1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 #include <linux/list_sort.h>
27 
28 #include <linux/irqchip/arm-gic-v3.h>
29 
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 
34 #include "vgic.h"
35 #include "vgic-mmio.h"
36 
37 static int vgic_its_save_tables_v0(struct vgic_its *its);
38 static int vgic_its_restore_tables_v0(struct vgic_its *its);
39 static int vgic_its_commit_v0(struct vgic_its *its);
40 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
42 
43 /*
44  * Creates a new (reference to a) struct vgic_irq for a given LPI.
45  * If this LPI is already mapped on another ITS, we increase its refcount
46  * and return a pointer to the existing structure.
47  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48  * This function returns a pointer to the _unlocked_ structure.
49  */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)50 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
51 				     struct kvm_vcpu *vcpu)
52 {
53 	struct vgic_dist *dist = &kvm->arch.vgic;
54 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55 	unsigned long flags;
56 	int ret;
57 
58 	/* In this case there is no put, since we keep the reference. */
59 	if (irq)
60 		return irq;
61 
62 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
63 	if (!irq)
64 		return ERR_PTR(-ENOMEM);
65 
66 	INIT_LIST_HEAD(&irq->lpi_list);
67 	INIT_LIST_HEAD(&irq->ap_list);
68 	spin_lock_init(&irq->irq_lock);
69 
70 	irq->config = VGIC_CONFIG_EDGE;
71 	kref_init(&irq->refcount);
72 	irq->intid = intid;
73 	irq->target_vcpu = vcpu;
74 	irq->group = 1;
75 
76 	spin_lock_irqsave(&dist->lpi_list_lock, flags);
77 
78 	/*
79 	 * There could be a race with another vgic_add_lpi(), so we need to
80 	 * check that we don't add a second list entry with the same LPI.
81 	 */
82 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
83 		if (oldirq->intid != intid)
84 			continue;
85 
86 		/* Someone was faster with adding this LPI, lets use that. */
87 		kfree(irq);
88 		irq = oldirq;
89 
90 		/*
91 		 * This increases the refcount, the caller is expected to
92 		 * call vgic_put_irq() on the returned pointer once it's
93 		 * finished with the IRQ.
94 		 */
95 		vgic_get_irq_kref(irq);
96 
97 		goto out_unlock;
98 	}
99 
100 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
101 	dist->lpi_list_count++;
102 
103 out_unlock:
104 	spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
105 
106 	/*
107 	 * We "cache" the configuration table entries in our struct vgic_irq's.
108 	 * However we only have those structs for mapped IRQs, so we read in
109 	 * the respective config data from memory here upon mapping the LPI.
110 	 */
111 	ret = update_lpi_config(kvm, irq, NULL, false);
112 	if (ret)
113 		return ERR_PTR(ret);
114 
115 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
116 	if (ret)
117 		return ERR_PTR(ret);
118 
119 	return irq;
120 }
121 
122 struct its_device {
123 	struct list_head dev_list;
124 
125 	/* the head for the list of ITTEs */
126 	struct list_head itt_head;
127 	u32 num_eventid_bits;
128 	gpa_t itt_addr;
129 	u32 device_id;
130 };
131 
132 #define COLLECTION_NOT_MAPPED ((u32)~0)
133 
134 struct its_collection {
135 	struct list_head coll_list;
136 
137 	u32 collection_id;
138 	u32 target_addr;
139 };
140 
141 #define its_is_collection_mapped(coll) ((coll) && \
142 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
143 
144 struct its_ite {
145 	struct list_head ite_list;
146 
147 	struct vgic_irq *irq;
148 	struct its_collection *collection;
149 	u32 event_id;
150 };
151 
152 /**
153  * struct vgic_its_abi - ITS abi ops and settings
154  * @cte_esz: collection table entry size
155  * @dte_esz: device table entry size
156  * @ite_esz: interrupt translation table entry size
157  * @save tables: save the ITS tables into guest RAM
158  * @restore_tables: restore the ITS internal structs from tables
159  *  stored in guest RAM
160  * @commit: initialize the registers which expose the ABI settings,
161  *  especially the entry sizes
162  */
163 struct vgic_its_abi {
164 	int cte_esz;
165 	int dte_esz;
166 	int ite_esz;
167 	int (*save_tables)(struct vgic_its *its);
168 	int (*restore_tables)(struct vgic_its *its);
169 	int (*commit)(struct vgic_its *its);
170 };
171 
172 #define ABI_0_ESZ	8
173 #define ESZ_MAX		ABI_0_ESZ
174 
175 static const struct vgic_its_abi its_table_abi_versions[] = {
176 	[0] = {
177 	 .cte_esz = ABI_0_ESZ,
178 	 .dte_esz = ABI_0_ESZ,
179 	 .ite_esz = ABI_0_ESZ,
180 	 .save_tables = vgic_its_save_tables_v0,
181 	 .restore_tables = vgic_its_restore_tables_v0,
182 	 .commit = vgic_its_commit_v0,
183 	},
184 };
185 
186 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
187 
vgic_its_get_abi(struct vgic_its * its)188 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
189 {
190 	return &its_table_abi_versions[its->abi_rev];
191 }
192 
vgic_its_set_abi(struct vgic_its * its,u32 rev)193 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
194 {
195 	const struct vgic_its_abi *abi;
196 
197 	its->abi_rev = rev;
198 	abi = vgic_its_get_abi(its);
199 	return abi->commit(its);
200 }
201 
202 /*
203  * Find and returns a device in the device table for an ITS.
204  * Must be called with the its_lock mutex held.
205  */
find_its_device(struct vgic_its * its,u32 device_id)206 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
207 {
208 	struct its_device *device;
209 
210 	list_for_each_entry(device, &its->device_list, dev_list)
211 		if (device_id == device->device_id)
212 			return device;
213 
214 	return NULL;
215 }
216 
217 /*
218  * Find and returns an interrupt translation table entry (ITTE) for a given
219  * Device ID/Event ID pair on an ITS.
220  * Must be called with the its_lock mutex held.
221  */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)222 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
223 				  u32 event_id)
224 {
225 	struct its_device *device;
226 	struct its_ite *ite;
227 
228 	device = find_its_device(its, device_id);
229 	if (device == NULL)
230 		return NULL;
231 
232 	list_for_each_entry(ite, &device->itt_head, ite_list)
233 		if (ite->event_id == event_id)
234 			return ite;
235 
236 	return NULL;
237 }
238 
239 /* To be used as an iterator this macro misses the enclosing parentheses */
240 #define for_each_lpi_its(dev, ite, its) \
241 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
242 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
243 
244 /*
245  * We only implement 48 bits of PA at the moment, although the ITS
246  * supports more. Let's be restrictive here.
247  */
248 #define BASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 16))
249 #define CBASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 12))
250 
251 #define GIC_LPI_OFFSET 8192
252 
253 #define VITS_TYPER_IDBITS 16
254 #define VITS_TYPER_DEVBITS 16
255 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
256 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
257 
258 /*
259  * Finds and returns a collection in the ITS collection table.
260  * Must be called with the its_lock mutex held.
261  */
find_collection(struct vgic_its * its,int coll_id)262 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
263 {
264 	struct its_collection *collection;
265 
266 	list_for_each_entry(collection, &its->collection_list, coll_list) {
267 		if (coll_id == collection->collection_id)
268 			return collection;
269 	}
270 
271 	return NULL;
272 }
273 
274 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
275 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
276 
277 /*
278  * Reads the configuration data for a given LPI from guest memory and
279  * updates the fields in struct vgic_irq.
280  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
281  * VCPU. Unconditionally applies if filter_vcpu is NULL.
282  */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)283 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
284 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
285 {
286 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
287 	u8 prop;
288 	int ret;
289 	unsigned long flags;
290 
291 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
292 				  &prop, 1);
293 
294 	if (ret)
295 		return ret;
296 
297 	spin_lock_irqsave(&irq->irq_lock, flags);
298 
299 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
300 		irq->priority = LPI_PROP_PRIORITY(prop);
301 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
302 
303 		if (!irq->hw) {
304 			vgic_queue_irq_unlock(kvm, irq, flags);
305 			return 0;
306 		}
307 	}
308 
309 	spin_unlock_irqrestore(&irq->irq_lock, flags);
310 
311 	if (irq->hw)
312 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
313 
314 	return 0;
315 }
316 
317 /*
318  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
319  * enumerate those LPIs without holding any lock.
320  * Returns their number and puts the kmalloc'ed array into intid_ptr.
321  */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)322 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
323 {
324 	struct vgic_dist *dist = &kvm->arch.vgic;
325 	struct vgic_irq *irq;
326 	unsigned long flags;
327 	u32 *intids;
328 	int irq_count, i = 0;
329 
330 	/*
331 	 * There is an obvious race between allocating the array and LPIs
332 	 * being mapped/unmapped. If we ended up here as a result of a
333 	 * command, we're safe (locks are held, preventing another
334 	 * command). If coming from another path (such as enabling LPIs),
335 	 * we must be careful not to overrun the array.
336 	 */
337 	irq_count = READ_ONCE(dist->lpi_list_count);
338 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
339 	if (!intids)
340 		return -ENOMEM;
341 
342 	spin_lock_irqsave(&dist->lpi_list_lock, flags);
343 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
344 		if (i == irq_count)
345 			break;
346 		/* We don't need to "get" the IRQ, as we hold the list lock. */
347 		if (vcpu && irq->target_vcpu != vcpu)
348 			continue;
349 		intids[i++] = irq->intid;
350 	}
351 	spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
352 
353 	*intid_ptr = intids;
354 	return i;
355 }
356 
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)357 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
358 {
359 	int ret = 0;
360 	unsigned long flags;
361 
362 	spin_lock_irqsave(&irq->irq_lock, flags);
363 	irq->target_vcpu = vcpu;
364 	spin_unlock_irqrestore(&irq->irq_lock, flags);
365 
366 	if (irq->hw) {
367 		struct its_vlpi_map map;
368 
369 		ret = its_get_vlpi(irq->host_irq, &map);
370 		if (ret)
371 			return ret;
372 
373 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
374 
375 		ret = its_map_vlpi(irq->host_irq, &map);
376 	}
377 
378 	return ret;
379 }
380 
381 /*
382  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
383  * is targeting) to the VGIC's view, which deals with target VCPUs.
384  * Needs to be called whenever either the collection for a LPIs has
385  * changed or the collection itself got retargeted.
386  */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)387 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
388 {
389 	struct kvm_vcpu *vcpu;
390 
391 	if (!its_is_collection_mapped(ite->collection))
392 		return;
393 
394 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
395 	update_affinity(ite->irq, vcpu);
396 }
397 
398 /*
399  * Updates the target VCPU for every LPI targeting this collection.
400  * Must be called with the its_lock mutex held.
401  */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)402 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
403 				       struct its_collection *coll)
404 {
405 	struct its_device *device;
406 	struct its_ite *ite;
407 
408 	for_each_lpi_its(device, ite, its) {
409 		if (!ite->collection || coll != ite->collection)
410 			continue;
411 
412 		update_affinity_ite(kvm, ite);
413 	}
414 }
415 
max_lpis_propbaser(u64 propbaser)416 static u32 max_lpis_propbaser(u64 propbaser)
417 {
418 	int nr_idbits = (propbaser & 0x1f) + 1;
419 
420 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
421 }
422 
423 /*
424  * Sync the pending table pending bit of LPIs targeting @vcpu
425  * with our own data structures. This relies on the LPI being
426  * mapped before.
427  */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)428 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
429 {
430 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
431 	struct vgic_irq *irq;
432 	int last_byte_offset = -1;
433 	int ret = 0;
434 	u32 *intids;
435 	int nr_irqs, i;
436 	unsigned long flags;
437 	u8 pendmask;
438 
439 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
440 	if (nr_irqs < 0)
441 		return nr_irqs;
442 
443 	for (i = 0; i < nr_irqs; i++) {
444 		int byte_offset, bit_nr;
445 
446 		byte_offset = intids[i] / BITS_PER_BYTE;
447 		bit_nr = intids[i] % BITS_PER_BYTE;
448 
449 		/*
450 		 * For contiguously allocated LPIs chances are we just read
451 		 * this very same byte in the last iteration. Reuse that.
452 		 */
453 		if (byte_offset != last_byte_offset) {
454 			ret = kvm_read_guest_lock(vcpu->kvm,
455 						  pendbase + byte_offset,
456 						  &pendmask, 1);
457 			if (ret) {
458 				kfree(intids);
459 				return ret;
460 			}
461 			last_byte_offset = byte_offset;
462 		}
463 
464 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
465 		spin_lock_irqsave(&irq->irq_lock, flags);
466 		irq->pending_latch = pendmask & (1U << bit_nr);
467 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
468 		vgic_put_irq(vcpu->kvm, irq);
469 	}
470 
471 	kfree(intids);
472 
473 	return ret;
474 }
475 
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)476 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
477 					      struct vgic_its *its,
478 					      gpa_t addr, unsigned int len)
479 {
480 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
481 	u64 reg = GITS_TYPER_PLPIS;
482 
483 	/*
484 	 * We use linear CPU numbers for redistributor addressing,
485 	 * so GITS_TYPER.PTA is 0.
486 	 * Also we force all PROPBASER registers to be the same, so
487 	 * CommonLPIAff is 0 as well.
488 	 * To avoid memory waste in the guest, we keep the number of IDBits and
489 	 * DevBits low - as least for the time being.
490 	 */
491 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
492 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
493 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
494 
495 	return extract_bytes(reg, addr & 7, len);
496 }
497 
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)498 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
499 					     struct vgic_its *its,
500 					     gpa_t addr, unsigned int len)
501 {
502 	u32 val;
503 
504 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
505 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
506 	return val;
507 }
508 
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)509 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
510 					    struct vgic_its *its,
511 					    gpa_t addr, unsigned int len,
512 					    unsigned long val)
513 {
514 	u32 rev = GITS_IIDR_REV(val);
515 
516 	if (rev >= NR_ITS_ABIS)
517 		return -EINVAL;
518 	return vgic_its_set_abi(its, rev);
519 }
520 
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)521 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
522 					       struct vgic_its *its,
523 					       gpa_t addr, unsigned int len)
524 {
525 	switch (addr & 0xffff) {
526 	case GITS_PIDR0:
527 		return 0x92;	/* part number, bits[7:0] */
528 	case GITS_PIDR1:
529 		return 0xb4;	/* part number, bits[11:8] */
530 	case GITS_PIDR2:
531 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
532 	case GITS_PIDR4:
533 		return 0x40;	/* This is a 64K software visible page */
534 	/* The following are the ID registers for (any) GIC. */
535 	case GITS_CIDR0:
536 		return 0x0d;
537 	case GITS_CIDR1:
538 		return 0xf0;
539 	case GITS_CIDR2:
540 		return 0x05;
541 	case GITS_CIDR3:
542 		return 0xb1;
543 	}
544 
545 	return 0;
546 }
547 
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)548 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
549 			 u32 devid, u32 eventid, struct vgic_irq **irq)
550 {
551 	struct kvm_vcpu *vcpu;
552 	struct its_ite *ite;
553 
554 	if (!its->enabled)
555 		return -EBUSY;
556 
557 	ite = find_ite(its, devid, eventid);
558 	if (!ite || !its_is_collection_mapped(ite->collection))
559 		return E_ITS_INT_UNMAPPED_INTERRUPT;
560 
561 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
562 	if (!vcpu)
563 		return E_ITS_INT_UNMAPPED_INTERRUPT;
564 
565 	if (!vcpu->arch.vgic_cpu.lpis_enabled)
566 		return -EBUSY;
567 
568 	*irq = ite->irq;
569 	return 0;
570 }
571 
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)572 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
573 {
574 	u64 address;
575 	struct kvm_io_device *kvm_io_dev;
576 	struct vgic_io_device *iodev;
577 
578 	if (!vgic_has_its(kvm))
579 		return ERR_PTR(-ENODEV);
580 
581 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
582 		return ERR_PTR(-EINVAL);
583 
584 	address = (u64)msi->address_hi << 32 | msi->address_lo;
585 
586 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
587 	if (!kvm_io_dev)
588 		return ERR_PTR(-EINVAL);
589 
590 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
591 		return ERR_PTR(-EINVAL);
592 
593 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
594 	if (iodev->iodev_type != IODEV_ITS)
595 		return ERR_PTR(-EINVAL);
596 
597 	return iodev->its;
598 }
599 
600 /*
601  * Find the target VCPU and the LPI number for a given devid/eventid pair
602  * and make this IRQ pending, possibly injecting it.
603  * Must be called with the its_lock mutex held.
604  * Returns 0 on success, a positive error value for any ITS mapping
605  * related errors and negative error values for generic errors.
606  */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)607 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
608 				u32 devid, u32 eventid)
609 {
610 	struct vgic_irq *irq = NULL;
611 	unsigned long flags;
612 	int err;
613 
614 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
615 	if (err)
616 		return err;
617 
618 	if (irq->hw)
619 		return irq_set_irqchip_state(irq->host_irq,
620 					     IRQCHIP_STATE_PENDING, true);
621 
622 	spin_lock_irqsave(&irq->irq_lock, flags);
623 	irq->pending_latch = true;
624 	vgic_queue_irq_unlock(kvm, irq, flags);
625 
626 	return 0;
627 }
628 
629 /*
630  * Queries the KVM IO bus framework to get the ITS pointer from the given
631  * doorbell address.
632  * We then call vgic_its_trigger_msi() with the decoded data.
633  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
634  */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)635 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
636 {
637 	struct vgic_its *its;
638 	int ret;
639 
640 	its = vgic_msi_to_its(kvm, msi);
641 	if (IS_ERR(its))
642 		return PTR_ERR(its);
643 
644 	mutex_lock(&its->its_lock);
645 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
646 	mutex_unlock(&its->its_lock);
647 
648 	if (ret < 0)
649 		return ret;
650 
651 	/*
652 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
653 	 * if the guest has blocked the MSI. So we map any LPI mapping
654 	 * related error to that.
655 	 */
656 	if (ret)
657 		return 0;
658 	else
659 		return 1;
660 }
661 
662 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)663 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
664 {
665 	list_del(&ite->ite_list);
666 
667 	/* This put matches the get in vgic_add_lpi. */
668 	if (ite->irq) {
669 		if (ite->irq->hw)
670 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
671 
672 		vgic_put_irq(kvm, ite->irq);
673 	}
674 
675 	kfree(ite);
676 }
677 
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)678 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
679 {
680 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
681 }
682 
683 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
684 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
685 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
686 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
687 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
688 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
689 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
690 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
691 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
692 
693 /*
694  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
695  * Must be called with the its_lock mutex held.
696  */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)697 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
698 				       u64 *its_cmd)
699 {
700 	u32 device_id = its_cmd_get_deviceid(its_cmd);
701 	u32 event_id = its_cmd_get_id(its_cmd);
702 	struct its_ite *ite;
703 
704 
705 	ite = find_ite(its, device_id, event_id);
706 	if (ite && ite->collection) {
707 		/*
708 		 * Though the spec talks about removing the pending state, we
709 		 * don't bother here since we clear the ITTE anyway and the
710 		 * pending state is a property of the ITTE struct.
711 		 */
712 		its_free_ite(kvm, ite);
713 		return 0;
714 	}
715 
716 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
717 }
718 
719 /*
720  * The MOVI command moves an ITTE to a different collection.
721  * Must be called with the its_lock mutex held.
722  */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)723 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
724 				    u64 *its_cmd)
725 {
726 	u32 device_id = its_cmd_get_deviceid(its_cmd);
727 	u32 event_id = its_cmd_get_id(its_cmd);
728 	u32 coll_id = its_cmd_get_collection(its_cmd);
729 	struct kvm_vcpu *vcpu;
730 	struct its_ite *ite;
731 	struct its_collection *collection;
732 
733 	ite = find_ite(its, device_id, event_id);
734 	if (!ite)
735 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
736 
737 	if (!its_is_collection_mapped(ite->collection))
738 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
739 
740 	collection = find_collection(its, coll_id);
741 	if (!its_is_collection_mapped(collection))
742 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
743 
744 	ite->collection = collection;
745 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
746 
747 	return update_affinity(ite->irq, vcpu);
748 }
749 
750 /*
751  * Check whether an ID can be stored into the corresponding guest table.
752  * For a direct table this is pretty easy, but gets a bit nasty for
753  * indirect tables. We check whether the resulting guest physical address
754  * is actually valid (covered by a memslot and guest accessible).
755  * For this we have to read the respective first level entry.
756  */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)757 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
758 			      gpa_t *eaddr)
759 {
760 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
761 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
762 	int esz = GITS_BASER_ENTRY_SIZE(baser);
763 	int index;
764 	gfn_t gfn;
765 
766 	switch (type) {
767 	case GITS_BASER_TYPE_DEVICE:
768 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
769 			return false;
770 		break;
771 	case GITS_BASER_TYPE_COLLECTION:
772 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
773 		if (id >= BIT_ULL(16))
774 			return false;
775 		break;
776 	default:
777 		return false;
778 	}
779 
780 	if (!(baser & GITS_BASER_INDIRECT)) {
781 		phys_addr_t addr;
782 
783 		if (id >= (l1_tbl_size / esz))
784 			return false;
785 
786 		addr = BASER_ADDRESS(baser) + id * esz;
787 		gfn = addr >> PAGE_SHIFT;
788 
789 		if (eaddr)
790 			*eaddr = addr;
791 		return kvm_is_visible_gfn(its->dev->kvm, gfn);
792 	}
793 
794 	/* calculate and check the index into the 1st level */
795 	index = id / (SZ_64K / esz);
796 	if (index >= (l1_tbl_size / sizeof(u64)))
797 		return false;
798 
799 	/* Each 1st level entry is represented by a 64-bit value. */
800 	if (kvm_read_guest_lock(its->dev->kvm,
801 			   BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
802 			   &indirect_ptr, sizeof(indirect_ptr)))
803 		return false;
804 
805 	indirect_ptr = le64_to_cpu(indirect_ptr);
806 
807 	/* check the valid bit of the first level entry */
808 	if (!(indirect_ptr & BIT_ULL(63)))
809 		return false;
810 
811 	/*
812 	 * Mask the guest physical address and calculate the frame number.
813 	 * Any address beyond our supported 48 bits of PA will be caught
814 	 * by the actual check in the final step.
815 	 */
816 	indirect_ptr &= GENMASK_ULL(51, 16);
817 
818 	/* Find the address of the actual entry */
819 	index = id % (SZ_64K / esz);
820 	indirect_ptr += index * esz;
821 	gfn = indirect_ptr >> PAGE_SHIFT;
822 
823 	if (eaddr)
824 		*eaddr = indirect_ptr;
825 	return kvm_is_visible_gfn(its->dev->kvm, gfn);
826 }
827 
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)828 static int vgic_its_alloc_collection(struct vgic_its *its,
829 				     struct its_collection **colp,
830 				     u32 coll_id)
831 {
832 	struct its_collection *collection;
833 
834 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
835 		return E_ITS_MAPC_COLLECTION_OOR;
836 
837 	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
838 	if (!collection)
839 		return -ENOMEM;
840 
841 	collection->collection_id = coll_id;
842 	collection->target_addr = COLLECTION_NOT_MAPPED;
843 
844 	list_add_tail(&collection->coll_list, &its->collection_list);
845 	*colp = collection;
846 
847 	return 0;
848 }
849 
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)850 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
851 {
852 	struct its_collection *collection;
853 	struct its_device *device;
854 	struct its_ite *ite;
855 
856 	/*
857 	 * Clearing the mapping for that collection ID removes the
858 	 * entry from the list. If there wasn't any before, we can
859 	 * go home early.
860 	 */
861 	collection = find_collection(its, coll_id);
862 	if (!collection)
863 		return;
864 
865 	for_each_lpi_its(device, ite, its)
866 		if (ite->collection &&
867 		    ite->collection->collection_id == coll_id)
868 			ite->collection = NULL;
869 
870 	list_del(&collection->coll_list);
871 	kfree(collection);
872 }
873 
874 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)875 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
876 					  struct its_collection *collection,
877 					  u32 event_id)
878 {
879 	struct its_ite *ite;
880 
881 	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
882 	if (!ite)
883 		return ERR_PTR(-ENOMEM);
884 
885 	ite->event_id	= event_id;
886 	ite->collection = collection;
887 
888 	list_add_tail(&ite->ite_list, &device->itt_head);
889 	return ite;
890 }
891 
892 /*
893  * The MAPTI and MAPI commands map LPIs to ITTEs.
894  * Must be called with its_lock mutex held.
895  */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)896 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
897 				    u64 *its_cmd)
898 {
899 	u32 device_id = its_cmd_get_deviceid(its_cmd);
900 	u32 event_id = its_cmd_get_id(its_cmd);
901 	u32 coll_id = its_cmd_get_collection(its_cmd);
902 	struct its_ite *ite;
903 	struct kvm_vcpu *vcpu = NULL;
904 	struct its_device *device;
905 	struct its_collection *collection, *new_coll = NULL;
906 	struct vgic_irq *irq;
907 	int lpi_nr;
908 
909 	device = find_its_device(its, device_id);
910 	if (!device)
911 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
912 
913 	if (event_id >= BIT_ULL(device->num_eventid_bits))
914 		return E_ITS_MAPTI_ID_OOR;
915 
916 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
917 		lpi_nr = its_cmd_get_physical_id(its_cmd);
918 	else
919 		lpi_nr = event_id;
920 	if (lpi_nr < GIC_LPI_OFFSET ||
921 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
922 		return E_ITS_MAPTI_PHYSICALID_OOR;
923 
924 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
925 	if (find_ite(its, device_id, event_id))
926 		return 0;
927 
928 	collection = find_collection(its, coll_id);
929 	if (!collection) {
930 		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
931 		if (ret)
932 			return ret;
933 		new_coll = collection;
934 	}
935 
936 	ite = vgic_its_alloc_ite(device, collection, event_id);
937 	if (IS_ERR(ite)) {
938 		if (new_coll)
939 			vgic_its_free_collection(its, coll_id);
940 		return PTR_ERR(ite);
941 	}
942 
943 	if (its_is_collection_mapped(collection))
944 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
945 
946 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
947 	if (IS_ERR(irq)) {
948 		if (new_coll)
949 			vgic_its_free_collection(its, coll_id);
950 		its_free_ite(kvm, ite);
951 		return PTR_ERR(irq);
952 	}
953 	ite->irq = irq;
954 
955 	return 0;
956 }
957 
958 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)959 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
960 {
961 	struct its_ite *ite, *temp;
962 
963 	/*
964 	 * The spec says that unmapping a device with still valid
965 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
966 	 * since we cannot leave the memory unreferenced.
967 	 */
968 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
969 		its_free_ite(kvm, ite);
970 
971 	list_del(&device->dev_list);
972 	kfree(device);
973 }
974 
975 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)976 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
977 {
978 	struct its_device *cur, *temp;
979 
980 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
981 		vgic_its_free_device(kvm, cur);
982 }
983 
984 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)985 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
986 {
987 	struct its_collection *cur, *temp;
988 
989 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
990 		vgic_its_free_collection(its, cur->collection_id);
991 }
992 
993 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)994 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
995 						u32 device_id, gpa_t itt_addr,
996 						u8 num_eventid_bits)
997 {
998 	struct its_device *device;
999 
1000 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1001 	if (!device)
1002 		return ERR_PTR(-ENOMEM);
1003 
1004 	device->device_id = device_id;
1005 	device->itt_addr = itt_addr;
1006 	device->num_eventid_bits = num_eventid_bits;
1007 	INIT_LIST_HEAD(&device->itt_head);
1008 
1009 	list_add_tail(&device->dev_list, &its->device_list);
1010 	return device;
1011 }
1012 
1013 /*
1014  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1015  * Must be called with the its_lock mutex held.
1016  */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1017 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1018 				    u64 *its_cmd)
1019 {
1020 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1021 	bool valid = its_cmd_get_validbit(its_cmd);
1022 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1023 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1024 	struct its_device *device;
1025 
1026 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1027 		return E_ITS_MAPD_DEVICE_OOR;
1028 
1029 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1030 		return E_ITS_MAPD_ITTSIZE_OOR;
1031 
1032 	device = find_its_device(its, device_id);
1033 
1034 	/*
1035 	 * The spec says that calling MAPD on an already mapped device
1036 	 * invalidates all cached data for this device. We implement this
1037 	 * by removing the mapping and re-establishing it.
1038 	 */
1039 	if (device)
1040 		vgic_its_free_device(kvm, device);
1041 
1042 	/*
1043 	 * The spec does not say whether unmapping a not-mapped device
1044 	 * is an error, so we are done in any case.
1045 	 */
1046 	if (!valid)
1047 		return 0;
1048 
1049 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1050 				       num_eventid_bits);
1051 
1052 	return PTR_ERR_OR_ZERO(device);
1053 }
1054 
1055 /*
1056  * The MAPC command maps collection IDs to redistributors.
1057  * Must be called with the its_lock mutex held.
1058  */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1059 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1060 				    u64 *its_cmd)
1061 {
1062 	u16 coll_id;
1063 	u32 target_addr;
1064 	struct its_collection *collection;
1065 	bool valid;
1066 
1067 	valid = its_cmd_get_validbit(its_cmd);
1068 	coll_id = its_cmd_get_collection(its_cmd);
1069 	target_addr = its_cmd_get_target_addr(its_cmd);
1070 
1071 	if (target_addr >= atomic_read(&kvm->online_vcpus))
1072 		return E_ITS_MAPC_PROCNUM_OOR;
1073 
1074 	if (!valid) {
1075 		vgic_its_free_collection(its, coll_id);
1076 	} else {
1077 		collection = find_collection(its, coll_id);
1078 
1079 		if (!collection) {
1080 			int ret;
1081 
1082 			ret = vgic_its_alloc_collection(its, &collection,
1083 							coll_id);
1084 			if (ret)
1085 				return ret;
1086 			collection->target_addr = target_addr;
1087 		} else {
1088 			collection->target_addr = target_addr;
1089 			update_affinity_collection(kvm, its, collection);
1090 		}
1091 	}
1092 
1093 	return 0;
1094 }
1095 
1096 /*
1097  * The CLEAR command removes the pending state for a particular LPI.
1098  * Must be called with the its_lock mutex held.
1099  */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1100 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1101 				     u64 *its_cmd)
1102 {
1103 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1104 	u32 event_id = its_cmd_get_id(its_cmd);
1105 	struct its_ite *ite;
1106 
1107 
1108 	ite = find_ite(its, device_id, event_id);
1109 	if (!ite)
1110 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1111 
1112 	ite->irq->pending_latch = false;
1113 
1114 	if (ite->irq->hw)
1115 		return irq_set_irqchip_state(ite->irq->host_irq,
1116 					     IRQCHIP_STATE_PENDING, false);
1117 
1118 	return 0;
1119 }
1120 
1121 /*
1122  * The INV command syncs the configuration bits from the memory table.
1123  * Must be called with the its_lock mutex held.
1124  */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1125 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1126 				   u64 *its_cmd)
1127 {
1128 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1129 	u32 event_id = its_cmd_get_id(its_cmd);
1130 	struct its_ite *ite;
1131 
1132 
1133 	ite = find_ite(its, device_id, event_id);
1134 	if (!ite)
1135 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1136 
1137 	return update_lpi_config(kvm, ite->irq, NULL, true);
1138 }
1139 
1140 /*
1141  * The INVALL command requests flushing of all IRQ data in this collection.
1142  * Find the VCPU mapped to that collection, then iterate over the VM's list
1143  * of mapped LPIs and update the configuration for each IRQ which targets
1144  * the specified vcpu. The configuration will be read from the in-memory
1145  * configuration table.
1146  * Must be called with the its_lock mutex held.
1147  */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1148 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1149 				      u64 *its_cmd)
1150 {
1151 	u32 coll_id = its_cmd_get_collection(its_cmd);
1152 	struct its_collection *collection;
1153 	struct kvm_vcpu *vcpu;
1154 	struct vgic_irq *irq;
1155 	u32 *intids;
1156 	int irq_count, i;
1157 
1158 	collection = find_collection(its, coll_id);
1159 	if (!its_is_collection_mapped(collection))
1160 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1161 
1162 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1163 
1164 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1165 	if (irq_count < 0)
1166 		return irq_count;
1167 
1168 	for (i = 0; i < irq_count; i++) {
1169 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1170 		if (!irq)
1171 			continue;
1172 		update_lpi_config(kvm, irq, vcpu, false);
1173 		vgic_put_irq(kvm, irq);
1174 	}
1175 
1176 	kfree(intids);
1177 
1178 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1179 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1180 
1181 	return 0;
1182 }
1183 
1184 /*
1185  * The MOVALL command moves the pending state of all IRQs targeting one
1186  * redistributor to another. We don't hold the pending state in the VCPUs,
1187  * but in the IRQs instead, so there is really not much to do for us here.
1188  * However the spec says that no IRQ must target the old redistributor
1189  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1190  * This command affects all LPIs in the system that target that redistributor.
1191  */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1192 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1193 				      u64 *its_cmd)
1194 {
1195 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1196 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1197 	struct kvm_vcpu *vcpu1, *vcpu2;
1198 	struct vgic_irq *irq;
1199 	u32 *intids;
1200 	int irq_count, i;
1201 
1202 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1203 	    target2_addr >= atomic_read(&kvm->online_vcpus))
1204 		return E_ITS_MOVALL_PROCNUM_OOR;
1205 
1206 	if (target1_addr == target2_addr)
1207 		return 0;
1208 
1209 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1210 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1211 
1212 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1213 	if (irq_count < 0)
1214 		return irq_count;
1215 
1216 	for (i = 0; i < irq_count; i++) {
1217 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1218 
1219 		update_affinity(irq, vcpu2);
1220 
1221 		vgic_put_irq(kvm, irq);
1222 	}
1223 
1224 	kfree(intids);
1225 	return 0;
1226 }
1227 
1228 /*
1229  * The INT command injects the LPI associated with that DevID/EvID pair.
1230  * Must be called with the its_lock mutex held.
1231  */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1232 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1233 				   u64 *its_cmd)
1234 {
1235 	u32 msi_data = its_cmd_get_id(its_cmd);
1236 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1237 
1238 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1239 }
1240 
1241 /*
1242  * This function is called with the its_cmd lock held, but the ITS data
1243  * structure lock dropped.
1244  */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1245 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1246 				   u64 *its_cmd)
1247 {
1248 	int ret = -ENODEV;
1249 
1250 	mutex_lock(&its->its_lock);
1251 	switch (its_cmd_get_command(its_cmd)) {
1252 	case GITS_CMD_MAPD:
1253 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1254 		break;
1255 	case GITS_CMD_MAPC:
1256 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1257 		break;
1258 	case GITS_CMD_MAPI:
1259 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1260 		break;
1261 	case GITS_CMD_MAPTI:
1262 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1263 		break;
1264 	case GITS_CMD_MOVI:
1265 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1266 		break;
1267 	case GITS_CMD_DISCARD:
1268 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1269 		break;
1270 	case GITS_CMD_CLEAR:
1271 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1272 		break;
1273 	case GITS_CMD_MOVALL:
1274 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1275 		break;
1276 	case GITS_CMD_INT:
1277 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1278 		break;
1279 	case GITS_CMD_INV:
1280 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1281 		break;
1282 	case GITS_CMD_INVALL:
1283 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1284 		break;
1285 	case GITS_CMD_SYNC:
1286 		/* we ignore this command: we are in sync all of the time */
1287 		ret = 0;
1288 		break;
1289 	}
1290 	mutex_unlock(&its->its_lock);
1291 
1292 	return ret;
1293 }
1294 
vgic_sanitise_its_baser(u64 reg)1295 static u64 vgic_sanitise_its_baser(u64 reg)
1296 {
1297 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1298 				  GITS_BASER_SHAREABILITY_SHIFT,
1299 				  vgic_sanitise_shareability);
1300 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1301 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1302 				  vgic_sanitise_inner_cacheability);
1303 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1304 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1305 				  vgic_sanitise_outer_cacheability);
1306 
1307 	/* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1308 	reg &= ~GENMASK_ULL(15, 12);
1309 
1310 	/* We support only one (ITS) page size: 64K */
1311 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1312 
1313 	return reg;
1314 }
1315 
vgic_sanitise_its_cbaser(u64 reg)1316 static u64 vgic_sanitise_its_cbaser(u64 reg)
1317 {
1318 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1319 				  GITS_CBASER_SHAREABILITY_SHIFT,
1320 				  vgic_sanitise_shareability);
1321 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1322 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1323 				  vgic_sanitise_inner_cacheability);
1324 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1325 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1326 				  vgic_sanitise_outer_cacheability);
1327 
1328 	/*
1329 	 * Sanitise the physical address to be 64k aligned.
1330 	 * Also limit the physical addresses to 48 bits.
1331 	 */
1332 	reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1333 
1334 	return reg;
1335 }
1336 
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1337 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1338 					       struct vgic_its *its,
1339 					       gpa_t addr, unsigned int len)
1340 {
1341 	return extract_bytes(its->cbaser, addr & 7, len);
1342 }
1343 
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1344 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1345 				       gpa_t addr, unsigned int len,
1346 				       unsigned long val)
1347 {
1348 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1349 	if (its->enabled)
1350 		return;
1351 
1352 	mutex_lock(&its->cmd_lock);
1353 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1354 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1355 	its->creadr = 0;
1356 	/*
1357 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1358 	 * it to CREADR to make sure we start with an empty command buffer.
1359 	 */
1360 	its->cwriter = its->creadr;
1361 	mutex_unlock(&its->cmd_lock);
1362 }
1363 
1364 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1365 #define ITS_CMD_SIZE			32
1366 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1367 
1368 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1369 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1370 {
1371 	gpa_t cbaser;
1372 	u64 cmd_buf[4];
1373 
1374 	/* Commands are only processed when the ITS is enabled. */
1375 	if (!its->enabled)
1376 		return;
1377 
1378 	cbaser = CBASER_ADDRESS(its->cbaser);
1379 
1380 	while (its->cwriter != its->creadr) {
1381 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1382 					      cmd_buf, ITS_CMD_SIZE);
1383 		/*
1384 		 * If kvm_read_guest() fails, this could be due to the guest
1385 		 * programming a bogus value in CBASER or something else going
1386 		 * wrong from which we cannot easily recover.
1387 		 * According to section 6.3.2 in the GICv3 spec we can just
1388 		 * ignore that command then.
1389 		 */
1390 		if (!ret)
1391 			vgic_its_handle_command(kvm, its, cmd_buf);
1392 
1393 		its->creadr += ITS_CMD_SIZE;
1394 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1395 			its->creadr = 0;
1396 	}
1397 }
1398 
1399 /*
1400  * By writing to CWRITER the guest announces new commands to be processed.
1401  * To avoid any races in the first place, we take the its_cmd lock, which
1402  * protects our ring buffer variables, so that there is only one user
1403  * per ITS handling commands at a given time.
1404  */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1405 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1406 					gpa_t addr, unsigned int len,
1407 					unsigned long val)
1408 {
1409 	u64 reg;
1410 
1411 	if (!its)
1412 		return;
1413 
1414 	mutex_lock(&its->cmd_lock);
1415 
1416 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1417 	reg = ITS_CMD_OFFSET(reg);
1418 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1419 		mutex_unlock(&its->cmd_lock);
1420 		return;
1421 	}
1422 	its->cwriter = reg;
1423 
1424 	vgic_its_process_commands(kvm, its);
1425 
1426 	mutex_unlock(&its->cmd_lock);
1427 }
1428 
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1429 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1430 						struct vgic_its *its,
1431 						gpa_t addr, unsigned int len)
1432 {
1433 	return extract_bytes(its->cwriter, addr & 0x7, len);
1434 }
1435 
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1436 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1437 					       struct vgic_its *its,
1438 					       gpa_t addr, unsigned int len)
1439 {
1440 	return extract_bytes(its->creadr, addr & 0x7, len);
1441 }
1442 
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1443 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1444 					      struct vgic_its *its,
1445 					      gpa_t addr, unsigned int len,
1446 					      unsigned long val)
1447 {
1448 	u32 cmd_offset;
1449 	int ret = 0;
1450 
1451 	mutex_lock(&its->cmd_lock);
1452 
1453 	if (its->enabled) {
1454 		ret = -EBUSY;
1455 		goto out;
1456 	}
1457 
1458 	cmd_offset = ITS_CMD_OFFSET(val);
1459 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1460 		ret = -EINVAL;
1461 		goto out;
1462 	}
1463 
1464 	its->creadr = cmd_offset;
1465 out:
1466 	mutex_unlock(&its->cmd_lock);
1467 	return ret;
1468 }
1469 
1470 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1471 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1472 					      struct vgic_its *its,
1473 					      gpa_t addr, unsigned int len)
1474 {
1475 	u64 reg;
1476 
1477 	switch (BASER_INDEX(addr)) {
1478 	case 0:
1479 		reg = its->baser_device_table;
1480 		break;
1481 	case 1:
1482 		reg = its->baser_coll_table;
1483 		break;
1484 	default:
1485 		reg = 0;
1486 		break;
1487 	}
1488 
1489 	return extract_bytes(reg, addr & 7, len);
1490 }
1491 
1492 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1493 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1494 				      struct vgic_its *its,
1495 				      gpa_t addr, unsigned int len,
1496 				      unsigned long val)
1497 {
1498 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1499 	u64 entry_size, table_type;
1500 	u64 reg, *regptr, clearbits = 0;
1501 
1502 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1503 	if (its->enabled)
1504 		return;
1505 
1506 	switch (BASER_INDEX(addr)) {
1507 	case 0:
1508 		regptr = &its->baser_device_table;
1509 		entry_size = abi->dte_esz;
1510 		table_type = GITS_BASER_TYPE_DEVICE;
1511 		break;
1512 	case 1:
1513 		regptr = &its->baser_coll_table;
1514 		entry_size = abi->cte_esz;
1515 		table_type = GITS_BASER_TYPE_COLLECTION;
1516 		clearbits = GITS_BASER_INDIRECT;
1517 		break;
1518 	default:
1519 		return;
1520 	}
1521 
1522 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1523 	reg &= ~GITS_BASER_RO_MASK;
1524 	reg &= ~clearbits;
1525 
1526 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1527 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1528 	reg = vgic_sanitise_its_baser(reg);
1529 
1530 	*regptr = reg;
1531 
1532 	if (!(reg & GITS_BASER_VALID)) {
1533 		/* Take the its_lock to prevent a race with a save/restore */
1534 		mutex_lock(&its->its_lock);
1535 		switch (table_type) {
1536 		case GITS_BASER_TYPE_DEVICE:
1537 			vgic_its_free_device_list(kvm, its);
1538 			break;
1539 		case GITS_BASER_TYPE_COLLECTION:
1540 			vgic_its_free_collection_list(kvm, its);
1541 			break;
1542 		}
1543 		mutex_unlock(&its->its_lock);
1544 	}
1545 }
1546 
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1547 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1548 					     struct vgic_its *its,
1549 					     gpa_t addr, unsigned int len)
1550 {
1551 	u32 reg = 0;
1552 
1553 	mutex_lock(&its->cmd_lock);
1554 	if (its->creadr == its->cwriter)
1555 		reg |= GITS_CTLR_QUIESCENT;
1556 	if (its->enabled)
1557 		reg |= GITS_CTLR_ENABLE;
1558 	mutex_unlock(&its->cmd_lock);
1559 
1560 	return reg;
1561 }
1562 
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1563 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1564 				     gpa_t addr, unsigned int len,
1565 				     unsigned long val)
1566 {
1567 	mutex_lock(&its->cmd_lock);
1568 
1569 	/*
1570 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1571 	 * device/collection BASER are invalid
1572 	 */
1573 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1574 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1575 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1576 		 !(its->cbaser & GITS_CBASER_VALID)))
1577 		goto out;
1578 
1579 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1580 
1581 	/*
1582 	 * Try to process any pending commands. This function bails out early
1583 	 * if the ITS is disabled or no commands have been queued.
1584 	 */
1585 	vgic_its_process_commands(kvm, its);
1586 
1587 out:
1588 	mutex_unlock(&its->cmd_lock);
1589 }
1590 
1591 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1592 {								\
1593 	.reg_offset = off,					\
1594 	.len = length,						\
1595 	.access_flags = acc,					\
1596 	.its_read = rd,						\
1597 	.its_write = wr,					\
1598 }
1599 
1600 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1601 {								\
1602 	.reg_offset = off,					\
1603 	.len = length,						\
1604 	.access_flags = acc,					\
1605 	.its_read = rd,						\
1606 	.its_write = wr,					\
1607 	.uaccess_its_write = uwr,				\
1608 }
1609 
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1610 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1611 			      gpa_t addr, unsigned int len, unsigned long val)
1612 {
1613 	/* Ignore */
1614 }
1615 
1616 static struct vgic_register_region its_registers[] = {
1617 	REGISTER_ITS_DESC(GITS_CTLR,
1618 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1619 		VGIC_ACCESS_32bit),
1620 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1621 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1622 		vgic_mmio_uaccess_write_its_iidr, 4,
1623 		VGIC_ACCESS_32bit),
1624 	REGISTER_ITS_DESC(GITS_TYPER,
1625 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1626 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1627 	REGISTER_ITS_DESC(GITS_CBASER,
1628 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1629 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1630 	REGISTER_ITS_DESC(GITS_CWRITER,
1631 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1632 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1633 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1634 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1635 		vgic_mmio_uaccess_write_its_creadr, 8,
1636 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1637 	REGISTER_ITS_DESC(GITS_BASER,
1638 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1639 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1640 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1641 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1642 		VGIC_ACCESS_32bit),
1643 };
1644 
1645 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1646 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1647 {
1648 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1649 		its_sync_lpi_pending_table(vcpu);
1650 }
1651 
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1652 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1653 				   u64 addr)
1654 {
1655 	struct vgic_io_device *iodev = &its->iodev;
1656 	int ret;
1657 
1658 	mutex_lock(&kvm->slots_lock);
1659 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1660 		ret = -EBUSY;
1661 		goto out;
1662 	}
1663 
1664 	its->vgic_its_base = addr;
1665 	iodev->regions = its_registers;
1666 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1667 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1668 
1669 	iodev->base_addr = its->vgic_its_base;
1670 	iodev->iodev_type = IODEV_ITS;
1671 	iodev->its = its;
1672 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1673 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1674 out:
1675 	mutex_unlock(&kvm->slots_lock);
1676 
1677 	return ret;
1678 }
1679 
1680 #define INITIAL_BASER_VALUE						  \
1681 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1682 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1683 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1684 	 GITS_BASER_PAGE_SIZE_64K)
1685 
1686 #define INITIAL_PROPBASER_VALUE						  \
1687 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1688 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1689 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1690 
vgic_its_create(struct kvm_device * dev,u32 type)1691 static int vgic_its_create(struct kvm_device *dev, u32 type)
1692 {
1693 	struct vgic_its *its;
1694 
1695 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1696 		return -ENODEV;
1697 
1698 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1699 	if (!its)
1700 		return -ENOMEM;
1701 
1702 	if (vgic_initialized(dev->kvm)) {
1703 		int ret = vgic_v4_init(dev->kvm);
1704 		if (ret < 0) {
1705 			kfree(its);
1706 			return ret;
1707 		}
1708 	}
1709 
1710 	mutex_init(&its->its_lock);
1711 	mutex_init(&its->cmd_lock);
1712 
1713 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1714 
1715 	INIT_LIST_HEAD(&its->device_list);
1716 	INIT_LIST_HEAD(&its->collection_list);
1717 
1718 	dev->kvm->arch.vgic.msis_require_devid = true;
1719 	dev->kvm->arch.vgic.has_its = true;
1720 	its->enabled = false;
1721 	its->dev = dev;
1722 
1723 	its->baser_device_table = INITIAL_BASER_VALUE			|
1724 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1725 	its->baser_coll_table = INITIAL_BASER_VALUE |
1726 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1727 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1728 
1729 	dev->private = its;
1730 
1731 	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1732 }
1733 
vgic_its_destroy(struct kvm_device * kvm_dev)1734 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1735 {
1736 	struct kvm *kvm = kvm_dev->kvm;
1737 	struct vgic_its *its = kvm_dev->private;
1738 
1739 	mutex_lock(&its->its_lock);
1740 
1741 	vgic_its_free_device_list(kvm, its);
1742 	vgic_its_free_collection_list(kvm, its);
1743 
1744 	mutex_unlock(&its->its_lock);
1745 	kfree(its);
1746 }
1747 
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1748 int vgic_its_has_attr_regs(struct kvm_device *dev,
1749 			   struct kvm_device_attr *attr)
1750 {
1751 	const struct vgic_register_region *region;
1752 	gpa_t offset = attr->attr;
1753 	int align;
1754 
1755 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1756 
1757 	if (offset & align)
1758 		return -EINVAL;
1759 
1760 	region = vgic_find_mmio_region(its_registers,
1761 				       ARRAY_SIZE(its_registers),
1762 				       offset);
1763 	if (!region)
1764 		return -ENXIO;
1765 
1766 	return 0;
1767 }
1768 
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1769 int vgic_its_attr_regs_access(struct kvm_device *dev,
1770 			      struct kvm_device_attr *attr,
1771 			      u64 *reg, bool is_write)
1772 {
1773 	const struct vgic_register_region *region;
1774 	struct vgic_its *its;
1775 	gpa_t addr, offset;
1776 	unsigned int len;
1777 	int align, ret = 0;
1778 
1779 	its = dev->private;
1780 	offset = attr->attr;
1781 
1782 	/*
1783 	 * Although the spec supports upper/lower 32-bit accesses to
1784 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1785 	 * accesses to all 64-bit wide registers. We therefore only
1786 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1787 	 * registers
1788 	 */
1789 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1790 		align = 0x3;
1791 	else
1792 		align = 0x7;
1793 
1794 	if (offset & align)
1795 		return -EINVAL;
1796 
1797 	mutex_lock(&dev->kvm->lock);
1798 
1799 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1800 		ret = -ENXIO;
1801 		goto out;
1802 	}
1803 
1804 	region = vgic_find_mmio_region(its_registers,
1805 				       ARRAY_SIZE(its_registers),
1806 				       offset);
1807 	if (!region) {
1808 		ret = -ENXIO;
1809 		goto out;
1810 	}
1811 
1812 	if (!lock_all_vcpus(dev->kvm)) {
1813 		ret = -EBUSY;
1814 		goto out;
1815 	}
1816 
1817 	addr = its->vgic_its_base + offset;
1818 
1819 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1820 
1821 	if (is_write) {
1822 		if (region->uaccess_its_write)
1823 			ret = region->uaccess_its_write(dev->kvm, its, addr,
1824 							len, *reg);
1825 		else
1826 			region->its_write(dev->kvm, its, addr, len, *reg);
1827 	} else {
1828 		*reg = region->its_read(dev->kvm, its, addr, len);
1829 	}
1830 	unlock_all_vcpus(dev->kvm);
1831 out:
1832 	mutex_unlock(&dev->kvm->lock);
1833 	return ret;
1834 }
1835 
compute_next_devid_offset(struct list_head * h,struct its_device * dev)1836 static u32 compute_next_devid_offset(struct list_head *h,
1837 				     struct its_device *dev)
1838 {
1839 	struct its_device *next;
1840 	u32 next_offset;
1841 
1842 	if (list_is_last(&dev->dev_list, h))
1843 		return 0;
1844 	next = list_next_entry(dev, dev_list);
1845 	next_offset = next->device_id - dev->device_id;
1846 
1847 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1848 }
1849 
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)1850 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1851 {
1852 	struct its_ite *next;
1853 	u32 next_offset;
1854 
1855 	if (list_is_last(&ite->ite_list, h))
1856 		return 0;
1857 	next = list_next_entry(ite, ite_list);
1858 	next_offset = next->event_id - ite->event_id;
1859 
1860 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1861 }
1862 
1863 /**
1864  * entry_fn_t - Callback called on a table entry restore path
1865  * @its: its handle
1866  * @id: id of the entry
1867  * @entry: pointer to the entry
1868  * @opaque: pointer to an opaque data
1869  *
1870  * Return: < 0 on error, 0 if last element was identified, id offset to next
1871  * element otherwise
1872  */
1873 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1874 			  void *opaque);
1875 
1876 /**
1877  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1878  * to each entry
1879  *
1880  * @its: its handle
1881  * @base: base gpa of the table
1882  * @size: size of the table in bytes
1883  * @esz: entry size in bytes
1884  * @start_id: the ID of the first entry in the table
1885  * (non zero for 2d level tables)
1886  * @fn: function to apply on each entry
1887  *
1888  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1889  * (the last element may not be found on second level tables)
1890  */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)1891 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
1892 			  int start_id, entry_fn_t fn, void *opaque)
1893 {
1894 	struct kvm *kvm = its->dev->kvm;
1895 	unsigned long len = size;
1896 	int id = start_id;
1897 	gpa_t gpa = base;
1898 	char entry[ESZ_MAX];
1899 	int ret;
1900 
1901 	memset(entry, 0, esz);
1902 
1903 	while (len > 0) {
1904 		int next_offset;
1905 		size_t byte_offset;
1906 
1907 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
1908 		if (ret)
1909 			return ret;
1910 
1911 		next_offset = fn(its, id, entry, opaque);
1912 		if (next_offset <= 0)
1913 			return next_offset;
1914 
1915 		byte_offset = next_offset * esz;
1916 		id += next_offset;
1917 		gpa += byte_offset;
1918 		len -= byte_offset;
1919 	}
1920 	return 1;
1921 }
1922 
1923 /**
1924  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1925  */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)1926 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1927 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
1928 {
1929 	struct kvm *kvm = its->dev->kvm;
1930 	u32 next_offset;
1931 	u64 val;
1932 
1933 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1934 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1935 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1936 		ite->collection->collection_id;
1937 	val = cpu_to_le64(val);
1938 	return kvm_write_guest(kvm, gpa, &val, ite_esz);
1939 }
1940 
1941 /**
1942  * vgic_its_restore_ite - restore an interrupt translation entry
1943  * @event_id: id used for indexing
1944  * @ptr: pointer to the ITE entry
1945  * @opaque: pointer to the its_device
1946  */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)1947 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1948 				void *ptr, void *opaque)
1949 {
1950 	struct its_device *dev = (struct its_device *)opaque;
1951 	struct its_collection *collection;
1952 	struct kvm *kvm = its->dev->kvm;
1953 	struct kvm_vcpu *vcpu = NULL;
1954 	u64 val;
1955 	u64 *p = (u64 *)ptr;
1956 	struct vgic_irq *irq;
1957 	u32 coll_id, lpi_id;
1958 	struct its_ite *ite;
1959 	u32 offset;
1960 
1961 	val = *p;
1962 
1963 	val = le64_to_cpu(val);
1964 
1965 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
1966 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1967 
1968 	if (!lpi_id)
1969 		return 1; /* invalid entry, no choice but to scan next entry */
1970 
1971 	if (lpi_id < VGIC_MIN_LPI)
1972 		return -EINVAL;
1973 
1974 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1975 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1976 		return -EINVAL;
1977 
1978 	collection = find_collection(its, coll_id);
1979 	if (!collection)
1980 		return -EINVAL;
1981 
1982 	ite = vgic_its_alloc_ite(dev, collection, event_id);
1983 	if (IS_ERR(ite))
1984 		return PTR_ERR(ite);
1985 
1986 	if (its_is_collection_mapped(collection))
1987 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1988 
1989 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1990 	if (IS_ERR(irq))
1991 		return PTR_ERR(irq);
1992 	ite->irq = irq;
1993 
1994 	return offset;
1995 }
1996 
vgic_its_ite_cmp(void * priv,struct list_head * a,struct list_head * b)1997 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1998 			    struct list_head *b)
1999 {
2000 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2001 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2002 
2003 	if (itea->event_id < iteb->event_id)
2004 		return -1;
2005 	else
2006 		return 1;
2007 }
2008 
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2009 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2010 {
2011 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2012 	gpa_t base = device->itt_addr;
2013 	struct its_ite *ite;
2014 	int ret;
2015 	int ite_esz = abi->ite_esz;
2016 
2017 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2018 
2019 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2020 		gpa_t gpa = base + ite->event_id * ite_esz;
2021 
2022 		/*
2023 		 * If an LPI carries the HW bit, this means that this
2024 		 * interrupt is controlled by GICv4, and we do not
2025 		 * have direct access to that state. Let's simply fail
2026 		 * the save operation...
2027 		 */
2028 		if (ite->irq->hw)
2029 			return -EACCES;
2030 
2031 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2032 		if (ret)
2033 			return ret;
2034 	}
2035 	return 0;
2036 }
2037 
2038 /**
2039  * vgic_its_restore_itt - restore the ITT of a device
2040  *
2041  * @its: its handle
2042  * @dev: device handle
2043  *
2044  * Return 0 on success, < 0 on error
2045  */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2046 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2047 {
2048 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2049 	gpa_t base = dev->itt_addr;
2050 	int ret;
2051 	int ite_esz = abi->ite_esz;
2052 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2053 
2054 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2055 			     vgic_its_restore_ite, dev);
2056 
2057 	/* scan_its_table returns +1 if all ITEs are invalid */
2058 	if (ret > 0)
2059 		ret = 0;
2060 
2061 	return ret;
2062 }
2063 
2064 /**
2065  * vgic_its_save_dte - Save a device table entry at a given GPA
2066  *
2067  * @its: ITS handle
2068  * @dev: ITS device
2069  * @ptr: GPA
2070  */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2071 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2072 			     gpa_t ptr, int dte_esz)
2073 {
2074 	struct kvm *kvm = its->dev->kvm;
2075 	u64 val, itt_addr_field;
2076 	u32 next_offset;
2077 
2078 	itt_addr_field = dev->itt_addr >> 8;
2079 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2080 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2081 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2082 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2083 		(dev->num_eventid_bits - 1));
2084 	val = cpu_to_le64(val);
2085 	return kvm_write_guest(kvm, ptr, &val, dte_esz);
2086 }
2087 
2088 /**
2089  * vgic_its_restore_dte - restore a device table entry
2090  *
2091  * @its: its handle
2092  * @id: device id the DTE corresponds to
2093  * @ptr: kernel VA where the 8 byte DTE is located
2094  * @opaque: unused
2095  *
2096  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2097  * next dte otherwise
2098  */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2099 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2100 				void *ptr, void *opaque)
2101 {
2102 	struct its_device *dev;
2103 	gpa_t itt_addr;
2104 	u8 num_eventid_bits;
2105 	u64 entry = *(u64 *)ptr;
2106 	bool valid;
2107 	u32 offset;
2108 	int ret;
2109 
2110 	entry = le64_to_cpu(entry);
2111 
2112 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2113 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2114 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2115 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2116 
2117 	if (!valid)
2118 		return 1;
2119 
2120 	/* dte entry is valid */
2121 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2122 
2123 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2124 	if (IS_ERR(dev))
2125 		return PTR_ERR(dev);
2126 
2127 	ret = vgic_its_restore_itt(its, dev);
2128 	if (ret) {
2129 		vgic_its_free_device(its->dev->kvm, dev);
2130 		return ret;
2131 	}
2132 
2133 	return offset;
2134 }
2135 
vgic_its_device_cmp(void * priv,struct list_head * a,struct list_head * b)2136 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2137 			       struct list_head *b)
2138 {
2139 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2140 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2141 
2142 	if (deva->device_id < devb->device_id)
2143 		return -1;
2144 	else
2145 		return 1;
2146 }
2147 
2148 /**
2149  * vgic_its_save_device_tables - Save the device table and all ITT
2150  * into guest RAM
2151  *
2152  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2153  * returns the GPA of the device entry
2154  */
vgic_its_save_device_tables(struct vgic_its * its)2155 static int vgic_its_save_device_tables(struct vgic_its *its)
2156 {
2157 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2158 	u64 baser = its->baser_device_table;
2159 	struct its_device *dev;
2160 	int dte_esz = abi->dte_esz;
2161 
2162 	if (!(baser & GITS_BASER_VALID))
2163 		return 0;
2164 
2165 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2166 
2167 	list_for_each_entry(dev, &its->device_list, dev_list) {
2168 		int ret;
2169 		gpa_t eaddr;
2170 
2171 		if (!vgic_its_check_id(its, baser,
2172 				       dev->device_id, &eaddr))
2173 			return -EINVAL;
2174 
2175 		ret = vgic_its_save_itt(its, dev);
2176 		if (ret)
2177 			return ret;
2178 
2179 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2180 		if (ret)
2181 			return ret;
2182 	}
2183 	return 0;
2184 }
2185 
2186 /**
2187  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2188  *
2189  * @its: its handle
2190  * @id: index of the entry in the L1 table
2191  * @addr: kernel VA
2192  * @opaque: unused
2193  *
2194  * L1 table entries are scanned by steps of 1 entry
2195  * Return < 0 if error, 0 if last dte was found when scanning the L2
2196  * table, +1 otherwise (meaning next L1 entry must be scanned)
2197  */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2198 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2199 			 void *opaque)
2200 {
2201 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2202 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2203 	u64 entry = *(u64 *)addr;
2204 	int dte_esz = abi->dte_esz;
2205 	gpa_t gpa;
2206 	int ret;
2207 
2208 	entry = le64_to_cpu(entry);
2209 
2210 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2211 		return 1;
2212 
2213 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2214 
2215 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2216 			     l2_start_id, vgic_its_restore_dte, NULL);
2217 
2218 	return ret;
2219 }
2220 
2221 /**
2222  * vgic_its_restore_device_tables - Restore the device table and all ITT
2223  * from guest RAM to internal data structs
2224  */
vgic_its_restore_device_tables(struct vgic_its * its)2225 static int vgic_its_restore_device_tables(struct vgic_its *its)
2226 {
2227 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2228 	u64 baser = its->baser_device_table;
2229 	int l1_esz, ret;
2230 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2231 	gpa_t l1_gpa;
2232 
2233 	if (!(baser & GITS_BASER_VALID))
2234 		return 0;
2235 
2236 	l1_gpa = BASER_ADDRESS(baser);
2237 
2238 	if (baser & GITS_BASER_INDIRECT) {
2239 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2240 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2241 				     handle_l1_dte, NULL);
2242 	} else {
2243 		l1_esz = abi->dte_esz;
2244 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2245 				     vgic_its_restore_dte, NULL);
2246 	}
2247 
2248 	/* scan_its_table returns +1 if all entries are invalid */
2249 	if (ret > 0)
2250 		ret = 0;
2251 
2252 	return ret;
2253 }
2254 
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2255 static int vgic_its_save_cte(struct vgic_its *its,
2256 			     struct its_collection *collection,
2257 			     gpa_t gpa, int esz)
2258 {
2259 	u64 val;
2260 
2261 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2262 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2263 	       collection->collection_id);
2264 	val = cpu_to_le64(val);
2265 	return kvm_write_guest(its->dev->kvm, gpa, &val, esz);
2266 }
2267 
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2268 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2269 {
2270 	struct its_collection *collection;
2271 	struct kvm *kvm = its->dev->kvm;
2272 	u32 target_addr, coll_id;
2273 	u64 val;
2274 	int ret;
2275 
2276 	BUG_ON(esz > sizeof(val));
2277 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2278 	if (ret)
2279 		return ret;
2280 	val = le64_to_cpu(val);
2281 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2282 		return 0;
2283 
2284 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2285 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2286 
2287 	if (target_addr >= atomic_read(&kvm->online_vcpus))
2288 		return -EINVAL;
2289 
2290 	collection = find_collection(its, coll_id);
2291 	if (collection)
2292 		return -EEXIST;
2293 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2294 	if (ret)
2295 		return ret;
2296 	collection->target_addr = target_addr;
2297 	return 1;
2298 }
2299 
2300 /**
2301  * vgic_its_save_collection_table - Save the collection table into
2302  * guest RAM
2303  */
vgic_its_save_collection_table(struct vgic_its * its)2304 static int vgic_its_save_collection_table(struct vgic_its *its)
2305 {
2306 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2307 	u64 baser = its->baser_coll_table;
2308 	gpa_t gpa = BASER_ADDRESS(baser);
2309 	struct its_collection *collection;
2310 	u64 val;
2311 	size_t max_size, filled = 0;
2312 	int ret, cte_esz = abi->cte_esz;
2313 
2314 	if (!(baser & GITS_BASER_VALID))
2315 		return 0;
2316 
2317 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2318 
2319 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2320 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2321 		if (ret)
2322 			return ret;
2323 		gpa += cte_esz;
2324 		filled += cte_esz;
2325 	}
2326 
2327 	if (filled == max_size)
2328 		return 0;
2329 
2330 	/*
2331 	 * table is not fully filled, add a last dummy element
2332 	 * with valid bit unset
2333 	 */
2334 	val = 0;
2335 	BUG_ON(cte_esz > sizeof(val));
2336 	ret = kvm_write_guest(its->dev->kvm, gpa, &val, cte_esz);
2337 	return ret;
2338 }
2339 
2340 /**
2341  * vgic_its_restore_collection_table - reads the collection table
2342  * in guest memory and restores the ITS internal state. Requires the
2343  * BASER registers to be restored before.
2344  */
vgic_its_restore_collection_table(struct vgic_its * its)2345 static int vgic_its_restore_collection_table(struct vgic_its *its)
2346 {
2347 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2348 	u64 baser = its->baser_coll_table;
2349 	int cte_esz = abi->cte_esz;
2350 	size_t max_size, read = 0;
2351 	gpa_t gpa;
2352 	int ret;
2353 
2354 	if (!(baser & GITS_BASER_VALID))
2355 		return 0;
2356 
2357 	gpa = BASER_ADDRESS(baser);
2358 
2359 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2360 
2361 	while (read < max_size) {
2362 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2363 		if (ret <= 0)
2364 			break;
2365 		gpa += cte_esz;
2366 		read += cte_esz;
2367 	}
2368 
2369 	if (ret > 0)
2370 		return 0;
2371 
2372 	return ret;
2373 }
2374 
2375 /**
2376  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2377  * according to v0 ABI
2378  */
vgic_its_save_tables_v0(struct vgic_its * its)2379 static int vgic_its_save_tables_v0(struct vgic_its *its)
2380 {
2381 	int ret;
2382 
2383 	ret = vgic_its_save_device_tables(its);
2384 	if (ret)
2385 		return ret;
2386 
2387 	return vgic_its_save_collection_table(its);
2388 }
2389 
2390 /**
2391  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2392  * to internal data structs according to V0 ABI
2393  *
2394  */
vgic_its_restore_tables_v0(struct vgic_its * its)2395 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2396 {
2397 	int ret;
2398 
2399 	ret = vgic_its_restore_collection_table(its);
2400 	if (ret)
2401 		return ret;
2402 
2403 	return vgic_its_restore_device_tables(its);
2404 }
2405 
vgic_its_commit_v0(struct vgic_its * its)2406 static int vgic_its_commit_v0(struct vgic_its *its)
2407 {
2408 	const struct vgic_its_abi *abi;
2409 
2410 	abi = vgic_its_get_abi(its);
2411 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2412 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2413 
2414 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2415 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2416 
2417 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2418 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2419 	return 0;
2420 }
2421 
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2422 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2423 {
2424 	/* We need to keep the ABI specific field values */
2425 	its->baser_coll_table &= ~GITS_BASER_VALID;
2426 	its->baser_device_table &= ~GITS_BASER_VALID;
2427 	its->cbaser = 0;
2428 	its->creadr = 0;
2429 	its->cwriter = 0;
2430 	its->enabled = 0;
2431 	vgic_its_free_device_list(kvm, its);
2432 	vgic_its_free_collection_list(kvm, its);
2433 }
2434 
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2435 static int vgic_its_has_attr(struct kvm_device *dev,
2436 			     struct kvm_device_attr *attr)
2437 {
2438 	switch (attr->group) {
2439 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2440 		switch (attr->attr) {
2441 		case KVM_VGIC_ITS_ADDR_TYPE:
2442 			return 0;
2443 		}
2444 		break;
2445 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2446 		switch (attr->attr) {
2447 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2448 			return 0;
2449 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2450 			return 0;
2451 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2452 			return 0;
2453 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2454 			return 0;
2455 		}
2456 		break;
2457 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2458 		return vgic_its_has_attr_regs(dev, attr);
2459 	}
2460 	return -ENXIO;
2461 }
2462 
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2463 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2464 {
2465 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2466 	int ret = 0;
2467 
2468 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2469 		return 0;
2470 
2471 	mutex_lock(&kvm->lock);
2472 	mutex_lock(&its->its_lock);
2473 
2474 	if (!lock_all_vcpus(kvm)) {
2475 		mutex_unlock(&its->its_lock);
2476 		mutex_unlock(&kvm->lock);
2477 		return -EBUSY;
2478 	}
2479 
2480 	switch (attr) {
2481 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2482 		vgic_its_reset(kvm, its);
2483 		break;
2484 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2485 		ret = abi->save_tables(its);
2486 		break;
2487 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2488 		ret = abi->restore_tables(its);
2489 		break;
2490 	}
2491 
2492 	unlock_all_vcpus(kvm);
2493 	mutex_unlock(&its->its_lock);
2494 	mutex_unlock(&kvm->lock);
2495 	return ret;
2496 }
2497 
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2498 static int vgic_its_set_attr(struct kvm_device *dev,
2499 			     struct kvm_device_attr *attr)
2500 {
2501 	struct vgic_its *its = dev->private;
2502 	int ret;
2503 
2504 	switch (attr->group) {
2505 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2506 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2507 		unsigned long type = (unsigned long)attr->attr;
2508 		u64 addr;
2509 
2510 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2511 			return -ENODEV;
2512 
2513 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2514 			return -EFAULT;
2515 
2516 		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2517 					addr, SZ_64K);
2518 		if (ret)
2519 			return ret;
2520 
2521 		return vgic_register_its_iodev(dev->kvm, its, addr);
2522 	}
2523 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2524 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2525 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2526 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2527 		u64 reg;
2528 
2529 		if (get_user(reg, uaddr))
2530 			return -EFAULT;
2531 
2532 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2533 	}
2534 	}
2535 	return -ENXIO;
2536 }
2537 
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2538 static int vgic_its_get_attr(struct kvm_device *dev,
2539 			     struct kvm_device_attr *attr)
2540 {
2541 	switch (attr->group) {
2542 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2543 		struct vgic_its *its = dev->private;
2544 		u64 addr = its->vgic_its_base;
2545 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2546 		unsigned long type = (unsigned long)attr->attr;
2547 
2548 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2549 			return -ENODEV;
2550 
2551 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2552 			return -EFAULT;
2553 		break;
2554 	}
2555 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2556 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2557 		u64 reg;
2558 		int ret;
2559 
2560 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2561 		if (ret)
2562 			return ret;
2563 		return put_user(reg, uaddr);
2564 	}
2565 	default:
2566 		return -ENXIO;
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2573 	.name = "kvm-arm-vgic-its",
2574 	.create = vgic_its_create,
2575 	.destroy = vgic_its_destroy,
2576 	.set_attr = vgic_its_set_attr,
2577 	.get_attr = vgic_its_get_attr,
2578 	.has_attr = vgic_its_has_attr,
2579 };
2580 
kvm_vgic_register_its_device(void)2581 int kvm_vgic_register_its_device(void)
2582 {
2583 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2584 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2585 }
2586