1 /*
2  * VGIC MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/bitops.h>
15 #include <linux/bsearch.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/iodev.h>
19 #include <kvm/arm_arch_timer.h>
20 #include <kvm/arm_vgic.h>
21 
22 #include "vgic.h"
23 #include "vgic-mmio.h"
24 
vgic_mmio_read_raz(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)25 unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
26 				 gpa_t addr, unsigned int len)
27 {
28 	return 0;
29 }
30 
vgic_mmio_read_rao(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)31 unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
32 				 gpa_t addr, unsigned int len)
33 {
34 	return -1UL;
35 }
36 
vgic_mmio_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)37 void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
38 			unsigned int len, unsigned long val)
39 {
40 	/* Ignore */
41 }
42 
vgic_mmio_uaccess_write_wi(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)43 int vgic_mmio_uaccess_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
44 			       unsigned int len, unsigned long val)
45 {
46 	/* Ignore */
47 	return 0;
48 }
49 
vgic_mmio_read_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)50 unsigned long vgic_mmio_read_group(struct kvm_vcpu *vcpu,
51 				   gpa_t addr, unsigned int len)
52 {
53 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
54 	u32 value = 0;
55 	int i;
56 
57 	/* Loop over all IRQs affected by this read */
58 	for (i = 0; i < len * 8; i++) {
59 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
60 
61 		if (irq->group)
62 			value |= BIT(i);
63 
64 		vgic_put_irq(vcpu->kvm, irq);
65 	}
66 
67 	return value;
68 }
69 
vgic_mmio_write_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)70 void vgic_mmio_write_group(struct kvm_vcpu *vcpu, gpa_t addr,
71 			   unsigned int len, unsigned long val)
72 {
73 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
74 	int i;
75 	unsigned long flags;
76 
77 	for (i = 0; i < len * 8; i++) {
78 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
79 
80 		spin_lock_irqsave(&irq->irq_lock, flags);
81 		irq->group = !!(val & BIT(i));
82 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
83 
84 		vgic_put_irq(vcpu->kvm, irq);
85 	}
86 }
87 
88 /*
89  * Read accesses to both GICD_ICENABLER and GICD_ISENABLER return the value
90  * of the enabled bit, so there is only one function for both here.
91  */
vgic_mmio_read_enable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)92 unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
93 				    gpa_t addr, unsigned int len)
94 {
95 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
96 	u32 value = 0;
97 	int i;
98 
99 	/* Loop over all IRQs affected by this read */
100 	for (i = 0; i < len * 8; i++) {
101 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
102 
103 		if (irq->enabled)
104 			value |= (1U << i);
105 
106 		vgic_put_irq(vcpu->kvm, irq);
107 	}
108 
109 	return value;
110 }
111 
vgic_mmio_write_senable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)112 void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
113 			     gpa_t addr, unsigned int len,
114 			     unsigned long val)
115 {
116 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
117 	int i;
118 	unsigned long flags;
119 
120 	for_each_set_bit(i, &val, len * 8) {
121 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
122 
123 		spin_lock_irqsave(&irq->irq_lock, flags);
124 		irq->enabled = true;
125 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
126 
127 		vgic_put_irq(vcpu->kvm, irq);
128 	}
129 }
130 
vgic_mmio_write_cenable(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)131 void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
132 			     gpa_t addr, unsigned int len,
133 			     unsigned long val)
134 {
135 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
136 	int i;
137 	unsigned long flags;
138 
139 	for_each_set_bit(i, &val, len * 8) {
140 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
141 
142 		spin_lock_irqsave(&irq->irq_lock, flags);
143 
144 		irq->enabled = false;
145 
146 		spin_unlock_irqrestore(&irq->irq_lock, flags);
147 		vgic_put_irq(vcpu->kvm, irq);
148 	}
149 }
150 
vgic_mmio_read_pending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)151 unsigned long vgic_mmio_read_pending(struct kvm_vcpu *vcpu,
152 				     gpa_t addr, unsigned int len)
153 {
154 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
155 	u32 value = 0;
156 	int i;
157 
158 	/* Loop over all IRQs affected by this read */
159 	for (i = 0; i < len * 8; i++) {
160 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
161 		unsigned long flags;
162 
163 		spin_lock_irqsave(&irq->irq_lock, flags);
164 		if (irq_is_pending(irq))
165 			value |= (1U << i);
166 		spin_unlock_irqrestore(&irq->irq_lock, flags);
167 
168 		vgic_put_irq(vcpu->kvm, irq);
169 	}
170 
171 	return value;
172 }
173 
174 /*
175  * This function will return the VCPU that performed the MMIO access and
176  * trapped from within the VM, and will return NULL if this is a userspace
177  * access.
178  *
179  * We can disable preemption locally around accessing the per-CPU variable,
180  * and use the resolved vcpu pointer after enabling preemption again, because
181  * even if the current thread is migrated to another CPU, reading the per-CPU
182  * value later will give us the same value as we update the per-CPU variable
183  * in the preempt notifier handlers.
184  */
vgic_get_mmio_requester_vcpu(void)185 static struct kvm_vcpu *vgic_get_mmio_requester_vcpu(void)
186 {
187 	struct kvm_vcpu *vcpu;
188 
189 	preempt_disable();
190 	vcpu = kvm_arm_get_running_vcpu();
191 	preempt_enable();
192 	return vcpu;
193 }
194 
195 /* Must be called with irq->irq_lock held */
vgic_hw_irq_spending(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool is_uaccess)196 static void vgic_hw_irq_spending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
197 				 bool is_uaccess)
198 {
199 	if (is_uaccess)
200 		return;
201 
202 	irq->pending_latch = true;
203 	vgic_irq_set_phys_active(irq, true);
204 }
205 
vgic_mmio_write_spending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)206 void vgic_mmio_write_spending(struct kvm_vcpu *vcpu,
207 			      gpa_t addr, unsigned int len,
208 			      unsigned long val)
209 {
210 	bool is_uaccess = !vgic_get_mmio_requester_vcpu();
211 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
212 	int i;
213 	unsigned long flags;
214 
215 	for_each_set_bit(i, &val, len * 8) {
216 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
217 
218 		spin_lock_irqsave(&irq->irq_lock, flags);
219 		if (irq->hw)
220 			vgic_hw_irq_spending(vcpu, irq, is_uaccess);
221 		else
222 			irq->pending_latch = true;
223 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
224 		vgic_put_irq(vcpu->kvm, irq);
225 	}
226 }
227 
228 /* Must be called with irq->irq_lock held */
vgic_hw_irq_cpending(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool is_uaccess)229 static void vgic_hw_irq_cpending(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
230 				 bool is_uaccess)
231 {
232 	if (is_uaccess)
233 		return;
234 
235 	irq->pending_latch = false;
236 
237 	/*
238 	 * We don't want the guest to effectively mask the physical
239 	 * interrupt by doing a write to SPENDR followed by a write to
240 	 * CPENDR for HW interrupts, so we clear the active state on
241 	 * the physical side if the virtual interrupt is not active.
242 	 * This may lead to taking an additional interrupt on the
243 	 * host, but that should not be a problem as the worst that
244 	 * can happen is an additional vgic injection.  We also clear
245 	 * the pending state to maintain proper semantics for edge HW
246 	 * interrupts.
247 	 */
248 	vgic_irq_set_phys_pending(irq, false);
249 	if (!irq->active)
250 		vgic_irq_set_phys_active(irq, false);
251 }
252 
vgic_mmio_write_cpending(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)253 void vgic_mmio_write_cpending(struct kvm_vcpu *vcpu,
254 			      gpa_t addr, unsigned int len,
255 			      unsigned long val)
256 {
257 	bool is_uaccess = !vgic_get_mmio_requester_vcpu();
258 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
259 	int i;
260 	unsigned long flags;
261 
262 	for_each_set_bit(i, &val, len * 8) {
263 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
264 
265 		spin_lock_irqsave(&irq->irq_lock, flags);
266 
267 		if (irq->hw)
268 			vgic_hw_irq_cpending(vcpu, irq, is_uaccess);
269 		else
270 			irq->pending_latch = false;
271 
272 		spin_unlock_irqrestore(&irq->irq_lock, flags);
273 		vgic_put_irq(vcpu->kvm, irq);
274 	}
275 }
276 
vgic_mmio_read_active(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)277 unsigned long vgic_mmio_read_active(struct kvm_vcpu *vcpu,
278 				    gpa_t addr, unsigned int len)
279 {
280 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
281 	u32 value = 0;
282 	int i;
283 
284 	/* Loop over all IRQs affected by this read */
285 	for (i = 0; i < len * 8; i++) {
286 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
287 
288 		if (irq->active)
289 			value |= (1U << i);
290 
291 		vgic_put_irq(vcpu->kvm, irq);
292 	}
293 
294 	return value;
295 }
296 
297 /* Must be called with irq->irq_lock held */
vgic_hw_irq_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active,bool is_uaccess)298 static void vgic_hw_irq_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
299 				      bool active, bool is_uaccess)
300 {
301 	if (is_uaccess)
302 		return;
303 
304 	irq->active = active;
305 	vgic_irq_set_phys_active(irq, active);
306 }
307 
vgic_mmio_change_active(struct kvm_vcpu * vcpu,struct vgic_irq * irq,bool active)308 static void vgic_mmio_change_active(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
309 				    bool active)
310 {
311 	unsigned long flags;
312 	struct kvm_vcpu *requester_vcpu = vgic_get_mmio_requester_vcpu();
313 
314 	spin_lock_irqsave(&irq->irq_lock, flags);
315 
316 	/*
317 	 * If this virtual IRQ was written into a list register, we
318 	 * have to make sure the CPU that runs the VCPU thread has
319 	 * synced back the LR state to the struct vgic_irq.
320 	 *
321 	 * As long as the conditions below are true, we know the VCPU thread
322 	 * may be on its way back from the guest (we kicked the VCPU thread in
323 	 * vgic_change_active_prepare)  and still has to sync back this IRQ,
324 	 * so we release and re-acquire the spin_lock to let the other thread
325 	 * sync back the IRQ.
326 	 *
327 	 * When accessing VGIC state from user space, requester_vcpu is
328 	 * NULL, which is fine, because we guarantee that no VCPUs are running
329 	 * when accessing VGIC state from user space so irq->vcpu->cpu is
330 	 * always -1.
331 	 */
332 	while (irq->vcpu && /* IRQ may have state in an LR somewhere */
333 	       irq->vcpu != requester_vcpu && /* Current thread is not the VCPU thread */
334 	       irq->vcpu->cpu != -1) /* VCPU thread is running */
335 		cond_resched_lock(&irq->irq_lock);
336 
337 	if (irq->hw) {
338 		vgic_hw_irq_change_active(vcpu, irq, active, !requester_vcpu);
339 	} else {
340 		u32 model = vcpu->kvm->arch.vgic.vgic_model;
341 
342 		irq->active = active;
343 		if (model == KVM_DEV_TYPE_ARM_VGIC_V2 &&
344 		    active && vgic_irq_is_sgi(irq->intid))
345 			irq->active_source = requester_vcpu->vcpu_id;
346 	}
347 
348 	if (irq->active)
349 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
350 	else
351 		spin_unlock_irqrestore(&irq->irq_lock, flags);
352 }
353 
354 /*
355  * If we are fiddling with an IRQ's active state, we have to make sure the IRQ
356  * is not queued on some running VCPU's LRs, because then the change to the
357  * active state can be overwritten when the VCPU's state is synced coming back
358  * from the guest.
359  *
360  * For shared interrupts, we have to stop all the VCPUs because interrupts can
361  * be migrated while we don't hold the IRQ locks and we don't want to be
362  * chasing moving targets.
363  *
364  * For private interrupts we don't have to do anything because userspace
365  * accesses to the VGIC state already require all VCPUs to be stopped, and
366  * only the VCPU itself can modify its private interrupts active state, which
367  * guarantees that the VCPU is not running.
368  */
vgic_change_active_prepare(struct kvm_vcpu * vcpu,u32 intid)369 static void vgic_change_active_prepare(struct kvm_vcpu *vcpu, u32 intid)
370 {
371 	if (intid > VGIC_NR_PRIVATE_IRQS)
372 		kvm_arm_halt_guest(vcpu->kvm);
373 }
374 
375 /* See vgic_change_active_prepare */
vgic_change_active_finish(struct kvm_vcpu * vcpu,u32 intid)376 static void vgic_change_active_finish(struct kvm_vcpu *vcpu, u32 intid)
377 {
378 	if (intid > VGIC_NR_PRIVATE_IRQS)
379 		kvm_arm_resume_guest(vcpu->kvm);
380 }
381 
__vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)382 static void __vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
383 				      gpa_t addr, unsigned int len,
384 				      unsigned long val)
385 {
386 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
387 	int i;
388 
389 	for_each_set_bit(i, &val, len * 8) {
390 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
391 		vgic_mmio_change_active(vcpu, irq, false);
392 		vgic_put_irq(vcpu->kvm, irq);
393 	}
394 }
395 
vgic_mmio_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)396 void vgic_mmio_write_cactive(struct kvm_vcpu *vcpu,
397 			     gpa_t addr, unsigned int len,
398 			     unsigned long val)
399 {
400 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
401 
402 	mutex_lock(&vcpu->kvm->lock);
403 	vgic_change_active_prepare(vcpu, intid);
404 
405 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
406 
407 	vgic_change_active_finish(vcpu, intid);
408 	mutex_unlock(&vcpu->kvm->lock);
409 }
410 
vgic_mmio_uaccess_write_cactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)411 int vgic_mmio_uaccess_write_cactive(struct kvm_vcpu *vcpu,
412 				     gpa_t addr, unsigned int len,
413 				     unsigned long val)
414 {
415 	__vgic_mmio_write_cactive(vcpu, addr, len, val);
416 	return 0;
417 }
418 
__vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)419 static void __vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
420 				      gpa_t addr, unsigned int len,
421 				      unsigned long val)
422 {
423 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
424 	int i;
425 
426 	for_each_set_bit(i, &val, len * 8) {
427 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
428 		vgic_mmio_change_active(vcpu, irq, true);
429 		vgic_put_irq(vcpu->kvm, irq);
430 	}
431 }
432 
vgic_mmio_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)433 void vgic_mmio_write_sactive(struct kvm_vcpu *vcpu,
434 			     gpa_t addr, unsigned int len,
435 			     unsigned long val)
436 {
437 	u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
438 
439 	mutex_lock(&vcpu->kvm->lock);
440 	vgic_change_active_prepare(vcpu, intid);
441 
442 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
443 
444 	vgic_change_active_finish(vcpu, intid);
445 	mutex_unlock(&vcpu->kvm->lock);
446 }
447 
vgic_mmio_uaccess_write_sactive(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)448 int vgic_mmio_uaccess_write_sactive(struct kvm_vcpu *vcpu,
449 				     gpa_t addr, unsigned int len,
450 				     unsigned long val)
451 {
452 	__vgic_mmio_write_sactive(vcpu, addr, len, val);
453 	return 0;
454 }
455 
vgic_mmio_read_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)456 unsigned long vgic_mmio_read_priority(struct kvm_vcpu *vcpu,
457 				      gpa_t addr, unsigned int len)
458 {
459 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
460 	int i;
461 	u64 val = 0;
462 
463 	for (i = 0; i < len; i++) {
464 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
465 
466 		val |= (u64)irq->priority << (i * 8);
467 
468 		vgic_put_irq(vcpu->kvm, irq);
469 	}
470 
471 	return val;
472 }
473 
474 /*
475  * We currently don't handle changing the priority of an interrupt that
476  * is already pending on a VCPU. If there is a need for this, we would
477  * need to make this VCPU exit and re-evaluate the priorities, potentially
478  * leading to this interrupt getting presented now to the guest (if it has
479  * been masked by the priority mask before).
480  */
vgic_mmio_write_priority(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)481 void vgic_mmio_write_priority(struct kvm_vcpu *vcpu,
482 			      gpa_t addr, unsigned int len,
483 			      unsigned long val)
484 {
485 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
486 	int i;
487 	unsigned long flags;
488 
489 	for (i = 0; i < len; i++) {
490 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
491 
492 		spin_lock_irqsave(&irq->irq_lock, flags);
493 		/* Narrow the priority range to what we actually support */
494 		irq->priority = (val >> (i * 8)) & GENMASK(7, 8 - VGIC_PRI_BITS);
495 		spin_unlock_irqrestore(&irq->irq_lock, flags);
496 
497 		vgic_put_irq(vcpu->kvm, irq);
498 	}
499 }
500 
vgic_mmio_read_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)501 unsigned long vgic_mmio_read_config(struct kvm_vcpu *vcpu,
502 				    gpa_t addr, unsigned int len)
503 {
504 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
505 	u32 value = 0;
506 	int i;
507 
508 	for (i = 0; i < len * 4; i++) {
509 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
510 
511 		if (irq->config == VGIC_CONFIG_EDGE)
512 			value |= (2U << (i * 2));
513 
514 		vgic_put_irq(vcpu->kvm, irq);
515 	}
516 
517 	return value;
518 }
519 
vgic_mmio_write_config(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)520 void vgic_mmio_write_config(struct kvm_vcpu *vcpu,
521 			    gpa_t addr, unsigned int len,
522 			    unsigned long val)
523 {
524 	u32 intid = VGIC_ADDR_TO_INTID(addr, 2);
525 	int i;
526 	unsigned long flags;
527 
528 	for (i = 0; i < len * 4; i++) {
529 		struct vgic_irq *irq;
530 
531 		/*
532 		 * The configuration cannot be changed for SGIs in general,
533 		 * for PPIs this is IMPLEMENTATION DEFINED. The arch timer
534 		 * code relies on PPIs being level triggered, so we also
535 		 * make them read-only here.
536 		 */
537 		if (intid + i < VGIC_NR_PRIVATE_IRQS)
538 			continue;
539 
540 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
541 		spin_lock_irqsave(&irq->irq_lock, flags);
542 
543 		if (test_bit(i * 2 + 1, &val))
544 			irq->config = VGIC_CONFIG_EDGE;
545 		else
546 			irq->config = VGIC_CONFIG_LEVEL;
547 
548 		spin_unlock_irqrestore(&irq->irq_lock, flags);
549 		vgic_put_irq(vcpu->kvm, irq);
550 	}
551 }
552 
vgic_read_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid)553 u64 vgic_read_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid)
554 {
555 	int i;
556 	u64 val = 0;
557 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
558 
559 	for (i = 0; i < 32; i++) {
560 		struct vgic_irq *irq;
561 
562 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
563 			continue;
564 
565 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
566 		if (irq->config == VGIC_CONFIG_LEVEL && irq->line_level)
567 			val |= (1U << i);
568 
569 		vgic_put_irq(vcpu->kvm, irq);
570 	}
571 
572 	return val;
573 }
574 
vgic_write_irq_line_level_info(struct kvm_vcpu * vcpu,u32 intid,const u64 val)575 void vgic_write_irq_line_level_info(struct kvm_vcpu *vcpu, u32 intid,
576 				    const u64 val)
577 {
578 	int i;
579 	int nr_irqs = vcpu->kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
580 	unsigned long flags;
581 
582 	for (i = 0; i < 32; i++) {
583 		struct vgic_irq *irq;
584 		bool new_level;
585 
586 		if ((intid + i) < VGIC_NR_SGIS || (intid + i) >= nr_irqs)
587 			continue;
588 
589 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
590 
591 		/*
592 		 * Line level is set irrespective of irq type
593 		 * (level or edge) to avoid dependency that VM should
594 		 * restore irq config before line level.
595 		 */
596 		new_level = !!(val & (1U << i));
597 		spin_lock_irqsave(&irq->irq_lock, flags);
598 		irq->line_level = new_level;
599 		if (new_level)
600 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
601 		else
602 			spin_unlock_irqrestore(&irq->irq_lock, flags);
603 
604 		vgic_put_irq(vcpu->kvm, irq);
605 	}
606 }
607 
match_region(const void * key,const void * elt)608 static int match_region(const void *key, const void *elt)
609 {
610 	const unsigned int offset = (unsigned long)key;
611 	const struct vgic_register_region *region = elt;
612 
613 	if (offset < region->reg_offset)
614 		return -1;
615 
616 	if (offset >= region->reg_offset + region->len)
617 		return 1;
618 
619 	return 0;
620 }
621 
622 const struct vgic_register_region *
vgic_find_mmio_region(const struct vgic_register_region * regions,int nr_regions,unsigned int offset)623 vgic_find_mmio_region(const struct vgic_register_region *regions,
624 		      int nr_regions, unsigned int offset)
625 {
626 	return bsearch((void *)(uintptr_t)offset, regions, nr_regions,
627 		       sizeof(regions[0]), match_region);
628 }
629 
vgic_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)630 void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
631 {
632 	if (kvm_vgic_global_state.type == VGIC_V2)
633 		vgic_v2_set_vmcr(vcpu, vmcr);
634 	else
635 		vgic_v3_set_vmcr(vcpu, vmcr);
636 }
637 
vgic_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcr)638 void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr)
639 {
640 	if (kvm_vgic_global_state.type == VGIC_V2)
641 		vgic_v2_get_vmcr(vcpu, vmcr);
642 	else
643 		vgic_v3_get_vmcr(vcpu, vmcr);
644 }
645 
646 /*
647  * kvm_mmio_read_buf() returns a value in a format where it can be converted
648  * to a byte array and be directly observed as the guest wanted it to appear
649  * in memory if it had done the store itself, which is LE for the GIC, as the
650  * guest knows the GIC is always LE.
651  *
652  * We convert this value to the CPUs native format to deal with it as a data
653  * value.
654  */
vgic_data_mmio_bus_to_host(const void * val,unsigned int len)655 unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len)
656 {
657 	unsigned long data = kvm_mmio_read_buf(val, len);
658 
659 	switch (len) {
660 	case 1:
661 		return data;
662 	case 2:
663 		return le16_to_cpu(data);
664 	case 4:
665 		return le32_to_cpu(data);
666 	default:
667 		return le64_to_cpu(data);
668 	}
669 }
670 
671 /*
672  * kvm_mmio_write_buf() expects a value in a format such that if converted to
673  * a byte array it is observed as the guest would see it if it could perform
674  * the load directly.  Since the GIC is LE, and the guest knows this, the
675  * guest expects a value in little endian format.
676  *
677  * We convert the data value from the CPUs native format to LE so that the
678  * value is returned in the proper format.
679  */
vgic_data_host_to_mmio_bus(void * buf,unsigned int len,unsigned long data)680 void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
681 				unsigned long data)
682 {
683 	switch (len) {
684 	case 1:
685 		break;
686 	case 2:
687 		data = cpu_to_le16(data);
688 		break;
689 	case 4:
690 		data = cpu_to_le32(data);
691 		break;
692 	default:
693 		data = cpu_to_le64(data);
694 	}
695 
696 	kvm_mmio_write_buf(buf, len, data);
697 }
698 
699 static
kvm_to_vgic_iodev(const struct kvm_io_device * dev)700 struct vgic_io_device *kvm_to_vgic_iodev(const struct kvm_io_device *dev)
701 {
702 	return container_of(dev, struct vgic_io_device, dev);
703 }
704 
check_region(const struct kvm * kvm,const struct vgic_register_region * region,gpa_t addr,int len)705 static bool check_region(const struct kvm *kvm,
706 			 const struct vgic_register_region *region,
707 			 gpa_t addr, int len)
708 {
709 	int flags, nr_irqs = kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS;
710 
711 	switch (len) {
712 	case sizeof(u8):
713 		flags = VGIC_ACCESS_8bit;
714 		break;
715 	case sizeof(u32):
716 		flags = VGIC_ACCESS_32bit;
717 		break;
718 	case sizeof(u64):
719 		flags = VGIC_ACCESS_64bit;
720 		break;
721 	default:
722 		return false;
723 	}
724 
725 	if ((region->access_flags & flags) && IS_ALIGNED(addr, len)) {
726 		if (!region->bits_per_irq)
727 			return true;
728 
729 		/* Do we access a non-allocated IRQ? */
730 		return VGIC_ADDR_TO_INTID(addr, region->bits_per_irq) < nr_irqs;
731 	}
732 
733 	return false;
734 }
735 
736 const struct vgic_register_region *
vgic_get_mmio_region(struct kvm_vcpu * vcpu,struct vgic_io_device * iodev,gpa_t addr,int len)737 vgic_get_mmio_region(struct kvm_vcpu *vcpu, struct vgic_io_device *iodev,
738 		     gpa_t addr, int len)
739 {
740 	const struct vgic_register_region *region;
741 
742 	region = vgic_find_mmio_region(iodev->regions, iodev->nr_regions,
743 				       addr - iodev->base_addr);
744 	if (!region || !check_region(vcpu->kvm, region, addr, len))
745 		return NULL;
746 
747 	return region;
748 }
749 
vgic_uaccess_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,u32 * val)750 static int vgic_uaccess_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
751 			     gpa_t addr, u32 *val)
752 {
753 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
754 	const struct vgic_register_region *region;
755 	struct kvm_vcpu *r_vcpu;
756 
757 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
758 	if (!region) {
759 		*val = 0;
760 		return 0;
761 	}
762 
763 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
764 	if (region->uaccess_read)
765 		*val = region->uaccess_read(r_vcpu, addr, sizeof(u32));
766 	else
767 		*val = region->read(r_vcpu, addr, sizeof(u32));
768 
769 	return 0;
770 }
771 
vgic_uaccess_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,const u32 * val)772 static int vgic_uaccess_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
773 			      gpa_t addr, const u32 *val)
774 {
775 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
776 	const struct vgic_register_region *region;
777 	struct kvm_vcpu *r_vcpu;
778 
779 	region = vgic_get_mmio_region(vcpu, iodev, addr, sizeof(u32));
780 	if (!region)
781 		return 0;
782 
783 	r_vcpu = iodev->redist_vcpu ? iodev->redist_vcpu : vcpu;
784 	if (region->uaccess_write)
785 		return region->uaccess_write(r_vcpu, addr, sizeof(u32), *val);
786 
787 	region->write(r_vcpu, addr, sizeof(u32), *val);
788 	return 0;
789 }
790 
791 /*
792  * Userland access to VGIC registers.
793  */
vgic_uaccess(struct kvm_vcpu * vcpu,struct vgic_io_device * dev,bool is_write,int offset,u32 * val)794 int vgic_uaccess(struct kvm_vcpu *vcpu, struct vgic_io_device *dev,
795 		 bool is_write, int offset, u32 *val)
796 {
797 	if (is_write)
798 		return vgic_uaccess_write(vcpu, &dev->dev, offset, val);
799 	else
800 		return vgic_uaccess_read(vcpu, &dev->dev, offset, val);
801 }
802 
dispatch_mmio_read(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,void * val)803 static int dispatch_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
804 			      gpa_t addr, int len, void *val)
805 {
806 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
807 	const struct vgic_register_region *region;
808 	unsigned long data = 0;
809 
810 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
811 	if (!region) {
812 		memset(val, 0, len);
813 		return 0;
814 	}
815 
816 	switch (iodev->iodev_type) {
817 	case IODEV_CPUIF:
818 		data = region->read(vcpu, addr, len);
819 		break;
820 	case IODEV_DIST:
821 		data = region->read(vcpu, addr, len);
822 		break;
823 	case IODEV_REDIST:
824 		data = region->read(iodev->redist_vcpu, addr, len);
825 		break;
826 	case IODEV_ITS:
827 		data = region->its_read(vcpu->kvm, iodev->its, addr, len);
828 		break;
829 	}
830 
831 	vgic_data_host_to_mmio_bus(val, len, data);
832 	return 0;
833 }
834 
dispatch_mmio_write(struct kvm_vcpu * vcpu,struct kvm_io_device * dev,gpa_t addr,int len,const void * val)835 static int dispatch_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *dev,
836 			       gpa_t addr, int len, const void *val)
837 {
838 	struct vgic_io_device *iodev = kvm_to_vgic_iodev(dev);
839 	const struct vgic_register_region *region;
840 	unsigned long data = vgic_data_mmio_bus_to_host(val, len);
841 
842 	region = vgic_get_mmio_region(vcpu, iodev, addr, len);
843 	if (!region)
844 		return 0;
845 
846 	switch (iodev->iodev_type) {
847 	case IODEV_CPUIF:
848 		region->write(vcpu, addr, len, data);
849 		break;
850 	case IODEV_DIST:
851 		region->write(vcpu, addr, len, data);
852 		break;
853 	case IODEV_REDIST:
854 		region->write(iodev->redist_vcpu, addr, len, data);
855 		break;
856 	case IODEV_ITS:
857 		region->its_write(vcpu->kvm, iodev->its, addr, len, data);
858 		break;
859 	}
860 
861 	return 0;
862 }
863 
864 struct kvm_io_device_ops kvm_io_gic_ops = {
865 	.read = dispatch_mmio_read,
866 	.write = dispatch_mmio_write,
867 };
868 
vgic_register_dist_iodev(struct kvm * kvm,gpa_t dist_base_address,enum vgic_type type)869 int vgic_register_dist_iodev(struct kvm *kvm, gpa_t dist_base_address,
870 			     enum vgic_type type)
871 {
872 	struct vgic_io_device *io_device = &kvm->arch.vgic.dist_iodev;
873 	int ret = 0;
874 	unsigned int len;
875 
876 	switch (type) {
877 	case VGIC_V2:
878 		len = vgic_v2_init_dist_iodev(io_device);
879 		break;
880 	case VGIC_V3:
881 		len = vgic_v3_init_dist_iodev(io_device);
882 		break;
883 	default:
884 		BUG_ON(1);
885 	}
886 
887 	io_device->base_addr = dist_base_address;
888 	io_device->iodev_type = IODEV_DIST;
889 	io_device->redist_vcpu = NULL;
890 
891 	mutex_lock(&kvm->slots_lock);
892 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, dist_base_address,
893 				      len, &io_device->dev);
894 	mutex_unlock(&kvm->slots_lock);
895 
896 	return ret;
897 }
898