1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/sched/mm.h>
9 #include <linux/sched/task_stack.h>
10 #include <linux/security.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/mman.h>
14 #include <linux/hugetlb.h>
15 #include <linux/vmalloc.h>
16 #include <linux/userfaultfd_k.h>
17
18 #include <asm/sections.h>
19 #include <linux/uaccess.h>
20
21 #include "internal.h"
22
is_kernel_rodata(unsigned long addr)23 static inline int is_kernel_rodata(unsigned long addr)
24 {
25 return addr >= (unsigned long)__start_rodata &&
26 addr < (unsigned long)__end_rodata;
27 }
28
29 /**
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
32 *
33 * Function calls kfree only if @x is not in .rodata section.
34 */
kfree_const(const void * x)35 void kfree_const(const void *x)
36 {
37 if (!is_kernel_rodata((unsigned long)x))
38 kfree(x);
39 }
40 EXPORT_SYMBOL(kfree_const);
41
42 /**
43 * kstrdup - allocate space for and copy an existing string
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46 */
kstrdup(const char * s,gfp_t gfp)47 char *kstrdup(const char *s, gfp_t gfp)
48 {
49 size_t len;
50 char *buf;
51
52 if (!s)
53 return NULL;
54
55 len = strlen(s) + 1;
56 buf = kmalloc_track_caller(len, gfp);
57 if (buf)
58 memcpy(buf, s, len);
59 return buf;
60 }
61 EXPORT_SYMBOL(kstrdup);
62
63 /**
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
67 *
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
71 */
kstrdup_const(const char * s,gfp_t gfp)72 const char *kstrdup_const(const char *s, gfp_t gfp)
73 {
74 if (is_kernel_rodata((unsigned long)s))
75 return s;
76
77 return kstrdup(s, gfp);
78 }
79 EXPORT_SYMBOL(kstrdup_const);
80
81 /**
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
86 *
87 * Note: Use kmemdup_nul() instead if the size is known exactly.
88 */
kstrndup(const char * s,size_t max,gfp_t gfp)89 char *kstrndup(const char *s, size_t max, gfp_t gfp)
90 {
91 size_t len;
92 char *buf;
93
94 if (!s)
95 return NULL;
96
97 len = strnlen(s, max);
98 buf = kmalloc_track_caller(len+1, gfp);
99 if (buf) {
100 memcpy(buf, s, len);
101 buf[len] = '\0';
102 }
103 return buf;
104 }
105 EXPORT_SYMBOL(kstrndup);
106
107 /**
108 * kmemdup - duplicate region of memory
109 *
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
113 */
kmemdup(const void * src,size_t len,gfp_t gfp)114 void *kmemdup(const void *src, size_t len, gfp_t gfp)
115 {
116 void *p;
117
118 p = kmalloc_track_caller(len, gfp);
119 if (p)
120 memcpy(p, src, len);
121 return p;
122 }
123 EXPORT_SYMBOL(kmemdup);
124
125 /**
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
130 */
kmemdup_nul(const char * s,size_t len,gfp_t gfp)131 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
132 {
133 char *buf;
134
135 if (!s)
136 return NULL;
137
138 buf = kmalloc_track_caller(len + 1, gfp);
139 if (buf) {
140 memcpy(buf, s, len);
141 buf[len] = '\0';
142 }
143 return buf;
144 }
145 EXPORT_SYMBOL(kmemdup_nul);
146
147 /**
148 * memdup_user - duplicate memory region from user space
149 *
150 * @src: source address in user space
151 * @len: number of bytes to copy
152 *
153 * Returns an ERR_PTR() on failure. Result is physically
154 * contiguous, to be freed by kfree().
155 */
memdup_user(const void __user * src,size_t len)156 void *memdup_user(const void __user *src, size_t len)
157 {
158 void *p;
159
160 p = kmalloc_track_caller(len, GFP_USER);
161 if (!p)
162 return ERR_PTR(-ENOMEM);
163
164 if (copy_from_user(p, src, len)) {
165 kfree(p);
166 return ERR_PTR(-EFAULT);
167 }
168
169 return p;
170 }
171 EXPORT_SYMBOL(memdup_user);
172
173 /**
174 * vmemdup_user - duplicate memory region from user space
175 *
176 * @src: source address in user space
177 * @len: number of bytes to copy
178 *
179 * Returns an ERR_PTR() on failure. Result may be not
180 * physically contiguous. Use kvfree() to free.
181 */
vmemdup_user(const void __user * src,size_t len)182 void *vmemdup_user(const void __user *src, size_t len)
183 {
184 void *p;
185
186 p = kvmalloc(len, GFP_USER);
187 if (!p)
188 return ERR_PTR(-ENOMEM);
189
190 if (copy_from_user(p, src, len)) {
191 kvfree(p);
192 return ERR_PTR(-EFAULT);
193 }
194
195 return p;
196 }
197 EXPORT_SYMBOL(vmemdup_user);
198
199 /**
200 * strndup_user - duplicate an existing string from user space
201 * @s: The string to duplicate
202 * @n: Maximum number of bytes to copy, including the trailing NUL.
203 */
strndup_user(const char __user * s,long n)204 char *strndup_user(const char __user *s, long n)
205 {
206 char *p;
207 long length;
208
209 length = strnlen_user(s, n);
210
211 if (!length)
212 return ERR_PTR(-EFAULT);
213
214 if (length > n)
215 return ERR_PTR(-EINVAL);
216
217 p = memdup_user(s, length);
218
219 if (IS_ERR(p))
220 return p;
221
222 p[length - 1] = '\0';
223
224 return p;
225 }
226 EXPORT_SYMBOL(strndup_user);
227
228 /**
229 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
230 *
231 * @src: source address in user space
232 * @len: number of bytes to copy
233 *
234 * Returns an ERR_PTR() on failure.
235 */
memdup_user_nul(const void __user * src,size_t len)236 void *memdup_user_nul(const void __user *src, size_t len)
237 {
238 char *p;
239
240 /*
241 * Always use GFP_KERNEL, since copy_from_user() can sleep and
242 * cause pagefault, which makes it pointless to use GFP_NOFS
243 * or GFP_ATOMIC.
244 */
245 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
246 if (!p)
247 return ERR_PTR(-ENOMEM);
248
249 if (copy_from_user(p, src, len)) {
250 kfree(p);
251 return ERR_PTR(-EFAULT);
252 }
253 p[len] = '\0';
254
255 return p;
256 }
257 EXPORT_SYMBOL(memdup_user_nul);
258
__vma_link_list(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node * rb_parent)259 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
260 struct vm_area_struct *prev, struct rb_node *rb_parent)
261 {
262 struct vm_area_struct *next;
263
264 vma->vm_prev = prev;
265 if (prev) {
266 next = prev->vm_next;
267 prev->vm_next = vma;
268 } else {
269 mm->mmap = vma;
270 if (rb_parent)
271 next = rb_entry(rb_parent,
272 struct vm_area_struct, vm_rb);
273 else
274 next = NULL;
275 }
276 vma->vm_next = next;
277 if (next)
278 next->vm_prev = vma;
279 }
280
281 /* Check if the vma is being used as a stack by this task */
vma_is_stack_for_current(struct vm_area_struct * vma)282 int vma_is_stack_for_current(struct vm_area_struct *vma)
283 {
284 struct task_struct * __maybe_unused t = current;
285
286 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
287 }
288
289 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
arch_pick_mmap_layout(struct mm_struct * mm,struct rlimit * rlim_stack)290 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
291 {
292 mm->mmap_base = TASK_UNMAPPED_BASE;
293 mm->get_unmapped_area = arch_get_unmapped_area;
294 }
295 #endif
296
297 /*
298 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
299 * back to the regular GUP.
300 * Note a difference with get_user_pages_fast: this always returns the
301 * number of pages pinned, 0 if no pages were pinned.
302 * If the architecture does not support this function, simply return with no
303 * pages pinned.
304 */
__get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)305 int __weak __get_user_pages_fast(unsigned long start,
306 int nr_pages, int write, struct page **pages)
307 {
308 return 0;
309 }
310 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
311
312 /**
313 * get_user_pages_fast() - pin user pages in memory
314 * @start: starting user address
315 * @nr_pages: number of pages from start to pin
316 * @write: whether pages will be written to
317 * @pages: array that receives pointers to the pages pinned.
318 * Should be at least nr_pages long.
319 *
320 * Returns number of pages pinned. This may be fewer than the number
321 * requested. If nr_pages is 0 or negative, returns 0. If no pages
322 * were pinned, returns -errno.
323 *
324 * get_user_pages_fast provides equivalent functionality to get_user_pages,
325 * operating on current and current->mm, with force=0 and vma=NULL. However
326 * unlike get_user_pages, it must be called without mmap_sem held.
327 *
328 * get_user_pages_fast may take mmap_sem and page table locks, so no
329 * assumptions can be made about lack of locking. get_user_pages_fast is to be
330 * implemented in a way that is advantageous (vs get_user_pages()) when the
331 * user memory area is already faulted in and present in ptes. However if the
332 * pages have to be faulted in, it may turn out to be slightly slower so
333 * callers need to carefully consider what to use. On many architectures,
334 * get_user_pages_fast simply falls back to get_user_pages.
335 */
get_user_pages_fast(unsigned long start,int nr_pages,int write,struct page ** pages)336 int __weak get_user_pages_fast(unsigned long start,
337 int nr_pages, int write, struct page **pages)
338 {
339 return get_user_pages_unlocked(start, nr_pages, pages,
340 write ? FOLL_WRITE : 0);
341 }
342 EXPORT_SYMBOL_GPL(get_user_pages_fast);
343
vm_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long pgoff)344 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
345 unsigned long len, unsigned long prot,
346 unsigned long flag, unsigned long pgoff)
347 {
348 unsigned long ret;
349 struct mm_struct *mm = current->mm;
350 unsigned long populate;
351 LIST_HEAD(uf);
352
353 ret = security_mmap_file(file, prot, flag);
354 if (!ret) {
355 if (down_write_killable(&mm->mmap_sem))
356 return -EINTR;
357 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
358 &populate, &uf);
359 up_write(&mm->mmap_sem);
360 userfaultfd_unmap_complete(mm, &uf);
361 if (populate)
362 mm_populate(ret, populate);
363 }
364 return ret;
365 }
366
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)367 unsigned long vm_mmap(struct file *file, unsigned long addr,
368 unsigned long len, unsigned long prot,
369 unsigned long flag, unsigned long offset)
370 {
371 if (unlikely(offset + PAGE_ALIGN(len) < offset))
372 return -EINVAL;
373 if (unlikely(offset_in_page(offset)))
374 return -EINVAL;
375
376 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
377 }
378 EXPORT_SYMBOL(vm_mmap);
379
380 /**
381 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
382 * failure, fall back to non-contiguous (vmalloc) allocation.
383 * @size: size of the request.
384 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
385 * @node: numa node to allocate from
386 *
387 * Uses kmalloc to get the memory but if the allocation fails then falls back
388 * to the vmalloc allocator. Use kvfree for freeing the memory.
389 *
390 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
391 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
392 * preferable to the vmalloc fallback, due to visible performance drawbacks.
393 *
394 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
395 * fall back to vmalloc.
396 */
kvmalloc_node(size_t size,gfp_t flags,int node)397 void *kvmalloc_node(size_t size, gfp_t flags, int node)
398 {
399 gfp_t kmalloc_flags = flags;
400 void *ret;
401
402 /*
403 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
404 * so the given set of flags has to be compatible.
405 */
406 if ((flags & GFP_KERNEL) != GFP_KERNEL)
407 return kmalloc_node(size, flags, node);
408
409 /*
410 * We want to attempt a large physically contiguous block first because
411 * it is less likely to fragment multiple larger blocks and therefore
412 * contribute to a long term fragmentation less than vmalloc fallback.
413 * However make sure that larger requests are not too disruptive - no
414 * OOM killer and no allocation failure warnings as we have a fallback.
415 */
416 if (size > PAGE_SIZE) {
417 kmalloc_flags |= __GFP_NOWARN;
418
419 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
420 kmalloc_flags |= __GFP_NORETRY;
421 }
422
423 ret = kmalloc_node(size, kmalloc_flags, node);
424
425 /*
426 * It doesn't really make sense to fallback to vmalloc for sub page
427 * requests
428 */
429 if (ret || size <= PAGE_SIZE)
430 return ret;
431
432 return __vmalloc_node_flags_caller(size, node, flags,
433 __builtin_return_address(0));
434 }
435 EXPORT_SYMBOL(kvmalloc_node);
436
437 /**
438 * kvfree() - Free memory.
439 * @addr: Pointer to allocated memory.
440 *
441 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
442 * It is slightly more efficient to use kfree() or vfree() if you are certain
443 * that you know which one to use.
444 *
445 * Context: Any context except NMI.
446 */
kvfree(const void * addr)447 void kvfree(const void *addr)
448 {
449 if (is_vmalloc_addr(addr))
450 vfree(addr);
451 else
452 kfree(addr);
453 }
454 EXPORT_SYMBOL(kvfree);
455
__page_rmapping(struct page * page)456 static inline void *__page_rmapping(struct page *page)
457 {
458 unsigned long mapping;
459
460 mapping = (unsigned long)page->mapping;
461 mapping &= ~PAGE_MAPPING_FLAGS;
462
463 return (void *)mapping;
464 }
465
466 /* Neutral page->mapping pointer to address_space or anon_vma or other */
page_rmapping(struct page * page)467 void *page_rmapping(struct page *page)
468 {
469 page = compound_head(page);
470 return __page_rmapping(page);
471 }
472
473 /*
474 * Return true if this page is mapped into pagetables.
475 * For compound page it returns true if any subpage of compound page is mapped.
476 */
page_mapped(struct page * page)477 bool page_mapped(struct page *page)
478 {
479 int i;
480
481 if (likely(!PageCompound(page)))
482 return atomic_read(&page->_mapcount) >= 0;
483 page = compound_head(page);
484 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
485 return true;
486 if (PageHuge(page))
487 return false;
488 for (i = 0; i < hpage_nr_pages(page); i++) {
489 if (atomic_read(&page[i]._mapcount) >= 0)
490 return true;
491 }
492 return false;
493 }
494 EXPORT_SYMBOL(page_mapped);
495
page_anon_vma(struct page * page)496 struct anon_vma *page_anon_vma(struct page *page)
497 {
498 unsigned long mapping;
499
500 page = compound_head(page);
501 mapping = (unsigned long)page->mapping;
502 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
503 return NULL;
504 return __page_rmapping(page);
505 }
506
page_mapping(struct page * page)507 struct address_space *page_mapping(struct page *page)
508 {
509 struct address_space *mapping;
510
511 page = compound_head(page);
512
513 /* This happens if someone calls flush_dcache_page on slab page */
514 if (unlikely(PageSlab(page)))
515 return NULL;
516
517 if (unlikely(PageSwapCache(page))) {
518 swp_entry_t entry;
519
520 entry.val = page_private(page);
521 return swap_address_space(entry);
522 }
523
524 mapping = page->mapping;
525 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
526 return NULL;
527
528 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
529 }
530 EXPORT_SYMBOL(page_mapping);
531
532 /*
533 * For file cache pages, return the address_space, otherwise return NULL
534 */
page_mapping_file(struct page * page)535 struct address_space *page_mapping_file(struct page *page)
536 {
537 if (unlikely(PageSwapCache(page)))
538 return NULL;
539 return page_mapping(page);
540 }
541
542 /* Slow path of page_mapcount() for compound pages */
__page_mapcount(struct page * page)543 int __page_mapcount(struct page *page)
544 {
545 int ret;
546
547 ret = atomic_read(&page->_mapcount) + 1;
548 /*
549 * For file THP page->_mapcount contains total number of mapping
550 * of the page: no need to look into compound_mapcount.
551 */
552 if (!PageAnon(page) && !PageHuge(page))
553 return ret;
554 page = compound_head(page);
555 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
556 if (PageDoubleMap(page))
557 ret--;
558 return ret;
559 }
560 EXPORT_SYMBOL_GPL(__page_mapcount);
561
562 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
563 int sysctl_overcommit_ratio __read_mostly = 50;
564 unsigned long sysctl_overcommit_kbytes __read_mostly;
565 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
566 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
567 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
568
overcommit_ratio_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)569 int overcommit_ratio_handler(struct ctl_table *table, int write,
570 void __user *buffer, size_t *lenp,
571 loff_t *ppos)
572 {
573 int ret;
574
575 ret = proc_dointvec(table, write, buffer, lenp, ppos);
576 if (ret == 0 && write)
577 sysctl_overcommit_kbytes = 0;
578 return ret;
579 }
580
overcommit_kbytes_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)581 int overcommit_kbytes_handler(struct ctl_table *table, int write,
582 void __user *buffer, size_t *lenp,
583 loff_t *ppos)
584 {
585 int ret;
586
587 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
588 if (ret == 0 && write)
589 sysctl_overcommit_ratio = 0;
590 return ret;
591 }
592
593 /*
594 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
595 */
vm_commit_limit(void)596 unsigned long vm_commit_limit(void)
597 {
598 unsigned long allowed;
599
600 if (sysctl_overcommit_kbytes)
601 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
602 else
603 allowed = ((totalram_pages - hugetlb_total_pages())
604 * sysctl_overcommit_ratio / 100);
605 allowed += total_swap_pages;
606
607 return allowed;
608 }
609
610 /*
611 * Make sure vm_committed_as in one cacheline and not cacheline shared with
612 * other variables. It can be updated by several CPUs frequently.
613 */
614 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
615
616 /*
617 * The global memory commitment made in the system can be a metric
618 * that can be used to drive ballooning decisions when Linux is hosted
619 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
620 * balancing memory across competing virtual machines that are hosted.
621 * Several metrics drive this policy engine including the guest reported
622 * memory commitment.
623 */
vm_memory_committed(void)624 unsigned long vm_memory_committed(void)
625 {
626 return percpu_counter_read_positive(&vm_committed_as);
627 }
628 EXPORT_SYMBOL_GPL(vm_memory_committed);
629
630 /*
631 * Check that a process has enough memory to allocate a new virtual
632 * mapping. 0 means there is enough memory for the allocation to
633 * succeed and -ENOMEM implies there is not.
634 *
635 * We currently support three overcommit policies, which are set via the
636 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
637 *
638 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
639 * Additional code 2002 Jul 20 by Robert Love.
640 *
641 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
642 *
643 * Note this is a helper function intended to be used by LSMs which
644 * wish to use this logic.
645 */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)646 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
647 {
648 long free, allowed, reserve;
649
650 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
651 -(s64)vm_committed_as_batch * num_online_cpus(),
652 "memory commitment underflow");
653
654 vm_acct_memory(pages);
655
656 /*
657 * Sometimes we want to use more memory than we have
658 */
659 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
660 return 0;
661
662 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
663 free = global_zone_page_state(NR_FREE_PAGES);
664 free += global_node_page_state(NR_FILE_PAGES);
665
666 /*
667 * shmem pages shouldn't be counted as free in this
668 * case, they can't be purged, only swapped out, and
669 * that won't affect the overall amount of available
670 * memory in the system.
671 */
672 free -= global_node_page_state(NR_SHMEM);
673
674 free += get_nr_swap_pages();
675
676 /*
677 * Any slabs which are created with the
678 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
679 * which are reclaimable, under pressure. The dentry
680 * cache and most inode caches should fall into this
681 */
682 free += global_node_page_state(NR_SLAB_RECLAIMABLE);
683
684 /*
685 * Part of the kernel memory, which can be released
686 * under memory pressure.
687 */
688 free += global_node_page_state(
689 NR_INDIRECTLY_RECLAIMABLE_BYTES) >> PAGE_SHIFT;
690
691 /*
692 * Leave reserved pages. The pages are not for anonymous pages.
693 */
694 if (free <= totalreserve_pages)
695 goto error;
696 else
697 free -= totalreserve_pages;
698
699 /*
700 * Reserve some for root
701 */
702 if (!cap_sys_admin)
703 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
704
705 if (free > pages)
706 return 0;
707
708 goto error;
709 }
710
711 allowed = vm_commit_limit();
712 /*
713 * Reserve some for root
714 */
715 if (!cap_sys_admin)
716 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
717
718 /*
719 * Don't let a single process grow so big a user can't recover
720 */
721 if (mm) {
722 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
723 allowed -= min_t(long, mm->total_vm / 32, reserve);
724 }
725
726 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
727 return 0;
728 error:
729 vm_unacct_memory(pages);
730
731 return -ENOMEM;
732 }
733
734 /**
735 * get_cmdline() - copy the cmdline value to a buffer.
736 * @task: the task whose cmdline value to copy.
737 * @buffer: the buffer to copy to.
738 * @buflen: the length of the buffer. Larger cmdline values are truncated
739 * to this length.
740 * Returns the size of the cmdline field copied. Note that the copy does
741 * not guarantee an ending NULL byte.
742 */
get_cmdline(struct task_struct * task,char * buffer,int buflen)743 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
744 {
745 int res = 0;
746 unsigned int len;
747 struct mm_struct *mm = get_task_mm(task);
748 unsigned long arg_start, arg_end, env_start, env_end;
749 if (!mm)
750 goto out;
751 if (!mm->arg_end)
752 goto out_mm; /* Shh! No looking before we're done */
753
754 down_read(&mm->mmap_sem);
755 arg_start = mm->arg_start;
756 arg_end = mm->arg_end;
757 env_start = mm->env_start;
758 env_end = mm->env_end;
759 up_read(&mm->mmap_sem);
760
761 len = arg_end - arg_start;
762
763 if (len > buflen)
764 len = buflen;
765
766 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
767
768 /*
769 * If the nul at the end of args has been overwritten, then
770 * assume application is using setproctitle(3).
771 */
772 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
773 len = strnlen(buffer, res);
774 if (len < res) {
775 res = len;
776 } else {
777 len = env_end - env_start;
778 if (len > buflen - res)
779 len = buflen - res;
780 res += access_process_vm(task, env_start,
781 buffer+res, len,
782 FOLL_FORCE);
783 res = strnlen(buffer, res);
784 }
785 }
786 out_mm:
787 mmput(mm);
788 out:
789 return res;
790 }
791