1 /*
2 * linux/arch/arm/vfp/vfpmodule.c
3 *
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/types.h>
12 #include <linux/cpu.h>
13 #include <linux/cpu_pm.h>
14 #include <linux/hardirq.h>
15 #include <linux/kernel.h>
16 #include <linux/notifier.h>
17 #include <linux/signal.h>
18 #include <linux/sched/signal.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/uaccess.h>
22 #include <linux/user.h>
23 #include <linux/export.h>
24
25 #include <asm/cp15.h>
26 #include <asm/cputype.h>
27 #include <asm/system_info.h>
28 #include <asm/thread_notify.h>
29 #include <asm/vfp.h>
30
31 #include "vfpinstr.h"
32 #include "vfp.h"
33
34 /*
35 * Our undef handlers (in entry.S)
36 */
37 asmlinkage void vfp_testing_entry(void);
38 asmlinkage void vfp_support_entry(void);
39 asmlinkage void vfp_null_entry(void);
40
41 asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
42
43 /*
44 * Dual-use variable.
45 * Used in startup: set to non-zero if VFP checks fail
46 * After startup, holds VFP architecture
47 */
48 unsigned int VFP_arch;
49
50 /*
51 * The pointer to the vfpstate structure of the thread which currently
52 * owns the context held in the VFP hardware, or NULL if the hardware
53 * context is invalid.
54 *
55 * For UP, this is sufficient to tell which thread owns the VFP context.
56 * However, for SMP, we also need to check the CPU number stored in the
57 * saved state too to catch migrations.
58 */
59 union vfp_state *vfp_current_hw_state[NR_CPUS];
60
61 /*
62 * Is 'thread's most up to date state stored in this CPUs hardware?
63 * Must be called from non-preemptible context.
64 */
vfp_state_in_hw(unsigned int cpu,struct thread_info * thread)65 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
66 {
67 #ifdef CONFIG_SMP
68 if (thread->vfpstate.hard.cpu != cpu)
69 return false;
70 #endif
71 return vfp_current_hw_state[cpu] == &thread->vfpstate;
72 }
73
74 /*
75 * Force a reload of the VFP context from the thread structure. We do
76 * this by ensuring that access to the VFP hardware is disabled, and
77 * clear vfp_current_hw_state. Must be called from non-preemptible context.
78 */
vfp_force_reload(unsigned int cpu,struct thread_info * thread)79 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
80 {
81 if (vfp_state_in_hw(cpu, thread)) {
82 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
83 vfp_current_hw_state[cpu] = NULL;
84 }
85 #ifdef CONFIG_SMP
86 thread->vfpstate.hard.cpu = NR_CPUS;
87 #endif
88 }
89
90 /*
91 * Per-thread VFP initialization.
92 */
vfp_thread_flush(struct thread_info * thread)93 static void vfp_thread_flush(struct thread_info *thread)
94 {
95 union vfp_state *vfp = &thread->vfpstate;
96 unsigned int cpu;
97
98 /*
99 * Disable VFP to ensure we initialize it first. We must ensure
100 * that the modification of vfp_current_hw_state[] and hardware
101 * disable are done for the same CPU and without preemption.
102 *
103 * Do this first to ensure that preemption won't overwrite our
104 * state saving should access to the VFP be enabled at this point.
105 */
106 cpu = get_cpu();
107 if (vfp_current_hw_state[cpu] == vfp)
108 vfp_current_hw_state[cpu] = NULL;
109 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
110 put_cpu();
111
112 memset(vfp, 0, sizeof(union vfp_state));
113
114 vfp->hard.fpexc = FPEXC_EN;
115 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
116 #ifdef CONFIG_SMP
117 vfp->hard.cpu = NR_CPUS;
118 #endif
119 }
120
vfp_thread_exit(struct thread_info * thread)121 static void vfp_thread_exit(struct thread_info *thread)
122 {
123 /* release case: Per-thread VFP cleanup. */
124 union vfp_state *vfp = &thread->vfpstate;
125 unsigned int cpu = get_cpu();
126
127 if (vfp_current_hw_state[cpu] == vfp)
128 vfp_current_hw_state[cpu] = NULL;
129 put_cpu();
130 }
131
vfp_thread_copy(struct thread_info * thread)132 static void vfp_thread_copy(struct thread_info *thread)
133 {
134 struct thread_info *parent = current_thread_info();
135
136 vfp_sync_hwstate(parent);
137 thread->vfpstate = parent->vfpstate;
138 #ifdef CONFIG_SMP
139 thread->vfpstate.hard.cpu = NR_CPUS;
140 #endif
141 }
142
143 /*
144 * When this function is called with the following 'cmd's, the following
145 * is true while this function is being run:
146 * THREAD_NOFTIFY_SWTICH:
147 * - the previously running thread will not be scheduled onto another CPU.
148 * - the next thread to be run (v) will not be running on another CPU.
149 * - thread->cpu is the local CPU number
150 * - not preemptible as we're called in the middle of a thread switch
151 * THREAD_NOTIFY_FLUSH:
152 * - the thread (v) will be running on the local CPU, so
153 * v === current_thread_info()
154 * - thread->cpu is the local CPU number at the time it is accessed,
155 * but may change at any time.
156 * - we could be preempted if tree preempt rcu is enabled, so
157 * it is unsafe to use thread->cpu.
158 * THREAD_NOTIFY_EXIT
159 * - we could be preempted if tree preempt rcu is enabled, so
160 * it is unsafe to use thread->cpu.
161 */
vfp_notifier(struct notifier_block * self,unsigned long cmd,void * v)162 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
163 {
164 struct thread_info *thread = v;
165 u32 fpexc;
166 #ifdef CONFIG_SMP
167 unsigned int cpu;
168 #endif
169
170 switch (cmd) {
171 case THREAD_NOTIFY_SWITCH:
172 fpexc = fmrx(FPEXC);
173
174 #ifdef CONFIG_SMP
175 cpu = thread->cpu;
176
177 /*
178 * On SMP, if VFP is enabled, save the old state in
179 * case the thread migrates to a different CPU. The
180 * restoring is done lazily.
181 */
182 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
183 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
184 #endif
185
186 /*
187 * Always disable VFP so we can lazily save/restore the
188 * old state.
189 */
190 fmxr(FPEXC, fpexc & ~FPEXC_EN);
191 break;
192
193 case THREAD_NOTIFY_FLUSH:
194 vfp_thread_flush(thread);
195 break;
196
197 case THREAD_NOTIFY_EXIT:
198 vfp_thread_exit(thread);
199 break;
200
201 case THREAD_NOTIFY_COPY:
202 vfp_thread_copy(thread);
203 break;
204 }
205
206 return NOTIFY_DONE;
207 }
208
209 static struct notifier_block vfp_notifier_block = {
210 .notifier_call = vfp_notifier,
211 };
212
213 /*
214 * Raise a SIGFPE for the current process.
215 * sicode describes the signal being raised.
216 */
vfp_raise_sigfpe(unsigned int sicode,struct pt_regs * regs)217 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
218 {
219 siginfo_t info;
220
221 clear_siginfo(&info);
222 info.si_signo = SIGFPE;
223 info.si_code = sicode;
224 info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
225
226 /*
227 * This is the same as NWFPE, because it's not clear what
228 * this is used for
229 */
230 current->thread.error_code = 0;
231 current->thread.trap_no = 6;
232
233 send_sig_info(SIGFPE, &info, current);
234 }
235
vfp_panic(char * reason,u32 inst)236 static void vfp_panic(char *reason, u32 inst)
237 {
238 int i;
239
240 pr_err("VFP: Error: %s\n", reason);
241 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
242 fmrx(FPEXC), fmrx(FPSCR), inst);
243 for (i = 0; i < 32; i += 2)
244 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
245 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
246 }
247
248 /*
249 * Process bitmask of exception conditions.
250 */
vfp_raise_exceptions(u32 exceptions,u32 inst,u32 fpscr,struct pt_regs * regs)251 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
252 {
253 int si_code = 0;
254
255 pr_debug("VFP: raising exceptions %08x\n", exceptions);
256
257 if (exceptions == VFP_EXCEPTION_ERROR) {
258 vfp_panic("unhandled bounce", inst);
259 vfp_raise_sigfpe(FPE_FLTINV, regs);
260 return;
261 }
262
263 /*
264 * If any of the status flags are set, update the FPSCR.
265 * Comparison instructions always return at least one of
266 * these flags set.
267 */
268 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
269 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
270
271 fpscr |= exceptions;
272
273 fmxr(FPSCR, fpscr);
274
275 #define RAISE(stat,en,sig) \
276 if (exceptions & stat && fpscr & en) \
277 si_code = sig;
278
279 /*
280 * These are arranged in priority order, least to highest.
281 */
282 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
283 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
284 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
285 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
286 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
287
288 if (si_code)
289 vfp_raise_sigfpe(si_code, regs);
290 }
291
292 /*
293 * Emulate a VFP instruction.
294 */
vfp_emulate_instruction(u32 inst,u32 fpscr,struct pt_regs * regs)295 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
296 {
297 u32 exceptions = VFP_EXCEPTION_ERROR;
298
299 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
300
301 if (INST_CPRTDO(inst)) {
302 if (!INST_CPRT(inst)) {
303 /*
304 * CPDO
305 */
306 if (vfp_single(inst)) {
307 exceptions = vfp_single_cpdo(inst, fpscr);
308 } else {
309 exceptions = vfp_double_cpdo(inst, fpscr);
310 }
311 } else {
312 /*
313 * A CPRT instruction can not appear in FPINST2, nor
314 * can it cause an exception. Therefore, we do not
315 * have to emulate it.
316 */
317 }
318 } else {
319 /*
320 * A CPDT instruction can not appear in FPINST2, nor can
321 * it cause an exception. Therefore, we do not have to
322 * emulate it.
323 */
324 }
325 return exceptions & ~VFP_NAN_FLAG;
326 }
327
328 /*
329 * Package up a bounce condition.
330 */
VFP_bounce(u32 trigger,u32 fpexc,struct pt_regs * regs)331 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
332 {
333 u32 fpscr, orig_fpscr, fpsid, exceptions;
334
335 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
336
337 /*
338 * At this point, FPEXC can have the following configuration:
339 *
340 * EX DEX IXE
341 * 0 1 x - synchronous exception
342 * 1 x 0 - asynchronous exception
343 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
344 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
345 * implementation), undefined otherwise
346 *
347 * Clear various bits and enable access to the VFP so we can
348 * handle the bounce.
349 */
350 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
351
352 fpsid = fmrx(FPSID);
353 orig_fpscr = fpscr = fmrx(FPSCR);
354
355 /*
356 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
357 */
358 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
359 && (fpscr & FPSCR_IXE)) {
360 /*
361 * Synchronous exception, emulate the trigger instruction
362 */
363 goto emulate;
364 }
365
366 if (fpexc & FPEXC_EX) {
367 #ifndef CONFIG_CPU_FEROCEON
368 /*
369 * Asynchronous exception. The instruction is read from FPINST
370 * and the interrupted instruction has to be restarted.
371 */
372 trigger = fmrx(FPINST);
373 regs->ARM_pc -= 4;
374 #endif
375 } else if (!(fpexc & FPEXC_DEX)) {
376 /*
377 * Illegal combination of bits. It can be caused by an
378 * unallocated VFP instruction but with FPSCR.IXE set and not
379 * on VFP subarch 1.
380 */
381 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
382 goto exit;
383 }
384
385 /*
386 * Modify fpscr to indicate the number of iterations remaining.
387 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
388 * whether FPEXC.VECITR or FPSCR.LEN is used.
389 */
390 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
391 u32 len;
392
393 len = fpexc + (1 << FPEXC_LENGTH_BIT);
394
395 fpscr &= ~FPSCR_LENGTH_MASK;
396 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
397 }
398
399 /*
400 * Handle the first FP instruction. We used to take note of the
401 * FPEXC bounce reason, but this appears to be unreliable.
402 * Emulate the bounced instruction instead.
403 */
404 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
405 if (exceptions)
406 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
407
408 /*
409 * If there isn't a second FP instruction, exit now. Note that
410 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
411 */
412 if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
413 goto exit;
414
415 /*
416 * The barrier() here prevents fpinst2 being read
417 * before the condition above.
418 */
419 barrier();
420 trigger = fmrx(FPINST2);
421
422 emulate:
423 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
424 if (exceptions)
425 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
426 exit:
427 preempt_enable();
428 }
429
vfp_enable(void * unused)430 static void vfp_enable(void *unused)
431 {
432 u32 access;
433
434 BUG_ON(preemptible());
435 access = get_copro_access();
436
437 /*
438 * Enable full access to VFP (cp10 and cp11)
439 */
440 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
441 }
442
443 /* Called by platforms on which we want to disable VFP because it may not be
444 * present on all CPUs within a SMP complex. Needs to be called prior to
445 * vfp_init().
446 */
vfp_disable(void)447 void vfp_disable(void)
448 {
449 if (VFP_arch) {
450 pr_debug("%s: should be called prior to vfp_init\n", __func__);
451 return;
452 }
453 VFP_arch = 1;
454 }
455
456 #ifdef CONFIG_CPU_PM
vfp_pm_suspend(void)457 static int vfp_pm_suspend(void)
458 {
459 struct thread_info *ti = current_thread_info();
460 u32 fpexc = fmrx(FPEXC);
461
462 /* if vfp is on, then save state for resumption */
463 if (fpexc & FPEXC_EN) {
464 pr_debug("%s: saving vfp state\n", __func__);
465 vfp_save_state(&ti->vfpstate, fpexc);
466
467 /* disable, just in case */
468 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
469 } else if (vfp_current_hw_state[ti->cpu]) {
470 #ifndef CONFIG_SMP
471 fmxr(FPEXC, fpexc | FPEXC_EN);
472 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
473 fmxr(FPEXC, fpexc);
474 #endif
475 }
476
477 /* clear any information we had about last context state */
478 vfp_current_hw_state[ti->cpu] = NULL;
479
480 return 0;
481 }
482
vfp_pm_resume(void)483 static void vfp_pm_resume(void)
484 {
485 /* ensure we have access to the vfp */
486 vfp_enable(NULL);
487
488 /* and disable it to ensure the next usage restores the state */
489 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
490 }
491
vfp_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)492 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
493 void *v)
494 {
495 switch (cmd) {
496 case CPU_PM_ENTER:
497 vfp_pm_suspend();
498 break;
499 case CPU_PM_ENTER_FAILED:
500 case CPU_PM_EXIT:
501 vfp_pm_resume();
502 break;
503 }
504 return NOTIFY_OK;
505 }
506
507 static struct notifier_block vfp_cpu_pm_notifier_block = {
508 .notifier_call = vfp_cpu_pm_notifier,
509 };
510
vfp_pm_init(void)511 static void vfp_pm_init(void)
512 {
513 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
514 }
515
516 #else
vfp_pm_init(void)517 static inline void vfp_pm_init(void) { }
518 #endif /* CONFIG_CPU_PM */
519
520 /*
521 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
522 * with the hardware state.
523 */
vfp_sync_hwstate(struct thread_info * thread)524 void vfp_sync_hwstate(struct thread_info *thread)
525 {
526 unsigned int cpu = get_cpu();
527
528 if (vfp_state_in_hw(cpu, thread)) {
529 u32 fpexc = fmrx(FPEXC);
530
531 /*
532 * Save the last VFP state on this CPU.
533 */
534 fmxr(FPEXC, fpexc | FPEXC_EN);
535 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
536 fmxr(FPEXC, fpexc);
537 }
538
539 put_cpu();
540 }
541
542 /* Ensure that the thread reloads the hardware VFP state on the next use. */
vfp_flush_hwstate(struct thread_info * thread)543 void vfp_flush_hwstate(struct thread_info *thread)
544 {
545 unsigned int cpu = get_cpu();
546
547 vfp_force_reload(cpu, thread);
548
549 put_cpu();
550 }
551
552 /*
553 * Save the current VFP state into the provided structures and prepare
554 * for entry into a new function (signal handler).
555 */
vfp_preserve_user_clear_hwstate(struct user_vfp __user * ufp,struct user_vfp_exc __user * ufp_exc)556 int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp,
557 struct user_vfp_exc __user *ufp_exc)
558 {
559 struct thread_info *thread = current_thread_info();
560 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
561 int err = 0;
562
563 /* Ensure that the saved hwstate is up-to-date. */
564 vfp_sync_hwstate(thread);
565
566 /*
567 * Copy the floating point registers. There can be unused
568 * registers see asm/hwcap.h for details.
569 */
570 err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs,
571 sizeof(hwstate->fpregs));
572 /*
573 * Copy the status and control register.
574 */
575 __put_user_error(hwstate->fpscr, &ufp->fpscr, err);
576
577 /*
578 * Copy the exception registers.
579 */
580 __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err);
581 __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err);
582 __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err);
583
584 if (err)
585 return -EFAULT;
586
587 /* Ensure that VFP is disabled. */
588 vfp_flush_hwstate(thread);
589
590 /*
591 * As per the PCS, clear the length and stride bits for function
592 * entry.
593 */
594 hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
595 return 0;
596 }
597
598 /* Sanitise and restore the current VFP state from the provided structures. */
vfp_restore_user_hwstate(struct user_vfp * ufp,struct user_vfp_exc * ufp_exc)599 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
600 {
601 struct thread_info *thread = current_thread_info();
602 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
603 unsigned long fpexc;
604
605 /* Disable VFP to avoid corrupting the new thread state. */
606 vfp_flush_hwstate(thread);
607
608 /*
609 * Copy the floating point registers. There can be unused
610 * registers see asm/hwcap.h for details.
611 */
612 memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
613 /*
614 * Copy the status and control register.
615 */
616 hwstate->fpscr = ufp->fpscr;
617
618 /*
619 * Sanitise and restore the exception registers.
620 */
621 fpexc = ufp_exc->fpexc;
622
623 /* Ensure the VFP is enabled. */
624 fpexc |= FPEXC_EN;
625
626 /* Ensure FPINST2 is invalid and the exception flag is cleared. */
627 fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
628 hwstate->fpexc = fpexc;
629
630 hwstate->fpinst = ufp_exc->fpinst;
631 hwstate->fpinst2 = ufp_exc->fpinst2;
632
633 return 0;
634 }
635
636 /*
637 * VFP hardware can lose all context when a CPU goes offline.
638 * As we will be running in SMP mode with CPU hotplug, we will save the
639 * hardware state at every thread switch. We clear our held state when
640 * a CPU has been killed, indicating that the VFP hardware doesn't contain
641 * a threads VFP state. When a CPU starts up, we re-enable access to the
642 * VFP hardware. The callbacks below are called on the CPU which
643 * is being offlined/onlined.
644 */
vfp_dying_cpu(unsigned int cpu)645 static int vfp_dying_cpu(unsigned int cpu)
646 {
647 vfp_current_hw_state[cpu] = NULL;
648 return 0;
649 }
650
vfp_starting_cpu(unsigned int unused)651 static int vfp_starting_cpu(unsigned int unused)
652 {
653 vfp_enable(NULL);
654 return 0;
655 }
656
vfp_kmode_exception(void)657 void vfp_kmode_exception(void)
658 {
659 /*
660 * If we reach this point, a floating point exception has been raised
661 * while running in kernel mode. If the NEON/VFP unit was enabled at the
662 * time, it means a VFP instruction has been issued that requires
663 * software assistance to complete, something which is not currently
664 * supported in kernel mode.
665 * If the NEON/VFP unit was disabled, and the location pointed to below
666 * is properly preceded by a call to kernel_neon_begin(), something has
667 * caused the task to be scheduled out and back in again. In this case,
668 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
669 * be helpful in localizing the problem.
670 */
671 if (fmrx(FPEXC) & FPEXC_EN)
672 pr_crit("BUG: unsupported FP instruction in kernel mode\n");
673 else
674 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
675 }
676
677 #ifdef CONFIG_KERNEL_MODE_NEON
678
679 /*
680 * Kernel-side NEON support functions
681 */
kernel_neon_begin(void)682 void kernel_neon_begin(void)
683 {
684 struct thread_info *thread = current_thread_info();
685 unsigned int cpu;
686 u32 fpexc;
687
688 /*
689 * Kernel mode NEON is only allowed outside of interrupt context
690 * with preemption disabled. This will make sure that the kernel
691 * mode NEON register contents never need to be preserved.
692 */
693 BUG_ON(in_interrupt());
694 cpu = get_cpu();
695
696 fpexc = fmrx(FPEXC) | FPEXC_EN;
697 fmxr(FPEXC, fpexc);
698
699 /*
700 * Save the userland NEON/VFP state. Under UP,
701 * the owner could be a task other than 'current'
702 */
703 if (vfp_state_in_hw(cpu, thread))
704 vfp_save_state(&thread->vfpstate, fpexc);
705 #ifndef CONFIG_SMP
706 else if (vfp_current_hw_state[cpu] != NULL)
707 vfp_save_state(vfp_current_hw_state[cpu], fpexc);
708 #endif
709 vfp_current_hw_state[cpu] = NULL;
710 }
711 EXPORT_SYMBOL(kernel_neon_begin);
712
kernel_neon_end(void)713 void kernel_neon_end(void)
714 {
715 /* Disable the NEON/VFP unit. */
716 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
717 put_cpu();
718 }
719 EXPORT_SYMBOL(kernel_neon_end);
720
721 #endif /* CONFIG_KERNEL_MODE_NEON */
722
723 /*
724 * VFP support code initialisation.
725 */
vfp_init(void)726 static int __init vfp_init(void)
727 {
728 unsigned int vfpsid;
729 unsigned int cpu_arch = cpu_architecture();
730
731 /*
732 * Enable the access to the VFP on all online CPUs so the
733 * following test on FPSID will succeed.
734 */
735 if (cpu_arch >= CPU_ARCH_ARMv6)
736 on_each_cpu(vfp_enable, NULL, 1);
737
738 /*
739 * First check that there is a VFP that we can use.
740 * The handler is already setup to just log calls, so
741 * we just need to read the VFPSID register.
742 */
743 vfp_vector = vfp_testing_entry;
744 barrier();
745 vfpsid = fmrx(FPSID);
746 barrier();
747 vfp_vector = vfp_null_entry;
748
749 pr_info("VFP support v0.3: ");
750 if (VFP_arch) {
751 pr_cont("not present\n");
752 return 0;
753 /* Extract the architecture on CPUID scheme */
754 } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
755 VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
756 VFP_arch >>= FPSID_ARCH_BIT;
757 /*
758 * Check for the presence of the Advanced SIMD
759 * load/store instructions, integer and single
760 * precision floating point operations. Only check
761 * for NEON if the hardware has the MVFR registers.
762 */
763 if (IS_ENABLED(CONFIG_NEON) &&
764 (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
765 elf_hwcap |= HWCAP_NEON;
766
767 if (IS_ENABLED(CONFIG_VFPv3)) {
768 u32 mvfr0 = fmrx(MVFR0);
769 if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
770 ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
771 elf_hwcap |= HWCAP_VFPv3;
772 /*
773 * Check for VFPv3 D16 and VFPv4 D16. CPUs in
774 * this configuration only have 16 x 64bit
775 * registers.
776 */
777 if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
778 /* also v4-D16 */
779 elf_hwcap |= HWCAP_VFPv3D16;
780 else
781 elf_hwcap |= HWCAP_VFPD32;
782 }
783
784 if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
785 elf_hwcap |= HWCAP_VFPv4;
786 }
787 /* Extract the architecture version on pre-cpuid scheme */
788 } else {
789 if (vfpsid & FPSID_NODOUBLE) {
790 pr_cont("no double precision support\n");
791 return 0;
792 }
793
794 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
795 }
796
797 cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
798 "arm/vfp:starting", vfp_starting_cpu,
799 vfp_dying_cpu);
800
801 vfp_vector = vfp_support_entry;
802
803 thread_register_notifier(&vfp_notifier_block);
804 vfp_pm_init();
805
806 /*
807 * We detected VFP, and the support code is
808 * in place; report VFP support to userspace.
809 */
810 elf_hwcap |= HWCAP_VFP;
811
812 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
813 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
814 VFP_arch,
815 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
816 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
817 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
818
819 return 0;
820 }
821
822 core_initcall(vfp_init);
823