1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * GICv3 ITS emulation
4 *
5 * Copyright (C) 2015,2016 ARM Ltd.
6 * Author: Andre Przywara <andre.przywara@arm.com>
7 */
8
9 #include <linux/cpu.h>
10 #include <linux/kvm.h>
11 #include <linux/kvm_host.h>
12 #include <linux/interrupt.h>
13 #include <linux/list.h>
14 #include <linux/uaccess.h>
15 #include <linux/list_sort.h>
16
17 #include <linux/irqchip/arm-gic-v3.h>
18
19 #include <asm/kvm_emulate.h>
20 #include <asm/kvm_arm.h>
21 #include <asm/kvm_mmu.h>
22
23 #include "vgic.h"
24 #include "vgic-mmio.h"
25
26 static int vgic_its_save_tables_v0(struct vgic_its *its);
27 static int vgic_its_restore_tables_v0(struct vgic_its *its);
28 static int vgic_its_commit_v0(struct vgic_its *its);
29 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
30 struct kvm_vcpu *filter_vcpu, bool needs_inv);
31
32 /*
33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
34 * If this LPI is already mapped on another ITS, we increase its refcount
35 * and return a pointer to the existing structure.
36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
37 * This function returns a pointer to the _unlocked_ structure.
38 */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)39 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
40 struct kvm_vcpu *vcpu)
41 {
42 struct vgic_dist *dist = &kvm->arch.vgic;
43 struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
44 unsigned long flags;
45 int ret;
46
47 /* In this case there is no put, since we keep the reference. */
48 if (irq)
49 return irq;
50
51 irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
52 if (!irq)
53 return ERR_PTR(-ENOMEM);
54
55 INIT_LIST_HEAD(&irq->lpi_list);
56 INIT_LIST_HEAD(&irq->ap_list);
57 raw_spin_lock_init(&irq->irq_lock);
58
59 irq->config = VGIC_CONFIG_EDGE;
60 kref_init(&irq->refcount);
61 irq->intid = intid;
62 irq->target_vcpu = vcpu;
63 irq->group = 1;
64
65 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
66
67 /*
68 * There could be a race with another vgic_add_lpi(), so we need to
69 * check that we don't add a second list entry with the same LPI.
70 */
71 list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
72 if (oldirq->intid != intid)
73 continue;
74
75 /* Someone was faster with adding this LPI, lets use that. */
76 kfree(irq);
77 irq = oldirq;
78
79 /*
80 * This increases the refcount, the caller is expected to
81 * call vgic_put_irq() on the returned pointer once it's
82 * finished with the IRQ.
83 */
84 vgic_get_irq_kref(irq);
85
86 goto out_unlock;
87 }
88
89 list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
90 dist->lpi_list_count++;
91
92 out_unlock:
93 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
94
95 /*
96 * We "cache" the configuration table entries in our struct vgic_irq's.
97 * However we only have those structs for mapped IRQs, so we read in
98 * the respective config data from memory here upon mapping the LPI.
99 *
100 * Should any of these fail, behave as if we couldn't create the LPI
101 * by dropping the refcount and returning the error.
102 */
103 ret = update_lpi_config(kvm, irq, NULL, false);
104 if (ret) {
105 vgic_put_irq(kvm, irq);
106 return ERR_PTR(ret);
107 }
108
109 ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
110 if (ret) {
111 vgic_put_irq(kvm, irq);
112 return ERR_PTR(ret);
113 }
114
115 return irq;
116 }
117
118 struct its_device {
119 struct list_head dev_list;
120
121 /* the head for the list of ITTEs */
122 struct list_head itt_head;
123 u32 num_eventid_bits;
124 gpa_t itt_addr;
125 u32 device_id;
126 };
127
128 #define COLLECTION_NOT_MAPPED ((u32)~0)
129
130 struct its_collection {
131 struct list_head coll_list;
132
133 u32 collection_id;
134 u32 target_addr;
135 };
136
137 #define its_is_collection_mapped(coll) ((coll) && \
138 ((coll)->target_addr != COLLECTION_NOT_MAPPED))
139
140 struct its_ite {
141 struct list_head ite_list;
142
143 struct vgic_irq *irq;
144 struct its_collection *collection;
145 u32 event_id;
146 };
147
148 struct vgic_translation_cache_entry {
149 struct list_head entry;
150 phys_addr_t db;
151 u32 devid;
152 u32 eventid;
153 struct vgic_irq *irq;
154 };
155
156 /**
157 * struct vgic_its_abi - ITS abi ops and settings
158 * @cte_esz: collection table entry size
159 * @dte_esz: device table entry size
160 * @ite_esz: interrupt translation table entry size
161 * @save tables: save the ITS tables into guest RAM
162 * @restore_tables: restore the ITS internal structs from tables
163 * stored in guest RAM
164 * @commit: initialize the registers which expose the ABI settings,
165 * especially the entry sizes
166 */
167 struct vgic_its_abi {
168 int cte_esz;
169 int dte_esz;
170 int ite_esz;
171 int (*save_tables)(struct vgic_its *its);
172 int (*restore_tables)(struct vgic_its *its);
173 int (*commit)(struct vgic_its *its);
174 };
175
176 #define ABI_0_ESZ 8
177 #define ESZ_MAX ABI_0_ESZ
178
179 static const struct vgic_its_abi its_table_abi_versions[] = {
180 [0] = {
181 .cte_esz = ABI_0_ESZ,
182 .dte_esz = ABI_0_ESZ,
183 .ite_esz = ABI_0_ESZ,
184 .save_tables = vgic_its_save_tables_v0,
185 .restore_tables = vgic_its_restore_tables_v0,
186 .commit = vgic_its_commit_v0,
187 },
188 };
189
190 #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions)
191
vgic_its_get_abi(struct vgic_its * its)192 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
193 {
194 return &its_table_abi_versions[its->abi_rev];
195 }
196
vgic_its_set_abi(struct vgic_its * its,u32 rev)197 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
198 {
199 const struct vgic_its_abi *abi;
200
201 its->abi_rev = rev;
202 abi = vgic_its_get_abi(its);
203 return abi->commit(its);
204 }
205
206 /*
207 * Find and returns a device in the device table for an ITS.
208 * Must be called with the its_lock mutex held.
209 */
find_its_device(struct vgic_its * its,u32 device_id)210 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
211 {
212 struct its_device *device;
213
214 list_for_each_entry(device, &its->device_list, dev_list)
215 if (device_id == device->device_id)
216 return device;
217
218 return NULL;
219 }
220
221 /*
222 * Find and returns an interrupt translation table entry (ITTE) for a given
223 * Device ID/Event ID pair on an ITS.
224 * Must be called with the its_lock mutex held.
225 */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)226 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
227 u32 event_id)
228 {
229 struct its_device *device;
230 struct its_ite *ite;
231
232 device = find_its_device(its, device_id);
233 if (device == NULL)
234 return NULL;
235
236 list_for_each_entry(ite, &device->itt_head, ite_list)
237 if (ite->event_id == event_id)
238 return ite;
239
240 return NULL;
241 }
242
243 /* To be used as an iterator this macro misses the enclosing parentheses */
244 #define for_each_lpi_its(dev, ite, its) \
245 list_for_each_entry(dev, &(its)->device_list, dev_list) \
246 list_for_each_entry(ite, &(dev)->itt_head, ite_list)
247
248 #define GIC_LPI_OFFSET 8192
249
250 #define VITS_TYPER_IDBITS 16
251 #define VITS_TYPER_DEVBITS 16
252 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1)
253 #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1)
254
255 /*
256 * Finds and returns a collection in the ITS collection table.
257 * Must be called with the its_lock mutex held.
258 */
find_collection(struct vgic_its * its,int coll_id)259 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
260 {
261 struct its_collection *collection;
262
263 list_for_each_entry(collection, &its->collection_list, coll_list) {
264 if (coll_id == collection->collection_id)
265 return collection;
266 }
267
268 return NULL;
269 }
270
271 #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED)
272 #define LPI_PROP_PRIORITY(p) ((p) & 0xfc)
273
274 /*
275 * Reads the configuration data for a given LPI from guest memory and
276 * updates the fields in struct vgic_irq.
277 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
278 * VCPU. Unconditionally applies if filter_vcpu is NULL.
279 */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)280 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
281 struct kvm_vcpu *filter_vcpu, bool needs_inv)
282 {
283 u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
284 u8 prop;
285 int ret;
286 unsigned long flags;
287
288 ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
289 &prop, 1);
290
291 if (ret)
292 return ret;
293
294 raw_spin_lock_irqsave(&irq->irq_lock, flags);
295
296 if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
297 irq->priority = LPI_PROP_PRIORITY(prop);
298 irq->enabled = LPI_PROP_ENABLE_BIT(prop);
299
300 if (!irq->hw) {
301 vgic_queue_irq_unlock(kvm, irq, flags);
302 return 0;
303 }
304 }
305
306 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
307
308 if (irq->hw)
309 return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
310
311 return 0;
312 }
313
314 /*
315 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
316 * enumerate those LPIs without holding any lock.
317 * Returns their number and puts the kmalloc'ed array into intid_ptr.
318 */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)319 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
320 {
321 struct vgic_dist *dist = &kvm->arch.vgic;
322 struct vgic_irq *irq;
323 unsigned long flags;
324 u32 *intids;
325 int irq_count, i = 0;
326
327 /*
328 * There is an obvious race between allocating the array and LPIs
329 * being mapped/unmapped. If we ended up here as a result of a
330 * command, we're safe (locks are held, preventing another
331 * command). If coming from another path (such as enabling LPIs),
332 * we must be careful not to overrun the array.
333 */
334 irq_count = READ_ONCE(dist->lpi_list_count);
335 intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
336 if (!intids)
337 return -ENOMEM;
338
339 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
340 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
341 if (i == irq_count)
342 break;
343 /* We don't need to "get" the IRQ, as we hold the list lock. */
344 if (vcpu && irq->target_vcpu != vcpu)
345 continue;
346 intids[i++] = irq->intid;
347 }
348 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
349
350 *intid_ptr = intids;
351 return i;
352 }
353
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)354 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
355 {
356 int ret = 0;
357 unsigned long flags;
358
359 raw_spin_lock_irqsave(&irq->irq_lock, flags);
360 irq->target_vcpu = vcpu;
361 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
362
363 if (irq->hw) {
364 struct its_vlpi_map map;
365
366 ret = its_get_vlpi(irq->host_irq, &map);
367 if (ret)
368 return ret;
369
370 if (map.vpe)
371 atomic_dec(&map.vpe->vlpi_count);
372 map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
373 atomic_inc(&map.vpe->vlpi_count);
374
375 ret = its_map_vlpi(irq->host_irq, &map);
376 }
377
378 return ret;
379 }
380
381 /*
382 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383 * is targeting) to the VGIC's view, which deals with target VCPUs.
384 * Needs to be called whenever either the collection for a LPIs has
385 * changed or the collection itself got retargeted.
386 */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 struct kvm_vcpu *vcpu;
390
391 if (!its_is_collection_mapped(ite->collection))
392 return;
393
394 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 update_affinity(ite->irq, vcpu);
396 }
397
398 /*
399 * Updates the target VCPU for every LPI targeting this collection.
400 * Must be called with the its_lock mutex held.
401 */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 struct its_collection *coll)
404 {
405 struct its_device *device;
406 struct its_ite *ite;
407
408 for_each_lpi_its(device, ite, its) {
409 if (!ite->collection || coll != ite->collection)
410 continue;
411
412 update_affinity_ite(kvm, ite);
413 }
414 }
415
max_lpis_propbaser(u64 propbaser)416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 int nr_idbits = (propbaser & 0x1f) + 1;
419
420 return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422
423 /*
424 * Sync the pending table pending bit of LPIs targeting @vcpu
425 * with our own data structures. This relies on the LPI being
426 * mapped before.
427 */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 struct vgic_irq *irq;
432 int last_byte_offset = -1;
433 int ret = 0;
434 u32 *intids;
435 int nr_irqs, i;
436 unsigned long flags;
437 u8 pendmask;
438
439 nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 if (nr_irqs < 0)
441 return nr_irqs;
442
443 for (i = 0; i < nr_irqs; i++) {
444 int byte_offset, bit_nr;
445
446 byte_offset = intids[i] / BITS_PER_BYTE;
447 bit_nr = intids[i] % BITS_PER_BYTE;
448
449 /*
450 * For contiguously allocated LPIs chances are we just read
451 * this very same byte in the last iteration. Reuse that.
452 */
453 if (byte_offset != last_byte_offset) {
454 ret = kvm_read_guest_lock(vcpu->kvm,
455 pendbase + byte_offset,
456 &pendmask, 1);
457 if (ret) {
458 kfree(intids);
459 return ret;
460 }
461 last_byte_offset = byte_offset;
462 }
463
464 irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 raw_spin_lock_irqsave(&irq->irq_lock, flags);
466 irq->pending_latch = pendmask & (1U << bit_nr);
467 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 vgic_put_irq(vcpu->kvm, irq);
469 }
470
471 kfree(intids);
472
473 return ret;
474 }
475
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 struct vgic_its *its,
478 gpa_t addr, unsigned int len)
479 {
480 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 u64 reg = GITS_TYPER_PLPIS;
482
483 /*
484 * We use linear CPU numbers for redistributor addressing,
485 * so GITS_TYPER.PTA is 0.
486 * Also we force all PROPBASER registers to be the same, so
487 * CommonLPIAff is 0 as well.
488 * To avoid memory waste in the guest, we keep the number of IDBits and
489 * DevBits low - as least for the time being.
490 */
491 reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494
495 return extract_bytes(reg, addr & 7, len);
496 }
497
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 struct vgic_its *its,
500 gpa_t addr, unsigned int len)
501 {
502 u32 val;
503
504 val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 return val;
507 }
508
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 struct vgic_its *its,
511 gpa_t addr, unsigned int len,
512 unsigned long val)
513 {
514 u32 rev = GITS_IIDR_REV(val);
515
516 if (rev >= NR_ITS_ABIS)
517 return -EINVAL;
518 return vgic_its_set_abi(its, rev);
519 }
520
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 struct vgic_its *its,
523 gpa_t addr, unsigned int len)
524 {
525 switch (addr & 0xffff) {
526 case GITS_PIDR0:
527 return 0x92; /* part number, bits[7:0] */
528 case GITS_PIDR1:
529 return 0xb4; /* part number, bits[11:8] */
530 case GITS_PIDR2:
531 return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 case GITS_PIDR4:
533 return 0x40; /* This is a 64K software visible page */
534 /* The following are the ID registers for (any) GIC. */
535 case GITS_CIDR0:
536 return 0x0d;
537 case GITS_CIDR1:
538 return 0xf0;
539 case GITS_CIDR2:
540 return 0x05;
541 case GITS_CIDR3:
542 return 0xb1;
543 }
544
545 return 0;
546 }
547
__vgic_its_check_cache(struct vgic_dist * dist,phys_addr_t db,u32 devid,u32 eventid)548 static struct vgic_irq *__vgic_its_check_cache(struct vgic_dist *dist,
549 phys_addr_t db,
550 u32 devid, u32 eventid)
551 {
552 struct vgic_translation_cache_entry *cte;
553
554 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
555 /*
556 * If we hit a NULL entry, there is nothing after this
557 * point.
558 */
559 if (!cte->irq)
560 break;
561
562 if (cte->db != db || cte->devid != devid ||
563 cte->eventid != eventid)
564 continue;
565
566 /*
567 * Move this entry to the head, as it is the most
568 * recently used.
569 */
570 if (!list_is_first(&cte->entry, &dist->lpi_translation_cache))
571 list_move(&cte->entry, &dist->lpi_translation_cache);
572
573 return cte->irq;
574 }
575
576 return NULL;
577 }
578
vgic_its_check_cache(struct kvm * kvm,phys_addr_t db,u32 devid,u32 eventid)579 static struct vgic_irq *vgic_its_check_cache(struct kvm *kvm, phys_addr_t db,
580 u32 devid, u32 eventid)
581 {
582 struct vgic_dist *dist = &kvm->arch.vgic;
583 struct vgic_irq *irq;
584 unsigned long flags;
585
586 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
587 irq = __vgic_its_check_cache(dist, db, devid, eventid);
588 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
589
590 return irq;
591 }
592
vgic_its_cache_translation(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq * irq)593 static void vgic_its_cache_translation(struct kvm *kvm, struct vgic_its *its,
594 u32 devid, u32 eventid,
595 struct vgic_irq *irq)
596 {
597 struct vgic_dist *dist = &kvm->arch.vgic;
598 struct vgic_translation_cache_entry *cte;
599 unsigned long flags;
600 phys_addr_t db;
601
602 /* Do not cache a directly injected interrupt */
603 if (irq->hw)
604 return;
605
606 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
607
608 if (unlikely(list_empty(&dist->lpi_translation_cache)))
609 goto out;
610
611 /*
612 * We could have raced with another CPU caching the same
613 * translation behind our back, so let's check it is not in
614 * already
615 */
616 db = its->vgic_its_base + GITS_TRANSLATER;
617 if (__vgic_its_check_cache(dist, db, devid, eventid))
618 goto out;
619
620 /* Always reuse the last entry (LRU policy) */
621 cte = list_last_entry(&dist->lpi_translation_cache,
622 typeof(*cte), entry);
623
624 /*
625 * Caching the translation implies having an extra reference
626 * to the interrupt, so drop the potential reference on what
627 * was in the cache, and increment it on the new interrupt.
628 */
629 if (cte->irq)
630 __vgic_put_lpi_locked(kvm, cte->irq);
631
632 vgic_get_irq_kref(irq);
633
634 cte->db = db;
635 cte->devid = devid;
636 cte->eventid = eventid;
637 cte->irq = irq;
638
639 /* Move the new translation to the head of the list */
640 list_move(&cte->entry, &dist->lpi_translation_cache);
641
642 out:
643 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
644 }
645
vgic_its_invalidate_cache(struct kvm * kvm)646 void vgic_its_invalidate_cache(struct kvm *kvm)
647 {
648 struct vgic_dist *dist = &kvm->arch.vgic;
649 struct vgic_translation_cache_entry *cte;
650 unsigned long flags;
651
652 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
653
654 list_for_each_entry(cte, &dist->lpi_translation_cache, entry) {
655 /*
656 * If we hit a NULL entry, there is nothing after this
657 * point.
658 */
659 if (!cte->irq)
660 break;
661
662 __vgic_put_lpi_locked(kvm, cte->irq);
663 cte->irq = NULL;
664 }
665
666 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
667 }
668
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)669 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
670 u32 devid, u32 eventid, struct vgic_irq **irq)
671 {
672 struct kvm_vcpu *vcpu;
673 struct its_ite *ite;
674
675 if (!its->enabled)
676 return -EBUSY;
677
678 ite = find_ite(its, devid, eventid);
679 if (!ite || !its_is_collection_mapped(ite->collection))
680 return E_ITS_INT_UNMAPPED_INTERRUPT;
681
682 vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
683 if (!vcpu)
684 return E_ITS_INT_UNMAPPED_INTERRUPT;
685
686 if (!vcpu->arch.vgic_cpu.lpis_enabled)
687 return -EBUSY;
688
689 vgic_its_cache_translation(kvm, its, devid, eventid, ite->irq);
690
691 *irq = ite->irq;
692 return 0;
693 }
694
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)695 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
696 {
697 u64 address;
698 struct kvm_io_device *kvm_io_dev;
699 struct vgic_io_device *iodev;
700
701 if (!vgic_has_its(kvm))
702 return ERR_PTR(-ENODEV);
703
704 if (!(msi->flags & KVM_MSI_VALID_DEVID))
705 return ERR_PTR(-EINVAL);
706
707 address = (u64)msi->address_hi << 32 | msi->address_lo;
708
709 kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
710 if (!kvm_io_dev)
711 return ERR_PTR(-EINVAL);
712
713 if (kvm_io_dev->ops != &kvm_io_gic_ops)
714 return ERR_PTR(-EINVAL);
715
716 iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
717 if (iodev->iodev_type != IODEV_ITS)
718 return ERR_PTR(-EINVAL);
719
720 return iodev->its;
721 }
722
723 /*
724 * Find the target VCPU and the LPI number for a given devid/eventid pair
725 * and make this IRQ pending, possibly injecting it.
726 * Must be called with the its_lock mutex held.
727 * Returns 0 on success, a positive error value for any ITS mapping
728 * related errors and negative error values for generic errors.
729 */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)730 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
731 u32 devid, u32 eventid)
732 {
733 struct vgic_irq *irq = NULL;
734 unsigned long flags;
735 int err;
736
737 err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
738 if (err)
739 return err;
740
741 if (irq->hw)
742 return irq_set_irqchip_state(irq->host_irq,
743 IRQCHIP_STATE_PENDING, true);
744
745 raw_spin_lock_irqsave(&irq->irq_lock, flags);
746 irq->pending_latch = true;
747 vgic_queue_irq_unlock(kvm, irq, flags);
748
749 return 0;
750 }
751
vgic_its_inject_cached_translation(struct kvm * kvm,struct kvm_msi * msi)752 int vgic_its_inject_cached_translation(struct kvm *kvm, struct kvm_msi *msi)
753 {
754 struct vgic_irq *irq;
755 unsigned long flags;
756 phys_addr_t db;
757
758 db = (u64)msi->address_hi << 32 | msi->address_lo;
759 irq = vgic_its_check_cache(kvm, db, msi->devid, msi->data);
760 if (!irq)
761 return -EWOULDBLOCK;
762
763 raw_spin_lock_irqsave(&irq->irq_lock, flags);
764 irq->pending_latch = true;
765 vgic_queue_irq_unlock(kvm, irq, flags);
766
767 return 0;
768 }
769
770 /*
771 * Queries the KVM IO bus framework to get the ITS pointer from the given
772 * doorbell address.
773 * We then call vgic_its_trigger_msi() with the decoded data.
774 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
775 */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)776 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
777 {
778 struct vgic_its *its;
779 int ret;
780
781 if (!vgic_its_inject_cached_translation(kvm, msi))
782 return 1;
783
784 its = vgic_msi_to_its(kvm, msi);
785 if (IS_ERR(its))
786 return PTR_ERR(its);
787
788 mutex_lock(&its->its_lock);
789 ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
790 mutex_unlock(&its->its_lock);
791
792 if (ret < 0)
793 return ret;
794
795 /*
796 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
797 * if the guest has blocked the MSI. So we map any LPI mapping
798 * related error to that.
799 */
800 if (ret)
801 return 0;
802 else
803 return 1;
804 }
805
806 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)807 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
808 {
809 list_del(&ite->ite_list);
810
811 /* This put matches the get in vgic_add_lpi. */
812 if (ite->irq) {
813 if (ite->irq->hw)
814 WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
815
816 vgic_put_irq(kvm, ite->irq);
817 }
818
819 kfree(ite);
820 }
821
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)822 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
823 {
824 return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
825 }
826
827 #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8)
828 #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32)
829 #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1)
830 #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32)
831 #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32)
832 #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16)
833 #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8)
834 #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32)
835 #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1)
836
837 /*
838 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
839 * Must be called with the its_lock mutex held.
840 */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)841 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
842 u64 *its_cmd)
843 {
844 u32 device_id = its_cmd_get_deviceid(its_cmd);
845 u32 event_id = its_cmd_get_id(its_cmd);
846 struct its_ite *ite;
847
848 ite = find_ite(its, device_id, event_id);
849 if (ite && its_is_collection_mapped(ite->collection)) {
850 /*
851 * Though the spec talks about removing the pending state, we
852 * don't bother here since we clear the ITTE anyway and the
853 * pending state is a property of the ITTE struct.
854 */
855 vgic_its_invalidate_cache(kvm);
856
857 its_free_ite(kvm, ite);
858 return 0;
859 }
860
861 return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
862 }
863
864 /*
865 * The MOVI command moves an ITTE to a different collection.
866 * Must be called with the its_lock mutex held.
867 */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)868 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
869 u64 *its_cmd)
870 {
871 u32 device_id = its_cmd_get_deviceid(its_cmd);
872 u32 event_id = its_cmd_get_id(its_cmd);
873 u32 coll_id = its_cmd_get_collection(its_cmd);
874 struct kvm_vcpu *vcpu;
875 struct its_ite *ite;
876 struct its_collection *collection;
877
878 ite = find_ite(its, device_id, event_id);
879 if (!ite)
880 return E_ITS_MOVI_UNMAPPED_INTERRUPT;
881
882 if (!its_is_collection_mapped(ite->collection))
883 return E_ITS_MOVI_UNMAPPED_COLLECTION;
884
885 collection = find_collection(its, coll_id);
886 if (!its_is_collection_mapped(collection))
887 return E_ITS_MOVI_UNMAPPED_COLLECTION;
888
889 ite->collection = collection;
890 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
891
892 vgic_its_invalidate_cache(kvm);
893
894 return update_affinity(ite->irq, vcpu);
895 }
896
897 /*
898 * Check whether an ID can be stored into the corresponding guest table.
899 * For a direct table this is pretty easy, but gets a bit nasty for
900 * indirect tables. We check whether the resulting guest physical address
901 * is actually valid (covered by a memslot and guest accessible).
902 * For this we have to read the respective first level entry.
903 */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)904 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
905 gpa_t *eaddr)
906 {
907 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
908 u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
909 phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
910 int esz = GITS_BASER_ENTRY_SIZE(baser);
911 int index, idx;
912 gfn_t gfn;
913 bool ret;
914
915 switch (type) {
916 case GITS_BASER_TYPE_DEVICE:
917 if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
918 return false;
919 break;
920 case GITS_BASER_TYPE_COLLECTION:
921 /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
922 if (id >= BIT_ULL(16))
923 return false;
924 break;
925 default:
926 return false;
927 }
928
929 if (!(baser & GITS_BASER_INDIRECT)) {
930 phys_addr_t addr;
931
932 if (id >= (l1_tbl_size / esz))
933 return false;
934
935 addr = base + id * esz;
936 gfn = addr >> PAGE_SHIFT;
937
938 if (eaddr)
939 *eaddr = addr;
940
941 goto out;
942 }
943
944 /* calculate and check the index into the 1st level */
945 index = id / (SZ_64K / esz);
946 if (index >= (l1_tbl_size / sizeof(u64)))
947 return false;
948
949 /* Each 1st level entry is represented by a 64-bit value. */
950 if (kvm_read_guest_lock(its->dev->kvm,
951 base + index * sizeof(indirect_ptr),
952 &indirect_ptr, sizeof(indirect_ptr)))
953 return false;
954
955 indirect_ptr = le64_to_cpu(indirect_ptr);
956
957 /* check the valid bit of the first level entry */
958 if (!(indirect_ptr & BIT_ULL(63)))
959 return false;
960
961 /* Mask the guest physical address and calculate the frame number. */
962 indirect_ptr &= GENMASK_ULL(51, 16);
963
964 /* Find the address of the actual entry */
965 index = id % (SZ_64K / esz);
966 indirect_ptr += index * esz;
967 gfn = indirect_ptr >> PAGE_SHIFT;
968
969 if (eaddr)
970 *eaddr = indirect_ptr;
971
972 out:
973 idx = srcu_read_lock(&its->dev->kvm->srcu);
974 ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
975 srcu_read_unlock(&its->dev->kvm->srcu, idx);
976 return ret;
977 }
978
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)979 static int vgic_its_alloc_collection(struct vgic_its *its,
980 struct its_collection **colp,
981 u32 coll_id)
982 {
983 struct its_collection *collection;
984
985 if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
986 return E_ITS_MAPC_COLLECTION_OOR;
987
988 collection = kzalloc(sizeof(*collection), GFP_KERNEL);
989 if (!collection)
990 return -ENOMEM;
991
992 collection->collection_id = coll_id;
993 collection->target_addr = COLLECTION_NOT_MAPPED;
994
995 list_add_tail(&collection->coll_list, &its->collection_list);
996 *colp = collection;
997
998 return 0;
999 }
1000
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)1001 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
1002 {
1003 struct its_collection *collection;
1004 struct its_device *device;
1005 struct its_ite *ite;
1006
1007 /*
1008 * Clearing the mapping for that collection ID removes the
1009 * entry from the list. If there wasn't any before, we can
1010 * go home early.
1011 */
1012 collection = find_collection(its, coll_id);
1013 if (!collection)
1014 return;
1015
1016 for_each_lpi_its(device, ite, its)
1017 if (ite->collection &&
1018 ite->collection->collection_id == coll_id)
1019 ite->collection = NULL;
1020
1021 list_del(&collection->coll_list);
1022 kfree(collection);
1023 }
1024
1025 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)1026 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
1027 struct its_collection *collection,
1028 u32 event_id)
1029 {
1030 struct its_ite *ite;
1031
1032 ite = kzalloc(sizeof(*ite), GFP_KERNEL);
1033 if (!ite)
1034 return ERR_PTR(-ENOMEM);
1035
1036 ite->event_id = event_id;
1037 ite->collection = collection;
1038
1039 list_add_tail(&ite->ite_list, &device->itt_head);
1040 return ite;
1041 }
1042
1043 /*
1044 * The MAPTI and MAPI commands map LPIs to ITTEs.
1045 * Must be called with its_lock mutex held.
1046 */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1047 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
1048 u64 *its_cmd)
1049 {
1050 u32 device_id = its_cmd_get_deviceid(its_cmd);
1051 u32 event_id = its_cmd_get_id(its_cmd);
1052 u32 coll_id = its_cmd_get_collection(its_cmd);
1053 struct its_ite *ite;
1054 struct kvm_vcpu *vcpu = NULL;
1055 struct its_device *device;
1056 struct its_collection *collection, *new_coll = NULL;
1057 struct vgic_irq *irq;
1058 int lpi_nr;
1059
1060 device = find_its_device(its, device_id);
1061 if (!device)
1062 return E_ITS_MAPTI_UNMAPPED_DEVICE;
1063
1064 if (event_id >= BIT_ULL(device->num_eventid_bits))
1065 return E_ITS_MAPTI_ID_OOR;
1066
1067 if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
1068 lpi_nr = its_cmd_get_physical_id(its_cmd);
1069 else
1070 lpi_nr = event_id;
1071 if (lpi_nr < GIC_LPI_OFFSET ||
1072 lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
1073 return E_ITS_MAPTI_PHYSICALID_OOR;
1074
1075 /* If there is an existing mapping, behavior is UNPREDICTABLE. */
1076 if (find_ite(its, device_id, event_id))
1077 return 0;
1078
1079 collection = find_collection(its, coll_id);
1080 if (!collection) {
1081 int ret = vgic_its_alloc_collection(its, &collection, coll_id);
1082 if (ret)
1083 return ret;
1084 new_coll = collection;
1085 }
1086
1087 ite = vgic_its_alloc_ite(device, collection, event_id);
1088 if (IS_ERR(ite)) {
1089 if (new_coll)
1090 vgic_its_free_collection(its, coll_id);
1091 return PTR_ERR(ite);
1092 }
1093
1094 if (its_is_collection_mapped(collection))
1095 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1096
1097 irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
1098 if (IS_ERR(irq)) {
1099 if (new_coll)
1100 vgic_its_free_collection(its, coll_id);
1101 its_free_ite(kvm, ite);
1102 return PTR_ERR(irq);
1103 }
1104 ite->irq = irq;
1105
1106 return 0;
1107 }
1108
1109 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)1110 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
1111 {
1112 struct its_ite *ite, *temp;
1113
1114 /*
1115 * The spec says that unmapping a device with still valid
1116 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
1117 * since we cannot leave the memory unreferenced.
1118 */
1119 list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
1120 its_free_ite(kvm, ite);
1121
1122 vgic_its_invalidate_cache(kvm);
1123
1124 list_del(&device->dev_list);
1125 kfree(device);
1126 }
1127
1128 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)1129 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
1130 {
1131 struct its_device *cur, *temp;
1132
1133 list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
1134 vgic_its_free_device(kvm, cur);
1135 }
1136
1137 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)1138 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1139 {
1140 struct its_collection *cur, *temp;
1141
1142 list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1143 vgic_its_free_collection(its, cur->collection_id);
1144 }
1145
1146 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1147 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1148 u32 device_id, gpa_t itt_addr,
1149 u8 num_eventid_bits)
1150 {
1151 struct its_device *device;
1152
1153 device = kzalloc(sizeof(*device), GFP_KERNEL);
1154 if (!device)
1155 return ERR_PTR(-ENOMEM);
1156
1157 device->device_id = device_id;
1158 device->itt_addr = itt_addr;
1159 device->num_eventid_bits = num_eventid_bits;
1160 INIT_LIST_HEAD(&device->itt_head);
1161
1162 list_add_tail(&device->dev_list, &its->device_list);
1163 return device;
1164 }
1165
1166 /*
1167 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1168 * Must be called with the its_lock mutex held.
1169 */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1170 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1171 u64 *its_cmd)
1172 {
1173 u32 device_id = its_cmd_get_deviceid(its_cmd);
1174 bool valid = its_cmd_get_validbit(its_cmd);
1175 u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1176 gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1177 struct its_device *device;
1178
1179 if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1180 return E_ITS_MAPD_DEVICE_OOR;
1181
1182 if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1183 return E_ITS_MAPD_ITTSIZE_OOR;
1184
1185 device = find_its_device(its, device_id);
1186
1187 /*
1188 * The spec says that calling MAPD on an already mapped device
1189 * invalidates all cached data for this device. We implement this
1190 * by removing the mapping and re-establishing it.
1191 */
1192 if (device)
1193 vgic_its_free_device(kvm, device);
1194
1195 /*
1196 * The spec does not say whether unmapping a not-mapped device
1197 * is an error, so we are done in any case.
1198 */
1199 if (!valid)
1200 return 0;
1201
1202 device = vgic_its_alloc_device(its, device_id, itt_addr,
1203 num_eventid_bits);
1204
1205 return PTR_ERR_OR_ZERO(device);
1206 }
1207
1208 /*
1209 * The MAPC command maps collection IDs to redistributors.
1210 * Must be called with the its_lock mutex held.
1211 */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1212 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1213 u64 *its_cmd)
1214 {
1215 u16 coll_id;
1216 u32 target_addr;
1217 struct its_collection *collection;
1218 bool valid;
1219
1220 valid = its_cmd_get_validbit(its_cmd);
1221 coll_id = its_cmd_get_collection(its_cmd);
1222 target_addr = its_cmd_get_target_addr(its_cmd);
1223
1224 if (target_addr >= atomic_read(&kvm->online_vcpus))
1225 return E_ITS_MAPC_PROCNUM_OOR;
1226
1227 if (!valid) {
1228 vgic_its_free_collection(its, coll_id);
1229 vgic_its_invalidate_cache(kvm);
1230 } else {
1231 collection = find_collection(its, coll_id);
1232
1233 if (!collection) {
1234 int ret;
1235
1236 ret = vgic_its_alloc_collection(its, &collection,
1237 coll_id);
1238 if (ret)
1239 return ret;
1240 collection->target_addr = target_addr;
1241 } else {
1242 collection->target_addr = target_addr;
1243 update_affinity_collection(kvm, its, collection);
1244 }
1245 }
1246
1247 return 0;
1248 }
1249
1250 /*
1251 * The CLEAR command removes the pending state for a particular LPI.
1252 * Must be called with the its_lock mutex held.
1253 */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1254 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1255 u64 *its_cmd)
1256 {
1257 u32 device_id = its_cmd_get_deviceid(its_cmd);
1258 u32 event_id = its_cmd_get_id(its_cmd);
1259 struct its_ite *ite;
1260
1261
1262 ite = find_ite(its, device_id, event_id);
1263 if (!ite)
1264 return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1265
1266 ite->irq->pending_latch = false;
1267
1268 if (ite->irq->hw)
1269 return irq_set_irqchip_state(ite->irq->host_irq,
1270 IRQCHIP_STATE_PENDING, false);
1271
1272 return 0;
1273 }
1274
1275 /*
1276 * The INV command syncs the configuration bits from the memory table.
1277 * Must be called with the its_lock mutex held.
1278 */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1279 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1280 u64 *its_cmd)
1281 {
1282 u32 device_id = its_cmd_get_deviceid(its_cmd);
1283 u32 event_id = its_cmd_get_id(its_cmd);
1284 struct its_ite *ite;
1285
1286
1287 ite = find_ite(its, device_id, event_id);
1288 if (!ite)
1289 return E_ITS_INV_UNMAPPED_INTERRUPT;
1290
1291 return update_lpi_config(kvm, ite->irq, NULL, true);
1292 }
1293
1294 /*
1295 * The INVALL command requests flushing of all IRQ data in this collection.
1296 * Find the VCPU mapped to that collection, then iterate over the VM's list
1297 * of mapped LPIs and update the configuration for each IRQ which targets
1298 * the specified vcpu. The configuration will be read from the in-memory
1299 * configuration table.
1300 * Must be called with the its_lock mutex held.
1301 */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1302 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1303 u64 *its_cmd)
1304 {
1305 u32 coll_id = its_cmd_get_collection(its_cmd);
1306 struct its_collection *collection;
1307 struct kvm_vcpu *vcpu;
1308 struct vgic_irq *irq;
1309 u32 *intids;
1310 int irq_count, i;
1311
1312 collection = find_collection(its, coll_id);
1313 if (!its_is_collection_mapped(collection))
1314 return E_ITS_INVALL_UNMAPPED_COLLECTION;
1315
1316 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1317
1318 irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1319 if (irq_count < 0)
1320 return irq_count;
1321
1322 for (i = 0; i < irq_count; i++) {
1323 irq = vgic_get_irq(kvm, NULL, intids[i]);
1324 if (!irq)
1325 continue;
1326 update_lpi_config(kvm, irq, vcpu, false);
1327 vgic_put_irq(kvm, irq);
1328 }
1329
1330 kfree(intids);
1331
1332 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1333 its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1334
1335 return 0;
1336 }
1337
1338 /*
1339 * The MOVALL command moves the pending state of all IRQs targeting one
1340 * redistributor to another. We don't hold the pending state in the VCPUs,
1341 * but in the IRQs instead, so there is really not much to do for us here.
1342 * However the spec says that no IRQ must target the old redistributor
1343 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1344 * This command affects all LPIs in the system that target that redistributor.
1345 */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1346 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1347 u64 *its_cmd)
1348 {
1349 u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1350 u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1351 struct kvm_vcpu *vcpu1, *vcpu2;
1352 struct vgic_irq *irq;
1353 u32 *intids;
1354 int irq_count, i;
1355
1356 if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1357 target2_addr >= atomic_read(&kvm->online_vcpus))
1358 return E_ITS_MOVALL_PROCNUM_OOR;
1359
1360 if (target1_addr == target2_addr)
1361 return 0;
1362
1363 vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1364 vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1365
1366 irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1367 if (irq_count < 0)
1368 return irq_count;
1369
1370 for (i = 0; i < irq_count; i++) {
1371 irq = vgic_get_irq(kvm, NULL, intids[i]);
1372
1373 update_affinity(irq, vcpu2);
1374
1375 vgic_put_irq(kvm, irq);
1376 }
1377
1378 vgic_its_invalidate_cache(kvm);
1379
1380 kfree(intids);
1381 return 0;
1382 }
1383
1384 /*
1385 * The INT command injects the LPI associated with that DevID/EvID pair.
1386 * Must be called with the its_lock mutex held.
1387 */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1388 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1389 u64 *its_cmd)
1390 {
1391 u32 msi_data = its_cmd_get_id(its_cmd);
1392 u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1393
1394 return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1395 }
1396
1397 /*
1398 * This function is called with the its_cmd lock held, but the ITS data
1399 * structure lock dropped.
1400 */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1401 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1402 u64 *its_cmd)
1403 {
1404 int ret = -ENODEV;
1405
1406 mutex_lock(&its->its_lock);
1407 switch (its_cmd_get_command(its_cmd)) {
1408 case GITS_CMD_MAPD:
1409 ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1410 break;
1411 case GITS_CMD_MAPC:
1412 ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1413 break;
1414 case GITS_CMD_MAPI:
1415 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1416 break;
1417 case GITS_CMD_MAPTI:
1418 ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1419 break;
1420 case GITS_CMD_MOVI:
1421 ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1422 break;
1423 case GITS_CMD_DISCARD:
1424 ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1425 break;
1426 case GITS_CMD_CLEAR:
1427 ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1428 break;
1429 case GITS_CMD_MOVALL:
1430 ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1431 break;
1432 case GITS_CMD_INT:
1433 ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1434 break;
1435 case GITS_CMD_INV:
1436 ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1437 break;
1438 case GITS_CMD_INVALL:
1439 ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1440 break;
1441 case GITS_CMD_SYNC:
1442 /* we ignore this command: we are in sync all of the time */
1443 ret = 0;
1444 break;
1445 }
1446 mutex_unlock(&its->its_lock);
1447
1448 return ret;
1449 }
1450
vgic_sanitise_its_baser(u64 reg)1451 static u64 vgic_sanitise_its_baser(u64 reg)
1452 {
1453 reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1454 GITS_BASER_SHAREABILITY_SHIFT,
1455 vgic_sanitise_shareability);
1456 reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1457 GITS_BASER_INNER_CACHEABILITY_SHIFT,
1458 vgic_sanitise_inner_cacheability);
1459 reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1460 GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1461 vgic_sanitise_outer_cacheability);
1462
1463 /* We support only one (ITS) page size: 64K */
1464 reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1465
1466 return reg;
1467 }
1468
vgic_sanitise_its_cbaser(u64 reg)1469 static u64 vgic_sanitise_its_cbaser(u64 reg)
1470 {
1471 reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1472 GITS_CBASER_SHAREABILITY_SHIFT,
1473 vgic_sanitise_shareability);
1474 reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1475 GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1476 vgic_sanitise_inner_cacheability);
1477 reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1478 GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1479 vgic_sanitise_outer_cacheability);
1480
1481 /* Sanitise the physical address to be 64k aligned. */
1482 reg &= ~GENMASK_ULL(15, 12);
1483
1484 return reg;
1485 }
1486
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1487 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1488 struct vgic_its *its,
1489 gpa_t addr, unsigned int len)
1490 {
1491 return extract_bytes(its->cbaser, addr & 7, len);
1492 }
1493
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1494 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1495 gpa_t addr, unsigned int len,
1496 unsigned long val)
1497 {
1498 /* When GITS_CTLR.Enable is 1, this register is RO. */
1499 if (its->enabled)
1500 return;
1501
1502 mutex_lock(&its->cmd_lock);
1503 its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1504 its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1505 its->creadr = 0;
1506 /*
1507 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1508 * it to CREADR to make sure we start with an empty command buffer.
1509 */
1510 its->cwriter = its->creadr;
1511 mutex_unlock(&its->cmd_lock);
1512 }
1513
1514 #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12)
1515 #define ITS_CMD_SIZE 32
1516 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5))
1517
1518 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1519 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1520 {
1521 gpa_t cbaser;
1522 u64 cmd_buf[4];
1523
1524 /* Commands are only processed when the ITS is enabled. */
1525 if (!its->enabled)
1526 return;
1527
1528 cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1529
1530 while (its->cwriter != its->creadr) {
1531 int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1532 cmd_buf, ITS_CMD_SIZE);
1533 /*
1534 * If kvm_read_guest() fails, this could be due to the guest
1535 * programming a bogus value in CBASER or something else going
1536 * wrong from which we cannot easily recover.
1537 * According to section 6.3.2 in the GICv3 spec we can just
1538 * ignore that command then.
1539 */
1540 if (!ret)
1541 vgic_its_handle_command(kvm, its, cmd_buf);
1542
1543 its->creadr += ITS_CMD_SIZE;
1544 if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1545 its->creadr = 0;
1546 }
1547 }
1548
1549 /*
1550 * By writing to CWRITER the guest announces new commands to be processed.
1551 * To avoid any races in the first place, we take the its_cmd lock, which
1552 * protects our ring buffer variables, so that there is only one user
1553 * per ITS handling commands at a given time.
1554 */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1555 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1556 gpa_t addr, unsigned int len,
1557 unsigned long val)
1558 {
1559 u64 reg;
1560
1561 if (!its)
1562 return;
1563
1564 mutex_lock(&its->cmd_lock);
1565
1566 reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1567 reg = ITS_CMD_OFFSET(reg);
1568 if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1569 mutex_unlock(&its->cmd_lock);
1570 return;
1571 }
1572 its->cwriter = reg;
1573
1574 vgic_its_process_commands(kvm, its);
1575
1576 mutex_unlock(&its->cmd_lock);
1577 }
1578
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1579 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1580 struct vgic_its *its,
1581 gpa_t addr, unsigned int len)
1582 {
1583 return extract_bytes(its->cwriter, addr & 0x7, len);
1584 }
1585
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1586 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1587 struct vgic_its *its,
1588 gpa_t addr, unsigned int len)
1589 {
1590 return extract_bytes(its->creadr, addr & 0x7, len);
1591 }
1592
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1593 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1594 struct vgic_its *its,
1595 gpa_t addr, unsigned int len,
1596 unsigned long val)
1597 {
1598 u32 cmd_offset;
1599 int ret = 0;
1600
1601 mutex_lock(&its->cmd_lock);
1602
1603 if (its->enabled) {
1604 ret = -EBUSY;
1605 goto out;
1606 }
1607
1608 cmd_offset = ITS_CMD_OFFSET(val);
1609 if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1610 ret = -EINVAL;
1611 goto out;
1612 }
1613
1614 its->creadr = cmd_offset;
1615 out:
1616 mutex_unlock(&its->cmd_lock);
1617 return ret;
1618 }
1619
1620 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1621 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1622 struct vgic_its *its,
1623 gpa_t addr, unsigned int len)
1624 {
1625 u64 reg;
1626
1627 switch (BASER_INDEX(addr)) {
1628 case 0:
1629 reg = its->baser_device_table;
1630 break;
1631 case 1:
1632 reg = its->baser_coll_table;
1633 break;
1634 default:
1635 reg = 0;
1636 break;
1637 }
1638
1639 return extract_bytes(reg, addr & 7, len);
1640 }
1641
1642 #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1643 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1644 struct vgic_its *its,
1645 gpa_t addr, unsigned int len,
1646 unsigned long val)
1647 {
1648 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1649 u64 entry_size, table_type;
1650 u64 reg, *regptr, clearbits = 0;
1651
1652 /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1653 if (its->enabled)
1654 return;
1655
1656 switch (BASER_INDEX(addr)) {
1657 case 0:
1658 regptr = &its->baser_device_table;
1659 entry_size = abi->dte_esz;
1660 table_type = GITS_BASER_TYPE_DEVICE;
1661 break;
1662 case 1:
1663 regptr = &its->baser_coll_table;
1664 entry_size = abi->cte_esz;
1665 table_type = GITS_BASER_TYPE_COLLECTION;
1666 clearbits = GITS_BASER_INDIRECT;
1667 break;
1668 default:
1669 return;
1670 }
1671
1672 reg = update_64bit_reg(*regptr, addr & 7, len, val);
1673 reg &= ~GITS_BASER_RO_MASK;
1674 reg &= ~clearbits;
1675
1676 reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1677 reg |= table_type << GITS_BASER_TYPE_SHIFT;
1678 reg = vgic_sanitise_its_baser(reg);
1679
1680 *regptr = reg;
1681
1682 if (!(reg & GITS_BASER_VALID)) {
1683 /* Take the its_lock to prevent a race with a save/restore */
1684 mutex_lock(&its->its_lock);
1685 switch (table_type) {
1686 case GITS_BASER_TYPE_DEVICE:
1687 vgic_its_free_device_list(kvm, its);
1688 break;
1689 case GITS_BASER_TYPE_COLLECTION:
1690 vgic_its_free_collection_list(kvm, its);
1691 break;
1692 }
1693 mutex_unlock(&its->its_lock);
1694 }
1695 }
1696
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1697 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1698 struct vgic_its *its,
1699 gpa_t addr, unsigned int len)
1700 {
1701 u32 reg = 0;
1702
1703 mutex_lock(&its->cmd_lock);
1704 if (its->creadr == its->cwriter)
1705 reg |= GITS_CTLR_QUIESCENT;
1706 if (its->enabled)
1707 reg |= GITS_CTLR_ENABLE;
1708 mutex_unlock(&its->cmd_lock);
1709
1710 return reg;
1711 }
1712
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1713 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1714 gpa_t addr, unsigned int len,
1715 unsigned long val)
1716 {
1717 mutex_lock(&its->cmd_lock);
1718
1719 /*
1720 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1721 * device/collection BASER are invalid
1722 */
1723 if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1724 (!(its->baser_device_table & GITS_BASER_VALID) ||
1725 !(its->baser_coll_table & GITS_BASER_VALID) ||
1726 !(its->cbaser & GITS_CBASER_VALID)))
1727 goto out;
1728
1729 its->enabled = !!(val & GITS_CTLR_ENABLE);
1730 if (!its->enabled)
1731 vgic_its_invalidate_cache(kvm);
1732
1733 /*
1734 * Try to process any pending commands. This function bails out early
1735 * if the ITS is disabled or no commands have been queued.
1736 */
1737 vgic_its_process_commands(kvm, its);
1738
1739 out:
1740 mutex_unlock(&its->cmd_lock);
1741 }
1742
1743 #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \
1744 { \
1745 .reg_offset = off, \
1746 .len = length, \
1747 .access_flags = acc, \
1748 .its_read = rd, \
1749 .its_write = wr, \
1750 }
1751
1752 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1753 { \
1754 .reg_offset = off, \
1755 .len = length, \
1756 .access_flags = acc, \
1757 .its_read = rd, \
1758 .its_write = wr, \
1759 .uaccess_its_write = uwr, \
1760 }
1761
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1762 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1763 gpa_t addr, unsigned int len, unsigned long val)
1764 {
1765 /* Ignore */
1766 }
1767
1768 static struct vgic_register_region its_registers[] = {
1769 REGISTER_ITS_DESC(GITS_CTLR,
1770 vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1771 VGIC_ACCESS_32bit),
1772 REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1773 vgic_mmio_read_its_iidr, its_mmio_write_wi,
1774 vgic_mmio_uaccess_write_its_iidr, 4,
1775 VGIC_ACCESS_32bit),
1776 REGISTER_ITS_DESC(GITS_TYPER,
1777 vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1778 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1779 REGISTER_ITS_DESC(GITS_CBASER,
1780 vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1781 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1782 REGISTER_ITS_DESC(GITS_CWRITER,
1783 vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1784 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1785 REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1786 vgic_mmio_read_its_creadr, its_mmio_write_wi,
1787 vgic_mmio_uaccess_write_its_creadr, 8,
1788 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1789 REGISTER_ITS_DESC(GITS_BASER,
1790 vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1791 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1792 REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1793 vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1794 VGIC_ACCESS_32bit),
1795 };
1796
1797 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1798 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1799 {
1800 if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1801 its_sync_lpi_pending_table(vcpu);
1802 }
1803
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1804 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1805 u64 addr)
1806 {
1807 struct vgic_io_device *iodev = &its->iodev;
1808 int ret;
1809
1810 mutex_lock(&kvm->slots_lock);
1811 if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1812 ret = -EBUSY;
1813 goto out;
1814 }
1815
1816 its->vgic_its_base = addr;
1817 iodev->regions = its_registers;
1818 iodev->nr_regions = ARRAY_SIZE(its_registers);
1819 kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1820
1821 iodev->base_addr = its->vgic_its_base;
1822 iodev->iodev_type = IODEV_ITS;
1823 iodev->its = its;
1824 ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1825 KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1826 out:
1827 mutex_unlock(&kvm->slots_lock);
1828
1829 return ret;
1830 }
1831
1832 /* Default is 16 cached LPIs per vcpu */
1833 #define LPI_DEFAULT_PCPU_CACHE_SIZE 16
1834
vgic_lpi_translation_cache_init(struct kvm * kvm)1835 void vgic_lpi_translation_cache_init(struct kvm *kvm)
1836 {
1837 struct vgic_dist *dist = &kvm->arch.vgic;
1838 unsigned int sz;
1839 int i;
1840
1841 if (!list_empty(&dist->lpi_translation_cache))
1842 return;
1843
1844 sz = atomic_read(&kvm->online_vcpus) * LPI_DEFAULT_PCPU_CACHE_SIZE;
1845
1846 for (i = 0; i < sz; i++) {
1847 struct vgic_translation_cache_entry *cte;
1848
1849 /* An allocation failure is not fatal */
1850 cte = kzalloc(sizeof(*cte), GFP_KERNEL);
1851 if (WARN_ON(!cte))
1852 break;
1853
1854 INIT_LIST_HEAD(&cte->entry);
1855 list_add(&cte->entry, &dist->lpi_translation_cache);
1856 }
1857 }
1858
vgic_lpi_translation_cache_destroy(struct kvm * kvm)1859 void vgic_lpi_translation_cache_destroy(struct kvm *kvm)
1860 {
1861 struct vgic_dist *dist = &kvm->arch.vgic;
1862 struct vgic_translation_cache_entry *cte, *tmp;
1863
1864 vgic_its_invalidate_cache(kvm);
1865
1866 list_for_each_entry_safe(cte, tmp,
1867 &dist->lpi_translation_cache, entry) {
1868 list_del(&cte->entry);
1869 kfree(cte);
1870 }
1871 }
1872
1873 #define INITIAL_BASER_VALUE \
1874 (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \
1875 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \
1876 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \
1877 GITS_BASER_PAGE_SIZE_64K)
1878
1879 #define INITIAL_PROPBASER_VALUE \
1880 (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \
1881 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \
1882 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1883
vgic_its_create(struct kvm_device * dev,u32 type)1884 static int vgic_its_create(struct kvm_device *dev, u32 type)
1885 {
1886 struct vgic_its *its;
1887
1888 if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1889 return -ENODEV;
1890
1891 its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1892 if (!its)
1893 return -ENOMEM;
1894
1895 if (vgic_initialized(dev->kvm)) {
1896 int ret = vgic_v4_init(dev->kvm);
1897 if (ret < 0) {
1898 kfree(its);
1899 return ret;
1900 }
1901
1902 vgic_lpi_translation_cache_init(dev->kvm);
1903 }
1904
1905 mutex_init(&its->its_lock);
1906 mutex_init(&its->cmd_lock);
1907
1908 its->vgic_its_base = VGIC_ADDR_UNDEF;
1909
1910 INIT_LIST_HEAD(&its->device_list);
1911 INIT_LIST_HEAD(&its->collection_list);
1912
1913 dev->kvm->arch.vgic.msis_require_devid = true;
1914 dev->kvm->arch.vgic.has_its = true;
1915 its->enabled = false;
1916 its->dev = dev;
1917
1918 its->baser_device_table = INITIAL_BASER_VALUE |
1919 ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1920 its->baser_coll_table = INITIAL_BASER_VALUE |
1921 ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1922 dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1923
1924 dev->private = its;
1925
1926 return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1927 }
1928
vgic_its_destroy(struct kvm_device * kvm_dev)1929 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1930 {
1931 struct kvm *kvm = kvm_dev->kvm;
1932 struct vgic_its *its = kvm_dev->private;
1933
1934 mutex_lock(&its->its_lock);
1935
1936 vgic_its_free_device_list(kvm, its);
1937 vgic_its_free_collection_list(kvm, its);
1938
1939 mutex_unlock(&its->its_lock);
1940 kfree(its);
1941 kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1942 }
1943
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1944 static int vgic_its_has_attr_regs(struct kvm_device *dev,
1945 struct kvm_device_attr *attr)
1946 {
1947 const struct vgic_register_region *region;
1948 gpa_t offset = attr->attr;
1949 int align;
1950
1951 align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1952
1953 if (offset & align)
1954 return -EINVAL;
1955
1956 region = vgic_find_mmio_region(its_registers,
1957 ARRAY_SIZE(its_registers),
1958 offset);
1959 if (!region)
1960 return -ENXIO;
1961
1962 return 0;
1963 }
1964
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1965 static int vgic_its_attr_regs_access(struct kvm_device *dev,
1966 struct kvm_device_attr *attr,
1967 u64 *reg, bool is_write)
1968 {
1969 const struct vgic_register_region *region;
1970 struct vgic_its *its;
1971 gpa_t addr, offset;
1972 unsigned int len;
1973 int align, ret = 0;
1974
1975 its = dev->private;
1976 offset = attr->attr;
1977
1978 /*
1979 * Although the spec supports upper/lower 32-bit accesses to
1980 * 64-bit ITS registers, the userspace ABI requires 64-bit
1981 * accesses to all 64-bit wide registers. We therefore only
1982 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1983 * registers
1984 */
1985 if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1986 align = 0x3;
1987 else
1988 align = 0x7;
1989
1990 if (offset & align)
1991 return -EINVAL;
1992
1993 mutex_lock(&dev->kvm->lock);
1994
1995 if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1996 ret = -ENXIO;
1997 goto out;
1998 }
1999
2000 region = vgic_find_mmio_region(its_registers,
2001 ARRAY_SIZE(its_registers),
2002 offset);
2003 if (!region) {
2004 ret = -ENXIO;
2005 goto out;
2006 }
2007
2008 if (!lock_all_vcpus(dev->kvm)) {
2009 ret = -EBUSY;
2010 goto out;
2011 }
2012
2013 addr = its->vgic_its_base + offset;
2014
2015 len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
2016
2017 if (is_write) {
2018 if (region->uaccess_its_write)
2019 ret = region->uaccess_its_write(dev->kvm, its, addr,
2020 len, *reg);
2021 else
2022 region->its_write(dev->kvm, its, addr, len, *reg);
2023 } else {
2024 *reg = region->its_read(dev->kvm, its, addr, len);
2025 }
2026 unlock_all_vcpus(dev->kvm);
2027 out:
2028 mutex_unlock(&dev->kvm->lock);
2029 return ret;
2030 }
2031
compute_next_devid_offset(struct list_head * h,struct its_device * dev)2032 static u32 compute_next_devid_offset(struct list_head *h,
2033 struct its_device *dev)
2034 {
2035 struct its_device *next;
2036 u32 next_offset;
2037
2038 if (list_is_last(&dev->dev_list, h))
2039 return 0;
2040 next = list_next_entry(dev, dev_list);
2041 next_offset = next->device_id - dev->device_id;
2042
2043 return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
2044 }
2045
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)2046 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
2047 {
2048 struct its_ite *next;
2049 u32 next_offset;
2050
2051 if (list_is_last(&ite->ite_list, h))
2052 return 0;
2053 next = list_next_entry(ite, ite_list);
2054 next_offset = next->event_id - ite->event_id;
2055
2056 return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
2057 }
2058
2059 /**
2060 * entry_fn_t - Callback called on a table entry restore path
2061 * @its: its handle
2062 * @id: id of the entry
2063 * @entry: pointer to the entry
2064 * @opaque: pointer to an opaque data
2065 *
2066 * Return: < 0 on error, 0 if last element was identified, id offset to next
2067 * element otherwise
2068 */
2069 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
2070 void *opaque);
2071
2072 /**
2073 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
2074 * to each entry
2075 *
2076 * @its: its handle
2077 * @base: base gpa of the table
2078 * @size: size of the table in bytes
2079 * @esz: entry size in bytes
2080 * @start_id: the ID of the first entry in the table
2081 * (non zero for 2d level tables)
2082 * @fn: function to apply on each entry
2083 *
2084 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
2085 * (the last element may not be found on second level tables)
2086 */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)2087 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
2088 int start_id, entry_fn_t fn, void *opaque)
2089 {
2090 struct kvm *kvm = its->dev->kvm;
2091 unsigned long len = size;
2092 int id = start_id;
2093 gpa_t gpa = base;
2094 char entry[ESZ_MAX];
2095 int ret;
2096
2097 memset(entry, 0, esz);
2098
2099 while (len > 0) {
2100 int next_offset;
2101 size_t byte_offset;
2102
2103 ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
2104 if (ret)
2105 return ret;
2106
2107 next_offset = fn(its, id, entry, opaque);
2108 if (next_offset <= 0)
2109 return next_offset;
2110
2111 byte_offset = next_offset * esz;
2112 id += next_offset;
2113 gpa += byte_offset;
2114 len -= byte_offset;
2115 }
2116 return 1;
2117 }
2118
2119 /**
2120 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
2121 */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)2122 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
2123 struct its_ite *ite, gpa_t gpa, int ite_esz)
2124 {
2125 struct kvm *kvm = its->dev->kvm;
2126 u32 next_offset;
2127 u64 val;
2128
2129 next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
2130 val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
2131 ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
2132 ite->collection->collection_id;
2133 val = cpu_to_le64(val);
2134 return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
2135 }
2136
2137 /**
2138 * vgic_its_restore_ite - restore an interrupt translation entry
2139 * @event_id: id used for indexing
2140 * @ptr: pointer to the ITE entry
2141 * @opaque: pointer to the its_device
2142 */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)2143 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
2144 void *ptr, void *opaque)
2145 {
2146 struct its_device *dev = (struct its_device *)opaque;
2147 struct its_collection *collection;
2148 struct kvm *kvm = its->dev->kvm;
2149 struct kvm_vcpu *vcpu = NULL;
2150 u64 val;
2151 u64 *p = (u64 *)ptr;
2152 struct vgic_irq *irq;
2153 u32 coll_id, lpi_id;
2154 struct its_ite *ite;
2155 u32 offset;
2156
2157 val = *p;
2158
2159 val = le64_to_cpu(val);
2160
2161 coll_id = val & KVM_ITS_ITE_ICID_MASK;
2162 lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
2163
2164 if (!lpi_id)
2165 return 1; /* invalid entry, no choice but to scan next entry */
2166
2167 if (lpi_id < VGIC_MIN_LPI)
2168 return -EINVAL;
2169
2170 offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
2171 if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
2172 return -EINVAL;
2173
2174 collection = find_collection(its, coll_id);
2175 if (!collection)
2176 return -EINVAL;
2177
2178 ite = vgic_its_alloc_ite(dev, collection, event_id);
2179 if (IS_ERR(ite))
2180 return PTR_ERR(ite);
2181
2182 if (its_is_collection_mapped(collection))
2183 vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2184
2185 irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2186 if (IS_ERR(irq))
2187 return PTR_ERR(irq);
2188 ite->irq = irq;
2189
2190 return offset;
2191 }
2192
vgic_its_ite_cmp(void * priv,struct list_head * a,struct list_head * b)2193 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2194 struct list_head *b)
2195 {
2196 struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2197 struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2198
2199 if (itea->event_id < iteb->event_id)
2200 return -1;
2201 else
2202 return 1;
2203 }
2204
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2205 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2206 {
2207 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2208 gpa_t base = device->itt_addr;
2209 struct its_ite *ite;
2210 int ret;
2211 int ite_esz = abi->ite_esz;
2212
2213 list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2214
2215 list_for_each_entry(ite, &device->itt_head, ite_list) {
2216 gpa_t gpa = base + ite->event_id * ite_esz;
2217
2218 /*
2219 * If an LPI carries the HW bit, this means that this
2220 * interrupt is controlled by GICv4, and we do not
2221 * have direct access to that state. Let's simply fail
2222 * the save operation...
2223 */
2224 if (ite->irq->hw)
2225 return -EACCES;
2226
2227 ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2228 if (ret)
2229 return ret;
2230 }
2231 return 0;
2232 }
2233
2234 /**
2235 * vgic_its_restore_itt - restore the ITT of a device
2236 *
2237 * @its: its handle
2238 * @dev: device handle
2239 *
2240 * Return 0 on success, < 0 on error
2241 */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2242 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2243 {
2244 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2245 gpa_t base = dev->itt_addr;
2246 int ret;
2247 int ite_esz = abi->ite_esz;
2248 size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2249
2250 ret = scan_its_table(its, base, max_size, ite_esz, 0,
2251 vgic_its_restore_ite, dev);
2252
2253 /* scan_its_table returns +1 if all ITEs are invalid */
2254 if (ret > 0)
2255 ret = 0;
2256
2257 return ret;
2258 }
2259
2260 /**
2261 * vgic_its_save_dte - Save a device table entry at a given GPA
2262 *
2263 * @its: ITS handle
2264 * @dev: ITS device
2265 * @ptr: GPA
2266 */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2267 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2268 gpa_t ptr, int dte_esz)
2269 {
2270 struct kvm *kvm = its->dev->kvm;
2271 u64 val, itt_addr_field;
2272 u32 next_offset;
2273
2274 itt_addr_field = dev->itt_addr >> 8;
2275 next_offset = compute_next_devid_offset(&its->device_list, dev);
2276 val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2277 ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2278 (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2279 (dev->num_eventid_bits - 1));
2280 val = cpu_to_le64(val);
2281 return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2282 }
2283
2284 /**
2285 * vgic_its_restore_dte - restore a device table entry
2286 *
2287 * @its: its handle
2288 * @id: device id the DTE corresponds to
2289 * @ptr: kernel VA where the 8 byte DTE is located
2290 * @opaque: unused
2291 *
2292 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2293 * next dte otherwise
2294 */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2295 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2296 void *ptr, void *opaque)
2297 {
2298 struct its_device *dev;
2299 gpa_t itt_addr;
2300 u8 num_eventid_bits;
2301 u64 entry = *(u64 *)ptr;
2302 bool valid;
2303 u32 offset;
2304 int ret;
2305
2306 entry = le64_to_cpu(entry);
2307
2308 valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2309 num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2310 itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2311 >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2312
2313 if (!valid)
2314 return 1;
2315
2316 /* dte entry is valid */
2317 offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2318
2319 dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2320 if (IS_ERR(dev))
2321 return PTR_ERR(dev);
2322
2323 ret = vgic_its_restore_itt(its, dev);
2324 if (ret) {
2325 vgic_its_free_device(its->dev->kvm, dev);
2326 return ret;
2327 }
2328
2329 return offset;
2330 }
2331
vgic_its_device_cmp(void * priv,struct list_head * a,struct list_head * b)2332 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2333 struct list_head *b)
2334 {
2335 struct its_device *deva = container_of(a, struct its_device, dev_list);
2336 struct its_device *devb = container_of(b, struct its_device, dev_list);
2337
2338 if (deva->device_id < devb->device_id)
2339 return -1;
2340 else
2341 return 1;
2342 }
2343
2344 /**
2345 * vgic_its_save_device_tables - Save the device table and all ITT
2346 * into guest RAM
2347 *
2348 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2349 * returns the GPA of the device entry
2350 */
vgic_its_save_device_tables(struct vgic_its * its)2351 static int vgic_its_save_device_tables(struct vgic_its *its)
2352 {
2353 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2354 u64 baser = its->baser_device_table;
2355 struct its_device *dev;
2356 int dte_esz = abi->dte_esz;
2357
2358 if (!(baser & GITS_BASER_VALID))
2359 return 0;
2360
2361 list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2362
2363 list_for_each_entry(dev, &its->device_list, dev_list) {
2364 int ret;
2365 gpa_t eaddr;
2366
2367 if (!vgic_its_check_id(its, baser,
2368 dev->device_id, &eaddr))
2369 return -EINVAL;
2370
2371 ret = vgic_its_save_itt(its, dev);
2372 if (ret)
2373 return ret;
2374
2375 ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2376 if (ret)
2377 return ret;
2378 }
2379 return 0;
2380 }
2381
2382 /**
2383 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2384 *
2385 * @its: its handle
2386 * @id: index of the entry in the L1 table
2387 * @addr: kernel VA
2388 * @opaque: unused
2389 *
2390 * L1 table entries are scanned by steps of 1 entry
2391 * Return < 0 if error, 0 if last dte was found when scanning the L2
2392 * table, +1 otherwise (meaning next L1 entry must be scanned)
2393 */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2394 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2395 void *opaque)
2396 {
2397 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2398 int l2_start_id = id * (SZ_64K / abi->dte_esz);
2399 u64 entry = *(u64 *)addr;
2400 int dte_esz = abi->dte_esz;
2401 gpa_t gpa;
2402 int ret;
2403
2404 entry = le64_to_cpu(entry);
2405
2406 if (!(entry & KVM_ITS_L1E_VALID_MASK))
2407 return 1;
2408
2409 gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2410
2411 ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2412 l2_start_id, vgic_its_restore_dte, NULL);
2413
2414 return ret;
2415 }
2416
2417 /**
2418 * vgic_its_restore_device_tables - Restore the device table and all ITT
2419 * from guest RAM to internal data structs
2420 */
vgic_its_restore_device_tables(struct vgic_its * its)2421 static int vgic_its_restore_device_tables(struct vgic_its *its)
2422 {
2423 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2424 u64 baser = its->baser_device_table;
2425 int l1_esz, ret;
2426 int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2427 gpa_t l1_gpa;
2428
2429 if (!(baser & GITS_BASER_VALID))
2430 return 0;
2431
2432 l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2433
2434 if (baser & GITS_BASER_INDIRECT) {
2435 l1_esz = GITS_LVL1_ENTRY_SIZE;
2436 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2437 handle_l1_dte, NULL);
2438 } else {
2439 l1_esz = abi->dte_esz;
2440 ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2441 vgic_its_restore_dte, NULL);
2442 }
2443
2444 /* scan_its_table returns +1 if all entries are invalid */
2445 if (ret > 0)
2446 ret = 0;
2447
2448 return ret;
2449 }
2450
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2451 static int vgic_its_save_cte(struct vgic_its *its,
2452 struct its_collection *collection,
2453 gpa_t gpa, int esz)
2454 {
2455 u64 val;
2456
2457 val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2458 ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2459 collection->collection_id);
2460 val = cpu_to_le64(val);
2461 return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2462 }
2463
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2464 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2465 {
2466 struct its_collection *collection;
2467 struct kvm *kvm = its->dev->kvm;
2468 u32 target_addr, coll_id;
2469 u64 val;
2470 int ret;
2471
2472 BUG_ON(esz > sizeof(val));
2473 ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2474 if (ret)
2475 return ret;
2476 val = le64_to_cpu(val);
2477 if (!(val & KVM_ITS_CTE_VALID_MASK))
2478 return 0;
2479
2480 target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2481 coll_id = val & KVM_ITS_CTE_ICID_MASK;
2482
2483 if (target_addr != COLLECTION_NOT_MAPPED &&
2484 target_addr >= atomic_read(&kvm->online_vcpus))
2485 return -EINVAL;
2486
2487 collection = find_collection(its, coll_id);
2488 if (collection)
2489 return -EEXIST;
2490 ret = vgic_its_alloc_collection(its, &collection, coll_id);
2491 if (ret)
2492 return ret;
2493 collection->target_addr = target_addr;
2494 return 1;
2495 }
2496
2497 /**
2498 * vgic_its_save_collection_table - Save the collection table into
2499 * guest RAM
2500 */
vgic_its_save_collection_table(struct vgic_its * its)2501 static int vgic_its_save_collection_table(struct vgic_its *its)
2502 {
2503 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2504 u64 baser = its->baser_coll_table;
2505 gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2506 struct its_collection *collection;
2507 u64 val;
2508 size_t max_size, filled = 0;
2509 int ret, cte_esz = abi->cte_esz;
2510
2511 if (!(baser & GITS_BASER_VALID))
2512 return 0;
2513
2514 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2515
2516 list_for_each_entry(collection, &its->collection_list, coll_list) {
2517 ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2518 if (ret)
2519 return ret;
2520 gpa += cte_esz;
2521 filled += cte_esz;
2522 }
2523
2524 if (filled == max_size)
2525 return 0;
2526
2527 /*
2528 * table is not fully filled, add a last dummy element
2529 * with valid bit unset
2530 */
2531 val = 0;
2532 BUG_ON(cte_esz > sizeof(val));
2533 ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2534 return ret;
2535 }
2536
2537 /**
2538 * vgic_its_restore_collection_table - reads the collection table
2539 * in guest memory and restores the ITS internal state. Requires the
2540 * BASER registers to be restored before.
2541 */
vgic_its_restore_collection_table(struct vgic_its * its)2542 static int vgic_its_restore_collection_table(struct vgic_its *its)
2543 {
2544 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2545 u64 baser = its->baser_coll_table;
2546 int cte_esz = abi->cte_esz;
2547 size_t max_size, read = 0;
2548 gpa_t gpa;
2549 int ret;
2550
2551 if (!(baser & GITS_BASER_VALID))
2552 return 0;
2553
2554 gpa = GITS_BASER_ADDR_48_to_52(baser);
2555
2556 max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2557
2558 while (read < max_size) {
2559 ret = vgic_its_restore_cte(its, gpa, cte_esz);
2560 if (ret <= 0)
2561 break;
2562 gpa += cte_esz;
2563 read += cte_esz;
2564 }
2565
2566 if (ret > 0)
2567 return 0;
2568
2569 return ret;
2570 }
2571
2572 /**
2573 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2574 * according to v0 ABI
2575 */
vgic_its_save_tables_v0(struct vgic_its * its)2576 static int vgic_its_save_tables_v0(struct vgic_its *its)
2577 {
2578 int ret;
2579
2580 ret = vgic_its_save_device_tables(its);
2581 if (ret)
2582 return ret;
2583
2584 return vgic_its_save_collection_table(its);
2585 }
2586
2587 /**
2588 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2589 * to internal data structs according to V0 ABI
2590 *
2591 */
vgic_its_restore_tables_v0(struct vgic_its * its)2592 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2593 {
2594 int ret;
2595
2596 ret = vgic_its_restore_collection_table(its);
2597 if (ret)
2598 return ret;
2599
2600 return vgic_its_restore_device_tables(its);
2601 }
2602
vgic_its_commit_v0(struct vgic_its * its)2603 static int vgic_its_commit_v0(struct vgic_its *its)
2604 {
2605 const struct vgic_its_abi *abi;
2606
2607 abi = vgic_its_get_abi(its);
2608 its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2609 its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2610
2611 its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2612 << GITS_BASER_ENTRY_SIZE_SHIFT);
2613
2614 its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2615 << GITS_BASER_ENTRY_SIZE_SHIFT);
2616 return 0;
2617 }
2618
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2619 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2620 {
2621 /* We need to keep the ABI specific field values */
2622 its->baser_coll_table &= ~GITS_BASER_VALID;
2623 its->baser_device_table &= ~GITS_BASER_VALID;
2624 its->cbaser = 0;
2625 its->creadr = 0;
2626 its->cwriter = 0;
2627 its->enabled = 0;
2628 vgic_its_free_device_list(kvm, its);
2629 vgic_its_free_collection_list(kvm, its);
2630 }
2631
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2632 static int vgic_its_has_attr(struct kvm_device *dev,
2633 struct kvm_device_attr *attr)
2634 {
2635 switch (attr->group) {
2636 case KVM_DEV_ARM_VGIC_GRP_ADDR:
2637 switch (attr->attr) {
2638 case KVM_VGIC_ITS_ADDR_TYPE:
2639 return 0;
2640 }
2641 break;
2642 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2643 switch (attr->attr) {
2644 case KVM_DEV_ARM_VGIC_CTRL_INIT:
2645 return 0;
2646 case KVM_DEV_ARM_ITS_CTRL_RESET:
2647 return 0;
2648 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2649 return 0;
2650 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2651 return 0;
2652 }
2653 break;
2654 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2655 return vgic_its_has_attr_regs(dev, attr);
2656 }
2657 return -ENXIO;
2658 }
2659
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2660 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2661 {
2662 const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2663 int ret = 0;
2664
2665 if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2666 return 0;
2667
2668 mutex_lock(&kvm->lock);
2669 mutex_lock(&its->its_lock);
2670
2671 if (!lock_all_vcpus(kvm)) {
2672 mutex_unlock(&its->its_lock);
2673 mutex_unlock(&kvm->lock);
2674 return -EBUSY;
2675 }
2676
2677 switch (attr) {
2678 case KVM_DEV_ARM_ITS_CTRL_RESET:
2679 vgic_its_reset(kvm, its);
2680 break;
2681 case KVM_DEV_ARM_ITS_SAVE_TABLES:
2682 ret = abi->save_tables(its);
2683 break;
2684 case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2685 ret = abi->restore_tables(its);
2686 break;
2687 }
2688
2689 unlock_all_vcpus(kvm);
2690 mutex_unlock(&its->its_lock);
2691 mutex_unlock(&kvm->lock);
2692 return ret;
2693 }
2694
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2695 static int vgic_its_set_attr(struct kvm_device *dev,
2696 struct kvm_device_attr *attr)
2697 {
2698 struct vgic_its *its = dev->private;
2699 int ret;
2700
2701 switch (attr->group) {
2702 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2703 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2704 unsigned long type = (unsigned long)attr->attr;
2705 u64 addr;
2706
2707 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2708 return -ENODEV;
2709
2710 if (copy_from_user(&addr, uaddr, sizeof(addr)))
2711 return -EFAULT;
2712
2713 ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2714 addr, SZ_64K);
2715 if (ret)
2716 return ret;
2717
2718 return vgic_register_its_iodev(dev->kvm, its, addr);
2719 }
2720 case KVM_DEV_ARM_VGIC_GRP_CTRL:
2721 return vgic_its_ctrl(dev->kvm, its, attr->attr);
2722 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2723 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2724 u64 reg;
2725
2726 if (get_user(reg, uaddr))
2727 return -EFAULT;
2728
2729 return vgic_its_attr_regs_access(dev, attr, ®, true);
2730 }
2731 }
2732 return -ENXIO;
2733 }
2734
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2735 static int vgic_its_get_attr(struct kvm_device *dev,
2736 struct kvm_device_attr *attr)
2737 {
2738 switch (attr->group) {
2739 case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2740 struct vgic_its *its = dev->private;
2741 u64 addr = its->vgic_its_base;
2742 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2743 unsigned long type = (unsigned long)attr->attr;
2744
2745 if (type != KVM_VGIC_ITS_ADDR_TYPE)
2746 return -ENODEV;
2747
2748 if (copy_to_user(uaddr, &addr, sizeof(addr)))
2749 return -EFAULT;
2750 break;
2751 }
2752 case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2753 u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2754 u64 reg;
2755 int ret;
2756
2757 ret = vgic_its_attr_regs_access(dev, attr, ®, false);
2758 if (ret)
2759 return ret;
2760 return put_user(reg, uaddr);
2761 }
2762 default:
2763 return -ENXIO;
2764 }
2765
2766 return 0;
2767 }
2768
2769 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2770 .name = "kvm-arm-vgic-its",
2771 .create = vgic_its_create,
2772 .destroy = vgic_its_destroy,
2773 .set_attr = vgic_its_set_attr,
2774 .get_attr = vgic_its_get_attr,
2775 .has_attr = vgic_its_has_attr,
2776 };
2777
kvm_vgic_register_its_device(void)2778 int kvm_vgic_register_its_device(void)
2779 {
2780 return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2781 KVM_DEV_TYPE_ARM_VGIC_ITS);
2782 }
2783