1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2017 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/irqdomain.h>
10 #include <linux/kvm_host.h>
11 #include <linux/irqchip/arm-gic-v3.h>
12
13 #include "vgic.h"
14
15 /*
16 * How KVM uses GICv4 (insert rude comments here):
17 *
18 * The vgic-v4 layer acts as a bridge between several entities:
19 * - The GICv4 ITS representation offered by the ITS driver
20 * - VFIO, which is in charge of the PCI endpoint
21 * - The virtual ITS, which is the only thing the guest sees
22 *
23 * The configuration of VLPIs is triggered by a callback from VFIO,
24 * instructing KVM that a PCI device has been configured to deliver
25 * MSIs to a vITS.
26 *
27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28 * and this is used to find the corresponding vITS data structures
29 * (ITS instance, device, event and irq) using a process that is
30 * extremely similar to the injection of an MSI.
31 *
32 * At this stage, we can link the guest's view of an LPI (uniquely
33 * identified by the routing entry) and the host irq, using the GICv4
34 * driver mapping operation. Should the mapping succeed, we've then
35 * successfully upgraded the guest's LPI to a VLPI. We can then start
36 * with updating GICv4's view of the property table and generating an
37 * INValidation in order to kickstart the delivery of this VLPI to the
38 * guest directly, without software intervention. Well, almost.
39 *
40 * When the PCI endpoint is deconfigured, this operation is reversed
41 * with VFIO calling kvm_vgic_v4_unset_forwarding().
42 *
43 * Once the VLPI has been mapped, it needs to follow any change the
44 * guest performs on its LPI through the vITS. For that, a number of
45 * command handlers have hooks to communicate these changes to the HW:
46 * - Any invalidation triggers a call to its_prop_update_vlpi()
47 * - The INT command results in a irq_set_irqchip_state(), which
48 * generates an INT on the corresponding VLPI.
49 * - The CLEAR command results in a irq_set_irqchip_state(), which
50 * generates an CLEAR on the corresponding VLPI.
51 * - DISCARD translates into an unmap, similar to a call to
52 * kvm_vgic_v4_unset_forwarding().
53 * - MOVI is translated by an update of the existing mapping, changing
54 * the target vcpu, resulting in a VMOVI being generated.
55 * - MOVALL is translated by a string of mapping updates (similar to
56 * the handling of MOVI). MOVALL is horrible.
57 *
58 * Note that a DISCARD/MAPTI sequence emitted from the guest without
59 * reprogramming the PCI endpoint after MAPTI does not result in a
60 * VLPI being mapped, as there is no callback from VFIO (the guest
61 * will get the interrupt via the normal SW injection). Fixing this is
62 * not trivial, and requires some horrible messing with the VFIO
63 * internals. Not fun. Don't do that.
64 *
65 * Then there is the scheduling. Each time a vcpu is about to run on a
66 * physical CPU, KVM must tell the corresponding redistributor about
67 * it. And if we've migrated our vcpu from one CPU to another, we must
68 * tell the ITS (so that the messages reach the right redistributor).
69 * This is done in two steps: first issue a irq_set_affinity() on the
70 * irq corresponding to the vcpu, then call its_make_vpe_resident().
71 * You must be in a non-preemptible context. On exit, a call to
72 * its_make_vpe_non_resident() tells the redistributor that we're done
73 * with the vcpu.
74 *
75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt
76 * which will fire each time a VLPI is made pending whilst the vcpu is
77 * not running. Each time the vcpu gets blocked, the doorbell
78 * interrupt gets enabled. When the vcpu is unblocked (for whatever
79 * reason), the doorbell interrupt is disabled.
80 */
81
82 #define DB_IRQ_FLAGS (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83
vgic_v4_doorbell_handler(int irq,void * info)84 static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85 {
86 struct kvm_vcpu *vcpu = info;
87
88 /* We got the message, no need to fire again */
89 if (!kvm_vgic_global_state.has_gicv4_1 &&
90 !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
91 disable_irq_nosync(irq);
92
93 /*
94 * The v4.1 doorbell can fire concurrently with the vPE being
95 * made non-resident. Ensure we only update pending_last
96 * *after* the non-residency sequence has completed.
97 */
98 raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
99 vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
100 raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
101
102 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
103 kvm_vcpu_kick(vcpu);
104
105 return IRQ_HANDLED;
106 }
107
vgic_v4_sync_sgi_config(struct its_vpe * vpe,struct vgic_irq * irq)108 static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
109 {
110 vpe->sgi_config[irq->intid].enabled = irq->enabled;
111 vpe->sgi_config[irq->intid].group = irq->group;
112 vpe->sgi_config[irq->intid].priority = irq->priority;
113 }
114
vgic_v4_enable_vsgis(struct kvm_vcpu * vcpu)115 static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
116 {
117 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
118 int i;
119
120 /*
121 * With GICv4.1, every virtual SGI can be directly injected. So
122 * let's pretend that they are HW interrupts, tied to a host
123 * IRQ. The SGI code will do its magic.
124 */
125 for (i = 0; i < VGIC_NR_SGIS; i++) {
126 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
127 struct irq_desc *desc;
128 unsigned long flags;
129 int ret;
130
131 raw_spin_lock_irqsave(&irq->irq_lock, flags);
132
133 if (irq->hw)
134 goto unlock;
135
136 irq->hw = true;
137 irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
138
139 /* Transfer the full irq state to the vPE */
140 vgic_v4_sync_sgi_config(vpe, irq);
141 desc = irq_to_desc(irq->host_irq);
142 ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
143 false);
144 if (!WARN_ON(ret)) {
145 /* Transfer pending state */
146 ret = irq_set_irqchip_state(irq->host_irq,
147 IRQCHIP_STATE_PENDING,
148 irq->pending_latch);
149 WARN_ON(ret);
150 irq->pending_latch = false;
151 }
152 unlock:
153 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
154 vgic_put_irq(vcpu->kvm, irq);
155 }
156 }
157
vgic_v4_disable_vsgis(struct kvm_vcpu * vcpu)158 static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
159 {
160 int i;
161
162 for (i = 0; i < VGIC_NR_SGIS; i++) {
163 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
164 struct irq_desc *desc;
165 unsigned long flags;
166 int ret;
167
168 raw_spin_lock_irqsave(&irq->irq_lock, flags);
169
170 if (!irq->hw)
171 goto unlock;
172
173 irq->hw = false;
174 ret = irq_get_irqchip_state(irq->host_irq,
175 IRQCHIP_STATE_PENDING,
176 &irq->pending_latch);
177 WARN_ON(ret);
178
179 desc = irq_to_desc(irq->host_irq);
180 irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
181 unlock:
182 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183 vgic_put_irq(vcpu->kvm, irq);
184 }
185 }
186
187 /* Must be called with the kvm lock held */
vgic_v4_configure_vsgis(struct kvm * kvm)188 void vgic_v4_configure_vsgis(struct kvm *kvm)
189 {
190 struct vgic_dist *dist = &kvm->arch.vgic;
191 struct kvm_vcpu *vcpu;
192 unsigned long i;
193
194 kvm_arm_halt_guest(kvm);
195
196 kvm_for_each_vcpu(i, vcpu, kvm) {
197 if (dist->nassgireq)
198 vgic_v4_enable_vsgis(vcpu);
199 else
200 vgic_v4_disable_vsgis(vcpu);
201 }
202
203 kvm_arm_resume_guest(kvm);
204 }
205
206 /*
207 * Must be called with GICv4.1 and the vPE unmapped, which
208 * indicates the invalidation of any VPT caches associated
209 * with the vPE, thus we can get the VLPI state by peeking
210 * at the VPT.
211 */
vgic_v4_get_vlpi_state(struct vgic_irq * irq,bool * val)212 void vgic_v4_get_vlpi_state(struct vgic_irq *irq, bool *val)
213 {
214 struct its_vpe *vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
215 int mask = BIT(irq->intid % BITS_PER_BYTE);
216 void *va;
217 u8 *ptr;
218
219 va = page_address(vpe->vpt_page);
220 ptr = va + irq->intid / BITS_PER_BYTE;
221
222 *val = !!(*ptr & mask);
223 }
224
225 /**
226 * vgic_v4_init - Initialize the GICv4 data structures
227 * @kvm: Pointer to the VM being initialized
228 *
229 * We may be called each time a vITS is created, or when the
230 * vgic is initialized. This relies on kvm->lock to be
231 * held. In both cases, the number of vcpus should now be
232 * fixed.
233 */
vgic_v4_init(struct kvm * kvm)234 int vgic_v4_init(struct kvm *kvm)
235 {
236 struct vgic_dist *dist = &kvm->arch.vgic;
237 struct kvm_vcpu *vcpu;
238 int nr_vcpus, ret;
239 unsigned long i;
240
241 if (!kvm_vgic_global_state.has_gicv4)
242 return 0; /* Nothing to see here... move along. */
243
244 if (dist->its_vm.vpes)
245 return 0;
246
247 nr_vcpus = atomic_read(&kvm->online_vcpus);
248
249 dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
250 GFP_KERNEL_ACCOUNT);
251 if (!dist->its_vm.vpes)
252 return -ENOMEM;
253
254 dist->its_vm.nr_vpes = nr_vcpus;
255
256 kvm_for_each_vcpu(i, vcpu, kvm)
257 dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
258
259 ret = its_alloc_vcpu_irqs(&dist->its_vm);
260 if (ret < 0) {
261 kvm_err("VPE IRQ allocation failure\n");
262 kfree(dist->its_vm.vpes);
263 dist->its_vm.nr_vpes = 0;
264 dist->its_vm.vpes = NULL;
265 return ret;
266 }
267
268 kvm_for_each_vcpu(i, vcpu, kvm) {
269 int irq = dist->its_vm.vpes[i]->irq;
270 unsigned long irq_flags = DB_IRQ_FLAGS;
271
272 /*
273 * Don't automatically enable the doorbell, as we're
274 * flipping it back and forth when the vcpu gets
275 * blocked. Also disable the lazy disabling, as the
276 * doorbell could kick us out of the guest too
277 * early...
278 *
279 * On GICv4.1, the doorbell is managed in HW and must
280 * be left enabled.
281 */
282 if (kvm_vgic_global_state.has_gicv4_1)
283 irq_flags &= ~IRQ_NOAUTOEN;
284 irq_set_status_flags(irq, irq_flags);
285
286 ret = request_irq(irq, vgic_v4_doorbell_handler,
287 0, "vcpu", vcpu);
288 if (ret) {
289 kvm_err("failed to allocate vcpu IRQ%d\n", irq);
290 /*
291 * Trick: adjust the number of vpes so we know
292 * how many to nuke on teardown...
293 */
294 dist->its_vm.nr_vpes = i;
295 break;
296 }
297 }
298
299 if (ret)
300 vgic_v4_teardown(kvm);
301
302 return ret;
303 }
304
305 /**
306 * vgic_v4_teardown - Free the GICv4 data structures
307 * @kvm: Pointer to the VM being destroyed
308 *
309 * Relies on kvm->lock to be held.
310 */
vgic_v4_teardown(struct kvm * kvm)311 void vgic_v4_teardown(struct kvm *kvm)
312 {
313 struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
314 int i;
315
316 if (!its_vm->vpes)
317 return;
318
319 for (i = 0; i < its_vm->nr_vpes; i++) {
320 struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
321 int irq = its_vm->vpes[i]->irq;
322
323 irq_clear_status_flags(irq, DB_IRQ_FLAGS);
324 free_irq(irq, vcpu);
325 }
326
327 its_free_vcpu_irqs(its_vm);
328 kfree(its_vm->vpes);
329 its_vm->nr_vpes = 0;
330 its_vm->vpes = NULL;
331 }
332
vgic_v4_put(struct kvm_vcpu * vcpu,bool need_db)333 int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db)
334 {
335 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
336
337 if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
338 return 0;
339
340 return its_make_vpe_non_resident(vpe, need_db);
341 }
342
vgic_v4_load(struct kvm_vcpu * vcpu)343 int vgic_v4_load(struct kvm_vcpu *vcpu)
344 {
345 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
346 int err;
347
348 if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
349 return 0;
350
351 /*
352 * Before making the VPE resident, make sure the redistributor
353 * corresponding to our current CPU expects us here. See the
354 * doc in drivers/irqchip/irq-gic-v4.c to understand how this
355 * turns into a VMOVP command at the ITS level.
356 */
357 err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
358 if (err)
359 return err;
360
361 err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
362 if (err)
363 return err;
364
365 /*
366 * Now that the VPE is resident, let's get rid of a potential
367 * doorbell interrupt that would still be pending. This is a
368 * GICv4.0 only "feature"...
369 */
370 if (!kvm_vgic_global_state.has_gicv4_1)
371 err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
372
373 return err;
374 }
375
vgic_v4_commit(struct kvm_vcpu * vcpu)376 void vgic_v4_commit(struct kvm_vcpu *vcpu)
377 {
378 struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
379
380 /*
381 * No need to wait for the vPE to be ready across a shallow guest
382 * exit, as only a vcpu_put will invalidate it.
383 */
384 if (!vpe->ready)
385 its_commit_vpe(vpe);
386 }
387
vgic_get_its(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * irq_entry)388 static struct vgic_its *vgic_get_its(struct kvm *kvm,
389 struct kvm_kernel_irq_routing_entry *irq_entry)
390 {
391 struct kvm_msi msi = (struct kvm_msi) {
392 .address_lo = irq_entry->msi.address_lo,
393 .address_hi = irq_entry->msi.address_hi,
394 .data = irq_entry->msi.data,
395 .flags = irq_entry->msi.flags,
396 .devid = irq_entry->msi.devid,
397 };
398
399 return vgic_msi_to_its(kvm, &msi);
400 }
401
kvm_vgic_v4_set_forwarding(struct kvm * kvm,int virq,struct kvm_kernel_irq_routing_entry * irq_entry)402 int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
403 struct kvm_kernel_irq_routing_entry *irq_entry)
404 {
405 struct vgic_its *its;
406 struct vgic_irq *irq;
407 struct its_vlpi_map map;
408 unsigned long flags;
409 int ret;
410
411 if (!vgic_supports_direct_msis(kvm))
412 return 0;
413
414 /*
415 * Get the ITS, and escape early on error (not a valid
416 * doorbell for any of our vITSs).
417 */
418 its = vgic_get_its(kvm, irq_entry);
419 if (IS_ERR(its))
420 return 0;
421
422 mutex_lock(&its->its_lock);
423
424 /* Perform the actual DevID/EventID -> LPI translation. */
425 ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
426 irq_entry->msi.data, &irq);
427 if (ret)
428 goto out;
429
430 /*
431 * Emit the mapping request. If it fails, the ITS probably
432 * isn't v4 compatible, so let's silently bail out. Holding
433 * the ITS lock should ensure that nothing can modify the
434 * target vcpu.
435 */
436 map = (struct its_vlpi_map) {
437 .vm = &kvm->arch.vgic.its_vm,
438 .vpe = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
439 .vintid = irq->intid,
440 .properties = ((irq->priority & 0xfc) |
441 (irq->enabled ? LPI_PROP_ENABLED : 0) |
442 LPI_PROP_GROUP1),
443 .db_enabled = true,
444 };
445
446 ret = its_map_vlpi(virq, &map);
447 if (ret)
448 goto out;
449
450 irq->hw = true;
451 irq->host_irq = virq;
452 atomic_inc(&map.vpe->vlpi_count);
453
454 /* Transfer pending state */
455 raw_spin_lock_irqsave(&irq->irq_lock, flags);
456 if (irq->pending_latch) {
457 ret = irq_set_irqchip_state(irq->host_irq,
458 IRQCHIP_STATE_PENDING,
459 irq->pending_latch);
460 WARN_RATELIMIT(ret, "IRQ %d", irq->host_irq);
461
462 /*
463 * Clear pending_latch and communicate this state
464 * change via vgic_queue_irq_unlock.
465 */
466 irq->pending_latch = false;
467 vgic_queue_irq_unlock(kvm, irq, flags);
468 } else {
469 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
470 }
471
472 out:
473 mutex_unlock(&its->its_lock);
474 return ret;
475 }
476
kvm_vgic_v4_unset_forwarding(struct kvm * kvm,int virq,struct kvm_kernel_irq_routing_entry * irq_entry)477 int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
478 struct kvm_kernel_irq_routing_entry *irq_entry)
479 {
480 struct vgic_its *its;
481 struct vgic_irq *irq;
482 int ret;
483
484 if (!vgic_supports_direct_msis(kvm))
485 return 0;
486
487 /*
488 * Get the ITS, and escape early on error (not a valid
489 * doorbell for any of our vITSs).
490 */
491 its = vgic_get_its(kvm, irq_entry);
492 if (IS_ERR(its))
493 return 0;
494
495 mutex_lock(&its->its_lock);
496
497 ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
498 irq_entry->msi.data, &irq);
499 if (ret)
500 goto out;
501
502 WARN_ON(!(irq->hw && irq->host_irq == virq));
503 if (irq->hw) {
504 atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
505 irq->hw = false;
506 ret = its_unmap_vlpi(virq);
507 }
508
509 out:
510 mutex_unlock(&its->its_lock);
511 return ret;
512 }
513