1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15 
16 #ifndef _VMW_VMCI_DEF_H_
17 #define _VMW_VMCI_DEF_H_
18 
19 #include <linux/atomic.h>
20 
21 /* Register offsets. */
22 #define VMCI_STATUS_ADDR      0x00
23 #define VMCI_CONTROL_ADDR     0x04
24 #define VMCI_ICR_ADDR	      0x08
25 #define VMCI_IMR_ADDR         0x0c
26 #define VMCI_DATA_OUT_ADDR    0x10
27 #define VMCI_DATA_IN_ADDR     0x14
28 #define VMCI_CAPS_ADDR        0x18
29 #define VMCI_RESULT_LOW_ADDR  0x1c
30 #define VMCI_RESULT_HIGH_ADDR 0x20
31 
32 /* Max number of devices. */
33 #define VMCI_MAX_DEVICES 1
34 
35 /* Status register bits. */
36 #define VMCI_STATUS_INT_ON     0x1
37 
38 /* Control register bits. */
39 #define VMCI_CONTROL_RESET        0x1
40 #define VMCI_CONTROL_INT_ENABLE   0x2
41 #define VMCI_CONTROL_INT_DISABLE  0x4
42 
43 /* Capabilities register bits. */
44 #define VMCI_CAPS_HYPERCALL     0x1
45 #define VMCI_CAPS_GUESTCALL     0x2
46 #define VMCI_CAPS_DATAGRAM      0x4
47 #define VMCI_CAPS_NOTIFICATIONS 0x8
48 
49 /* Interrupt Cause register bits. */
50 #define VMCI_ICR_DATAGRAM      0x1
51 #define VMCI_ICR_NOTIFICATION  0x2
52 
53 /* Interrupt Mask register bits. */
54 #define VMCI_IMR_DATAGRAM      0x1
55 #define VMCI_IMR_NOTIFICATION  0x2
56 
57 /* Maximum MSI/MSI-X interrupt vectors in the device. */
58 #define VMCI_MAX_INTRS 2
59 
60 /*
61  * Supported interrupt vectors.  There is one for each ICR value above,
62  * but here they indicate the position in the vector array/message ID.
63  */
64 enum {
65 	VMCI_INTR_DATAGRAM = 0,
66 	VMCI_INTR_NOTIFICATION = 1,
67 };
68 
69 /*
70  * A single VMCI device has an upper limit of 128MB on the amount of
71  * memory that can be used for queue pairs.
72  */
73 #define VMCI_MAX_GUEST_QP_MEMORY (128 * 1024 * 1024)
74 
75 /*
76  * Queues with pre-mapped data pages must be small, so that we don't pin
77  * too much kernel memory (especially on vmkernel).  We limit a queuepair to
78  * 32 KB, or 16 KB per queue for symmetrical pairs.
79  */
80 #define VMCI_MAX_PINNED_QP_MEMORY (32 * 1024)
81 
82 /*
83  * We have a fixed set of resource IDs available in the VMX.
84  * This allows us to have a very simple implementation since we statically
85  * know how many will create datagram handles. If a new caller arrives and
86  * we have run out of slots we can manually increment the maximum size of
87  * available resource IDs.
88  *
89  * VMCI reserved hypervisor datagram resource IDs.
90  */
91 enum {
92 	VMCI_RESOURCES_QUERY = 0,
93 	VMCI_GET_CONTEXT_ID = 1,
94 	VMCI_SET_NOTIFY_BITMAP = 2,
95 	VMCI_DOORBELL_LINK = 3,
96 	VMCI_DOORBELL_UNLINK = 4,
97 	VMCI_DOORBELL_NOTIFY = 5,
98 	/*
99 	 * VMCI_DATAGRAM_REQUEST_MAP and VMCI_DATAGRAM_REMOVE_MAP are
100 	 * obsoleted by the removal of VM to VM communication.
101 	 */
102 	VMCI_DATAGRAM_REQUEST_MAP = 6,
103 	VMCI_DATAGRAM_REMOVE_MAP = 7,
104 	VMCI_EVENT_SUBSCRIBE = 8,
105 	VMCI_EVENT_UNSUBSCRIBE = 9,
106 	VMCI_QUEUEPAIR_ALLOC = 10,
107 	VMCI_QUEUEPAIR_DETACH = 11,
108 
109 	/*
110 	 * VMCI_VSOCK_VMX_LOOKUP was assigned to 12 for Fusion 3.0/3.1,
111 	 * WS 7.0/7.1 and ESX 4.1
112 	 */
113 	VMCI_HGFS_TRANSPORT = 13,
114 	VMCI_UNITY_PBRPC_REGISTER = 14,
115 	VMCI_RPC_PRIVILEGED = 15,
116 	VMCI_RPC_UNPRIVILEGED = 16,
117 	VMCI_RESOURCE_MAX = 17,
118 };
119 
120 /*
121  * struct vmci_handle - Ownership information structure
122  * @context:    The VMX context ID.
123  * @resource:   The resource ID (used for locating in resource hash).
124  *
125  * The vmci_handle structure is used to track resources used within
126  * vmw_vmci.
127  */
128 struct vmci_handle {
129 	u32 context;
130 	u32 resource;
131 };
132 
133 #define vmci_make_handle(_cid, _rid) \
134 	(struct vmci_handle){ .context = _cid, .resource = _rid }
135 
vmci_handle_is_equal(struct vmci_handle h1,struct vmci_handle h2)136 static inline bool vmci_handle_is_equal(struct vmci_handle h1,
137 					struct vmci_handle h2)
138 {
139 	return h1.context == h2.context && h1.resource == h2.resource;
140 }
141 
142 #define VMCI_INVALID_ID ~0
143 static const struct vmci_handle VMCI_INVALID_HANDLE = {
144 	.context = VMCI_INVALID_ID,
145 	.resource = VMCI_INVALID_ID
146 };
147 
vmci_handle_is_invalid(struct vmci_handle h)148 static inline bool vmci_handle_is_invalid(struct vmci_handle h)
149 {
150 	return vmci_handle_is_equal(h, VMCI_INVALID_HANDLE);
151 }
152 
153 /*
154  * The below defines can be used to send anonymous requests.
155  * This also indicates that no response is expected.
156  */
157 #define VMCI_ANON_SRC_CONTEXT_ID   VMCI_INVALID_ID
158 #define VMCI_ANON_SRC_RESOURCE_ID  VMCI_INVALID_ID
159 static const struct vmci_handle VMCI_ANON_SRC_HANDLE = {
160 	.context = VMCI_ANON_SRC_CONTEXT_ID,
161 	.resource = VMCI_ANON_SRC_RESOURCE_ID
162 };
163 
164 /* The lowest 16 context ids are reserved for internal use. */
165 #define VMCI_RESERVED_CID_LIMIT ((u32) 16)
166 
167 /*
168  * Hypervisor context id, used for calling into hypervisor
169  * supplied services from the VM.
170  */
171 #define VMCI_HYPERVISOR_CONTEXT_ID 0
172 
173 /*
174  * Well-known context id, a logical context that contains a set of
175  * well-known services. This context ID is now obsolete.
176  */
177 #define VMCI_WELL_KNOWN_CONTEXT_ID 1
178 
179 /*
180  * Context ID used by host endpoints.
181  */
182 #define VMCI_HOST_CONTEXT_ID  2
183 
184 #define VMCI_CONTEXT_IS_VM(_cid) (VMCI_INVALID_ID != (_cid) &&		\
185 				  (_cid) > VMCI_HOST_CONTEXT_ID)
186 
187 /*
188  * The VMCI_CONTEXT_RESOURCE_ID is used together with vmci_make_handle to make
189  * handles that refer to a specific context.
190  */
191 #define VMCI_CONTEXT_RESOURCE_ID 0
192 
193 /*
194  * VMCI error codes.
195  */
196 enum {
197 	VMCI_SUCCESS_QUEUEPAIR_ATTACH	= 5,
198 	VMCI_SUCCESS_QUEUEPAIR_CREATE	= 4,
199 	VMCI_SUCCESS_LAST_DETACH	= 3,
200 	VMCI_SUCCESS_ACCESS_GRANTED	= 2,
201 	VMCI_SUCCESS_ENTRY_DEAD		= 1,
202 	VMCI_SUCCESS			 = 0,
203 	VMCI_ERROR_INVALID_RESOURCE	 = (-1),
204 	VMCI_ERROR_INVALID_ARGS		 = (-2),
205 	VMCI_ERROR_NO_MEM		 = (-3),
206 	VMCI_ERROR_DATAGRAM_FAILED	 = (-4),
207 	VMCI_ERROR_MORE_DATA		 = (-5),
208 	VMCI_ERROR_NO_MORE_DATAGRAMS	 = (-6),
209 	VMCI_ERROR_NO_ACCESS		 = (-7),
210 	VMCI_ERROR_NO_HANDLE		 = (-8),
211 	VMCI_ERROR_DUPLICATE_ENTRY	 = (-9),
212 	VMCI_ERROR_DST_UNREACHABLE	 = (-10),
213 	VMCI_ERROR_PAYLOAD_TOO_LARGE	 = (-11),
214 	VMCI_ERROR_INVALID_PRIV		 = (-12),
215 	VMCI_ERROR_GENERIC		 = (-13),
216 	VMCI_ERROR_PAGE_ALREADY_SHARED	 = (-14),
217 	VMCI_ERROR_CANNOT_SHARE_PAGE	 = (-15),
218 	VMCI_ERROR_CANNOT_UNSHARE_PAGE	 = (-16),
219 	VMCI_ERROR_NO_PROCESS		 = (-17),
220 	VMCI_ERROR_NO_DATAGRAM		 = (-18),
221 	VMCI_ERROR_NO_RESOURCES		 = (-19),
222 	VMCI_ERROR_UNAVAILABLE		 = (-20),
223 	VMCI_ERROR_NOT_FOUND		 = (-21),
224 	VMCI_ERROR_ALREADY_EXISTS	 = (-22),
225 	VMCI_ERROR_NOT_PAGE_ALIGNED	 = (-23),
226 	VMCI_ERROR_INVALID_SIZE		 = (-24),
227 	VMCI_ERROR_REGION_ALREADY_SHARED = (-25),
228 	VMCI_ERROR_TIMEOUT		 = (-26),
229 	VMCI_ERROR_DATAGRAM_INCOMPLETE	 = (-27),
230 	VMCI_ERROR_INCORRECT_IRQL	 = (-28),
231 	VMCI_ERROR_EVENT_UNKNOWN	 = (-29),
232 	VMCI_ERROR_OBSOLETE		 = (-30),
233 	VMCI_ERROR_QUEUEPAIR_MISMATCH	 = (-31),
234 	VMCI_ERROR_QUEUEPAIR_NOTSET	 = (-32),
235 	VMCI_ERROR_QUEUEPAIR_NOTOWNER	 = (-33),
236 	VMCI_ERROR_QUEUEPAIR_NOTATTACHED = (-34),
237 	VMCI_ERROR_QUEUEPAIR_NOSPACE	 = (-35),
238 	VMCI_ERROR_QUEUEPAIR_NODATA	 = (-36),
239 	VMCI_ERROR_BUSMEM_INVALIDATION	 = (-37),
240 	VMCI_ERROR_MODULE_NOT_LOADED	 = (-38),
241 	VMCI_ERROR_DEVICE_NOT_FOUND	 = (-39),
242 	VMCI_ERROR_QUEUEPAIR_NOT_READY	 = (-40),
243 	VMCI_ERROR_WOULD_BLOCK		 = (-41),
244 
245 	/* VMCI clients should return error code within this range */
246 	VMCI_ERROR_CLIENT_MIN		 = (-500),
247 	VMCI_ERROR_CLIENT_MAX		 = (-550),
248 
249 	/* Internal error codes. */
250 	VMCI_SHAREDMEM_ERROR_BAD_CONTEXT = (-1000),
251 };
252 
253 /* VMCI reserved events. */
254 enum {
255 	/* Only applicable to guest endpoints */
256 	VMCI_EVENT_CTX_ID_UPDATE  = 0,
257 
258 	/* Applicable to guest and host */
259 	VMCI_EVENT_CTX_REMOVED	  = 1,
260 
261 	/* Only applicable to guest endpoints */
262 	VMCI_EVENT_QP_RESUMED	  = 2,
263 
264 	/* Applicable to guest and host */
265 	VMCI_EVENT_QP_PEER_ATTACH = 3,
266 
267 	/* Applicable to guest and host */
268 	VMCI_EVENT_QP_PEER_DETACH = 4,
269 
270 	/*
271 	 * Applicable to VMX and vmk.  On vmk,
272 	 * this event has the Context payload type.
273 	 */
274 	VMCI_EVENT_MEM_ACCESS_ON  = 5,
275 
276 	/*
277 	 * Applicable to VMX and vmk.  Same as
278 	 * above for the payload type.
279 	 */
280 	VMCI_EVENT_MEM_ACCESS_OFF = 6,
281 	VMCI_EVENT_MAX		  = 7,
282 };
283 
284 /*
285  * Of the above events, a few are reserved for use in the VMX, and
286  * other endpoints (guest and host kernel) should not use them. For
287  * the rest of the events, we allow both host and guest endpoints to
288  * subscribe to them, to maintain the same API for host and guest
289  * endpoints.
290  */
291 #define VMCI_EVENT_VALID_VMX(_event) ((_event) == VMCI_EVENT_MEM_ACCESS_ON || \
292 				      (_event) == VMCI_EVENT_MEM_ACCESS_OFF)
293 
294 #define VMCI_EVENT_VALID(_event) ((_event) < VMCI_EVENT_MAX &&		\
295 				  !VMCI_EVENT_VALID_VMX(_event))
296 
297 /* Reserved guest datagram resource ids. */
298 #define VMCI_EVENT_HANDLER 0
299 
300 /*
301  * VMCI coarse-grained privileges (per context or host
302  * process/endpoint. An entity with the restricted flag is only
303  * allowed to interact with the hypervisor and trusted entities.
304  */
305 enum {
306 	VMCI_NO_PRIVILEGE_FLAGS = 0,
307 	VMCI_PRIVILEGE_FLAG_RESTRICTED = 1,
308 	VMCI_PRIVILEGE_FLAG_TRUSTED = 2,
309 	VMCI_PRIVILEGE_ALL_FLAGS = (VMCI_PRIVILEGE_FLAG_RESTRICTED |
310 				    VMCI_PRIVILEGE_FLAG_TRUSTED),
311 	VMCI_DEFAULT_PROC_PRIVILEGE_FLAGS = VMCI_NO_PRIVILEGE_FLAGS,
312 	VMCI_LEAST_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_RESTRICTED,
313 	VMCI_MAX_PRIVILEGE_FLAGS = VMCI_PRIVILEGE_FLAG_TRUSTED,
314 };
315 
316 /* 0 through VMCI_RESERVED_RESOURCE_ID_MAX are reserved. */
317 #define VMCI_RESERVED_RESOURCE_ID_MAX 1023
318 
319 /*
320  * Driver version.
321  *
322  * Increment major version when you make an incompatible change.
323  * Compatibility goes both ways (old driver with new executable
324  * as well as new driver with old executable).
325  */
326 
327 /* Never change VMCI_VERSION_SHIFT_WIDTH */
328 #define VMCI_VERSION_SHIFT_WIDTH 16
329 #define VMCI_MAKE_VERSION(_major, _minor)			\
330 	((_major) << VMCI_VERSION_SHIFT_WIDTH | (u16) (_minor))
331 
332 #define VMCI_VERSION_MAJOR(v)  ((u32) (v) >> VMCI_VERSION_SHIFT_WIDTH)
333 #define VMCI_VERSION_MINOR(v)  ((u16) (v))
334 
335 /*
336  * VMCI_VERSION is always the current version.  Subsequently listed
337  * versions are ways of detecting previous versions of the connecting
338  * application (i.e., VMX).
339  *
340  * VMCI_VERSION_NOVMVM: This version removed support for VM to VM
341  * communication.
342  *
343  * VMCI_VERSION_NOTIFY: This version introduced doorbell notification
344  * support.
345  *
346  * VMCI_VERSION_HOSTQP: This version introduced host end point support
347  * for hosted products.
348  *
349  * VMCI_VERSION_PREHOSTQP: This is the version prior to the adoption of
350  * support for host end-points.
351  *
352  * VMCI_VERSION_PREVERS2: This fictional version number is intended to
353  * represent the version of a VMX which doesn't call into the driver
354  * with ioctl VERSION2 and thus doesn't establish its version with the
355  * driver.
356  */
357 
358 #define VMCI_VERSION                VMCI_VERSION_NOVMVM
359 #define VMCI_VERSION_NOVMVM         VMCI_MAKE_VERSION(11, 0)
360 #define VMCI_VERSION_NOTIFY         VMCI_MAKE_VERSION(10, 0)
361 #define VMCI_VERSION_HOSTQP         VMCI_MAKE_VERSION(9, 0)
362 #define VMCI_VERSION_PREHOSTQP      VMCI_MAKE_VERSION(8, 0)
363 #define VMCI_VERSION_PREVERS2       VMCI_MAKE_VERSION(1, 0)
364 
365 #define VMCI_SOCKETS_MAKE_VERSION(_p)					\
366 	((((_p)[0] & 0xFF) << 24) | (((_p)[1] & 0xFF) << 16) | ((_p)[2]))
367 
368 /*
369  * The VMCI IOCTLs.  We use identity code 7, as noted in ioctl-number.h, and
370  * we start at sequence 9f.  This gives us the same values that our shipping
371  * products use, starting at 1951, provided we leave out the direction and
372  * structure size.  Note that VMMon occupies the block following us, starting
373  * at 2001.
374  */
375 #define IOCTL_VMCI_VERSION			_IO(7, 0x9f)	/* 1951 */
376 #define IOCTL_VMCI_INIT_CONTEXT			_IO(7, 0xa0)
377 #define IOCTL_VMCI_QUEUEPAIR_SETVA		_IO(7, 0xa4)
378 #define IOCTL_VMCI_NOTIFY_RESOURCE		_IO(7, 0xa5)
379 #define IOCTL_VMCI_NOTIFICATIONS_RECEIVE	_IO(7, 0xa6)
380 #define IOCTL_VMCI_VERSION2			_IO(7, 0xa7)
381 #define IOCTL_VMCI_QUEUEPAIR_ALLOC		_IO(7, 0xa8)
382 #define IOCTL_VMCI_QUEUEPAIR_SETPAGEFILE	_IO(7, 0xa9)
383 #define IOCTL_VMCI_QUEUEPAIR_DETACH		_IO(7, 0xaa)
384 #define IOCTL_VMCI_DATAGRAM_SEND		_IO(7, 0xab)
385 #define IOCTL_VMCI_DATAGRAM_RECEIVE		_IO(7, 0xac)
386 #define IOCTL_VMCI_CTX_ADD_NOTIFICATION		_IO(7, 0xaf)
387 #define IOCTL_VMCI_CTX_REMOVE_NOTIFICATION	_IO(7, 0xb0)
388 #define IOCTL_VMCI_CTX_GET_CPT_STATE		_IO(7, 0xb1)
389 #define IOCTL_VMCI_CTX_SET_CPT_STATE		_IO(7, 0xb2)
390 #define IOCTL_VMCI_GET_CONTEXT_ID		_IO(7, 0xb3)
391 #define IOCTL_VMCI_SOCKETS_VERSION		_IO(7, 0xb4)
392 #define IOCTL_VMCI_SOCKETS_GET_AF_VALUE		_IO(7, 0xb8)
393 #define IOCTL_VMCI_SOCKETS_GET_LOCAL_CID	_IO(7, 0xb9)
394 #define IOCTL_VMCI_SET_NOTIFY			_IO(7, 0xcb)	/* 1995 */
395 /*IOCTL_VMMON_START				_IO(7, 0xd1)*/	/* 2001 */
396 
397 /*
398  * struct vmci_queue_header - VMCI Queue Header information.
399  *
400  * A Queue cannot stand by itself as designed.  Each Queue's header
401  * contains a pointer into itself (the producer_tail) and into its peer
402  * (consumer_head).  The reason for the separation is one of
403  * accessibility: Each end-point can modify two things: where the next
404  * location to enqueue is within its produce_q (producer_tail); and
405  * where the next dequeue location is in its consume_q (consumer_head).
406  *
407  * An end-point cannot modify the pointers of its peer (guest to
408  * guest; NOTE that in the host both queue headers are mapped r/w).
409  * But, each end-point needs read access to both Queue header
410  * structures in order to determine how much space is used (or left)
411  * in the Queue.  This is because for an end-point to know how full
412  * its produce_q is, it needs to use the consumer_head that points into
413  * the produce_q but -that- consumer_head is in the Queue header for
414  * that end-points consume_q.
415  *
416  * Thoroughly confused?  Sorry.
417  *
418  * producer_tail: the point to enqueue new entrants.  When you approach
419  * a line in a store, for example, you walk up to the tail.
420  *
421  * consumer_head: the point in the queue from which the next element is
422  * dequeued.  In other words, who is next in line is he who is at the
423  * head of the line.
424  *
425  * Also, producer_tail points to an empty byte in the Queue, whereas
426  * consumer_head points to a valid byte of data (unless producer_tail ==
427  * consumer_head in which case consumer_head does not point to a valid
428  * byte of data).
429  *
430  * For a queue of buffer 'size' bytes, the tail and head pointers will be in
431  * the range [0, size-1].
432  *
433  * If produce_q_header->producer_tail == consume_q_header->consumer_head
434  * then the produce_q is empty.
435  */
436 struct vmci_queue_header {
437 	/* All fields are 64bit and aligned. */
438 	struct vmci_handle handle;	/* Identifier. */
439 	atomic64_t producer_tail;	/* Offset in this queue. */
440 	atomic64_t consumer_head;	/* Offset in peer queue. */
441 };
442 
443 /*
444  * struct vmci_datagram - Base struct for vmci datagrams.
445  * @dst:        A vmci_handle that tracks the destination of the datagram.
446  * @src:        A vmci_handle that tracks the source of the datagram.
447  * @payload_size:       The size of the payload.
448  *
449  * vmci_datagram structs are used when sending vmci datagrams.  They include
450  * the necessary source and destination information to properly route
451  * the information along with the size of the package.
452  */
453 struct vmci_datagram {
454 	struct vmci_handle dst;
455 	struct vmci_handle src;
456 	u64 payload_size;
457 };
458 
459 /*
460  * Second flag is for creating a well-known handle instead of a per context
461  * handle.  Next flag is for deferring datagram delivery, so that the
462  * datagram callback is invoked in a delayed context (not interrupt context).
463  */
464 #define VMCI_FLAG_DG_NONE          0
465 #define VMCI_FLAG_WELLKNOWN_DG_HND 0x1
466 #define VMCI_FLAG_ANYCID_DG_HND    0x2
467 #define VMCI_FLAG_DG_DELAYED_CB    0x4
468 
469 /*
470  * Maximum supported size of a VMCI datagram for routable datagrams.
471  * Datagrams going to the hypervisor are allowed to be larger.
472  */
473 #define VMCI_MAX_DG_SIZE (17 * 4096)
474 #define VMCI_MAX_DG_PAYLOAD_SIZE (VMCI_MAX_DG_SIZE - \
475 				  sizeof(struct vmci_datagram))
476 #define VMCI_DG_PAYLOAD(_dg) (void *)((char *)(_dg) +			\
477 				      sizeof(struct vmci_datagram))
478 #define VMCI_DG_HEADERSIZE sizeof(struct vmci_datagram)
479 #define VMCI_DG_SIZE(_dg) (VMCI_DG_HEADERSIZE + (size_t)(_dg)->payload_size)
480 #define VMCI_DG_SIZE_ALIGNED(_dg) ((VMCI_DG_SIZE(_dg) + 7) & (~((size_t) 0x7)))
481 #define VMCI_MAX_DATAGRAM_QUEUE_SIZE (VMCI_MAX_DG_SIZE * 2)
482 
483 struct vmci_event_payload_qp {
484 	struct vmci_handle handle;  /* queue_pair handle. */
485 	u32 peer_id;		    /* Context id of attaching/detaching VM. */
486 	u32 _pad;
487 };
488 
489 /* Flags for VMCI queue_pair API. */
490 enum {
491 	/* Fail alloc if QP not created by peer. */
492 	VMCI_QPFLAG_ATTACH_ONLY = 1 << 0,
493 
494 	/* Only allow attaches from local context. */
495 	VMCI_QPFLAG_LOCAL = 1 << 1,
496 
497 	/* Host won't block when guest is quiesced. */
498 	VMCI_QPFLAG_NONBLOCK = 1 << 2,
499 
500 	/* Pin data pages in ESX.  Used with NONBLOCK */
501 	VMCI_QPFLAG_PINNED = 1 << 3,
502 
503 	/* Update the following flag when adding new flags. */
504 	VMCI_QP_ALL_FLAGS = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QPFLAG_LOCAL |
505 			     VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
506 
507 	/* Convenience flags */
508 	VMCI_QP_ASYMM = (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED),
509 	VMCI_QP_ASYMM_PEER = (VMCI_QPFLAG_ATTACH_ONLY | VMCI_QP_ASYMM),
510 };
511 
512 /*
513  * We allow at least 1024 more event datagrams from the hypervisor past the
514  * normally allowed datagrams pending for a given context.  We define this
515  * limit on event datagrams from the hypervisor to guard against DoS attack
516  * from a malicious VM which could repeatedly attach to and detach from a queue
517  * pair, causing events to be queued at the destination VM.  However, the rate
518  * at which such events can be generated is small since it requires a VM exit
519  * and handling of queue pair attach/detach call at the hypervisor.  Event
520  * datagrams may be queued up at the destination VM if it has interrupts
521  * disabled or if it is not draining events for some other reason.  1024
522  * datagrams is a grossly conservative estimate of the time for which
523  * interrupts may be disabled in the destination VM, but at the same time does
524  * not exacerbate the memory pressure problem on the host by much (size of each
525  * event datagram is small).
526  */
527 #define VMCI_MAX_DATAGRAM_AND_EVENT_QUEUE_SIZE				\
528 	(VMCI_MAX_DATAGRAM_QUEUE_SIZE +					\
529 	 1024 * (sizeof(struct vmci_datagram) +				\
530 		 sizeof(struct vmci_event_data_max)))
531 
532 /*
533  * Struct used for querying, via VMCI_RESOURCES_QUERY, the availability of
534  * hypervisor resources.  Struct size is 16 bytes. All fields in struct are
535  * aligned to their natural alignment.
536  */
537 struct vmci_resource_query_hdr {
538 	struct vmci_datagram hdr;
539 	u32 num_resources;
540 	u32 _padding;
541 };
542 
543 /*
544  * Convenience struct for negotiating vectors. Must match layout of
545  * VMCIResourceQueryHdr minus the struct vmci_datagram header.
546  */
547 struct vmci_resource_query_msg {
548 	u32 num_resources;
549 	u32 _padding;
550 	u32 resources[1];
551 };
552 
553 /*
554  * The maximum number of resources that can be queried using
555  * VMCI_RESOURCE_QUERY is 31, as the result is encoded in the lower 31
556  * bits of a positive return value. Negative values are reserved for
557  * errors.
558  */
559 #define VMCI_RESOURCE_QUERY_MAX_NUM 31
560 
561 /* Maximum size for the VMCI_RESOURCE_QUERY request. */
562 #define VMCI_RESOURCE_QUERY_MAX_SIZE				\
563 	(sizeof(struct vmci_resource_query_hdr) +		\
564 	 sizeof(u32) * VMCI_RESOURCE_QUERY_MAX_NUM)
565 
566 /*
567  * Struct used for setting the notification bitmap.  All fields in
568  * struct are aligned to their natural alignment.
569  */
570 struct vmci_notify_bm_set_msg {
571 	struct vmci_datagram hdr;
572 	u32 bitmap_ppn;
573 	u32 _pad;
574 };
575 
576 /*
577  * Struct used for linking a doorbell handle with an index in the
578  * notify bitmap. All fields in struct are aligned to their natural
579  * alignment.
580  */
581 struct vmci_doorbell_link_msg {
582 	struct vmci_datagram hdr;
583 	struct vmci_handle handle;
584 	u64 notify_idx;
585 };
586 
587 /*
588  * Struct used for unlinking a doorbell handle from an index in the
589  * notify bitmap. All fields in struct are aligned to their natural
590  * alignment.
591  */
592 struct vmci_doorbell_unlink_msg {
593 	struct vmci_datagram hdr;
594 	struct vmci_handle handle;
595 };
596 
597 /*
598  * Struct used for generating a notification on a doorbell handle. All
599  * fields in struct are aligned to their natural alignment.
600  */
601 struct vmci_doorbell_notify_msg {
602 	struct vmci_datagram hdr;
603 	struct vmci_handle handle;
604 };
605 
606 /*
607  * This struct is used to contain data for events.  Size of this struct is a
608  * multiple of 8 bytes, and all fields are aligned to their natural alignment.
609  */
610 struct vmci_event_data {
611 	u32 event;		/* 4 bytes. */
612 	u32 _pad;
613 	/* Event payload is put here. */
614 };
615 
616 /*
617  * Define the different VMCI_EVENT payload data types here.  All structs must
618  * be a multiple of 8 bytes, and fields must be aligned to their natural
619  * alignment.
620  */
621 struct vmci_event_payld_ctx {
622 	u32 context_id;	/* 4 bytes. */
623 	u32 _pad;
624 };
625 
626 struct vmci_event_payld_qp {
627 	struct vmci_handle handle;  /* queue_pair handle. */
628 	u32 peer_id;	    /* Context id of attaching/detaching VM. */
629 	u32 _pad;
630 };
631 
632 /*
633  * We define the following struct to get the size of the maximum event
634  * data the hypervisor may send to the guest.  If adding a new event
635  * payload type above, add it to the following struct too (inside the
636  * union).
637  */
638 struct vmci_event_data_max {
639 	struct vmci_event_data event_data;
640 	union {
641 		struct vmci_event_payld_ctx context_payload;
642 		struct vmci_event_payld_qp qp_payload;
643 	} ev_data_payload;
644 };
645 
646 /*
647  * Struct used for VMCI_EVENT_SUBSCRIBE/UNSUBSCRIBE and
648  * VMCI_EVENT_HANDLER messages.  Struct size is 32 bytes.  All fields
649  * in struct are aligned to their natural alignment.
650  */
651 struct vmci_event_msg {
652 	struct vmci_datagram hdr;
653 
654 	/* Has event type and payload. */
655 	struct vmci_event_data event_data;
656 
657 	/* Payload gets put here. */
658 };
659 
660 /* Event with context payload. */
661 struct vmci_event_ctx {
662 	struct vmci_event_msg msg;
663 	struct vmci_event_payld_ctx payload;
664 };
665 
666 /* Event with QP payload. */
667 struct vmci_event_qp {
668 	struct vmci_event_msg msg;
669 	struct vmci_event_payld_qp payload;
670 };
671 
672 /*
673  * Structs used for queue_pair alloc and detach messages.  We align fields of
674  * these structs to 64bit boundaries.
675  */
676 struct vmci_qp_alloc_msg {
677 	struct vmci_datagram hdr;
678 	struct vmci_handle handle;
679 	u32 peer;
680 	u32 flags;
681 	u64 produce_size;
682 	u64 consume_size;
683 	u64 num_ppns;
684 
685 	/* List of PPNs placed here. */
686 };
687 
688 struct vmci_qp_detach_msg {
689 	struct vmci_datagram hdr;
690 	struct vmci_handle handle;
691 };
692 
693 /* VMCI Doorbell API. */
694 #define VMCI_FLAG_DELAYED_CB 0x01
695 
696 typedef void (*vmci_callback) (void *client_data);
697 
698 /*
699  * struct vmci_qp - A vmw_vmci queue pair handle.
700  *
701  * This structure is used as a handle to a queue pair created by
702  * VMCI.  It is intentionally left opaque to clients.
703  */
704 struct vmci_qp;
705 
706 /* Callback needed for correctly waiting on events. */
707 typedef int (*vmci_datagram_recv_cb) (void *client_data,
708 				      struct vmci_datagram *msg);
709 
710 /* VMCI Event API. */
711 typedef void (*vmci_event_cb) (u32 sub_id, const struct vmci_event_data *ed,
712 			       void *client_data);
713 
714 /*
715  * We use the following inline function to access the payload data
716  * associated with an event data.
717  */
718 static inline const void *
vmci_event_data_const_payload(const struct vmci_event_data * ev_data)719 vmci_event_data_const_payload(const struct vmci_event_data *ev_data)
720 {
721 	return (const char *)ev_data + sizeof(*ev_data);
722 }
723 
vmci_event_data_payload(struct vmci_event_data * ev_data)724 static inline void *vmci_event_data_payload(struct vmci_event_data *ev_data)
725 {
726 	return (void *)vmci_event_data_const_payload(ev_data);
727 }
728 
729 /*
730  * Helper to read a value from a head or tail pointer. For X86_32, the
731  * pointer is treated as a 32bit value, since the pointer value
732  * never exceeds a 32bit value in this case. Also, doing an
733  * atomic64_read on X86_32 uniprocessor systems may be implemented
734  * as a non locked cmpxchg8b, that may end up overwriting updates done
735  * by the VMCI device to the memory location. On 32bit SMP, the lock
736  * prefix will be used, so correctness isn't an issue, but using a
737  * 64bit operation still adds unnecessary overhead.
738  */
vmci_q_read_pointer(atomic64_t * var)739 static inline u64 vmci_q_read_pointer(atomic64_t *var)
740 {
741 #if defined(CONFIG_X86_32)
742 	return atomic_read((atomic_t *)var);
743 #else
744 	return atomic64_read(var);
745 #endif
746 }
747 
748 /*
749  * Helper to set the value of a head or tail pointer. For X86_32, the
750  * pointer is treated as a 32bit value, since the pointer value
751  * never exceeds a 32bit value in this case. On 32bit SMP, using a
752  * locked cmpxchg8b adds unnecessary overhead.
753  */
vmci_q_set_pointer(atomic64_t * var,u64 new_val)754 static inline void vmci_q_set_pointer(atomic64_t *var,
755 				      u64 new_val)
756 {
757 #if defined(CONFIG_X86_32)
758 	return atomic_set((atomic_t *)var, (u32)new_val);
759 #else
760 	return atomic64_set(var, new_val);
761 #endif
762 }
763 
764 /*
765  * Helper to add a given offset to a head or tail pointer. Wraps the
766  * value of the pointer around the max size of the queue.
767  */
vmci_qp_add_pointer(atomic64_t * var,size_t add,u64 size)768 static inline void vmci_qp_add_pointer(atomic64_t *var,
769 				       size_t add,
770 				       u64 size)
771 {
772 	u64 new_val = vmci_q_read_pointer(var);
773 
774 	if (new_val >= size - add)
775 		new_val -= size;
776 
777 	new_val += add;
778 
779 	vmci_q_set_pointer(var, new_val);
780 }
781 
782 /*
783  * Helper routine to get the Producer Tail from the supplied queue.
784  */
785 static inline u64
vmci_q_header_producer_tail(const struct vmci_queue_header * q_header)786 vmci_q_header_producer_tail(const struct vmci_queue_header *q_header)
787 {
788 	struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
789 	return vmci_q_read_pointer(&qh->producer_tail);
790 }
791 
792 /*
793  * Helper routine to get the Consumer Head from the supplied queue.
794  */
795 static inline u64
vmci_q_header_consumer_head(const struct vmci_queue_header * q_header)796 vmci_q_header_consumer_head(const struct vmci_queue_header *q_header)
797 {
798 	struct vmci_queue_header *qh = (struct vmci_queue_header *)q_header;
799 	return vmci_q_read_pointer(&qh->consumer_head);
800 }
801 
802 /*
803  * Helper routine to increment the Producer Tail.  Fundamentally,
804  * vmci_qp_add_pointer() is used to manipulate the tail itself.
805  */
806 static inline void
vmci_q_header_add_producer_tail(struct vmci_queue_header * q_header,size_t add,u64 queue_size)807 vmci_q_header_add_producer_tail(struct vmci_queue_header *q_header,
808 				size_t add,
809 				u64 queue_size)
810 {
811 	vmci_qp_add_pointer(&q_header->producer_tail, add, queue_size);
812 }
813 
814 /*
815  * Helper routine to increment the Consumer Head.  Fundamentally,
816  * vmci_qp_add_pointer() is used to manipulate the head itself.
817  */
818 static inline void
vmci_q_header_add_consumer_head(struct vmci_queue_header * q_header,size_t add,u64 queue_size)819 vmci_q_header_add_consumer_head(struct vmci_queue_header *q_header,
820 				size_t add,
821 				u64 queue_size)
822 {
823 	vmci_qp_add_pointer(&q_header->consumer_head, add, queue_size);
824 }
825 
826 /*
827  * Helper routine for getting the head and the tail pointer for a queue.
828  * Both the VMCIQueues are needed to get both the pointers for one queue.
829  */
830 static inline void
vmci_q_header_get_pointers(const struct vmci_queue_header * produce_q_header,const struct vmci_queue_header * consume_q_header,u64 * producer_tail,u64 * consumer_head)831 vmci_q_header_get_pointers(const struct vmci_queue_header *produce_q_header,
832 			   const struct vmci_queue_header *consume_q_header,
833 			   u64 *producer_tail,
834 			   u64 *consumer_head)
835 {
836 	if (producer_tail)
837 		*producer_tail = vmci_q_header_producer_tail(produce_q_header);
838 
839 	if (consumer_head)
840 		*consumer_head = vmci_q_header_consumer_head(consume_q_header);
841 }
842 
vmci_q_header_init(struct vmci_queue_header * q_header,const struct vmci_handle handle)843 static inline void vmci_q_header_init(struct vmci_queue_header *q_header,
844 				      const struct vmci_handle handle)
845 {
846 	q_header->handle = handle;
847 	atomic64_set(&q_header->producer_tail, 0);
848 	atomic64_set(&q_header->consumer_head, 0);
849 }
850 
851 /*
852  * Finds available free space in a produce queue to enqueue more
853  * data or reports an error if queue pair corruption is detected.
854  */
855 static s64
vmci_q_header_free_space(const struct vmci_queue_header * produce_q_header,const struct vmci_queue_header * consume_q_header,const u64 produce_q_size)856 vmci_q_header_free_space(const struct vmci_queue_header *produce_q_header,
857 			 const struct vmci_queue_header *consume_q_header,
858 			 const u64 produce_q_size)
859 {
860 	u64 tail;
861 	u64 head;
862 	u64 free_space;
863 
864 	tail = vmci_q_header_producer_tail(produce_q_header);
865 	head = vmci_q_header_consumer_head(consume_q_header);
866 
867 	if (tail >= produce_q_size || head >= produce_q_size)
868 		return VMCI_ERROR_INVALID_SIZE;
869 
870 	/*
871 	 * Deduct 1 to avoid tail becoming equal to head which causes
872 	 * ambiguity. If head and tail are equal it means that the
873 	 * queue is empty.
874 	 */
875 	if (tail >= head)
876 		free_space = produce_q_size - (tail - head) - 1;
877 	else
878 		free_space = head - tail - 1;
879 
880 	return free_space;
881 }
882 
883 /*
884  * vmci_q_header_free_space() does all the heavy lifting of
885  * determing the number of free bytes in a Queue.  This routine,
886  * then subtracts that size from the full size of the Queue so
887  * the caller knows how many bytes are ready to be dequeued.
888  * Results:
889  * On success, available data size in bytes (up to MAX_INT64).
890  * On failure, appropriate error code.
891  */
892 static inline s64
vmci_q_header_buf_ready(const struct vmci_queue_header * consume_q_header,const struct vmci_queue_header * produce_q_header,const u64 consume_q_size)893 vmci_q_header_buf_ready(const struct vmci_queue_header *consume_q_header,
894 			const struct vmci_queue_header *produce_q_header,
895 			const u64 consume_q_size)
896 {
897 	s64 free_space;
898 
899 	free_space = vmci_q_header_free_space(consume_q_header,
900 					      produce_q_header, consume_q_size);
901 	if (free_space < VMCI_SUCCESS)
902 		return free_space;
903 
904 	return consume_q_size - free_space - 1;
905 }
906 
907 
908 #endif /* _VMW_VMCI_DEF_H_ */
909