1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VGICv3 MMIO handling functions
4 */
5
6 #include <linux/bitfield.h>
7 #include <linux/irqchip/arm-gic-v3.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/interrupt.h>
11 #include <kvm/iodev.h>
12 #include <kvm/arm_vgic.h>
13
14 #include <asm/kvm_emulate.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17
18 #include "vgic.h"
19 #include "vgic-mmio.h"
20
21 /* extract @num bytes at @offset bytes offset in data */
extract_bytes(u64 data,unsigned int offset,unsigned int num)22 unsigned long extract_bytes(u64 data, unsigned int offset,
23 unsigned int num)
24 {
25 return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
26 }
27
28 /* allows updates of any half of a 64-bit register (or the whole thing) */
update_64bit_reg(u64 reg,unsigned int offset,unsigned int len,unsigned long val)29 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
30 unsigned long val)
31 {
32 int lower = (offset & 4) * 8;
33 int upper = lower + 8 * len - 1;
34
35 reg &= ~GENMASK_ULL(upper, lower);
36 val &= GENMASK_ULL(len * 8 - 1, 0);
37
38 return reg | ((u64)val << lower);
39 }
40
vgic_has_its(struct kvm * kvm)41 bool vgic_has_its(struct kvm *kvm)
42 {
43 struct vgic_dist *dist = &kvm->arch.vgic;
44
45 if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
46 return false;
47
48 return dist->has_its;
49 }
50
vgic_supports_direct_msis(struct kvm * kvm)51 bool vgic_supports_direct_msis(struct kvm *kvm)
52 {
53 return (kvm_vgic_global_state.has_gicv4_1 ||
54 (kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm)));
55 }
56
57 /*
58 * The Revision field in the IIDR have the following meanings:
59 *
60 * Revision 2: Interrupt groups are guest-configurable and signaled using
61 * their configured groups.
62 */
63
vgic_mmio_read_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)64 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
65 gpa_t addr, unsigned int len)
66 {
67 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
68 u32 value = 0;
69
70 switch (addr & 0x0c) {
71 case GICD_CTLR:
72 if (vgic->enabled)
73 value |= GICD_CTLR_ENABLE_SS_G1;
74 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
75 if (vgic->nassgireq)
76 value |= GICD_CTLR_nASSGIreq;
77 break;
78 case GICD_TYPER:
79 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
80 value = (value >> 5) - 1;
81 if (vgic_has_its(vcpu->kvm)) {
82 value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
83 value |= GICD_TYPER_LPIS;
84 } else {
85 value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
86 }
87 break;
88 case GICD_TYPER2:
89 if (kvm_vgic_global_state.has_gicv4_1 && gic_cpuif_has_vsgi())
90 value = GICD_TYPER2_nASSGIcap;
91 break;
92 case GICD_IIDR:
93 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
94 (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
95 (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
96 break;
97 default:
98 return 0;
99 }
100
101 return value;
102 }
103
vgic_mmio_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)104 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
105 gpa_t addr, unsigned int len,
106 unsigned long val)
107 {
108 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
109
110 switch (addr & 0x0c) {
111 case GICD_CTLR: {
112 bool was_enabled, is_hwsgi;
113
114 mutex_lock(&vcpu->kvm->lock);
115
116 was_enabled = dist->enabled;
117 is_hwsgi = dist->nassgireq;
118
119 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
120
121 /* Not a GICv4.1? No HW SGIs */
122 if (!kvm_vgic_global_state.has_gicv4_1 || !gic_cpuif_has_vsgi())
123 val &= ~GICD_CTLR_nASSGIreq;
124
125 /* Dist stays enabled? nASSGIreq is RO */
126 if (was_enabled && dist->enabled) {
127 val &= ~GICD_CTLR_nASSGIreq;
128 val |= FIELD_PREP(GICD_CTLR_nASSGIreq, is_hwsgi);
129 }
130
131 /* Switching HW SGIs? */
132 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
133 if (is_hwsgi != dist->nassgireq)
134 vgic_v4_configure_vsgis(vcpu->kvm);
135
136 if (kvm_vgic_global_state.has_gicv4_1 &&
137 was_enabled != dist->enabled)
138 kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_RELOAD_GICv4);
139 else if (!was_enabled && dist->enabled)
140 vgic_kick_vcpus(vcpu->kvm);
141
142 mutex_unlock(&vcpu->kvm->lock);
143 break;
144 }
145 case GICD_TYPER:
146 case GICD_TYPER2:
147 case GICD_IIDR:
148 /* This is at best for documentation purposes... */
149 return;
150 }
151 }
152
vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)153 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
154 gpa_t addr, unsigned int len,
155 unsigned long val)
156 {
157 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
158 u32 reg;
159
160 switch (addr & 0x0c) {
161 case GICD_TYPER2:
162 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
163 return -EINVAL;
164 return 0;
165 case GICD_IIDR:
166 reg = vgic_mmio_read_v3_misc(vcpu, addr, len);
167 if ((reg ^ val) & ~GICD_IIDR_REVISION_MASK)
168 return -EINVAL;
169
170 reg = FIELD_GET(GICD_IIDR_REVISION_MASK, reg);
171 switch (reg) {
172 case KVM_VGIC_IMP_REV_2:
173 case KVM_VGIC_IMP_REV_3:
174 dist->implementation_rev = reg;
175 return 0;
176 default:
177 return -EINVAL;
178 }
179 case GICD_CTLR:
180 /* Not a GICv4.1? No HW SGIs */
181 if (!kvm_vgic_global_state.has_gicv4_1)
182 val &= ~GICD_CTLR_nASSGIreq;
183
184 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
185 dist->nassgireq = val & GICD_CTLR_nASSGIreq;
186 return 0;
187 }
188
189 vgic_mmio_write_v3_misc(vcpu, addr, len, val);
190 return 0;
191 }
192
vgic_mmio_read_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)193 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
194 gpa_t addr, unsigned int len)
195 {
196 int intid = VGIC_ADDR_TO_INTID(addr, 64);
197 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
198 unsigned long ret = 0;
199
200 if (!irq)
201 return 0;
202
203 /* The upper word is RAZ for us. */
204 if (!(addr & 4))
205 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
206
207 vgic_put_irq(vcpu->kvm, irq);
208 return ret;
209 }
210
vgic_mmio_write_irouter(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)211 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
212 gpa_t addr, unsigned int len,
213 unsigned long val)
214 {
215 int intid = VGIC_ADDR_TO_INTID(addr, 64);
216 struct vgic_irq *irq;
217 unsigned long flags;
218
219 /* The upper word is WI for us since we don't implement Aff3. */
220 if (addr & 4)
221 return;
222
223 irq = vgic_get_irq(vcpu->kvm, NULL, intid);
224
225 if (!irq)
226 return;
227
228 raw_spin_lock_irqsave(&irq->irq_lock, flags);
229
230 /* We only care about and preserve Aff0, Aff1 and Aff2. */
231 irq->mpidr = val & GENMASK(23, 0);
232 irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
233
234 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
235 vgic_put_irq(vcpu->kvm, irq);
236 }
237
vgic_lpis_enabled(struct kvm_vcpu * vcpu)238 bool vgic_lpis_enabled(struct kvm_vcpu *vcpu)
239 {
240 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
241
242 return atomic_read(&vgic_cpu->ctlr) == GICR_CTLR_ENABLE_LPIS;
243 }
244
vgic_mmio_read_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)245 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
246 gpa_t addr, unsigned int len)
247 {
248 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
249 unsigned long val;
250
251 val = atomic_read(&vgic_cpu->ctlr);
252 if (vgic_get_implementation_rev(vcpu) >= KVM_VGIC_IMP_REV_3)
253 val |= GICR_CTLR_IR | GICR_CTLR_CES;
254
255 return val;
256 }
257
vgic_mmio_write_v3r_ctlr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)258 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
259 gpa_t addr, unsigned int len,
260 unsigned long val)
261 {
262 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
263 u32 ctlr;
264
265 if (!vgic_has_its(vcpu->kvm))
266 return;
267
268 if (!(val & GICR_CTLR_ENABLE_LPIS)) {
269 /*
270 * Don't disable if RWP is set, as there already an
271 * ongoing disable. Funky guest...
272 */
273 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr,
274 GICR_CTLR_ENABLE_LPIS,
275 GICR_CTLR_RWP);
276 if (ctlr != GICR_CTLR_ENABLE_LPIS)
277 return;
278
279 vgic_flush_pending_lpis(vcpu);
280 vgic_its_invalidate_cache(vcpu->kvm);
281 atomic_set_release(&vgic_cpu->ctlr, 0);
282 } else {
283 ctlr = atomic_cmpxchg_acquire(&vgic_cpu->ctlr, 0,
284 GICR_CTLR_ENABLE_LPIS);
285 if (ctlr != 0)
286 return;
287
288 vgic_enable_lpis(vcpu);
289 }
290 }
291
vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu * vcpu)292 static bool vgic_mmio_vcpu_rdist_is_last(struct kvm_vcpu *vcpu)
293 {
294 struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
295 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
296 struct vgic_redist_region *iter, *rdreg = vgic_cpu->rdreg;
297
298 if (!rdreg)
299 return false;
300
301 if (vgic_cpu->rdreg_index < rdreg->free_index - 1) {
302 return false;
303 } else if (rdreg->count && vgic_cpu->rdreg_index == (rdreg->count - 1)) {
304 struct list_head *rd_regions = &vgic->rd_regions;
305 gpa_t end = rdreg->base + rdreg->count * KVM_VGIC_V3_REDIST_SIZE;
306
307 /*
308 * the rdist is the last one of the redist region,
309 * check whether there is no other contiguous rdist region
310 */
311 list_for_each_entry(iter, rd_regions, list) {
312 if (iter->base == end && iter->free_index > 0)
313 return false;
314 }
315 }
316 return true;
317 }
318
vgic_mmio_read_v3r_typer(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)319 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
320 gpa_t addr, unsigned int len)
321 {
322 unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
323 int target_vcpu_id = vcpu->vcpu_id;
324 u64 value;
325
326 value = (u64)(mpidr & GENMASK(23, 0)) << 32;
327 value |= ((target_vcpu_id & 0xffff) << 8);
328
329 if (vgic_has_its(vcpu->kvm))
330 value |= GICR_TYPER_PLPIS;
331
332 if (vgic_mmio_vcpu_rdist_is_last(vcpu))
333 value |= GICR_TYPER_LAST;
334
335 return extract_bytes(value, addr & 7, len);
336 }
337
vgic_mmio_read_v3r_iidr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)338 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
339 gpa_t addr, unsigned int len)
340 {
341 return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
342 }
343
vgic_mmio_read_v3_idregs(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)344 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
345 gpa_t addr, unsigned int len)
346 {
347 switch (addr & 0xffff) {
348 case GICD_PIDR2:
349 /* report a GICv3 compliant implementation */
350 return 0x3b;
351 }
352
353 return 0;
354 }
355
vgic_v3_uaccess_write_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)356 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
357 gpa_t addr, unsigned int len,
358 unsigned long val)
359 {
360 u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
361 int i;
362 unsigned long flags;
363
364 for (i = 0; i < len * 8; i++) {
365 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
366
367 raw_spin_lock_irqsave(&irq->irq_lock, flags);
368 if (test_bit(i, &val)) {
369 /*
370 * pending_latch is set irrespective of irq type
371 * (level or edge) to avoid dependency that VM should
372 * restore irq config before pending info.
373 */
374 irq->pending_latch = true;
375 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
376 } else {
377 irq->pending_latch = false;
378 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
379 }
380
381 vgic_put_irq(vcpu->kvm, irq);
382 }
383
384 return 0;
385 }
386
387 /* We want to avoid outer shareable. */
vgic_sanitise_shareability(u64 field)388 u64 vgic_sanitise_shareability(u64 field)
389 {
390 switch (field) {
391 case GIC_BASER_OuterShareable:
392 return GIC_BASER_InnerShareable;
393 default:
394 return field;
395 }
396 }
397
398 /* Avoid any inner non-cacheable mapping. */
vgic_sanitise_inner_cacheability(u64 field)399 u64 vgic_sanitise_inner_cacheability(u64 field)
400 {
401 switch (field) {
402 case GIC_BASER_CACHE_nCnB:
403 case GIC_BASER_CACHE_nC:
404 return GIC_BASER_CACHE_RaWb;
405 default:
406 return field;
407 }
408 }
409
410 /* Non-cacheable or same-as-inner are OK. */
vgic_sanitise_outer_cacheability(u64 field)411 u64 vgic_sanitise_outer_cacheability(u64 field)
412 {
413 switch (field) {
414 case GIC_BASER_CACHE_SameAsInner:
415 case GIC_BASER_CACHE_nC:
416 return field;
417 default:
418 return GIC_BASER_CACHE_SameAsInner;
419 }
420 }
421
vgic_sanitise_field(u64 reg,u64 field_mask,int field_shift,u64 (* sanitise_fn)(u64))422 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
423 u64 (*sanitise_fn)(u64))
424 {
425 u64 field = (reg & field_mask) >> field_shift;
426
427 field = sanitise_fn(field) << field_shift;
428 return (reg & ~field_mask) | field;
429 }
430
431 #define PROPBASER_RES0_MASK \
432 (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
433 #define PENDBASER_RES0_MASK \
434 (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) | \
435 GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
436
vgic_sanitise_pendbaser(u64 reg)437 static u64 vgic_sanitise_pendbaser(u64 reg)
438 {
439 reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
440 GICR_PENDBASER_SHAREABILITY_SHIFT,
441 vgic_sanitise_shareability);
442 reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
443 GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
444 vgic_sanitise_inner_cacheability);
445 reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
446 GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
447 vgic_sanitise_outer_cacheability);
448
449 reg &= ~PENDBASER_RES0_MASK;
450
451 return reg;
452 }
453
vgic_sanitise_propbaser(u64 reg)454 static u64 vgic_sanitise_propbaser(u64 reg)
455 {
456 reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
457 GICR_PROPBASER_SHAREABILITY_SHIFT,
458 vgic_sanitise_shareability);
459 reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
460 GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
461 vgic_sanitise_inner_cacheability);
462 reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
463 GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
464 vgic_sanitise_outer_cacheability);
465
466 reg &= ~PROPBASER_RES0_MASK;
467 return reg;
468 }
469
vgic_mmio_read_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)470 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
471 gpa_t addr, unsigned int len)
472 {
473 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
474
475 return extract_bytes(dist->propbaser, addr & 7, len);
476 }
477
vgic_mmio_write_propbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)478 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
479 gpa_t addr, unsigned int len,
480 unsigned long val)
481 {
482 struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
483 u64 old_propbaser, propbaser;
484
485 /* Storing a value with LPIs already enabled is undefined */
486 if (vgic_lpis_enabled(vcpu))
487 return;
488
489 do {
490 old_propbaser = READ_ONCE(dist->propbaser);
491 propbaser = old_propbaser;
492 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
493 propbaser = vgic_sanitise_propbaser(propbaser);
494 } while (cmpxchg64(&dist->propbaser, old_propbaser,
495 propbaser) != old_propbaser);
496 }
497
vgic_mmio_read_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)498 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
499 gpa_t addr, unsigned int len)
500 {
501 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
502 u64 value = vgic_cpu->pendbaser;
503
504 value &= ~GICR_PENDBASER_PTZ;
505
506 return extract_bytes(value, addr & 7, len);
507 }
508
vgic_mmio_write_pendbase(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)509 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
510 gpa_t addr, unsigned int len,
511 unsigned long val)
512 {
513 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
514 u64 old_pendbaser, pendbaser;
515
516 /* Storing a value with LPIs already enabled is undefined */
517 if (vgic_lpis_enabled(vcpu))
518 return;
519
520 do {
521 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
522 pendbaser = old_pendbaser;
523 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
524 pendbaser = vgic_sanitise_pendbaser(pendbaser);
525 } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
526 pendbaser) != old_pendbaser);
527 }
528
vgic_mmio_read_sync(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)529 static unsigned long vgic_mmio_read_sync(struct kvm_vcpu *vcpu,
530 gpa_t addr, unsigned int len)
531 {
532 return !!atomic_read(&vcpu->arch.vgic_cpu.syncr_busy);
533 }
534
vgic_set_rdist_busy(struct kvm_vcpu * vcpu,bool busy)535 static void vgic_set_rdist_busy(struct kvm_vcpu *vcpu, bool busy)
536 {
537 if (busy) {
538 atomic_inc(&vcpu->arch.vgic_cpu.syncr_busy);
539 smp_mb__after_atomic();
540 } else {
541 smp_mb__before_atomic();
542 atomic_dec(&vcpu->arch.vgic_cpu.syncr_busy);
543 }
544 }
545
vgic_mmio_write_invlpi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)546 static void vgic_mmio_write_invlpi(struct kvm_vcpu *vcpu,
547 gpa_t addr, unsigned int len,
548 unsigned long val)
549 {
550 struct vgic_irq *irq;
551
552 /*
553 * If the guest wrote only to the upper 32bit part of the
554 * register, drop the write on the floor, as it is only for
555 * vPEs (which we don't support for obvious reasons).
556 *
557 * Also discard the access if LPIs are not enabled.
558 */
559 if ((addr & 4) || !vgic_lpis_enabled(vcpu))
560 return;
561
562 vgic_set_rdist_busy(vcpu, true);
563
564 irq = vgic_get_irq(vcpu->kvm, NULL, lower_32_bits(val));
565 if (irq) {
566 vgic_its_inv_lpi(vcpu->kvm, irq);
567 vgic_put_irq(vcpu->kvm, irq);
568 }
569
570 vgic_set_rdist_busy(vcpu, false);
571 }
572
vgic_mmio_write_invall(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)573 static void vgic_mmio_write_invall(struct kvm_vcpu *vcpu,
574 gpa_t addr, unsigned int len,
575 unsigned long val)
576 {
577 /* See vgic_mmio_write_invlpi() for the early return rationale */
578 if ((addr & 4) || !vgic_lpis_enabled(vcpu))
579 return;
580
581 vgic_set_rdist_busy(vcpu, true);
582 vgic_its_invall(vcpu);
583 vgic_set_rdist_busy(vcpu, false);
584 }
585
586 /*
587 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
588 * redistributors, while SPIs are covered by registers in the distributor
589 * block. Trying to set private IRQs in this block gets ignored.
590 * We take some special care here to fix the calculation of the register
591 * offset.
592 */
593 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
594 { \
595 .reg_offset = off, \
596 .bits_per_irq = bpi, \
597 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
598 .access_flags = acc, \
599 .read = vgic_mmio_read_raz, \
600 .write = vgic_mmio_write_wi, \
601 }, { \
602 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8, \
603 .bits_per_irq = bpi, \
604 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8, \
605 .access_flags = acc, \
606 .read = rd, \
607 .write = wr, \
608 .uaccess_read = ur, \
609 .uaccess_write = uw, \
610 }
611
612 static const struct vgic_register_region vgic_v3_dist_registers[] = {
613 REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
614 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
615 NULL, vgic_mmio_uaccess_write_v3_misc,
616 16, VGIC_ACCESS_32bit),
617 REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
618 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
619 VGIC_ACCESS_32bit),
620 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
621 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
622 VGIC_ACCESS_32bit),
623 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
624 vgic_mmio_read_enable, vgic_mmio_write_senable,
625 NULL, vgic_uaccess_write_senable, 1,
626 VGIC_ACCESS_32bit),
627 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
628 vgic_mmio_read_enable, vgic_mmio_write_cenable,
629 NULL, vgic_uaccess_write_cenable, 1,
630 VGIC_ACCESS_32bit),
631 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
632 vgic_mmio_read_pending, vgic_mmio_write_spending,
633 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
634 VGIC_ACCESS_32bit),
635 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
636 vgic_mmio_read_pending, vgic_mmio_write_cpending,
637 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
638 VGIC_ACCESS_32bit),
639 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
640 vgic_mmio_read_active, vgic_mmio_write_sactive,
641 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 1,
642 VGIC_ACCESS_32bit),
643 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
644 vgic_mmio_read_active, vgic_mmio_write_cactive,
645 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive,
646 1, VGIC_ACCESS_32bit),
647 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
648 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
649 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
650 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
651 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
652 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
653 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
654 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
655 VGIC_ACCESS_32bit),
656 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
657 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
658 VGIC_ACCESS_32bit),
659 REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
660 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
661 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
662 REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
663 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
664 VGIC_ACCESS_32bit),
665 };
666
667 static const struct vgic_register_region vgic_v3_rd_registers[] = {
668 /* RD_base registers */
669 REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
670 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
671 VGIC_ACCESS_32bit),
672 REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
673 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
674 VGIC_ACCESS_32bit),
675 REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
676 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
677 VGIC_ACCESS_32bit),
678 REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_TYPER,
679 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi,
680 NULL, vgic_mmio_uaccess_write_wi, 8,
681 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
682 REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
683 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
684 VGIC_ACCESS_32bit),
685 REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
686 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
687 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
688 REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
689 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
690 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
691 REGISTER_DESC_WITH_LENGTH(GICR_INVLPIR,
692 vgic_mmio_read_raz, vgic_mmio_write_invlpi, 8,
693 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
694 REGISTER_DESC_WITH_LENGTH(GICR_INVALLR,
695 vgic_mmio_read_raz, vgic_mmio_write_invall, 8,
696 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
697 REGISTER_DESC_WITH_LENGTH(GICR_SYNCR,
698 vgic_mmio_read_sync, vgic_mmio_write_wi, 4,
699 VGIC_ACCESS_32bit),
700 REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
701 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
702 VGIC_ACCESS_32bit),
703 /* SGI_base registers */
704 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGROUPR0,
705 vgic_mmio_read_group, vgic_mmio_write_group, 4,
706 VGIC_ACCESS_32bit),
707 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISENABLER0,
708 vgic_mmio_read_enable, vgic_mmio_write_senable,
709 NULL, vgic_uaccess_write_senable, 4,
710 VGIC_ACCESS_32bit),
711 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICENABLER0,
712 vgic_mmio_read_enable, vgic_mmio_write_cenable,
713 NULL, vgic_uaccess_write_cenable, 4,
714 VGIC_ACCESS_32bit),
715 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISPENDR0,
716 vgic_mmio_read_pending, vgic_mmio_write_spending,
717 vgic_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
718 VGIC_ACCESS_32bit),
719 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICPENDR0,
720 vgic_mmio_read_pending, vgic_mmio_write_cpending,
721 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
722 VGIC_ACCESS_32bit),
723 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ISACTIVER0,
724 vgic_mmio_read_active, vgic_mmio_write_sactive,
725 vgic_uaccess_read_active, vgic_mmio_uaccess_write_sactive, 4,
726 VGIC_ACCESS_32bit),
727 REGISTER_DESC_WITH_LENGTH_UACCESS(SZ_64K + GICR_ICACTIVER0,
728 vgic_mmio_read_active, vgic_mmio_write_cactive,
729 vgic_uaccess_read_active, vgic_mmio_uaccess_write_cactive, 4,
730 VGIC_ACCESS_32bit),
731 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IPRIORITYR0,
732 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
733 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
734 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_ICFGR0,
735 vgic_mmio_read_config, vgic_mmio_write_config, 8,
736 VGIC_ACCESS_32bit),
737 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_IGRPMODR0,
738 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
739 VGIC_ACCESS_32bit),
740 REGISTER_DESC_WITH_LENGTH(SZ_64K + GICR_NSACR,
741 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
742 VGIC_ACCESS_32bit),
743 };
744
vgic_v3_init_dist_iodev(struct vgic_io_device * dev)745 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
746 {
747 dev->regions = vgic_v3_dist_registers;
748 dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
749
750 kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
751
752 return SZ_64K;
753 }
754
755 /**
756 * vgic_register_redist_iodev - register a single redist iodev
757 * @vcpu: The VCPU to which the redistributor belongs
758 *
759 * Register a KVM iodev for this VCPU's redistributor using the address
760 * provided.
761 *
762 * Return 0 on success, -ERRNO otherwise.
763 */
vgic_register_redist_iodev(struct kvm_vcpu * vcpu)764 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
765 {
766 struct kvm *kvm = vcpu->kvm;
767 struct vgic_dist *vgic = &kvm->arch.vgic;
768 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
769 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
770 struct vgic_redist_region *rdreg;
771 gpa_t rd_base;
772 int ret;
773
774 if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
775 return 0;
776
777 /*
778 * We may be creating VCPUs before having set the base address for the
779 * redistributor region, in which case we will come back to this
780 * function for all VCPUs when the base address is set. Just return
781 * without doing any work for now.
782 */
783 rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
784 if (!rdreg)
785 return 0;
786
787 if (!vgic_v3_check_base(kvm))
788 return -EINVAL;
789
790 vgic_cpu->rdreg = rdreg;
791 vgic_cpu->rdreg_index = rdreg->free_index;
792
793 rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
794
795 kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
796 rd_dev->base_addr = rd_base;
797 rd_dev->iodev_type = IODEV_REDIST;
798 rd_dev->regions = vgic_v3_rd_registers;
799 rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
800 rd_dev->redist_vcpu = vcpu;
801
802 mutex_lock(&kvm->slots_lock);
803 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
804 2 * SZ_64K, &rd_dev->dev);
805 mutex_unlock(&kvm->slots_lock);
806
807 if (ret)
808 return ret;
809
810 rdreg->free_index++;
811 return 0;
812 }
813
vgic_unregister_redist_iodev(struct kvm_vcpu * vcpu)814 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
815 {
816 struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
817
818 kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
819 }
820
vgic_register_all_redist_iodevs(struct kvm * kvm)821 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
822 {
823 struct kvm_vcpu *vcpu;
824 unsigned long c;
825 int ret = 0;
826
827 kvm_for_each_vcpu(c, vcpu, kvm) {
828 ret = vgic_register_redist_iodev(vcpu);
829 if (ret)
830 break;
831 }
832
833 if (ret) {
834 /* The current c failed, so iterate over the previous ones. */
835 int i;
836
837 mutex_lock(&kvm->slots_lock);
838 for (i = 0; i < c; i++) {
839 vcpu = kvm_get_vcpu(kvm, i);
840 vgic_unregister_redist_iodev(vcpu);
841 }
842 mutex_unlock(&kvm->slots_lock);
843 }
844
845 return ret;
846 }
847
848 /**
849 * vgic_v3_alloc_redist_region - Allocate a new redistributor region
850 *
851 * Performs various checks before inserting the rdist region in the list.
852 * Those tests depend on whether the size of the rdist region is known
853 * (ie. count != 0). The list is sorted by rdist region index.
854 *
855 * @kvm: kvm handle
856 * @index: redist region index
857 * @base: base of the new rdist region
858 * @count: number of redistributors the region is made of (0 in the old style
859 * single region, whose size is induced from the number of vcpus)
860 *
861 * Return 0 on success, < 0 otherwise
862 */
vgic_v3_alloc_redist_region(struct kvm * kvm,uint32_t index,gpa_t base,uint32_t count)863 static int vgic_v3_alloc_redist_region(struct kvm *kvm, uint32_t index,
864 gpa_t base, uint32_t count)
865 {
866 struct vgic_dist *d = &kvm->arch.vgic;
867 struct vgic_redist_region *rdreg;
868 struct list_head *rd_regions = &d->rd_regions;
869 int nr_vcpus = atomic_read(&kvm->online_vcpus);
870 size_t size = count ? count * KVM_VGIC_V3_REDIST_SIZE
871 : nr_vcpus * KVM_VGIC_V3_REDIST_SIZE;
872 int ret;
873
874 /* cross the end of memory ? */
875 if (base + size < base)
876 return -EINVAL;
877
878 if (list_empty(rd_regions)) {
879 if (index != 0)
880 return -EINVAL;
881 } else {
882 rdreg = list_last_entry(rd_regions,
883 struct vgic_redist_region, list);
884
885 /* Don't mix single region and discrete redist regions */
886 if (!count && rdreg->count)
887 return -EINVAL;
888
889 if (!count)
890 return -EEXIST;
891
892 if (index != rdreg->index + 1)
893 return -EINVAL;
894 }
895
896 /*
897 * For legacy single-region redistributor regions (!count),
898 * check that the redistributor region does not overlap with the
899 * distributor's address space.
900 */
901 if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
902 vgic_dist_overlap(kvm, base, size))
903 return -EINVAL;
904
905 /* collision with any other rdist region? */
906 if (vgic_v3_rdist_overlap(kvm, base, size))
907 return -EINVAL;
908
909 rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL_ACCOUNT);
910 if (!rdreg)
911 return -ENOMEM;
912
913 rdreg->base = VGIC_ADDR_UNDEF;
914
915 ret = vgic_check_iorange(kvm, rdreg->base, base, SZ_64K, size);
916 if (ret)
917 goto free;
918
919 rdreg->base = base;
920 rdreg->count = count;
921 rdreg->free_index = 0;
922 rdreg->index = index;
923
924 list_add_tail(&rdreg->list, rd_regions);
925 return 0;
926 free:
927 kfree(rdreg);
928 return ret;
929 }
930
vgic_v3_free_redist_region(struct vgic_redist_region * rdreg)931 void vgic_v3_free_redist_region(struct vgic_redist_region *rdreg)
932 {
933 list_del(&rdreg->list);
934 kfree(rdreg);
935 }
936
vgic_v3_set_redist_base(struct kvm * kvm,u32 index,u64 addr,u32 count)937 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
938 {
939 int ret;
940
941 ret = vgic_v3_alloc_redist_region(kvm, index, addr, count);
942 if (ret)
943 return ret;
944
945 /*
946 * Register iodevs for each existing VCPU. Adding more VCPUs
947 * afterwards will register the iodevs when needed.
948 */
949 ret = vgic_register_all_redist_iodevs(kvm);
950 if (ret) {
951 struct vgic_redist_region *rdreg;
952
953 rdreg = vgic_v3_rdist_region_from_index(kvm, index);
954 vgic_v3_free_redist_region(rdreg);
955 return ret;
956 }
957
958 return 0;
959 }
960
vgic_v3_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)961 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
962 {
963 const struct vgic_register_region *region;
964 struct vgic_io_device iodev;
965 struct vgic_reg_attr reg_attr;
966 struct kvm_vcpu *vcpu;
967 gpa_t addr;
968 int ret;
969
970 ret = vgic_v3_parse_attr(dev, attr, ®_attr);
971 if (ret)
972 return ret;
973
974 vcpu = reg_attr.vcpu;
975 addr = reg_attr.addr;
976
977 switch (attr->group) {
978 case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
979 iodev.regions = vgic_v3_dist_registers;
980 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
981 iodev.base_addr = 0;
982 break;
983 case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
984 iodev.regions = vgic_v3_rd_registers;
985 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rd_registers);
986 iodev.base_addr = 0;
987 break;
988 }
989 case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS:
990 return vgic_v3_has_cpu_sysregs_attr(vcpu, attr);
991 default:
992 return -ENXIO;
993 }
994
995 /* We only support aligned 32-bit accesses. */
996 if (addr & 3)
997 return -ENXIO;
998
999 region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
1000 if (!region)
1001 return -ENXIO;
1002
1003 return 0;
1004 }
1005 /*
1006 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
1007 * generation register ICC_SGI1R_EL1) with a given VCPU.
1008 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
1009 * return -1.
1010 */
match_mpidr(u64 sgi_aff,u16 sgi_cpu_mask,struct kvm_vcpu * vcpu)1011 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
1012 {
1013 unsigned long affinity;
1014 int level0;
1015
1016 /*
1017 * Split the current VCPU's MPIDR into affinity level 0 and the
1018 * rest as this is what we have to compare against.
1019 */
1020 affinity = kvm_vcpu_get_mpidr_aff(vcpu);
1021 level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
1022 affinity &= ~MPIDR_LEVEL_MASK;
1023
1024 /* bail out if the upper three levels don't match */
1025 if (sgi_aff != affinity)
1026 return -1;
1027
1028 /* Is this VCPU's bit set in the mask ? */
1029 if (!(sgi_cpu_mask & BIT(level0)))
1030 return -1;
1031
1032 return level0;
1033 }
1034
1035 /*
1036 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
1037 * so provide a wrapper to use the existing defines to isolate a certain
1038 * affinity level.
1039 */
1040 #define SGI_AFFINITY_LEVEL(reg, level) \
1041 ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
1042 >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
1043
1044 /**
1045 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
1046 * @vcpu: The VCPU requesting a SGI
1047 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
1048 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
1049 *
1050 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
1051 * This will trap in sys_regs.c and call this function.
1052 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
1053 * target processors as well as a bitmask of 16 Aff0 CPUs.
1054 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
1055 * check for matching ones. If this bit is set, we signal all, but not the
1056 * calling VCPU.
1057 */
vgic_v3_dispatch_sgi(struct kvm_vcpu * vcpu,u64 reg,bool allow_group1)1058 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
1059 {
1060 struct kvm *kvm = vcpu->kvm;
1061 struct kvm_vcpu *c_vcpu;
1062 u16 target_cpus;
1063 u64 mpidr;
1064 int sgi;
1065 int vcpu_id = vcpu->vcpu_id;
1066 bool broadcast;
1067 unsigned long c, flags;
1068
1069 sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
1070 broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
1071 target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
1072 mpidr = SGI_AFFINITY_LEVEL(reg, 3);
1073 mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
1074 mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
1075
1076 /*
1077 * We iterate over all VCPUs to find the MPIDRs matching the request.
1078 * If we have handled one CPU, we clear its bit to detect early
1079 * if we are already finished. This avoids iterating through all
1080 * VCPUs when most of the times we just signal a single VCPU.
1081 */
1082 kvm_for_each_vcpu(c, c_vcpu, kvm) {
1083 struct vgic_irq *irq;
1084
1085 /* Exit early if we have dealt with all requested CPUs */
1086 if (!broadcast && target_cpus == 0)
1087 break;
1088
1089 /* Don't signal the calling VCPU */
1090 if (broadcast && c == vcpu_id)
1091 continue;
1092
1093 if (!broadcast) {
1094 int level0;
1095
1096 level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
1097 if (level0 == -1)
1098 continue;
1099
1100 /* remove this matching VCPU from the mask */
1101 target_cpus &= ~BIT(level0);
1102 }
1103
1104 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
1105
1106 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1107
1108 /*
1109 * An access targeting Group0 SGIs can only generate
1110 * those, while an access targeting Group1 SGIs can
1111 * generate interrupts of either group.
1112 */
1113 if (!irq->group || allow_group1) {
1114 if (!irq->hw) {
1115 irq->pending_latch = true;
1116 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
1117 } else {
1118 /* HW SGI? Ask the GIC to inject it */
1119 int err;
1120 err = irq_set_irqchip_state(irq->host_irq,
1121 IRQCHIP_STATE_PENDING,
1122 true);
1123 WARN_RATELIMIT(err, "IRQ %d", irq->host_irq);
1124 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1125 }
1126 } else {
1127 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1128 }
1129
1130 vgic_put_irq(vcpu->kvm, irq);
1131 }
1132 }
1133
vgic_v3_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1134 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1135 int offset, u32 *val)
1136 {
1137 struct vgic_io_device dev = {
1138 .regions = vgic_v3_dist_registers,
1139 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
1140 };
1141
1142 return vgic_uaccess(vcpu, &dev, is_write, offset, val);
1143 }
1144
vgic_v3_redist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)1145 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1146 int offset, u32 *val)
1147 {
1148 struct vgic_io_device rd_dev = {
1149 .regions = vgic_v3_rd_registers,
1150 .nr_regions = ARRAY_SIZE(vgic_v3_rd_registers),
1151 };
1152
1153 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1154 }
1155
vgic_v3_line_level_info_uaccess(struct kvm_vcpu * vcpu,bool is_write,u32 intid,u32 * val)1156 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1157 u32 intid, u32 *val)
1158 {
1159 if (intid % 32)
1160 return -EINVAL;
1161
1162 if (is_write)
1163 vgic_write_irq_line_level_info(vcpu, intid, *val);
1164 else
1165 *val = vgic_read_irq_line_level_info(vcpu, intid);
1166
1167 return 0;
1168 }
1169