORT_SYMBOL(vme_new_dma_list);
968 
969 /**
970  * vme_dma_pattern_attribute - Create "Pattern" type VME DMA list attribute.
971  * @pattern: Value to use used as pattern
972  * @type: Type of pattern to be written.
973  *
974  * Create VME DMA list attribute for pattern generation. It is the
975  * responsibility of the user to free used attributes using
976  * vme_dma_free_attribute().
977  *
978  * Return: Pointer to VME DMA attribute, NULL on failure.
979  */
vme_dma_pattern_attribute(u32 pattern,u32 type)980 struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
981 {
982 	struct vme_dma_attr *attributes;
983 	struct vme_dma_pattern *pattern_attr;
984 
985 	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
986 	if (!attributes)
987 		goto err_attr;
988 
989 	pattern_attr = kmalloc(sizeof(*pattern_attr), GFP_KERNEL);
990 	if (!pattern_attr)
991 		goto err_pat;
992 
993 	attributes->type = VME_DMA_PATTERN;
994 	attributes->private = (void *)pattern_attr;
995 
996 	pattern_attr->pattern = pattern;
997 	pattern_attr->type = type;
998 
999 	return attributes;
1000 
1001 err_pat:
1002 	kfree(attributes);
1003 err_attr:
1004 	return NULL;
1005 }
1006 EXPORT_SYMBOL(vme_dma_pattern_attribute);
1007 
1008 /**
1009  * vme_dma_pci_attribute - Create "PCI" type VME DMA list attribute.
1010  * @address: PCI base address for DMA transfer.
1011  *
1012  * Create VME DMA list attribute pointing to a location on PCI for DMA
1013  * transfers. It is the responsibility of the user to free used attributes
1014  * using vme_dma_free_attribute().
1015  *
1016  * Return: Pointer to VME DMA attribute, NULL on failure.
1017  */
vme_dma_pci_attribute(dma_addr_t address)1018 struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
1019 {
1020 	struct vme_dma_attr *attributes;
1021 	struct vme_dma_pci *pci_attr;
1022 
1023 	/* XXX Run some sanity checks here */
1024 
1025 	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1026 	if (!attributes)
1027 		goto err_attr;
1028 
1029 	pci_attr = kmalloc(sizeof(*pci_attr), GFP_KERNEL);
1030 	if (!pci_attr)
1031 		goto err_pci;
1032 
1033 	attributes->type = VME_DMA_PCI;
1034 	attributes->private = (void *)pci_attr;
1035 
1036 	pci_attr->address = address;
1037 
1038 	return attributes;
1039 
1040 err_pci:
1041 	kfree(attributes);
1042 err_attr:
1043 	return NULL;
1044 }
1045 EXPORT_SYMBOL(vme_dma_pci_attribute);
1046 
1047 /**
1048  * vme_dma_vme_attribute - Create "VME" type VME DMA list attribute.
1049  * @address: VME base address for DMA transfer.
1050  * @aspace: VME address space to use for DMA transfer.
1051  * @cycle: VME bus cycle to use for DMA transfer.
1052  * @dwidth: VME data width to use for DMA transfer.
1053  *
1054  * Create VME DMA list attribute pointing to a location on the VME bus for DMA
1055  * transfers. It is the responsibility of the user to free used attributes
1056  * using vme_dma_free_attribute().
1057  *
1058  * Return: Pointer to VME DMA attribute, NULL on failure.
1059  */
vme_dma_vme_attribute(unsigned long long address,u32 aspace,u32 cycle,u32 dwidth)1060 struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
1061 	u32 aspace, u32 cycle, u32 dwidth)
1062 {
1063 	struct vme_dma_attr *attributes;
1064 	struct vme_dma_vme *vme_attr;
1065 
1066 	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1067 	if (!attributes)
1068 		goto err_attr;
1069 
1070 	vme_attr = kmalloc(sizeof(*vme_attr), GFP_KERNEL);
1071 	if (!vme_attr)
1072 		goto err_vme;
1073 
1074 	attributes->type = VME_DMA_VME;
1075 	attributes->private = (void *)vme_attr;
1076 
1077 	vme_attr->address = address;
1078 	vme_attr->aspace = aspace;
1079 	vme_attr->cycle = cycle;
1080 	vme_attr->dwidth = dwidth;
1081 
1082 	return attributes;
1083 
1084 err_vme:
1085 	kfree(attributes);
1086 err_attr:
1087 	return NULL;
1088 }
1089 EXPORT_SYMBOL(vme_dma_vme_attribute);
1090 
1091 /**
1092  * vme_dma_free_attribute - Free DMA list attribute.
1093  * @attributes: Pointer to DMA list attribute.
1094  *
1095  * Free VME DMA list attribute. VME DMA list attributes can be safely freed
1096  * once vme_dma_list_add() has returned.
1097  */
vme_dma_free_attribute(struct vme_dma_attr * attributes)1098 void vme_dma_free_attribute(struct vme_dma_attr *attributes)
1099 {
1100 	kfree(attributes->private);
1101 	kfree(attributes);
1102 }
1103 EXPORT_SYMBOL(vme_dma_free_attribute);
1104 
1105 /**
1106  * vme_dma_list_add - Add enty to a VME DMA list.
1107  * @list: Pointer to VME list.
1108  * @src: Pointer to DMA list attribute to use as source.
1109  * @dest: Pointer to DMA list attribute to use as destination.
1110  * @count: Number of bytes to transfer.
1111  *
1112  * Add an entry to the provided VME DMA list. Entry requires pointers to source
1113  * and destination DMA attributes and a count.
1114  *
1115  * Please note, the attributes supported as source and destinations for
1116  * transfers are hardware dependent.
1117  *
1118  * Return: Zero on success, -EINVAL if operation is not supported on this
1119  *         device or if the link list has already been submitted for execution.
1120  *         Hardware specific errors also possible.
1121  */
vme_dma_list_add(struct vme_dma_list * list,struct vme_dma_attr * src,struct vme_dma_attr * dest,size_t count)1122 int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
1123 	struct vme_dma_attr *dest, size_t count)
1124 {
1125 	struct vme_bridge *bridge = list->parent->parent;
1126 	int retval;
1127 
1128 	if (!bridge->dma_list_add) {
1129 		printk(KERN_WARNING "Link List DMA generation not supported\n");
1130 		return -EINVAL;
1131 	}
1132 
1133 	if (!mutex_trylock(&list->mtx)) {
1134 		printk(KERN_ERR "Link List already submitted\n");
1135 		return -EINVAL;
1136 	}
1137 
1138 	retval = bridge->dma_list_add(list, src, dest, count);
1139 
1140 	mutex_unlock(&list->mtx);
1141 
1142 	return retval;
1143 }
1144 EXPORT_SYMBOL(vme_dma_list_add);
1145 
1146 /**
1147  * vme_dma_list_exec - Queue a VME DMA list for execution.
1148  * @list: Pointer to VME list.
1149  *
1150  * Queue the provided VME DMA list for execution. The call will return once the
1151  * list has been executed.
1152  *
1153  * Return: Zero on success, -EINVAL if operation is not supported on this
1154  *         device. Hardware specific errors also possible.
1155  */
vme_dma_list_exec(struct vme_dma_list * list)1156 int vme_dma_list_exec(struct vme_dma_list *list)
1157 {
1158 	struct vme_bridge *bridge = list->parent->parent;
1159 	int retval;
1160 
1161 	if (!bridge->dma_list_exec) {
1162 		printk(KERN_ERR "Link List DMA execution not supported\n");
1163 		return -EINVAL;
1164 	}
1165 
1166 	mutex_lock(&list->mtx);
1167 
1168 	retval = bridge->dma_list_exec(list);
1169 
1170 	mutex_unlock(&list->mtx);
1171 
1172 	return retval;
1173 }
1174 EXPORT_SYMBOL(vme_dma_list_exec);
1175 
1176 /**
1177  * vme_dma_list_free - Free a VME DMA list.
1178  * @list: Pointer to VME list.
1179  *
1180  * Free the provided DMA list and all its entries.
1181  *
1182  * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1183  *         is still in use. Hardware specific errors also possible.
1184  */
vme_dma_list_free(struct vme_dma_list * list)1185 int vme_dma_list_free(struct vme_dma_list *list)
1186 {
1187 	struct vme_bridge *bridge = list->parent->parent;
1188 	int retval;
1189 
1190 	if (!bridge->dma_list_empty) {
1191 		printk(KERN_WARNING "Emptying of Link Lists not supported\n");
1192 		return -EINVAL;
1193 	}
1194 
1195 	if (!mutex_trylock(&list->mtx)) {
1196 		printk(KERN_ERR "Link List in use\n");
1197 		return -EBUSY;
1198 	}
1199 
1200 	/*
1201 	 * Empty out all of the entries from the DMA list. We need to go to the
1202 	 * low level driver as DMA entries are driver specific.
1203 	 */
1204 	retval = bridge->dma_list_empty(list);
1205 	if (retval) {
1206 		printk(KERN_ERR "Unable to empty link-list entries\n");
1207 		mutex_unlock(&list->mtx);
1208 		return retval;
1209 	}
1210 	mutex_unlock(&list->mtx);
1211 	kfree(list);
1212 
1213 	return retval;
1214 }
1215 EXPORT_SYMBOL(vme_dma_list_free);
1216 
1217 /**
1218  * vme_dma_free - Free a VME DMA resource.
1219  * @resource: Pointer to VME DMA resource.
1220  *
1221  * Free the provided DMA resource so that it may be reallocated.
1222  *
1223  * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1224  *         is still active.
1225  */
vme_dma_free(struct vme_resource * resource)1226 int vme_dma_free(struct vme_resource *resource)
1227 {
1228 	struct vme_dma_resource *ctrlr;
1229 
1230 	if (resource->type != VME_DMA) {
1231 		printk(KERN_ERR "Not a DMA resource\n");
1232 		return -EINVAL;
1233 	}
1234 
1235 	ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1236 
1237 	if (!mutex_trylock(&ctrlr->mtx)) {
1238 		printk(KERN_ERR "Resource busy, can't free\n");
1239 		return -EBUSY;
1240 	}
1241 
1242 	if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1243 		printk(KERN_WARNING "Resource still processing transfers\n");
1244 		mutex_unlock(&ctrlr->mtx);
1245 		return -EBUSY;
1246 	}
1247 
1248 	ctrlr->locked = 0;
1249 
1250 	mutex_unlock(&ctrlr->mtx);
1251 
1252 	kfree(resource);
1253 
1254 	return 0;
1255 }
1256 EXPORT_SYMBOL(vme_dma_free);
1257 
vme_bus_error_handler(struct vme_bridge * bridge,unsigned long long address,int am)1258 void vme_bus_error_handler(struct vme_bridge *bridge,
1259 			   unsigned long long address, int am)
1260 {
1261 	struct list_head *handler_pos = NULL;
1262 	struct vme_error_handler *handler;
1263 	int handler_triggered = 0;
1264 	u32 aspace = vme_get_aspace(am);
1265 
1266 	list_for_each(handler_pos, &bridge->vme_error_handlers) {
1267 		handler = list_entry(handler_pos, struct vme_error_handler,
1268 				     list);
1269 		if ((aspace == handler->aspace) &&
1270 		    (address >= handler->start) &&
1271 		    (address < handler->end)) {
1272 			if (!handler->num_errors)
1273 				handler->first_error = address;
1274 			if (handler->num_errors != UINT_MAX)
1275 				handler->num_errors++;
1276 			handler_triggered = 1;
1277 		}
1278 	}
1279 
1280 	if (!handler_triggered)
1281 		dev_err(bridge->parent,
1282 			"Unhandled VME access error at address 0x%llx\n",
1283 			address);
1284 }
1285 EXPORT_SYMBOL(vme_bus_error_handler);
1286 
vme_register_error_handler(struct vme_bridge * bridge,u32 aspace,unsigned long long address,size_t len)1287 struct vme_error_handler *vme_register_error_handler(
1288 	struct vme_bridge *bridge, u32 aspace,
1289 	unsigned long long address, size_t len)
1290 {
1291 	struct vme_error_handler *handler;
1292 
1293 	handler = kmalloc(sizeof(*handler), GFP_ATOMIC);
1294 	if (!handler)
1295 		return NULL;
1296 
1297 	handler->aspace = aspace;
1298 	handler->start = address;
1299 	handler->end = address + len;
1300 	handler->num_errors = 0;
1301 	handler->first_error = 0;
1302 	list_add_tail(&handler->list, &bridge->vme_error_handlers);
1303 
1304 	return handler;
1305 }
1306 EXPORT_SYMBOL(vme_register_error_handler);
1307 
vme_unregister_error_handler(struct vme_error_handler * handler)1308 void vme_unregister_error_handler(struct vme_error_handler *handler)
1309 {
1310 	list_del(&handler->list);
1311 	kfree(handler);
1312 }
1313 EXPORT_SYMBOL(vme_unregister_error_handler);
1314 
vme_irq_handler(struct vme_bridge * bridge,int level,int statid)1315 void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1316 {
1317 	void (*call)(int, int, void *);
1318 	void *priv_data;
1319 
1320 	call = bridge->irq[level - 1].callback[statid].func;
1321 	priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1322 	if (call)
1323 		call(level, statid, priv_data);
1324 	else
1325 		printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n",
1326 		       level, statid);
1327 }
1328 EXPORT_SYMBOL(vme_irq_handler);
1329 
1330 /**
1331  * vme_irq_request - Request a specific VME interrupt.
1332  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1333  * @level: Interrupt priority being requested.
1334  * @statid: Interrupt vector being requested.
1335  * @callback: Pointer to callback function called when VME interrupt/vector
1336  *            received.
1337  * @priv_data: Generic pointer that will be passed to the callback function.
1338  *
1339  * Request callback to be attached as a handler for VME interrupts with provided
1340  * level and statid.
1341  *
1342  * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1343  *         function is not supported, -EBUSY if the level/statid combination is
1344  *         already in use. Hardware specific errors also possible.
1345  */
vme_irq_request(struct vme_dev * vdev,int level,int statid,void (* callback)(int,int,void *),void * priv_data)1346 int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1347 	void (*callback)(int, int, void *),
1348 	void *priv_data)
1349 {
1350 	struct vme_bridge *bridge;
1351 
1352 	bridge = vdev->bridge;
1353 	if (!bridge) {
1354 		printk(KERN_ERR "Can't find VME bus\n");
1355 		return -EINVAL;
1356 	}
1357 
1358 	if ((level < 1) || (level > 7)) {
1359 		printk(KERN_ERR "Invalid interrupt level\n");
1360 		return -EINVAL;
1361 	}
1362 
1363 	if (!bridge->irq_set) {
1364 		printk(KERN_ERR "Configuring interrupts not supported\n");
1365 		return -EINVAL;
1366 	}
1367 
1368 	mutex_lock(&bridge->irq_mtx);
1369 
1370 	if (bridge->irq[level - 1].callback[statid].func) {
1371 		mutex_unlock(&bridge->irq_mtx);
1372 		printk(KERN_WARNING "VME Interrupt already taken\n");
1373 		return -EBUSY;
1374 	}
1375 
1376 	bridge->irq[level - 1].count++;
1377 	bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1378 	bridge->irq[level - 1].callback[statid].func = callback;
1379 
1380 	/* Enable IRQ level */
1381 	bridge->irq_set(bridge, level, 1, 1);
1382 
1383 	mutex_unlock(&bridge->irq_mtx);
1384 
1385 	return 0;
1386 }
1387 EXPORT_SYMBOL(vme_irq_request);
1388 
1389 /**
1390  * vme_irq_free - Free a VME interrupt.
1391  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1392  * @level: Interrupt priority of interrupt being freed.
1393  * @statid: Interrupt vector of interrupt being freed.
1394  *
1395  * Remove previously attached callback from VME interrupt priority/vector.
1396  */
vme_irq_free(struct vme_dev * vdev,int level,int statid)1397 void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1398 {
1399 	struct vme_bridge *bridge;
1400 
1401 	bridge = vdev->bridge;
1402 	if (!bridge) {
1403 		printk(KERN_ERR "Can't find VME bus\n");
1404 		return;
1405 	}
1406 
1407 	if ((level < 1) || (level > 7)) {
1408 		printk(KERN_ERR "Invalid interrupt level\n");
1409 		return;
1410 	}
1411 
1412 	if (!bridge->irq_set) {
1413 		printk(KERN_ERR "Configuring interrupts not supported\n");
1414 		return;
1415 	}
1416 
1417 	mutex_lock(&bridge->irq_mtx);
1418 
1419 	bridge->irq[level - 1].count--;
1420 
1421 	/* Disable IRQ level if no more interrupts attached at this level*/
1422 	if (bridge->irq[level - 1].count == 0)
1423 		bridge->irq_set(bridge, level, 0, 1);
1424 
1425 	bridge->irq[level - 1].callback[statid].func = NULL;
1426 	bridge->irq[level - 1].callback[statid].priv_data = NULL;
1427 
1428 	mutex_unlock(&bridge->irq_mtx);
1429 }
1430 EXPORT_SYMBOL(vme_irq_free);
1431 
1432 /**
1433  * vme_irq_generate - Generate VME interrupt.
1434  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1435  * @level: Interrupt priority at which to assert the interrupt.
1436  * @statid: Interrupt vector to associate with the interrupt.
1437  *
1438  * Generate a VME interrupt of the provided level and with the provided
1439  * statid.
1440  *
1441  * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1442  *         function is not supported. Hardware specific errors also possible.
1443  */
vme_irq_generate(struct vme_dev * vdev,int level,int statid)1444 int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1445 {
1446 	struct vme_bridge *bridge;
1447 
1448 	bridge = vdev->bridge;
1449 	if (!bridge) {
1450 		printk(KERN_ERR "Can't find VME bus\n");
1451 		return -EINVAL;
1452 	}
1453 
1454 	if ((level < 1) || (level > 7)) {
1455 		printk(KERN_WARNING "Invalid interrupt level\n");
1456 		return -EINVAL;
1457 	}
1458 
1459 	if (!bridge->irq_generate) {
1460 		printk(KERN_WARNING "Interrupt generation not supported\n");
1461 		return -EINVAL;
1462 	}
1463 
1464 	return bridge->irq_generate(bridge, level, statid);
1465 }
1466 EXPORT_SYMBOL(vme_irq_generate);
1467 
1468 /**
1469  * vme_lm_request - Request a VME location monitor
1470  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1471  *
1472  * Allocate a location monitor resource to the driver. A location monitor
1473  * allows the driver to monitor accesses to a contiguous number of
1474  * addresses on the VME bus.
1475  *
1476  * Return: Pointer to a VME resource on success or NULL on failure.
1477  */
vme_lm_request(struct vme_dev * vdev)1478 struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1479 {
1480 	struct vme_bridge *bridge;
1481 	struct list_head *lm_pos = NULL;
1482 	struct vme_lm_resource *allocated_lm = NULL;
1483 	struct vme_lm_resource *lm = NULL;
1484 	struct vme_resource *resource = NULL;
1485 
1486 	bridge = vdev->bridge;
1487 	if (!bridge) {
1488 		printk(KERN_ERR "Can't find VME bus\n");
1489 		goto err_bus;
1490 	}
1491 
1492 	/* Loop through LM resources */
1493 	list_for_each(lm_pos, &bridge->lm_resources) {
1494 		lm = list_entry(lm_pos,
1495 			struct vme_lm_resource, list);
1496 		if (!lm) {
1497 			printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1498 			continue;
1499 		}
1500 
1501 		/* Find an unlocked controller */
1502 		mutex_lock(&lm->mtx);
1503 		if (lm->locked == 0) {
1504 			lm->locked = 1;
1505 			mutex_unlock(&lm->mtx);
1506 			allocated_lm = lm;
1507 			break;
1508 		}
1509 		mutex_unlock(&lm->mtx);
1510 	}
1511 
1512 	/* Check to see if we found a resource */
1513 	if (!allocated_lm)
1514 		goto err_lm;
1515 
1516 	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
1517 	if (!resource)
1518 		goto err_alloc;
1519 
1520 	resource->type = VME_LM;
1521 	resource->entry = &allocated_lm->list;
1522 
1523 	return resource;
1524 
1525 err_alloc:
1526 	/* Unlock image */
1527 	mutex_lock(&lm->mtx);
1528 	lm->locked = 0;
1529 	mutex_unlock(&lm->mtx);
1530 err_lm:
1531 err_bus:
1532 	return NULL;
1533 }
1534 EXPORT_SYMBOL(vme_lm_request);
1535 
1536 /**
1537  * vme_lm_count - Determine number of VME Addresses monitored
1538  * @resource: Pointer to VME location monitor resource.
1539  *
1540  * The number of contiguous addresses monitored is hardware dependent.
1541  * Return the number of contiguous addresses monitored by the
1542  * location monitor.
1543  *
1544  * Return: Count of addresses monitored or -EINVAL when provided with an
1545  *	   invalid location monitor resource.
1546  */
vme_lm_count(struct vme_resource * resource)1547 int vme_lm_count(struct vme_resource *resource)
1548 {
1549 	struct vme_lm_resource *lm;
1550 
1551 	if (resource->type != VME_LM) {
1552 		printk(KERN_ERR "Not a Location Monitor resource\n");
1553 		return -EINVAL;
1554 	}
1555 
1556 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1557 
1558 	return lm->monitors;
1559 }
1560 EXPORT_SYMBOL(vme_lm_count);
1561 
1562 /**
1563  * vme_lm_set - Configure location monitor
1564  * @resource: Pointer to VME location monitor resource.
1565  * @lm_base: Base address to monitor.
1566  * @aspace: VME address space to monitor.
1567  * @cycle: VME bus cycle type to monitor.
1568  *
1569  * Set the base address, address space and cycle type of accesses to be
1570  * monitored by the location monitor.
1571  *
1572  * Return: Zero on success, -EINVAL when provided with an invalid location
1573  *	   monitor resource or function is not supported. Hardware specific
1574  *	   errors may also be returned.
1575  */
vme_lm_set(struct vme_resource * resource,unsigned long long lm_base,u32 aspace,u32 cycle)1576 int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1577 	u32 aspace, u32 cycle)
1578 {
1579 	struct vme_bridge *bridge = find_bridge(resource);
1580 	struct vme_lm_resource *lm;
1581 
1582 	if (resource->type != VME_LM) {
1583 		printk(KERN_ERR "Not a Location Monitor resource\n");
1584 		return -EINVAL;
1585 	}
1586 
1587 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1588 
1589 	if (!bridge->lm_set) {
1590 		printk(KERN_ERR "vme_lm_set not supported\n");
1591 		return -EINVAL;
1592 	}
1593 
1594 	return bridge->lm_set(lm, lm_base, aspace, cycle);
1595 }
1596 EXPORT_SYMBOL(vme_lm_set);
1597 
1598 /**
1599  * vme_lm_get - Retrieve location monitor settings
1600  * @resource: Pointer to VME location monitor resource.
1601  * @lm_base: Pointer used to output the base address monitored.
1602  * @aspace: Pointer used to output the address space monitored.
1603  * @cycle: Pointer used to output the VME bus cycle type monitored.
1604  *
1605  * Retrieve the base address, address space and cycle type of accesses to
1606  * be monitored by the location monitor.
1607  *
1608  * Return: Zero on success, -EINVAL when provided with an invalid location
1609  *	   monitor resource or function is not supported. Hardware specific
1610  *	   errors may also be returned.
1611  */
vme_lm_get(struct vme_resource * resource,unsigned long long * lm_base,u32 * aspace,u32 * cycle)1612 int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1613 	u32 *aspace, u32 *cycle)
1614 {
1615 	struct vme_bridge *bridge = find_bridge(resource);
1616 	struct vme_lm_resource *lm;
1617 
1618 	if (resource->type != VME_LM) {
1619 		printk(KERN_ERR "Not a Location Monitor resource\n");
1620 		return -EINVAL;
1621 	}
1622 
1623 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1624 
1625 	if (!bridge->lm_get) {
1626 		printk(KERN_ERR "vme_lm_get not supported\n");
1627 		return -EINVAL;
1628 	}
1629 
1630 	return bridge->lm_get(lm, lm_base, aspace, cycle);
1631 }
1632 EXPORT_SYMBOL(vme_lm_get);
1633 
1634 /**
1635  * vme_lm_attach - Provide callback for location monitor address
1636  * @resource: Pointer to VME location monitor resource.
1637  * @monitor: Offset to which callback should be attached.
1638  * @callback: Pointer to callback function called when triggered.
1639  * @data: Generic pointer that will be passed to the callback function.
1640  *
1641  * Attach a callback to the specificed offset into the location monitors
1642  * monitored addresses. A generic pointer is provided to allow data to be
1643  * passed to the callback when called.
1644  *
1645  * Return: Zero on success, -EINVAL when provided with an invalid location
1646  *	   monitor resource or function is not supported. Hardware specific
1647  *	   errors may also be returned.
1648  */
vme_lm_attach(struct vme_resource * resource,int monitor,void (* callback)(void *),void * data)1649 int vme_lm_attach(struct vme_resource *resource, int monitor,
1650 	void (*callback)(void *), void *data)
1651 {
1652 	struct vme_bridge *bridge = find_bridge(resource);
1653 	struct vme_lm_resource *lm;
1654 
1655 	if (resource->type != VME_LM) {
1656 		printk(KERN_ERR "Not a Location Monitor resource\n");
1657 		return -EINVAL;
1658 	}
1659 
1660 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1661 
1662 	if (!bridge->lm_attach) {
1663 		printk(KERN_ERR "vme_lm_attach not supported\n");
1664 		return -EINVAL;
1665 	}
1666 
1667 	return bridge->lm_attach(lm, monitor, callback, data);
1668 }
1669 EXPORT_SYMBOL(vme_lm_attach);
1670 
1671 /**
1672  * vme_lm_detach - Remove callback for location monitor address
1673  * @resource: Pointer to VME location monitor resource.
1674  * @monitor: Offset to which callback should be removed.
1675  *
1676  * Remove the callback associated with the specificed offset into the
1677  * location monitors monitored addresses.
1678  *
1679  * Return: Zero on success, -EINVAL when provided with an invalid location
1680  *	   monitor resource or function is not supported. Hardware specific
1681  *	   errors may also be returned.
1682  */
vme_lm_detach(struct vme_resource * resource,int monitor)1683 int vme_lm_detach(struct vme_resource *resource, int monitor)
1684 {
1685 	struct vme_bridge *bridge = find_bridge(resource);
1686 	struct vme_lm_resource *lm;
1687 
1688 	if (resource->type != VME_LM) {
1689 		printk(KERN_ERR "Not a Location Monitor resource\n");
1690 		return -EINVAL;
1691 	}
1692 
1693 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1694 
1695 	if (!bridge->lm_detach) {
1696 		printk(KERN_ERR "vme_lm_detach not supported\n");
1697 		return -EINVAL;
1698 	}
1699 
1700 	return bridge->lm_detach(lm, monitor);
1701 }
1702 EXPORT_SYMBOL(vme_lm_detach);
1703 
1704 /**
1705  * vme_lm_free - Free allocated VME location monitor
1706  * @resource: Pointer to VME location monitor resource.
1707  *
1708  * Free allocation of a VME location monitor.
1709  *
1710  * WARNING: This function currently expects that any callbacks that have
1711  *          been attached to the location monitor have been removed.
1712  *
1713  * Return: Zero on success, -EINVAL when provided with an invalid location
1714  *	   monitor resource.
1715  */
vme_lm_free(struct vme_resource * resource)1716 void vme_lm_free(struct vme_resource *resource)
1717 {
1718 	struct vme_lm_resource *lm;
1719 
1720 	if (resource->type != VME_LM) {
1721 		printk(KERN_ERR "Not a Location Monitor resource\n");
1722 		return;
1723 	}
1724 
1725 	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1726 
1727 	mutex_lock(&lm->mtx);
1728 
1729 	/* XXX
1730 	 * Check to see that there aren't any callbacks still attached, if
1731 	 * there are we should probably be detaching them!
1732 	 */
1733 
1734 	lm->locked = 0;
1735 
1736 	mutex_unlock(&lm->mtx);
1737 
1738 	kfree(resource);
1739 }
1740 EXPORT_SYMBOL(vme_lm_free);
1741 
1742 /**
1743  * vme_slot_num - Retrieve slot ID
1744  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1745  *
1746  * Retrieve the slot ID associated with the provided VME device.
1747  *
1748  * Return: The slot ID on success, -EINVAL if VME bridge cannot be determined
1749  *         or the function is not supported. Hardware specific errors may also
1750  *         be returned.
1751  */
vme_slot_num(struct vme_dev * vdev)1752 int vme_slot_num(struct vme_dev *vdev)
1753 {
1754 	struct vme_bridge *bridge;
1755 
1756 	bridge = vdev->bridge;
1757 	if (!bridge) {
1758 		printk(KERN_ERR "Can't find VME bus\n");
1759 		return -EINVAL;
1760 	}
1761 
1762 	if (!bridge->slot_get) {
1763 		printk(KERN_WARNING "vme_slot_num not supported\n");
1764 		return -EINVAL;
1765 	}
1766 
1767 	return bridge->slot_get(bridge);
1768 }
1769 EXPORT_SYMBOL(vme_slot_num);
1770 
1771 /**
1772  * vme_bus_num - Retrieve bus number
1773  * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1774  *
1775  * Retrieve the bus enumeration associated with the provided VME device.
1776  *
1777  * Return: The bus number on success, -EINVAL if VME bridge cannot be
1778  *         determined.
1779  */
vme_bus_num(struct vme_dev * vdev)1780 int vme_bus_num(struct vme_dev *vdev)
1781 {
1782 	struct vme_bridge *bridge;
1783 
1784 	bridge = vdev->bridge;
1785 	if (!bridge) {
1786 		pr_err("Can't find VME bus\n");
1787 		return -EINVAL;
1788 	}
1789 
1790 	return bridge->num;
1791 }
1792 EXPORT_SYMBOL(vme_bus_num);
1793 
1794 /* - Bridge Registration --------------------------------------------------- */
1795 
vme_dev_release(struct device * dev)1796 static void vme_dev_release(struct device *dev)
1797 {
1798 	kfree(dev_to_vme_dev(dev));
1799 }
1800 
1801 /* Common bridge initialization */
vme_init_bridge(struct vme_bridge * bridge)1802 struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge)
1803 {
1804 	INIT_LIST_HEAD(&bridge->vme_error_handlers);
1805 	INIT_LIST_HEAD(&bridge->master_resources);
1806 	INIT_LIST_HEAD(&bridge->slave_resources);
1807 	INIT_LIST_HEAD(&bridge->dma_resources);
1808 	INIT_LIST_HEAD(&bridge->lm_resources);
1809 	mutex_init(&bridge->irq_mtx);
1810 
1811 	return bridge;
1812 }
1813 EXPORT_SYMBOL(vme_init_bridge);
1814 
vme_register_bridge(struct vme_bridge * bridge)1815 int vme_register_bridge(struct vme_bridge *bridge)
1816 {
1817 	int i;
1818 	int ret = -1;
1819 
1820 	mutex_lock(&vme_buses_lock);
1821 	for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1822 		if ((vme_bus_numbers & (1 << i)) == 0) {
1823 			vme_bus_numbers |= (1 << i);
1824 			bridge->num = i;
1825 			INIT_LIST_HEAD(&bridge->devices);
1826 			list_add_tail(&bridge->bus_list, &vme_bus_list);
1827 			ret = 0;
1828 			break;
1829 		}
1830 	}
1831 	mutex_unlock(&vme_buses_lock);
1832 
1833 	return ret;
1834 }
1835 EXPORT_SYMBOL(vme_register_bridge);
1836 
vme_unregister_bridge(struct vme_bridge * bridge)1837 void vme_unregister_bridge(struct vme_bridge *bridge)
1838 {
1839 	struct vme_dev *vdev;
1840 	struct vme_dev *tmp;
1841 
1842 	mutex_lock(&vme_buses_lock);
1843 	vme_bus_numbers &= ~(1 << bridge->num);
1844 	list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1845 		list_del(&vdev->drv_list);
1846 		list_del(&vdev->bridge_list);
1847 		device_unregister(&vdev->dev);
1848 	}
1849 	list_del(&bridge->bus_list);
1850 	mutex_unlock(&vme_buses_lock);
1851 }
1852 EXPORT_SYMBOL(vme_unregister_bridge);
1853 
1854 /* - Driver Registration --------------------------------------------------- */
1855 
__vme_register_driver_bus(struct vme_driver * drv,struct vme_bridge * bridge,unsigned int ndevs)1856 static int __vme_register_driver_bus(struct vme_driver *drv,
1857 	struct vme_bridge *bridge, unsigned int ndevs)
1858 {
1859 	int err;
1860 	unsigned int i;
1861 	struct vme_dev *vdev;
1862 	struct vme_dev *tmp;
1863 
1864 	for (i = 0; i < ndevs; i++) {
1865 		vdev = kzalloc(sizeof(*vdev), GFP_KERNEL);
1866 		if (!vdev) {
1867 			err = -ENOMEM;
1868 			goto err_devalloc;
1869 		}
1870 		vdev->num = i;
1871 		vdev->bridge = bridge;
1872 		vdev->dev.platform_data = drv;
1873 		vdev->dev.release = vme_dev_release;
1874 		vdev->dev.parent = bridge->parent;
1875 		vdev->dev.bus = &vme_bus_type;
1876 		dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1877 			vdev->num);
1878 
1879 		err = device_register(&vdev->dev);
1880 		if (err)
1881 			goto err_reg;
1882 
1883 		if (vdev->dev.platform_data) {
1884 			list_add_tail(&vdev->drv_list, &drv->devices);
1885 			list_add_tail(&vdev->bridge_list, &bridge->devices);
1886 		} else
1887 			device_unregister(&vdev->dev);
1888 	}
1889 	return 0;
1890 
1891 err_reg:
1892 	put_device(&vdev->dev);
1893 	kfree(vdev);
1894 err_devalloc:
1895 	list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1896 		list_del(&vdev->drv_list);
1897 		list_del(&vdev->bridge_list);
1898 		device_unregister(&vdev->dev);
1899 	}
1900 	return err;
1901 }
1902 
__vme_register_driver(struct vme_driver * drv,unsigned int ndevs)1903 static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1904 {
1905 	struct vme_bridge *bridge;
1906 	int err = 0;
1907 
1908 	mutex_lock(&vme_buses_lock);
1909 	list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1910 		/*
1911 		 * This cannot cause trouble as we already have vme_buses_lock
1912 		 * and if the bridge is removed, it will have to go through
1913 		 * vme_unregister_bridge() to do it (which calls remove() on
1914 		 * the bridge which in turn tries to acquire vme_buses_lock and
1915 		 * will have to wait).
1916 		 */
1917 		err = __vme_register_driver_bus(drv, bridge, ndevs);
1918 		if (err)
1919 			break;
1920 	}
1921 	mutex_unlock(&vme_buses_lock);
1922 	return err;
1923 }
1924 
1925 /**
1926  * vme_register_driver - Register a VME driver
1927  * @drv: Pointer to VME driver structure to register.
1928  * @ndevs: Maximum number of devices to allow to be enumerated.
1929  *
1930  * Register a VME device driver with the VME subsystem.
1931  *
1932  * Return: Zero on success, error value on registration failure.
1933  */
vme_register_driver(struct vme_driver * drv,unsigned int ndevs)1934 int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1935 {
1936 	int err;
1937 
1938 	drv->driver.name = drv->name;
1939 	drv->driver.bus = &vme_bus_type;
1940 	INIT_LIST_HEAD(&drv->devices);
1941 
1942 	err = driver_register(&drv->driver);
1943 	if (err)
1944 		return err;
1945 
1946 	err = __vme_register_driver(drv, ndevs);
1947 	if (err)
1948 		driver_unregister(&drv->driver);
1949 
1950 	return err;
1951 }
1952 EXPORT_SYMBOL(vme_register_driver);
1953 
1954 /**
1955  * vme_unregister_driver - Unregister a VME driver
1956  * @drv: Pointer to VME driver structure to unregister.
1957  *
1958  * Unregister a VME device driver from the VME subsystem.
1959  */
vme_unregister_driver(struct vme_driver * drv)1960 void vme_unregister_driver(struct vme_driver *drv)
1961 {
1962 	struct vme_dev *dev, *dev_tmp;
1963 
1964 	mutex_lock(&vme_buses_lock);
1965 	list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1966 		list_del(&dev->drv_list);
1967 		list_del(&dev->bridge_list);
1968 		device_unregister(&dev->dev);
1969 	}
1970 	mutex_unlock(&vme_buses_lock);
1971 
1972 	driver_unregister(&drv->driver);
1973 }
1974 EXPORT_SYMBOL(vme_unregister_driver);
1975 
1976 /* - Bus Registration ------------------------------------------------------ */
1977 
vme_bus_match(struct device * dev,struct device_driver * drv)1978 static int vme_bus_match(struct device *dev, struct device_driver *drv)
1979 {
1980 	struct vme_driver *vme_drv;
1981 
1982 	vme_drv = container_of(drv, struct vme_driver, driver);
1983 
1984 	if (dev->platform_data == vme_drv) {
1985 		struct vme_dev *vdev = dev_to_vme_dev(dev);
1986 
1987 		if (vme_drv->match && vme_drv->match(vdev))
1988 			return 1;
1989 
1990 		dev->platform_data = NULL;
1991 	}
1992 	return 0;
1993 }
1994 
vme_bus_probe(struct device * dev)1995 static int vme_bus_probe(struct device *dev)
1996 {
1997 	struct vme_driver *driver;
1998 	struct vme_dev *vdev = dev_to_vme_dev(dev);
1999 
2000 	driver = dev->platform_data;
2001 	if (driver->probe)
2002 		return driver->probe(vdev);
2003 
2004 	return -ENODEV;
2005 }
2006 
vme_bus_remove(struct device * dev)2007 static int vme_bus_remove(struct device *dev)
2008 {
2009 	struct vme_driver *driver;
2010 	struct vme_dev *vdev = dev_to_vme_dev(dev);
2011 
2012 	driver = dev->platform_data;
2013 	if (driver->remove)
2014 		return driver->remove(vdev);
2015 
2016 	return -ENODEV;
2017 }
2018 
2019 struct bus_type vme_bus_type = {
2020 	.name = "vme",
2021 	.match = vme_bus_match,
2022 	.probe = vme_bus_probe,
2023 	.remove = vme_bus_remove,
2024 };
2025 EXPORT_SYMBOL(vme_bus_type);
2026 
vme_init(void)2027 static int __init vme_init(void)
2028 {
2029 	return bus_register(&vme_bus_type);
2030 }
2031 subsys_initcall(vme_init);
2032