1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * VME Bridge Framework
4   *
5   * Author: Martyn Welch <martyn.welch@ge.com>
6   * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc.
7   *
8   * Based on work by Tom Armistead and Ajit Prem
9   * Copyright 2004 Motorola Inc.
10   */
11  
12  #include <linux/init.h>
13  #include <linux/export.h>
14  #include <linux/mm.h>
15  #include <linux/types.h>
16  #include <linux/kernel.h>
17  #include <linux/errno.h>
18  #include <linux/pci.h>
19  #include <linux/poll.h>
20  #include <linux/highmem.h>
21  #include <linux/interrupt.h>
22  #include <linux/pagemap.h>
23  #include <linux/device.h>
24  #include <linux/dma-mapping.h>
25  #include <linux/syscalls.h>
26  #include <linux/mutex.h>
27  #include <linux/spinlock.h>
28  #include <linux/slab.h>
29  #include <linux/vme.h>
30  
31  #include "vme_bridge.h"
32  
33  /* Bitmask and list of registered buses both protected by common mutex */
34  static unsigned int vme_bus_numbers;
35  static LIST_HEAD(vme_bus_list);
36  static DEFINE_MUTEX(vme_buses_lock);
37  
38  static int __init vme_init(void);
39  
dev_to_vme_dev(struct device * dev)40  static struct vme_dev *dev_to_vme_dev(struct device *dev)
41  {
42  	return container_of(dev, struct vme_dev, dev);
43  }
44  
45  /*
46   * Find the bridge that the resource is associated with.
47   */
find_bridge(struct vme_resource * resource)48  static struct vme_bridge *find_bridge(struct vme_resource *resource)
49  {
50  	/* Get list to search */
51  	switch (resource->type) {
52  	case VME_MASTER:
53  		return list_entry(resource->entry, struct vme_master_resource,
54  			list)->parent;
55  		break;
56  	case VME_SLAVE:
57  		return list_entry(resource->entry, struct vme_slave_resource,
58  			list)->parent;
59  		break;
60  	case VME_DMA:
61  		return list_entry(resource->entry, struct vme_dma_resource,
62  			list)->parent;
63  		break;
64  	case VME_LM:
65  		return list_entry(resource->entry, struct vme_lm_resource,
66  			list)->parent;
67  		break;
68  	default:
69  		printk(KERN_ERR "Unknown resource type\n");
70  		return NULL;
71  		break;
72  	}
73  }
74  
75  /**
76   * vme_free_consistent - Allocate contiguous memory.
77   * @resource: Pointer to VME resource.
78   * @size: Size of allocation required.
79   * @dma: Pointer to variable to store physical address of allocation.
80   *
81   * Allocate a contiguous block of memory for use by the driver. This is used to
82   * create the buffers for the slave windows.
83   *
84   * Return: Virtual address of allocation on success, NULL on failure.
85   */
vme_alloc_consistent(struct vme_resource * resource,size_t size,dma_addr_t * dma)86  void *vme_alloc_consistent(struct vme_resource *resource, size_t size,
87  	dma_addr_t *dma)
88  {
89  	struct vme_bridge *bridge;
90  
91  	if (!resource) {
92  		printk(KERN_ERR "No resource\n");
93  		return NULL;
94  	}
95  
96  	bridge = find_bridge(resource);
97  	if (!bridge) {
98  		printk(KERN_ERR "Can't find bridge\n");
99  		return NULL;
100  	}
101  
102  	if (!bridge->parent) {
103  		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
104  		return NULL;
105  	}
106  
107  	if (!bridge->alloc_consistent) {
108  		printk(KERN_ERR "alloc_consistent not supported by bridge %s\n",
109  		       bridge->name);
110  		return NULL;
111  	}
112  
113  	return bridge->alloc_consistent(bridge->parent, size, dma);
114  }
115  EXPORT_SYMBOL(vme_alloc_consistent);
116  
117  /**
118   * vme_free_consistent - Free previously allocated memory.
119   * @resource: Pointer to VME resource.
120   * @size: Size of allocation to free.
121   * @vaddr: Virtual address of allocation.
122   * @dma: Physical address of allocation.
123   *
124   * Free previously allocated block of contiguous memory.
125   */
vme_free_consistent(struct vme_resource * resource,size_t size,void * vaddr,dma_addr_t dma)126  void vme_free_consistent(struct vme_resource *resource, size_t size,
127  	void *vaddr, dma_addr_t dma)
128  {
129  	struct vme_bridge *bridge;
130  
131  	if (!resource) {
132  		printk(KERN_ERR "No resource\n");
133  		return;
134  	}
135  
136  	bridge = find_bridge(resource);
137  	if (!bridge) {
138  		printk(KERN_ERR "Can't find bridge\n");
139  		return;
140  	}
141  
142  	if (!bridge->parent) {
143  		printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name);
144  		return;
145  	}
146  
147  	if (!bridge->free_consistent) {
148  		printk(KERN_ERR "free_consistent not supported by bridge %s\n",
149  		       bridge->name);
150  		return;
151  	}
152  
153  	bridge->free_consistent(bridge->parent, size, vaddr, dma);
154  }
155  EXPORT_SYMBOL(vme_free_consistent);
156  
157  /**
158   * vme_get_size - Helper function returning size of a VME window
159   * @resource: Pointer to VME slave or master resource.
160   *
161   * Determine the size of the VME window provided. This is a helper
162   * function, wrappering the call to vme_master_get or vme_slave_get
163   * depending on the type of window resource handed to it.
164   *
165   * Return: Size of the window on success, zero on failure.
166   */
vme_get_size(struct vme_resource * resource)167  size_t vme_get_size(struct vme_resource *resource)
168  {
169  	int enabled, retval;
170  	unsigned long long base, size;
171  	dma_addr_t buf_base;
172  	u32 aspace, cycle, dwidth;
173  
174  	switch (resource->type) {
175  	case VME_MASTER:
176  		retval = vme_master_get(resource, &enabled, &base, &size,
177  			&aspace, &cycle, &dwidth);
178  		if (retval)
179  			return 0;
180  
181  		return size;
182  		break;
183  	case VME_SLAVE:
184  		retval = vme_slave_get(resource, &enabled, &base, &size,
185  			&buf_base, &aspace, &cycle);
186  		if (retval)
187  			return 0;
188  
189  		return size;
190  		break;
191  	case VME_DMA:
192  		return 0;
193  		break;
194  	default:
195  		printk(KERN_ERR "Unknown resource type\n");
196  		return 0;
197  		break;
198  	}
199  }
200  EXPORT_SYMBOL(vme_get_size);
201  
vme_check_window(u32 aspace,unsigned long long vme_base,unsigned long long size)202  int vme_check_window(u32 aspace, unsigned long long vme_base,
203  		     unsigned long long size)
204  {
205  	int retval = 0;
206  
207  	if (vme_base + size < size)
208  		return -EINVAL;
209  
210  	switch (aspace) {
211  	case VME_A16:
212  		if (vme_base + size > VME_A16_MAX)
213  			retval = -EFAULT;
214  		break;
215  	case VME_A24:
216  		if (vme_base + size > VME_A24_MAX)
217  			retval = -EFAULT;
218  		break;
219  	case VME_A32:
220  		if (vme_base + size > VME_A32_MAX)
221  			retval = -EFAULT;
222  		break;
223  	case VME_A64:
224  		/* The VME_A64_MAX limit is actually U64_MAX + 1 */
225  		break;
226  	case VME_CRCSR:
227  		if (vme_base + size > VME_CRCSR_MAX)
228  			retval = -EFAULT;
229  		break;
230  	case VME_USER1:
231  	case VME_USER2:
232  	case VME_USER3:
233  	case VME_USER4:
234  		/* User Defined */
235  		break;
236  	default:
237  		printk(KERN_ERR "Invalid address space\n");
238  		retval = -EINVAL;
239  		break;
240  	}
241  
242  	return retval;
243  }
244  EXPORT_SYMBOL(vme_check_window);
245  
vme_get_aspace(int am)246  static u32 vme_get_aspace(int am)
247  {
248  	switch (am) {
249  	case 0x29:
250  	case 0x2D:
251  		return VME_A16;
252  	case 0x38:
253  	case 0x39:
254  	case 0x3A:
255  	case 0x3B:
256  	case 0x3C:
257  	case 0x3D:
258  	case 0x3E:
259  	case 0x3F:
260  		return VME_A24;
261  	case 0x8:
262  	case 0x9:
263  	case 0xA:
264  	case 0xB:
265  	case 0xC:
266  	case 0xD:
267  	case 0xE:
268  	case 0xF:
269  		return VME_A32;
270  	case 0x0:
271  	case 0x1:
272  	case 0x3:
273  		return VME_A64;
274  	}
275  
276  	return 0;
277  }
278  
279  /**
280   * vme_slave_request - Request a VME slave window resource.
281   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
282   * @address: Required VME address space.
283   * @cycle: Required VME data transfer cycle type.
284   *
285   * Request use of a VME window resource capable of being set for the requested
286   * address space and data transfer cycle.
287   *
288   * Return: Pointer to VME resource on success, NULL on failure.
289   */
vme_slave_request(struct vme_dev * vdev,u32 address,u32 cycle)290  struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address,
291  	u32 cycle)
292  {
293  	struct vme_bridge *bridge;
294  	struct list_head *slave_pos = NULL;
295  	struct vme_slave_resource *allocated_image = NULL;
296  	struct vme_slave_resource *slave_image = NULL;
297  	struct vme_resource *resource = NULL;
298  
299  	bridge = vdev->bridge;
300  	if (!bridge) {
301  		printk(KERN_ERR "Can't find VME bus\n");
302  		goto err_bus;
303  	}
304  
305  	/* Loop through slave resources */
306  	list_for_each(slave_pos, &bridge->slave_resources) {
307  		slave_image = list_entry(slave_pos,
308  			struct vme_slave_resource, list);
309  
310  		if (!slave_image) {
311  			printk(KERN_ERR "Registered NULL Slave resource\n");
312  			continue;
313  		}
314  
315  		/* Find an unlocked and compatible image */
316  		mutex_lock(&slave_image->mtx);
317  		if (((slave_image->address_attr & address) == address) &&
318  			((slave_image->cycle_attr & cycle) == cycle) &&
319  			(slave_image->locked == 0)) {
320  
321  			slave_image->locked = 1;
322  			mutex_unlock(&slave_image->mtx);
323  			allocated_image = slave_image;
324  			break;
325  		}
326  		mutex_unlock(&slave_image->mtx);
327  	}
328  
329  	/* No free image */
330  	if (!allocated_image)
331  		goto err_image;
332  
333  	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
334  	if (!resource)
335  		goto err_alloc;
336  
337  	resource->type = VME_SLAVE;
338  	resource->entry = &allocated_image->list;
339  
340  	return resource;
341  
342  err_alloc:
343  	/* Unlock image */
344  	mutex_lock(&slave_image->mtx);
345  	slave_image->locked = 0;
346  	mutex_unlock(&slave_image->mtx);
347  err_image:
348  err_bus:
349  	return NULL;
350  }
351  EXPORT_SYMBOL(vme_slave_request);
352  
353  /**
354   * vme_slave_set - Set VME slave window configuration.
355   * @resource: Pointer to VME slave resource.
356   * @enabled: State to which the window should be configured.
357   * @vme_base: Base address for the window.
358   * @size: Size of the VME window.
359   * @buf_base: Based address of buffer used to provide VME slave window storage.
360   * @aspace: VME address space for the VME window.
361   * @cycle: VME data transfer cycle type for the VME window.
362   *
363   * Set configuration for provided VME slave window.
364   *
365   * Return: Zero on success, -EINVAL if operation is not supported on this
366   *         device, if an invalid resource has been provided or invalid
367   *         attributes are provided. Hardware specific errors may also be
368   *         returned.
369   */
vme_slave_set(struct vme_resource * resource,int enabled,unsigned long long vme_base,unsigned long long size,dma_addr_t buf_base,u32 aspace,u32 cycle)370  int vme_slave_set(struct vme_resource *resource, int enabled,
371  	unsigned long long vme_base, unsigned long long size,
372  	dma_addr_t buf_base, u32 aspace, u32 cycle)
373  {
374  	struct vme_bridge *bridge = find_bridge(resource);
375  	struct vme_slave_resource *image;
376  	int retval;
377  
378  	if (resource->type != VME_SLAVE) {
379  		printk(KERN_ERR "Not a slave resource\n");
380  		return -EINVAL;
381  	}
382  
383  	image = list_entry(resource->entry, struct vme_slave_resource, list);
384  
385  	if (!bridge->slave_set) {
386  		printk(KERN_ERR "Function not supported\n");
387  		return -ENOSYS;
388  	}
389  
390  	if (!(((image->address_attr & aspace) == aspace) &&
391  		((image->cycle_attr & cycle) == cycle))) {
392  		printk(KERN_ERR "Invalid attributes\n");
393  		return -EINVAL;
394  	}
395  
396  	retval = vme_check_window(aspace, vme_base, size);
397  	if (retval)
398  		return retval;
399  
400  	return bridge->slave_set(image, enabled, vme_base, size, buf_base,
401  		aspace, cycle);
402  }
403  EXPORT_SYMBOL(vme_slave_set);
404  
405  /**
406   * vme_slave_get - Retrieve VME slave window configuration.
407   * @resource: Pointer to VME slave resource.
408   * @enabled: Pointer to variable for storing state.
409   * @vme_base: Pointer to variable for storing window base address.
410   * @size: Pointer to variable for storing window size.
411   * @buf_base: Pointer to variable for storing slave buffer base address.
412   * @aspace: Pointer to variable for storing VME address space.
413   * @cycle: Pointer to variable for storing VME data transfer cycle type.
414   *
415   * Return configuration for provided VME slave window.
416   *
417   * Return: Zero on success, -EINVAL if operation is not supported on this
418   *         device or if an invalid resource has been provided.
419   */
vme_slave_get(struct vme_resource * resource,int * enabled,unsigned long long * vme_base,unsigned long long * size,dma_addr_t * buf_base,u32 * aspace,u32 * cycle)420  int vme_slave_get(struct vme_resource *resource, int *enabled,
421  	unsigned long long *vme_base, unsigned long long *size,
422  	dma_addr_t *buf_base, u32 *aspace, u32 *cycle)
423  {
424  	struct vme_bridge *bridge = find_bridge(resource);
425  	struct vme_slave_resource *image;
426  
427  	if (resource->type != VME_SLAVE) {
428  		printk(KERN_ERR "Not a slave resource\n");
429  		return -EINVAL;
430  	}
431  
432  	image = list_entry(resource->entry, struct vme_slave_resource, list);
433  
434  	if (!bridge->slave_get) {
435  		printk(KERN_ERR "vme_slave_get not supported\n");
436  		return -EINVAL;
437  	}
438  
439  	return bridge->slave_get(image, enabled, vme_base, size, buf_base,
440  		aspace, cycle);
441  }
442  EXPORT_SYMBOL(vme_slave_get);
443  
444  /**
445   * vme_slave_free - Free VME slave window
446   * @resource: Pointer to VME slave resource.
447   *
448   * Free the provided slave resource so that it may be reallocated.
449   */
vme_slave_free(struct vme_resource * resource)450  void vme_slave_free(struct vme_resource *resource)
451  {
452  	struct vme_slave_resource *slave_image;
453  
454  	if (resource->type != VME_SLAVE) {
455  		printk(KERN_ERR "Not a slave resource\n");
456  		return;
457  	}
458  
459  	slave_image = list_entry(resource->entry, struct vme_slave_resource,
460  		list);
461  	if (!slave_image) {
462  		printk(KERN_ERR "Can't find slave resource\n");
463  		return;
464  	}
465  
466  	/* Unlock image */
467  	mutex_lock(&slave_image->mtx);
468  	if (slave_image->locked == 0)
469  		printk(KERN_ERR "Image is already free\n");
470  
471  	slave_image->locked = 0;
472  	mutex_unlock(&slave_image->mtx);
473  
474  	/* Free up resource memory */
475  	kfree(resource);
476  }
477  EXPORT_SYMBOL(vme_slave_free);
478  
479  /**
480   * vme_master_request - Request a VME master window resource.
481   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
482   * @address: Required VME address space.
483   * @cycle: Required VME data transfer cycle type.
484   * @dwidth: Required VME data transfer width.
485   *
486   * Request use of a VME window resource capable of being set for the requested
487   * address space, data transfer cycle and width.
488   *
489   * Return: Pointer to VME resource on success, NULL on failure.
490   */
vme_master_request(struct vme_dev * vdev,u32 address,u32 cycle,u32 dwidth)491  struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address,
492  	u32 cycle, u32 dwidth)
493  {
494  	struct vme_bridge *bridge;
495  	struct list_head *master_pos = NULL;
496  	struct vme_master_resource *allocated_image = NULL;
497  	struct vme_master_resource *master_image = NULL;
498  	struct vme_resource *resource = NULL;
499  
500  	bridge = vdev->bridge;
501  	if (!bridge) {
502  		printk(KERN_ERR "Can't find VME bus\n");
503  		goto err_bus;
504  	}
505  
506  	/* Loop through master resources */
507  	list_for_each(master_pos, &bridge->master_resources) {
508  		master_image = list_entry(master_pos,
509  			struct vme_master_resource, list);
510  
511  		if (!master_image) {
512  			printk(KERN_WARNING "Registered NULL master resource\n");
513  			continue;
514  		}
515  
516  		/* Find an unlocked and compatible image */
517  		spin_lock(&master_image->lock);
518  		if (((master_image->address_attr & address) == address) &&
519  			((master_image->cycle_attr & cycle) == cycle) &&
520  			((master_image->width_attr & dwidth) == dwidth) &&
521  			(master_image->locked == 0)) {
522  
523  			master_image->locked = 1;
524  			spin_unlock(&master_image->lock);
525  			allocated_image = master_image;
526  			break;
527  		}
528  		spin_unlock(&master_image->lock);
529  	}
530  
531  	/* Check to see if we found a resource */
532  	if (!allocated_image) {
533  		printk(KERN_ERR "Can't find a suitable resource\n");
534  		goto err_image;
535  	}
536  
537  	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
538  	if (!resource)
539  		goto err_alloc;
540  
541  	resource->type = VME_MASTER;
542  	resource->entry = &allocated_image->list;
543  
544  	return resource;
545  
546  err_alloc:
547  	/* Unlock image */
548  	spin_lock(&master_image->lock);
549  	master_image->locked = 0;
550  	spin_unlock(&master_image->lock);
551  err_image:
552  err_bus:
553  	return NULL;
554  }
555  EXPORT_SYMBOL(vme_master_request);
556  
557  /**
558   * vme_master_set - Set VME master window configuration.
559   * @resource: Pointer to VME master resource.
560   * @enabled: State to which the window should be configured.
561   * @vme_base: Base address for the window.
562   * @size: Size of the VME window.
563   * @aspace: VME address space for the VME window.
564   * @cycle: VME data transfer cycle type for the VME window.
565   * @dwidth: VME data transfer width for the VME window.
566   *
567   * Set configuration for provided VME master window.
568   *
569   * Return: Zero on success, -EINVAL if operation is not supported on this
570   *         device, if an invalid resource has been provided or invalid
571   *         attributes are provided. Hardware specific errors may also be
572   *         returned.
573   */
vme_master_set(struct vme_resource * resource,int enabled,unsigned long long vme_base,unsigned long long size,u32 aspace,u32 cycle,u32 dwidth)574  int vme_master_set(struct vme_resource *resource, int enabled,
575  	unsigned long long vme_base, unsigned long long size, u32 aspace,
576  	u32 cycle, u32 dwidth)
577  {
578  	struct vme_bridge *bridge = find_bridge(resource);
579  	struct vme_master_resource *image;
580  	int retval;
581  
582  	if (resource->type != VME_MASTER) {
583  		printk(KERN_ERR "Not a master resource\n");
584  		return -EINVAL;
585  	}
586  
587  	image = list_entry(resource->entry, struct vme_master_resource, list);
588  
589  	if (!bridge->master_set) {
590  		printk(KERN_WARNING "vme_master_set not supported\n");
591  		return -EINVAL;
592  	}
593  
594  	if (!(((image->address_attr & aspace) == aspace) &&
595  		((image->cycle_attr & cycle) == cycle) &&
596  		((image->width_attr & dwidth) == dwidth))) {
597  		printk(KERN_WARNING "Invalid attributes\n");
598  		return -EINVAL;
599  	}
600  
601  	retval = vme_check_window(aspace, vme_base, size);
602  	if (retval)
603  		return retval;
604  
605  	return bridge->master_set(image, enabled, vme_base, size, aspace,
606  		cycle, dwidth);
607  }
608  EXPORT_SYMBOL(vme_master_set);
609  
610  /**
611   * vme_master_get - Retrieve VME master window configuration.
612   * @resource: Pointer to VME master resource.
613   * @enabled: Pointer to variable for storing state.
614   * @vme_base: Pointer to variable for storing window base address.
615   * @size: Pointer to variable for storing window size.
616   * @aspace: Pointer to variable for storing VME address space.
617   * @cycle: Pointer to variable for storing VME data transfer cycle type.
618   * @dwidth: Pointer to variable for storing VME data transfer width.
619   *
620   * Return configuration for provided VME master window.
621   *
622   * Return: Zero on success, -EINVAL if operation is not supported on this
623   *         device or if an invalid resource has been provided.
624   */
vme_master_get(struct vme_resource * resource,int * enabled,unsigned long long * vme_base,unsigned long long * size,u32 * aspace,u32 * cycle,u32 * dwidth)625  int vme_master_get(struct vme_resource *resource, int *enabled,
626  	unsigned long long *vme_base, unsigned long long *size, u32 *aspace,
627  	u32 *cycle, u32 *dwidth)
628  {
629  	struct vme_bridge *bridge = find_bridge(resource);
630  	struct vme_master_resource *image;
631  
632  	if (resource->type != VME_MASTER) {
633  		printk(KERN_ERR "Not a master resource\n");
634  		return -EINVAL;
635  	}
636  
637  	image = list_entry(resource->entry, struct vme_master_resource, list);
638  
639  	if (!bridge->master_get) {
640  		printk(KERN_WARNING "%s not supported\n", __func__);
641  		return -EINVAL;
642  	}
643  
644  	return bridge->master_get(image, enabled, vme_base, size, aspace,
645  		cycle, dwidth);
646  }
647  EXPORT_SYMBOL(vme_master_get);
648  
649  /**
650   * vme_master_write - Read data from VME space into a buffer.
651   * @resource: Pointer to VME master resource.
652   * @buf: Pointer to buffer where data should be transferred.
653   * @count: Number of bytes to transfer.
654   * @offset: Offset into VME master window at which to start transfer.
655   *
656   * Perform read of count bytes of data from location on VME bus which maps into
657   * the VME master window at offset to buf.
658   *
659   * Return: Number of bytes read, -EINVAL if resource is not a VME master
660   *         resource or read operation is not supported. -EFAULT returned if
661   *         invalid offset is provided. Hardware specific errors may also be
662   *         returned.
663   */
vme_master_read(struct vme_resource * resource,void * buf,size_t count,loff_t offset)664  ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count,
665  	loff_t offset)
666  {
667  	struct vme_bridge *bridge = find_bridge(resource);
668  	struct vme_master_resource *image;
669  	size_t length;
670  
671  	if (!bridge->master_read) {
672  		printk(KERN_WARNING "Reading from resource not supported\n");
673  		return -EINVAL;
674  	}
675  
676  	if (resource->type != VME_MASTER) {
677  		printk(KERN_ERR "Not a master resource\n");
678  		return -EINVAL;
679  	}
680  
681  	image = list_entry(resource->entry, struct vme_master_resource, list);
682  
683  	length = vme_get_size(resource);
684  
685  	if (offset > length) {
686  		printk(KERN_WARNING "Invalid Offset\n");
687  		return -EFAULT;
688  	}
689  
690  	if ((offset + count) > length)
691  		count = length - offset;
692  
693  	return bridge->master_read(image, buf, count, offset);
694  
695  }
696  EXPORT_SYMBOL(vme_master_read);
697  
698  /**
699   * vme_master_write - Write data out to VME space from a buffer.
700   * @resource: Pointer to VME master resource.
701   * @buf: Pointer to buffer holding data to transfer.
702   * @count: Number of bytes to transfer.
703   * @offset: Offset into VME master window at which to start transfer.
704   *
705   * Perform write of count bytes of data from buf to location on VME bus which
706   * maps into the VME master window at offset.
707   *
708   * Return: Number of bytes written, -EINVAL if resource is not a VME master
709   *         resource or write operation is not supported. -EFAULT returned if
710   *         invalid offset is provided. Hardware specific errors may also be
711   *         returned.
712   */
vme_master_write(struct vme_resource * resource,void * buf,size_t count,loff_t offset)713  ssize_t vme_master_write(struct vme_resource *resource, void *buf,
714  	size_t count, loff_t offset)
715  {
716  	struct vme_bridge *bridge = find_bridge(resource);
717  	struct vme_master_resource *image;
718  	size_t length;
719  
720  	if (!bridge->master_write) {
721  		printk(KERN_WARNING "Writing to resource not supported\n");
722  		return -EINVAL;
723  	}
724  
725  	if (resource->type != VME_MASTER) {
726  		printk(KERN_ERR "Not a master resource\n");
727  		return -EINVAL;
728  	}
729  
730  	image = list_entry(resource->entry, struct vme_master_resource, list);
731  
732  	length = vme_get_size(resource);
733  
734  	if (offset > length) {
735  		printk(KERN_WARNING "Invalid Offset\n");
736  		return -EFAULT;
737  	}
738  
739  	if ((offset + count) > length)
740  		count = length - offset;
741  
742  	return bridge->master_write(image, buf, count, offset);
743  }
744  EXPORT_SYMBOL(vme_master_write);
745  
746  /**
747   * vme_master_rmw - Perform read-modify-write cycle.
748   * @resource: Pointer to VME master resource.
749   * @mask: Bits to be compared and swapped in operation.
750   * @compare: Bits to be compared with data read from offset.
751   * @swap: Bits to be swapped in data read from offset.
752   * @offset: Offset into VME master window at which to perform operation.
753   *
754   * Perform read-modify-write cycle on provided location:
755   * - Location on VME bus is read.
756   * - Bits selected by mask are compared with compare.
757   * - Where a selected bit matches that in compare and are selected in swap,
758   * the bit is swapped.
759   * - Result written back to location on VME bus.
760   *
761   * Return: Bytes written on success, -EINVAL if resource is not a VME master
762   *         resource or RMW operation is not supported. Hardware specific
763   *         errors may also be returned.
764   */
vme_master_rmw(struct vme_resource * resource,unsigned int mask,unsigned int compare,unsigned int swap,loff_t offset)765  unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask,
766  	unsigned int compare, unsigned int swap, loff_t offset)
767  {
768  	struct vme_bridge *bridge = find_bridge(resource);
769  	struct vme_master_resource *image;
770  
771  	if (!bridge->master_rmw) {
772  		printk(KERN_WARNING "Writing to resource not supported\n");
773  		return -EINVAL;
774  	}
775  
776  	if (resource->type != VME_MASTER) {
777  		printk(KERN_ERR "Not a master resource\n");
778  		return -EINVAL;
779  	}
780  
781  	image = list_entry(resource->entry, struct vme_master_resource, list);
782  
783  	return bridge->master_rmw(image, mask, compare, swap, offset);
784  }
785  EXPORT_SYMBOL(vme_master_rmw);
786  
787  /**
788   * vme_master_mmap - Mmap region of VME master window.
789   * @resource: Pointer to VME master resource.
790   * @vma: Pointer to definition of user mapping.
791   *
792   * Memory map a region of the VME master window into user space.
793   *
794   * Return: Zero on success, -EINVAL if resource is not a VME master
795   *         resource or -EFAULT if map exceeds window size. Other generic mmap
796   *         errors may also be returned.
797   */
vme_master_mmap(struct vme_resource * resource,struct vm_area_struct * vma)798  int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma)
799  {
800  	struct vme_master_resource *image;
801  	phys_addr_t phys_addr;
802  	unsigned long vma_size;
803  
804  	if (resource->type != VME_MASTER) {
805  		pr_err("Not a master resource\n");
806  		return -EINVAL;
807  	}
808  
809  	image = list_entry(resource->entry, struct vme_master_resource, list);
810  	phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT);
811  	vma_size = vma->vm_end - vma->vm_start;
812  
813  	if (phys_addr + vma_size > image->bus_resource.end + 1) {
814  		pr_err("Map size cannot exceed the window size\n");
815  		return -EFAULT;
816  	}
817  
818  	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
819  
820  	return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start);
821  }
822  EXPORT_SYMBOL(vme_master_mmap);
823  
824  /**
825   * vme_master_free - Free VME master window
826   * @resource: Pointer to VME master resource.
827   *
828   * Free the provided master resource so that it may be reallocated.
829   */
vme_master_free(struct vme_resource * resource)830  void vme_master_free(struct vme_resource *resource)
831  {
832  	struct vme_master_resource *master_image;
833  
834  	if (resource->type != VME_MASTER) {
835  		printk(KERN_ERR "Not a master resource\n");
836  		return;
837  	}
838  
839  	master_image = list_entry(resource->entry, struct vme_master_resource,
840  		list);
841  	if (!master_image) {
842  		printk(KERN_ERR "Can't find master resource\n");
843  		return;
844  	}
845  
846  	/* Unlock image */
847  	spin_lock(&master_image->lock);
848  	if (master_image->locked == 0)
849  		printk(KERN_ERR "Image is already free\n");
850  
851  	master_image->locked = 0;
852  	spin_unlock(&master_image->lock);
853  
854  	/* Free up resource memory */
855  	kfree(resource);
856  }
857  EXPORT_SYMBOL(vme_master_free);
858  
859  /**
860   * vme_dma_request - Request a DMA controller.
861   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
862   * @route: Required src/destination combination.
863   *
864   * Request a VME DMA controller with capability to perform transfers bewteen
865   * requested source/destination combination.
866   *
867   * Return: Pointer to VME DMA resource on success, NULL on failure.
868   */
vme_dma_request(struct vme_dev * vdev,u32 route)869  struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route)
870  {
871  	struct vme_bridge *bridge;
872  	struct list_head *dma_pos = NULL;
873  	struct vme_dma_resource *allocated_ctrlr = NULL;
874  	struct vme_dma_resource *dma_ctrlr = NULL;
875  	struct vme_resource *resource = NULL;
876  
877  	/* XXX Not checking resource attributes */
878  	printk(KERN_ERR "No VME resource Attribute tests done\n");
879  
880  	bridge = vdev->bridge;
881  	if (!bridge) {
882  		printk(KERN_ERR "Can't find VME bus\n");
883  		goto err_bus;
884  	}
885  
886  	/* Loop through DMA resources */
887  	list_for_each(dma_pos, &bridge->dma_resources) {
888  		dma_ctrlr = list_entry(dma_pos,
889  			struct vme_dma_resource, list);
890  		if (!dma_ctrlr) {
891  			printk(KERN_ERR "Registered NULL DMA resource\n");
892  			continue;
893  		}
894  
895  		/* Find an unlocked and compatible controller */
896  		mutex_lock(&dma_ctrlr->mtx);
897  		if (((dma_ctrlr->route_attr & route) == route) &&
898  			(dma_ctrlr->locked == 0)) {
899  
900  			dma_ctrlr->locked = 1;
901  			mutex_unlock(&dma_ctrlr->mtx);
902  			allocated_ctrlr = dma_ctrlr;
903  			break;
904  		}
905  		mutex_unlock(&dma_ctrlr->mtx);
906  	}
907  
908  	/* Check to see if we found a resource */
909  	if (!allocated_ctrlr)
910  		goto err_ctrlr;
911  
912  	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
913  	if (!resource)
914  		goto err_alloc;
915  
916  	resource->type = VME_DMA;
917  	resource->entry = &allocated_ctrlr->list;
918  
919  	return resource;
920  
921  err_alloc:
922  	/* Unlock image */
923  	mutex_lock(&dma_ctrlr->mtx);
924  	dma_ctrlr->locked = 0;
925  	mutex_unlock(&dma_ctrlr->mtx);
926  err_ctrlr:
927  err_bus:
928  	return NULL;
929  }
930  EXPORT_SYMBOL(vme_dma_request);
931  
932  /**
933   * vme_new_dma_list - Create new VME DMA list.
934   * @resource: Pointer to VME DMA resource.
935   *
936   * Create a new VME DMA list. It is the responsibility of the user to free
937   * the list once it is no longer required with vme_dma_list_free().
938   *
939   * Return: Pointer to new VME DMA list, NULL on allocation failure or invalid
940   *         VME DMA resource.
941   */
vme_new_dma_list(struct vme_resource * resource)942  struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource)
943  {
944  	struct vme_dma_list *dma_list;
945  
946  	if (resource->type != VME_DMA) {
947  		printk(KERN_ERR "Not a DMA resource\n");
948  		return NULL;
949  	}
950  
951  	dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL);
952  	if (!dma_list)
953  		return NULL;
954  
955  	INIT_LIST_HEAD(&dma_list->entries);
956  	dma_list->parent = list_entry(resource->entry,
957  				      struct vme_dma_resource,
958  				      list);
959  	mutex_init(&dma_list->mtx);
960  
961  	return dma_list;
962  }
963  EXPORT_SYMBOL(vme_new_dma_list);
964  
965  /**
966   * vme_dma_pattern_attribute - Create "Pattern" type VME DMA list attribute.
967   * @pattern: Value to use used as pattern
968   * @type: Type of pattern to be written.
969   *
970   * Create VME DMA list attribute for pattern generation. It is the
971   * responsibility of the user to free used attributes using
972   * vme_dma_free_attribute().
973   *
974   * Return: Pointer to VME DMA attribute, NULL on failure.
975   */
vme_dma_pattern_attribute(u32 pattern,u32 type)976  struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type)
977  {
978  	struct vme_dma_attr *attributes;
979  	struct vme_dma_pattern *pattern_attr;
980  
981  	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
982  	if (!attributes)
983  		goto err_attr;
984  
985  	pattern_attr = kmalloc(sizeof(*pattern_attr), GFP_KERNEL);
986  	if (!pattern_attr)
987  		goto err_pat;
988  
989  	attributes->type = VME_DMA_PATTERN;
990  	attributes->private = (void *)pattern_attr;
991  
992  	pattern_attr->pattern = pattern;
993  	pattern_attr->type = type;
994  
995  	return attributes;
996  
997  err_pat:
998  	kfree(attributes);
999  err_attr:
1000  	return NULL;
1001  }
1002  EXPORT_SYMBOL(vme_dma_pattern_attribute);
1003  
1004  /**
1005   * vme_dma_pci_attribute - Create "PCI" type VME DMA list attribute.
1006   * @address: PCI base address for DMA transfer.
1007   *
1008   * Create VME DMA list attribute pointing to a location on PCI for DMA
1009   * transfers. It is the responsibility of the user to free used attributes
1010   * using vme_dma_free_attribute().
1011   *
1012   * Return: Pointer to VME DMA attribute, NULL on failure.
1013   */
vme_dma_pci_attribute(dma_addr_t address)1014  struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address)
1015  {
1016  	struct vme_dma_attr *attributes;
1017  	struct vme_dma_pci *pci_attr;
1018  
1019  	/* XXX Run some sanity checks here */
1020  
1021  	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1022  	if (!attributes)
1023  		goto err_attr;
1024  
1025  	pci_attr = kmalloc(sizeof(*pci_attr), GFP_KERNEL);
1026  	if (!pci_attr)
1027  		goto err_pci;
1028  
1029  	attributes->type = VME_DMA_PCI;
1030  	attributes->private = (void *)pci_attr;
1031  
1032  	pci_attr->address = address;
1033  
1034  	return attributes;
1035  
1036  err_pci:
1037  	kfree(attributes);
1038  err_attr:
1039  	return NULL;
1040  }
1041  EXPORT_SYMBOL(vme_dma_pci_attribute);
1042  
1043  /**
1044   * vme_dma_vme_attribute - Create "VME" type VME DMA list attribute.
1045   * @address: VME base address for DMA transfer.
1046   * @aspace: VME address space to use for DMA transfer.
1047   * @cycle: VME bus cycle to use for DMA transfer.
1048   * @dwidth: VME data width to use for DMA transfer.
1049   *
1050   * Create VME DMA list attribute pointing to a location on the VME bus for DMA
1051   * transfers. It is the responsibility of the user to free used attributes
1052   * using vme_dma_free_attribute().
1053   *
1054   * Return: Pointer to VME DMA attribute, NULL on failure.
1055   */
vme_dma_vme_attribute(unsigned long long address,u32 aspace,u32 cycle,u32 dwidth)1056  struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address,
1057  	u32 aspace, u32 cycle, u32 dwidth)
1058  {
1059  	struct vme_dma_attr *attributes;
1060  	struct vme_dma_vme *vme_attr;
1061  
1062  	attributes = kmalloc(sizeof(*attributes), GFP_KERNEL);
1063  	if (!attributes)
1064  		goto err_attr;
1065  
1066  	vme_attr = kmalloc(sizeof(*vme_attr), GFP_KERNEL);
1067  	if (!vme_attr)
1068  		goto err_vme;
1069  
1070  	attributes->type = VME_DMA_VME;
1071  	attributes->private = (void *)vme_attr;
1072  
1073  	vme_attr->address = address;
1074  	vme_attr->aspace = aspace;
1075  	vme_attr->cycle = cycle;
1076  	vme_attr->dwidth = dwidth;
1077  
1078  	return attributes;
1079  
1080  err_vme:
1081  	kfree(attributes);
1082  err_attr:
1083  	return NULL;
1084  }
1085  EXPORT_SYMBOL(vme_dma_vme_attribute);
1086  
1087  /**
1088   * vme_dma_free_attribute - Free DMA list attribute.
1089   * @attributes: Pointer to DMA list attribute.
1090   *
1091   * Free VME DMA list attribute. VME DMA list attributes can be safely freed
1092   * once vme_dma_list_add() has returned.
1093   */
vme_dma_free_attribute(struct vme_dma_attr * attributes)1094  void vme_dma_free_attribute(struct vme_dma_attr *attributes)
1095  {
1096  	kfree(attributes->private);
1097  	kfree(attributes);
1098  }
1099  EXPORT_SYMBOL(vme_dma_free_attribute);
1100  
1101  /**
1102   * vme_dma_list_add - Add enty to a VME DMA list.
1103   * @list: Pointer to VME list.
1104   * @src: Pointer to DMA list attribute to use as source.
1105   * @dest: Pointer to DMA list attribute to use as destination.
1106   * @count: Number of bytes to transfer.
1107   *
1108   * Add an entry to the provided VME DMA list. Entry requires pointers to source
1109   * and destination DMA attributes and a count.
1110   *
1111   * Please note, the attributes supported as source and destinations for
1112   * transfers are hardware dependent.
1113   *
1114   * Return: Zero on success, -EINVAL if operation is not supported on this
1115   *         device or if the link list has already been submitted for execution.
1116   *         Hardware specific errors also possible.
1117   */
vme_dma_list_add(struct vme_dma_list * list,struct vme_dma_attr * src,struct vme_dma_attr * dest,size_t count)1118  int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src,
1119  	struct vme_dma_attr *dest, size_t count)
1120  {
1121  	struct vme_bridge *bridge = list->parent->parent;
1122  	int retval;
1123  
1124  	if (!bridge->dma_list_add) {
1125  		printk(KERN_WARNING "Link List DMA generation not supported\n");
1126  		return -EINVAL;
1127  	}
1128  
1129  	if (!mutex_trylock(&list->mtx)) {
1130  		printk(KERN_ERR "Link List already submitted\n");
1131  		return -EINVAL;
1132  	}
1133  
1134  	retval = bridge->dma_list_add(list, src, dest, count);
1135  
1136  	mutex_unlock(&list->mtx);
1137  
1138  	return retval;
1139  }
1140  EXPORT_SYMBOL(vme_dma_list_add);
1141  
1142  /**
1143   * vme_dma_list_exec - Queue a VME DMA list for execution.
1144   * @list: Pointer to VME list.
1145   *
1146   * Queue the provided VME DMA list for execution. The call will return once the
1147   * list has been executed.
1148   *
1149   * Return: Zero on success, -EINVAL if operation is not supported on this
1150   *         device. Hardware specific errors also possible.
1151   */
vme_dma_list_exec(struct vme_dma_list * list)1152  int vme_dma_list_exec(struct vme_dma_list *list)
1153  {
1154  	struct vme_bridge *bridge = list->parent->parent;
1155  	int retval;
1156  
1157  	if (!bridge->dma_list_exec) {
1158  		printk(KERN_ERR "Link List DMA execution not supported\n");
1159  		return -EINVAL;
1160  	}
1161  
1162  	mutex_lock(&list->mtx);
1163  
1164  	retval = bridge->dma_list_exec(list);
1165  
1166  	mutex_unlock(&list->mtx);
1167  
1168  	return retval;
1169  }
1170  EXPORT_SYMBOL(vme_dma_list_exec);
1171  
1172  /**
1173   * vme_dma_list_free - Free a VME DMA list.
1174   * @list: Pointer to VME list.
1175   *
1176   * Free the provided DMA list and all its entries.
1177   *
1178   * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1179   *         is still in use. Hardware specific errors also possible.
1180   */
vme_dma_list_free(struct vme_dma_list * list)1181  int vme_dma_list_free(struct vme_dma_list *list)
1182  {
1183  	struct vme_bridge *bridge = list->parent->parent;
1184  	int retval;
1185  
1186  	if (!bridge->dma_list_empty) {
1187  		printk(KERN_WARNING "Emptying of Link Lists not supported\n");
1188  		return -EINVAL;
1189  	}
1190  
1191  	if (!mutex_trylock(&list->mtx)) {
1192  		printk(KERN_ERR "Link List in use\n");
1193  		return -EBUSY;
1194  	}
1195  
1196  	/*
1197  	 * Empty out all of the entries from the DMA list. We need to go to the
1198  	 * low level driver as DMA entries are driver specific.
1199  	 */
1200  	retval = bridge->dma_list_empty(list);
1201  	if (retval) {
1202  		printk(KERN_ERR "Unable to empty link-list entries\n");
1203  		mutex_unlock(&list->mtx);
1204  		return retval;
1205  	}
1206  	mutex_unlock(&list->mtx);
1207  	kfree(list);
1208  
1209  	return retval;
1210  }
1211  EXPORT_SYMBOL(vme_dma_list_free);
1212  
1213  /**
1214   * vme_dma_free - Free a VME DMA resource.
1215   * @resource: Pointer to VME DMA resource.
1216   *
1217   * Free the provided DMA resource so that it may be reallocated.
1218   *
1219   * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource
1220   *         is still active.
1221   */
vme_dma_free(struct vme_resource * resource)1222  int vme_dma_free(struct vme_resource *resource)
1223  {
1224  	struct vme_dma_resource *ctrlr;
1225  
1226  	if (resource->type != VME_DMA) {
1227  		printk(KERN_ERR "Not a DMA resource\n");
1228  		return -EINVAL;
1229  	}
1230  
1231  	ctrlr = list_entry(resource->entry, struct vme_dma_resource, list);
1232  
1233  	if (!mutex_trylock(&ctrlr->mtx)) {
1234  		printk(KERN_ERR "Resource busy, can't free\n");
1235  		return -EBUSY;
1236  	}
1237  
1238  	if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) {
1239  		printk(KERN_WARNING "Resource still processing transfers\n");
1240  		mutex_unlock(&ctrlr->mtx);
1241  		return -EBUSY;
1242  	}
1243  
1244  	ctrlr->locked = 0;
1245  
1246  	mutex_unlock(&ctrlr->mtx);
1247  
1248  	kfree(resource);
1249  
1250  	return 0;
1251  }
1252  EXPORT_SYMBOL(vme_dma_free);
1253  
vme_bus_error_handler(struct vme_bridge * bridge,unsigned long long address,int am)1254  void vme_bus_error_handler(struct vme_bridge *bridge,
1255  			   unsigned long long address, int am)
1256  {
1257  	struct list_head *handler_pos = NULL;
1258  	struct vme_error_handler *handler;
1259  	int handler_triggered = 0;
1260  	u32 aspace = vme_get_aspace(am);
1261  
1262  	list_for_each(handler_pos, &bridge->vme_error_handlers) {
1263  		handler = list_entry(handler_pos, struct vme_error_handler,
1264  				     list);
1265  		if ((aspace == handler->aspace) &&
1266  		    (address >= handler->start) &&
1267  		    (address < handler->end)) {
1268  			if (!handler->num_errors)
1269  				handler->first_error = address;
1270  			if (handler->num_errors != UINT_MAX)
1271  				handler->num_errors++;
1272  			handler_triggered = 1;
1273  		}
1274  	}
1275  
1276  	if (!handler_triggered)
1277  		dev_err(bridge->parent,
1278  			"Unhandled VME access error at address 0x%llx\n",
1279  			address);
1280  }
1281  EXPORT_SYMBOL(vme_bus_error_handler);
1282  
vme_register_error_handler(struct vme_bridge * bridge,u32 aspace,unsigned long long address,size_t len)1283  struct vme_error_handler *vme_register_error_handler(
1284  	struct vme_bridge *bridge, u32 aspace,
1285  	unsigned long long address, size_t len)
1286  {
1287  	struct vme_error_handler *handler;
1288  
1289  	handler = kmalloc(sizeof(*handler), GFP_ATOMIC);
1290  	if (!handler)
1291  		return NULL;
1292  
1293  	handler->aspace = aspace;
1294  	handler->start = address;
1295  	handler->end = address + len;
1296  	handler->num_errors = 0;
1297  	handler->first_error = 0;
1298  	list_add_tail(&handler->list, &bridge->vme_error_handlers);
1299  
1300  	return handler;
1301  }
1302  EXPORT_SYMBOL(vme_register_error_handler);
1303  
vme_unregister_error_handler(struct vme_error_handler * handler)1304  void vme_unregister_error_handler(struct vme_error_handler *handler)
1305  {
1306  	list_del(&handler->list);
1307  	kfree(handler);
1308  }
1309  EXPORT_SYMBOL(vme_unregister_error_handler);
1310  
vme_irq_handler(struct vme_bridge * bridge,int level,int statid)1311  void vme_irq_handler(struct vme_bridge *bridge, int level, int statid)
1312  {
1313  	void (*call)(int, int, void *);
1314  	void *priv_data;
1315  
1316  	call = bridge->irq[level - 1].callback[statid].func;
1317  	priv_data = bridge->irq[level - 1].callback[statid].priv_data;
1318  	if (call)
1319  		call(level, statid, priv_data);
1320  	else
1321  		printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n",
1322  		       level, statid);
1323  }
1324  EXPORT_SYMBOL(vme_irq_handler);
1325  
1326  /**
1327   * vme_irq_request - Request a specific VME interrupt.
1328   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1329   * @level: Interrupt priority being requested.
1330   * @statid: Interrupt vector being requested.
1331   * @callback: Pointer to callback function called when VME interrupt/vector
1332   *            received.
1333   * @priv_data: Generic pointer that will be passed to the callback function.
1334   *
1335   * Request callback to be attached as a handler for VME interrupts with provided
1336   * level and statid.
1337   *
1338   * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1339   *         function is not supported, -EBUSY if the level/statid combination is
1340   *         already in use. Hardware specific errors also possible.
1341   */
vme_irq_request(struct vme_dev * vdev,int level,int statid,void (* callback)(int,int,void *),void * priv_data)1342  int vme_irq_request(struct vme_dev *vdev, int level, int statid,
1343  	void (*callback)(int, int, void *),
1344  	void *priv_data)
1345  {
1346  	struct vme_bridge *bridge;
1347  
1348  	bridge = vdev->bridge;
1349  	if (!bridge) {
1350  		printk(KERN_ERR "Can't find VME bus\n");
1351  		return -EINVAL;
1352  	}
1353  
1354  	if ((level < 1) || (level > 7)) {
1355  		printk(KERN_ERR "Invalid interrupt level\n");
1356  		return -EINVAL;
1357  	}
1358  
1359  	if (!bridge->irq_set) {
1360  		printk(KERN_ERR "Configuring interrupts not supported\n");
1361  		return -EINVAL;
1362  	}
1363  
1364  	mutex_lock(&bridge->irq_mtx);
1365  
1366  	if (bridge->irq[level - 1].callback[statid].func) {
1367  		mutex_unlock(&bridge->irq_mtx);
1368  		printk(KERN_WARNING "VME Interrupt already taken\n");
1369  		return -EBUSY;
1370  	}
1371  
1372  	bridge->irq[level - 1].count++;
1373  	bridge->irq[level - 1].callback[statid].priv_data = priv_data;
1374  	bridge->irq[level - 1].callback[statid].func = callback;
1375  
1376  	/* Enable IRQ level */
1377  	bridge->irq_set(bridge, level, 1, 1);
1378  
1379  	mutex_unlock(&bridge->irq_mtx);
1380  
1381  	return 0;
1382  }
1383  EXPORT_SYMBOL(vme_irq_request);
1384  
1385  /**
1386   * vme_irq_free - Free a VME interrupt.
1387   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1388   * @level: Interrupt priority of interrupt being freed.
1389   * @statid: Interrupt vector of interrupt being freed.
1390   *
1391   * Remove previously attached callback from VME interrupt priority/vector.
1392   */
vme_irq_free(struct vme_dev * vdev,int level,int statid)1393  void vme_irq_free(struct vme_dev *vdev, int level, int statid)
1394  {
1395  	struct vme_bridge *bridge;
1396  
1397  	bridge = vdev->bridge;
1398  	if (!bridge) {
1399  		printk(KERN_ERR "Can't find VME bus\n");
1400  		return;
1401  	}
1402  
1403  	if ((level < 1) || (level > 7)) {
1404  		printk(KERN_ERR "Invalid interrupt level\n");
1405  		return;
1406  	}
1407  
1408  	if (!bridge->irq_set) {
1409  		printk(KERN_ERR "Configuring interrupts not supported\n");
1410  		return;
1411  	}
1412  
1413  	mutex_lock(&bridge->irq_mtx);
1414  
1415  	bridge->irq[level - 1].count--;
1416  
1417  	/* Disable IRQ level if no more interrupts attached at this level*/
1418  	if (bridge->irq[level - 1].count == 0)
1419  		bridge->irq_set(bridge, level, 0, 1);
1420  
1421  	bridge->irq[level - 1].callback[statid].func = NULL;
1422  	bridge->irq[level - 1].callback[statid].priv_data = NULL;
1423  
1424  	mutex_unlock(&bridge->irq_mtx);
1425  }
1426  EXPORT_SYMBOL(vme_irq_free);
1427  
1428  /**
1429   * vme_irq_generate - Generate VME interrupt.
1430   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1431   * @level: Interrupt priority at which to assert the interrupt.
1432   * @statid: Interrupt vector to associate with the interrupt.
1433   *
1434   * Generate a VME interrupt of the provided level and with the provided
1435   * statid.
1436   *
1437   * Return: Zero on success, -EINVAL on invalid vme device, level or if the
1438   *         function is not supported. Hardware specific errors also possible.
1439   */
vme_irq_generate(struct vme_dev * vdev,int level,int statid)1440  int vme_irq_generate(struct vme_dev *vdev, int level, int statid)
1441  {
1442  	struct vme_bridge *bridge;
1443  
1444  	bridge = vdev->bridge;
1445  	if (!bridge) {
1446  		printk(KERN_ERR "Can't find VME bus\n");
1447  		return -EINVAL;
1448  	}
1449  
1450  	if ((level < 1) || (level > 7)) {
1451  		printk(KERN_WARNING "Invalid interrupt level\n");
1452  		return -EINVAL;
1453  	}
1454  
1455  	if (!bridge->irq_generate) {
1456  		printk(KERN_WARNING "Interrupt generation not supported\n");
1457  		return -EINVAL;
1458  	}
1459  
1460  	return bridge->irq_generate(bridge, level, statid);
1461  }
1462  EXPORT_SYMBOL(vme_irq_generate);
1463  
1464  /**
1465   * vme_lm_request - Request a VME location monitor
1466   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1467   *
1468   * Allocate a location monitor resource to the driver. A location monitor
1469   * allows the driver to monitor accesses to a contiguous number of
1470   * addresses on the VME bus.
1471   *
1472   * Return: Pointer to a VME resource on success or NULL on failure.
1473   */
vme_lm_request(struct vme_dev * vdev)1474  struct vme_resource *vme_lm_request(struct vme_dev *vdev)
1475  {
1476  	struct vme_bridge *bridge;
1477  	struct list_head *lm_pos = NULL;
1478  	struct vme_lm_resource *allocated_lm = NULL;
1479  	struct vme_lm_resource *lm = NULL;
1480  	struct vme_resource *resource = NULL;
1481  
1482  	bridge = vdev->bridge;
1483  	if (!bridge) {
1484  		printk(KERN_ERR "Can't find VME bus\n");
1485  		goto err_bus;
1486  	}
1487  
1488  	/* Loop through LM resources */
1489  	list_for_each(lm_pos, &bridge->lm_resources) {
1490  		lm = list_entry(lm_pos,
1491  			struct vme_lm_resource, list);
1492  		if (!lm) {
1493  			printk(KERN_ERR "Registered NULL Location Monitor resource\n");
1494  			continue;
1495  		}
1496  
1497  		/* Find an unlocked controller */
1498  		mutex_lock(&lm->mtx);
1499  		if (lm->locked == 0) {
1500  			lm->locked = 1;
1501  			mutex_unlock(&lm->mtx);
1502  			allocated_lm = lm;
1503  			break;
1504  		}
1505  		mutex_unlock(&lm->mtx);
1506  	}
1507  
1508  	/* Check to see if we found a resource */
1509  	if (!allocated_lm)
1510  		goto err_lm;
1511  
1512  	resource = kmalloc(sizeof(*resource), GFP_KERNEL);
1513  	if (!resource)
1514  		goto err_alloc;
1515  
1516  	resource->type = VME_LM;
1517  	resource->entry = &allocated_lm->list;
1518  
1519  	return resource;
1520  
1521  err_alloc:
1522  	/* Unlock image */
1523  	mutex_lock(&lm->mtx);
1524  	lm->locked = 0;
1525  	mutex_unlock(&lm->mtx);
1526  err_lm:
1527  err_bus:
1528  	return NULL;
1529  }
1530  EXPORT_SYMBOL(vme_lm_request);
1531  
1532  /**
1533   * vme_lm_count - Determine number of VME Addresses monitored
1534   * @resource: Pointer to VME location monitor resource.
1535   *
1536   * The number of contiguous addresses monitored is hardware dependent.
1537   * Return the number of contiguous addresses monitored by the
1538   * location monitor.
1539   *
1540   * Return: Count of addresses monitored or -EINVAL when provided with an
1541   *	   invalid location monitor resource.
1542   */
vme_lm_count(struct vme_resource * resource)1543  int vme_lm_count(struct vme_resource *resource)
1544  {
1545  	struct vme_lm_resource *lm;
1546  
1547  	if (resource->type != VME_LM) {
1548  		printk(KERN_ERR "Not a Location Monitor resource\n");
1549  		return -EINVAL;
1550  	}
1551  
1552  	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1553  
1554  	return lm->monitors;
1555  }
1556  EXPORT_SYMBOL(vme_lm_count);
1557  
1558  /**
1559   * vme_lm_set - Configure location monitor
1560   * @resource: Pointer to VME location monitor resource.
1561   * @lm_base: Base address to monitor.
1562   * @aspace: VME address space to monitor.
1563   * @cycle: VME bus cycle type to monitor.
1564   *
1565   * Set the base address, address space and cycle type of accesses to be
1566   * monitored by the location monitor.
1567   *
1568   * Return: Zero on success, -EINVAL when provided with an invalid location
1569   *	   monitor resource or function is not supported. Hardware specific
1570   *	   errors may also be returned.
1571   */
vme_lm_set(struct vme_resource * resource,unsigned long long lm_base,u32 aspace,u32 cycle)1572  int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base,
1573  	u32 aspace, u32 cycle)
1574  {
1575  	struct vme_bridge *bridge = find_bridge(resource);
1576  	struct vme_lm_resource *lm;
1577  
1578  	if (resource->type != VME_LM) {
1579  		printk(KERN_ERR "Not a Location Monitor resource\n");
1580  		return -EINVAL;
1581  	}
1582  
1583  	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1584  
1585  	if (!bridge->lm_set) {
1586  		printk(KERN_ERR "vme_lm_set not supported\n");
1587  		return -EINVAL;
1588  	}
1589  
1590  	return bridge->lm_set(lm, lm_base, aspace, cycle);
1591  }
1592  EXPORT_SYMBOL(vme_lm_set);
1593  
1594  /**
1595   * vme_lm_get - Retrieve location monitor settings
1596   * @resource: Pointer to VME location monitor resource.
1597   * @lm_base: Pointer used to output the base address monitored.
1598   * @aspace: Pointer used to output the address space monitored.
1599   * @cycle: Pointer used to output the VME bus cycle type monitored.
1600   *
1601   * Retrieve the base address, address space and cycle type of accesses to
1602   * be monitored by the location monitor.
1603   *
1604   * Return: Zero on success, -EINVAL when provided with an invalid location
1605   *	   monitor resource or function is not supported. Hardware specific
1606   *	   errors may also be returned.
1607   */
vme_lm_get(struct vme_resource * resource,unsigned long long * lm_base,u32 * aspace,u32 * cycle)1608  int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base,
1609  	u32 *aspace, u32 *cycle)
1610  {
1611  	struct vme_bridge *bridge = find_bridge(resource);
1612  	struct vme_lm_resource *lm;
1613  
1614  	if (resource->type != VME_LM) {
1615  		printk(KERN_ERR "Not a Location Monitor resource\n");
1616  		return -EINVAL;
1617  	}
1618  
1619  	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1620  
1621  	if (!bridge->lm_get) {
1622  		printk(KERN_ERR "vme_lm_get not supported\n");
1623  		return -EINVAL;
1624  	}
1625  
1626  	return bridge->lm_get(lm, lm_base, aspace, cycle);
1627  }
1628  EXPORT_SYMBOL(vme_lm_get);
1629  
1630  /**
1631   * vme_lm_attach - Provide callback for location monitor address
1632   * @resource: Pointer to VME location monitor resource.
1633   * @monitor: Offset to which callback should be attached.
1634   * @callback: Pointer to callback function called when triggered.
1635   * @data: Generic pointer that will be passed to the callback function.
1636   *
1637   * Attach a callback to the specificed offset into the location monitors
1638   * monitored addresses. A generic pointer is provided to allow data to be
1639   * passed to the callback when called.
1640   *
1641   * Return: Zero on success, -EINVAL when provided with an invalid location
1642   *	   monitor resource or function is not supported. Hardware specific
1643   *	   errors may also be returned.
1644   */
vme_lm_attach(struct vme_resource * resource,int monitor,void (* callback)(void *),void * data)1645  int vme_lm_attach(struct vme_resource *resource, int monitor,
1646  	void (*callback)(void *), void *data)
1647  {
1648  	struct vme_bridge *bridge = find_bridge(resource);
1649  	struct vme_lm_resource *lm;
1650  
1651  	if (resource->type != VME_LM) {
1652  		printk(KERN_ERR "Not a Location Monitor resource\n");
1653  		return -EINVAL;
1654  	}
1655  
1656  	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1657  
1658  	if (!bridge->lm_attach) {
1659  		printk(KERN_ERR "vme_lm_attach not supported\n");
1660  		return -EINVAL;
1661  	}
1662  
1663  	return bridge->lm_attach(lm, monitor, callback, data);
1664  }
1665  EXPORT_SYMBOL(vme_lm_attach);
1666  
1667  /**
1668   * vme_lm_detach - Remove callback for location monitor address
1669   * @resource: Pointer to VME location monitor resource.
1670   * @monitor: Offset to which callback should be removed.
1671   *
1672   * Remove the callback associated with the specificed offset into the
1673   * location monitors monitored addresses.
1674   *
1675   * Return: Zero on success, -EINVAL when provided with an invalid location
1676   *	   monitor resource or function is not supported. Hardware specific
1677   *	   errors may also be returned.
1678   */
vme_lm_detach(struct vme_resource * resource,int monitor)1679  int vme_lm_detach(struct vme_resource *resource, int monitor)
1680  {
1681  	struct vme_bridge *bridge = find_bridge(resource);
1682  	struct vme_lm_resource *lm;
1683  
1684  	if (resource->type != VME_LM) {
1685  		printk(KERN_ERR "Not a Location Monitor resource\n");
1686  		return -EINVAL;
1687  	}
1688  
1689  	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1690  
1691  	if (!bridge->lm_detach) {
1692  		printk(KERN_ERR "vme_lm_detach not supported\n");
1693  		return -EINVAL;
1694  	}
1695  
1696  	return bridge->lm_detach(lm, monitor);
1697  }
1698  EXPORT_SYMBOL(vme_lm_detach);
1699  
1700  /**
1701   * vme_lm_free - Free allocated VME location monitor
1702   * @resource: Pointer to VME location monitor resource.
1703   *
1704   * Free allocation of a VME location monitor.
1705   *
1706   * WARNING: This function currently expects that any callbacks that have
1707   *          been attached to the location monitor have been removed.
1708   *
1709   * Return: Zero on success, -EINVAL when provided with an invalid location
1710   *	   monitor resource.
1711   */
vme_lm_free(struct vme_resource * resource)1712  void vme_lm_free(struct vme_resource *resource)
1713  {
1714  	struct vme_lm_resource *lm;
1715  
1716  	if (resource->type != VME_LM) {
1717  		printk(KERN_ERR "Not a Location Monitor resource\n");
1718  		return;
1719  	}
1720  
1721  	lm = list_entry(resource->entry, struct vme_lm_resource, list);
1722  
1723  	mutex_lock(&lm->mtx);
1724  
1725  	/* XXX
1726  	 * Check to see that there aren't any callbacks still attached, if
1727  	 * there are we should probably be detaching them!
1728  	 */
1729  
1730  	lm->locked = 0;
1731  
1732  	mutex_unlock(&lm->mtx);
1733  
1734  	kfree(resource);
1735  }
1736  EXPORT_SYMBOL(vme_lm_free);
1737  
1738  /**
1739   * vme_slot_num - Retrieve slot ID
1740   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1741   *
1742   * Retrieve the slot ID associated with the provided VME device.
1743   *
1744   * Return: The slot ID on success, -EINVAL if VME bridge cannot be determined
1745   *         or the function is not supported. Hardware specific errors may also
1746   *         be returned.
1747   */
vme_slot_num(struct vme_dev * vdev)1748  int vme_slot_num(struct vme_dev *vdev)
1749  {
1750  	struct vme_bridge *bridge;
1751  
1752  	bridge = vdev->bridge;
1753  	if (!bridge) {
1754  		printk(KERN_ERR "Can't find VME bus\n");
1755  		return -EINVAL;
1756  	}
1757  
1758  	if (!bridge->slot_get) {
1759  		printk(KERN_WARNING "vme_slot_num not supported\n");
1760  		return -EINVAL;
1761  	}
1762  
1763  	return bridge->slot_get(bridge);
1764  }
1765  EXPORT_SYMBOL(vme_slot_num);
1766  
1767  /**
1768   * vme_bus_num - Retrieve bus number
1769   * @vdev: Pointer to VME device struct vme_dev assigned to driver instance.
1770   *
1771   * Retrieve the bus enumeration associated with the provided VME device.
1772   *
1773   * Return: The bus number on success, -EINVAL if VME bridge cannot be
1774   *         determined.
1775   */
vme_bus_num(struct vme_dev * vdev)1776  int vme_bus_num(struct vme_dev *vdev)
1777  {
1778  	struct vme_bridge *bridge;
1779  
1780  	bridge = vdev->bridge;
1781  	if (!bridge) {
1782  		pr_err("Can't find VME bus\n");
1783  		return -EINVAL;
1784  	}
1785  
1786  	return bridge->num;
1787  }
1788  EXPORT_SYMBOL(vme_bus_num);
1789  
1790  /* - Bridge Registration --------------------------------------------------- */
1791  
vme_dev_release(struct device * dev)1792  static void vme_dev_release(struct device *dev)
1793  {
1794  	kfree(dev_to_vme_dev(dev));
1795  }
1796  
1797  /* Common bridge initialization */
vme_init_bridge(struct vme_bridge * bridge)1798  struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge)
1799  {
1800  	INIT_LIST_HEAD(&bridge->vme_error_handlers);
1801  	INIT_LIST_HEAD(&bridge->master_resources);
1802  	INIT_LIST_HEAD(&bridge->slave_resources);
1803  	INIT_LIST_HEAD(&bridge->dma_resources);
1804  	INIT_LIST_HEAD(&bridge->lm_resources);
1805  	mutex_init(&bridge->irq_mtx);
1806  
1807  	return bridge;
1808  }
1809  EXPORT_SYMBOL(vme_init_bridge);
1810  
vme_register_bridge(struct vme_bridge * bridge)1811  int vme_register_bridge(struct vme_bridge *bridge)
1812  {
1813  	int i;
1814  	int ret = -1;
1815  
1816  	mutex_lock(&vme_buses_lock);
1817  	for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) {
1818  		if ((vme_bus_numbers & (1 << i)) == 0) {
1819  			vme_bus_numbers |= (1 << i);
1820  			bridge->num = i;
1821  			INIT_LIST_HEAD(&bridge->devices);
1822  			list_add_tail(&bridge->bus_list, &vme_bus_list);
1823  			ret = 0;
1824  			break;
1825  		}
1826  	}
1827  	mutex_unlock(&vme_buses_lock);
1828  
1829  	return ret;
1830  }
1831  EXPORT_SYMBOL(vme_register_bridge);
1832  
vme_unregister_bridge(struct vme_bridge * bridge)1833  void vme_unregister_bridge(struct vme_bridge *bridge)
1834  {
1835  	struct vme_dev *vdev;
1836  	struct vme_dev *tmp;
1837  
1838  	mutex_lock(&vme_buses_lock);
1839  	vme_bus_numbers &= ~(1 << bridge->num);
1840  	list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) {
1841  		list_del(&vdev->drv_list);
1842  		list_del(&vdev->bridge_list);
1843  		device_unregister(&vdev->dev);
1844  	}
1845  	list_del(&bridge->bus_list);
1846  	mutex_unlock(&vme_buses_lock);
1847  }
1848  EXPORT_SYMBOL(vme_unregister_bridge);
1849  
1850  /* - Driver Registration --------------------------------------------------- */
1851  
__vme_register_driver_bus(struct vme_driver * drv,struct vme_bridge * bridge,unsigned int ndevs)1852  static int __vme_register_driver_bus(struct vme_driver *drv,
1853  	struct vme_bridge *bridge, unsigned int ndevs)
1854  {
1855  	int err;
1856  	unsigned int i;
1857  	struct vme_dev *vdev;
1858  	struct vme_dev *tmp;
1859  
1860  	for (i = 0; i < ndevs; i++) {
1861  		vdev = kzalloc(sizeof(*vdev), GFP_KERNEL);
1862  		if (!vdev) {
1863  			err = -ENOMEM;
1864  			goto err_devalloc;
1865  		}
1866  		vdev->num = i;
1867  		vdev->bridge = bridge;
1868  		vdev->dev.platform_data = drv;
1869  		vdev->dev.release = vme_dev_release;
1870  		vdev->dev.parent = bridge->parent;
1871  		vdev->dev.bus = &vme_bus_type;
1872  		dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num,
1873  			vdev->num);
1874  
1875  		err = device_register(&vdev->dev);
1876  		if (err)
1877  			goto err_reg;
1878  
1879  		if (vdev->dev.platform_data) {
1880  			list_add_tail(&vdev->drv_list, &drv->devices);
1881  			list_add_tail(&vdev->bridge_list, &bridge->devices);
1882  		} else
1883  			device_unregister(&vdev->dev);
1884  	}
1885  	return 0;
1886  
1887  err_reg:
1888  	put_device(&vdev->dev);
1889  err_devalloc:
1890  	list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) {
1891  		list_del(&vdev->drv_list);
1892  		list_del(&vdev->bridge_list);
1893  		device_unregister(&vdev->dev);
1894  	}
1895  	return err;
1896  }
1897  
__vme_register_driver(struct vme_driver * drv,unsigned int ndevs)1898  static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1899  {
1900  	struct vme_bridge *bridge;
1901  	int err = 0;
1902  
1903  	mutex_lock(&vme_buses_lock);
1904  	list_for_each_entry(bridge, &vme_bus_list, bus_list) {
1905  		/*
1906  		 * This cannot cause trouble as we already have vme_buses_lock
1907  		 * and if the bridge is removed, it will have to go through
1908  		 * vme_unregister_bridge() to do it (which calls remove() on
1909  		 * the bridge which in turn tries to acquire vme_buses_lock and
1910  		 * will have to wait).
1911  		 */
1912  		err = __vme_register_driver_bus(drv, bridge, ndevs);
1913  		if (err)
1914  			break;
1915  	}
1916  	mutex_unlock(&vme_buses_lock);
1917  	return err;
1918  }
1919  
1920  /**
1921   * vme_register_driver - Register a VME driver
1922   * @drv: Pointer to VME driver structure to register.
1923   * @ndevs: Maximum number of devices to allow to be enumerated.
1924   *
1925   * Register a VME device driver with the VME subsystem.
1926   *
1927   * Return: Zero on success, error value on registration failure.
1928   */
vme_register_driver(struct vme_driver * drv,unsigned int ndevs)1929  int vme_register_driver(struct vme_driver *drv, unsigned int ndevs)
1930  {
1931  	int err;
1932  
1933  	drv->driver.name = drv->name;
1934  	drv->driver.bus = &vme_bus_type;
1935  	INIT_LIST_HEAD(&drv->devices);
1936  
1937  	err = driver_register(&drv->driver);
1938  	if (err)
1939  		return err;
1940  
1941  	err = __vme_register_driver(drv, ndevs);
1942  	if (err)
1943  		driver_unregister(&drv->driver);
1944  
1945  	return err;
1946  }
1947  EXPORT_SYMBOL(vme_register_driver);
1948  
1949  /**
1950   * vme_unregister_driver - Unregister a VME driver
1951   * @drv: Pointer to VME driver structure to unregister.
1952   *
1953   * Unregister a VME device driver from the VME subsystem.
1954   */
vme_unregister_driver(struct vme_driver * drv)1955  void vme_unregister_driver(struct vme_driver *drv)
1956  {
1957  	struct vme_dev *dev, *dev_tmp;
1958  
1959  	mutex_lock(&vme_buses_lock);
1960  	list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) {
1961  		list_del(&dev->drv_list);
1962  		list_del(&dev->bridge_list);
1963  		device_unregister(&dev->dev);
1964  	}
1965  	mutex_unlock(&vme_buses_lock);
1966  
1967  	driver_unregister(&drv->driver);
1968  }
1969  EXPORT_SYMBOL(vme_unregister_driver);
1970  
1971  /* - Bus Registration ------------------------------------------------------ */
1972  
vme_bus_match(struct device * dev,struct device_driver * drv)1973  static int vme_bus_match(struct device *dev, struct device_driver *drv)
1974  {
1975  	struct vme_driver *vme_drv;
1976  
1977  	vme_drv = container_of(drv, struct vme_driver, driver);
1978  
1979  	if (dev->platform_data == vme_drv) {
1980  		struct vme_dev *vdev = dev_to_vme_dev(dev);
1981  
1982  		if (vme_drv->match && vme_drv->match(vdev))
1983  			return 1;
1984  
1985  		dev->platform_data = NULL;
1986  	}
1987  	return 0;
1988  }
1989  
vme_bus_probe(struct device * dev)1990  static int vme_bus_probe(struct device *dev)
1991  {
1992  	struct vme_driver *driver;
1993  	struct vme_dev *vdev = dev_to_vme_dev(dev);
1994  
1995  	driver = dev->platform_data;
1996  	if (driver->probe)
1997  		return driver->probe(vdev);
1998  
1999  	return -ENODEV;
2000  }
2001  
vme_bus_remove(struct device * dev)2002  static int vme_bus_remove(struct device *dev)
2003  {
2004  	struct vme_driver *driver;
2005  	struct vme_dev *vdev = dev_to_vme_dev(dev);
2006  
2007  	driver = dev->platform_data;
2008  	if (driver->remove)
2009  		return driver->remove(vdev);
2010  
2011  	return -ENODEV;
2012  }
2013  
2014  struct bus_type vme_bus_type = {
2015  	.name = "vme",
2016  	.match = vme_bus_match,
2017  	.probe = vme_bus_probe,
2018  	.remove = vme_bus_remove,
2019  };
2020  EXPORT_SYMBOL(vme_bus_type);
2021  
vme_init(void)2022  static int __init vme_init(void)
2023  {
2024  	return bus_register(&vme_bus_type);
2025  }
2026  subsys_initcall(vme_init);
2027