1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VFIO PCI config space virtualization
4 *
5 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
6 * Author: Alex Williamson <alex.williamson@redhat.com>
7 *
8 * Derived from original vfio:
9 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
10 * Author: Tom Lyon, pugs@cisco.com
11 */
12
13 /*
14 * This code handles reading and writing of PCI configuration registers.
15 * This is hairy because we want to allow a lot of flexibility to the
16 * user driver, but cannot trust it with all of the config fields.
17 * Tables determine which fields can be read and written, as well as
18 * which fields are 'virtualized' - special actions and translations to
19 * make it appear to the user that he has control, when in fact things
20 * must be negotiated with the underlying OS.
21 */
22
23 #include <linux/fs.h>
24 #include <linux/pci.h>
25 #include <linux/uaccess.h>
26 #include <linux/vfio.h>
27 #include <linux/slab.h>
28
29 #include "vfio_pci_private.h"
30
31 /* Fake capability ID for standard config space */
32 #define PCI_CAP_ID_BASIC 0
33
34 #define is_bar(offset) \
35 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
36 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
37
38 /*
39 * Lengths of PCI Config Capabilities
40 * 0: Removed from the user visible capability list
41 * FF: Variable length
42 */
43 static const u8 pci_cap_length[PCI_CAP_ID_MAX + 1] = {
44 [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
45 [PCI_CAP_ID_PM] = PCI_PM_SIZEOF,
46 [PCI_CAP_ID_AGP] = PCI_AGP_SIZEOF,
47 [PCI_CAP_ID_VPD] = PCI_CAP_VPD_SIZEOF,
48 [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
49 [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
50 [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
51 [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
52 [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
53 [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
54 [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
55 [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
56 [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
57 [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
58 [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
59 [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
60 [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
61 [PCI_CAP_ID_MSIX] = PCI_CAP_MSIX_SIZEOF,
62 [PCI_CAP_ID_SATA] = 0xFF,
63 [PCI_CAP_ID_AF] = PCI_CAP_AF_SIZEOF,
64 };
65
66 /*
67 * Lengths of PCIe/PCI-X Extended Config Capabilities
68 * 0: Removed or masked from the user visible capability list
69 * FF: Variable length
70 */
71 static const u16 pci_ext_cap_length[PCI_EXT_CAP_ID_MAX + 1] = {
72 [PCI_EXT_CAP_ID_ERR] = PCI_ERR_ROOT_COMMAND,
73 [PCI_EXT_CAP_ID_VC] = 0xFF,
74 [PCI_EXT_CAP_ID_DSN] = PCI_EXT_CAP_DSN_SIZEOF,
75 [PCI_EXT_CAP_ID_PWR] = PCI_EXT_CAP_PWR_SIZEOF,
76 [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
77 [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
78 [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
79 [PCI_EXT_CAP_ID_MFVC] = 0xFF,
80 [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
81 [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_VNDR] = 0xFF,
83 [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
84 [PCI_EXT_CAP_ID_ACS] = 0xFF,
85 [PCI_EXT_CAP_ID_ARI] = PCI_EXT_CAP_ARI_SIZEOF,
86 [PCI_EXT_CAP_ID_ATS] = PCI_EXT_CAP_ATS_SIZEOF,
87 [PCI_EXT_CAP_ID_SRIOV] = PCI_EXT_CAP_SRIOV_SIZEOF,
88 [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
89 [PCI_EXT_CAP_ID_MCAST] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
90 [PCI_EXT_CAP_ID_PRI] = PCI_EXT_CAP_PRI_SIZEOF,
91 [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_REBAR] = 0xFF,
93 [PCI_EXT_CAP_ID_DPA] = 0xFF,
94 [PCI_EXT_CAP_ID_TPH] = 0xFF,
95 [PCI_EXT_CAP_ID_LTR] = PCI_EXT_CAP_LTR_SIZEOF,
96 [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
97 [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
98 [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
99 };
100
101 /*
102 * Read/Write Permission Bits - one bit for each bit in capability
103 * Any field can be read if it exists, but what is read depends on
104 * whether the field is 'virtualized', or just pass thru to the
105 * hardware. Any virtualized field is also virtualized for writes.
106 * Writes are only permitted if they have a 1 bit here.
107 */
108 struct perm_bits {
109 u8 *virt; /* read/write virtual data, not hw */
110 u8 *write; /* writeable bits */
111 int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
112 struct perm_bits *perm, int offset, __le32 *val);
113 int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
114 struct perm_bits *perm, int offset, __le32 val);
115 };
116
117 #define NO_VIRT 0
118 #define ALL_VIRT 0xFFFFFFFFU
119 #define NO_WRITE 0
120 #define ALL_WRITE 0xFFFFFFFFU
121
vfio_user_config_read(struct pci_dev * pdev,int offset,__le32 * val,int count)122 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
123 __le32 *val, int count)
124 {
125 int ret = -EINVAL;
126 u32 tmp_val = 0;
127
128 switch (count) {
129 case 1:
130 {
131 u8 tmp;
132 ret = pci_user_read_config_byte(pdev, offset, &tmp);
133 tmp_val = tmp;
134 break;
135 }
136 case 2:
137 {
138 u16 tmp;
139 ret = pci_user_read_config_word(pdev, offset, &tmp);
140 tmp_val = tmp;
141 break;
142 }
143 case 4:
144 ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
145 break;
146 }
147
148 *val = cpu_to_le32(tmp_val);
149
150 return ret;
151 }
152
vfio_user_config_write(struct pci_dev * pdev,int offset,__le32 val,int count)153 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
154 __le32 val, int count)
155 {
156 int ret = -EINVAL;
157 u32 tmp_val = le32_to_cpu(val);
158
159 switch (count) {
160 case 1:
161 ret = pci_user_write_config_byte(pdev, offset, tmp_val);
162 break;
163 case 2:
164 ret = pci_user_write_config_word(pdev, offset, tmp_val);
165 break;
166 case 4:
167 ret = pci_user_write_config_dword(pdev, offset, tmp_val);
168 break;
169 }
170
171 return ret;
172 }
173
vfio_default_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)174 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
175 int count, struct perm_bits *perm,
176 int offset, __le32 *val)
177 {
178 __le32 virt = 0;
179
180 memcpy(val, vdev->vconfig + pos, count);
181
182 memcpy(&virt, perm->virt + offset, count);
183
184 /* Any non-virtualized bits? */
185 if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
186 struct pci_dev *pdev = vdev->pdev;
187 __le32 phys_val = 0;
188 int ret;
189
190 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
191 if (ret)
192 return ret;
193
194 *val = (phys_val & ~virt) | (*val & virt);
195 }
196
197 return count;
198 }
199
vfio_default_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)200 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
201 int count, struct perm_bits *perm,
202 int offset, __le32 val)
203 {
204 __le32 virt = 0, write = 0;
205
206 memcpy(&write, perm->write + offset, count);
207
208 if (!write)
209 return count; /* drop, no writable bits */
210
211 memcpy(&virt, perm->virt + offset, count);
212
213 /* Virtualized and writable bits go to vconfig */
214 if (write & virt) {
215 __le32 virt_val = 0;
216
217 memcpy(&virt_val, vdev->vconfig + pos, count);
218
219 virt_val &= ~(write & virt);
220 virt_val |= (val & (write & virt));
221
222 memcpy(vdev->vconfig + pos, &virt_val, count);
223 }
224
225 /* Non-virtualzed and writable bits go to hardware */
226 if (write & ~virt) {
227 struct pci_dev *pdev = vdev->pdev;
228 __le32 phys_val = 0;
229 int ret;
230
231 ret = vfio_user_config_read(pdev, pos, &phys_val, count);
232 if (ret)
233 return ret;
234
235 phys_val &= ~(write & ~virt);
236 phys_val |= (val & (write & ~virt));
237
238 ret = vfio_user_config_write(pdev, pos, phys_val, count);
239 if (ret)
240 return ret;
241 }
242
243 return count;
244 }
245
246 /* Allow direct read from hardware, except for capability next pointer */
vfio_direct_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)247 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
248 int count, struct perm_bits *perm,
249 int offset, __le32 *val)
250 {
251 int ret;
252
253 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
254 if (ret)
255 return ret;
256
257 if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
258 if (offset < 4)
259 memcpy(val, vdev->vconfig + pos, count);
260 } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
261 if (offset == PCI_CAP_LIST_ID && count > 1)
262 memcpy(val, vdev->vconfig + pos,
263 min(PCI_CAP_FLAGS, count));
264 else if (offset == PCI_CAP_LIST_NEXT)
265 memcpy(val, vdev->vconfig + pos, 1);
266 }
267
268 return count;
269 }
270
271 /* Raw access skips any kind of virtualization */
vfio_raw_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)272 static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
273 int count, struct perm_bits *perm,
274 int offset, __le32 val)
275 {
276 int ret;
277
278 ret = vfio_user_config_write(vdev->pdev, pos, val, count);
279 if (ret)
280 return ret;
281
282 return count;
283 }
284
vfio_raw_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)285 static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
286 int count, struct perm_bits *perm,
287 int offset, __le32 *val)
288 {
289 int ret;
290
291 ret = vfio_user_config_read(vdev->pdev, pos, val, count);
292 if (ret)
293 return ret;
294
295 return count;
296 }
297
298 /* Virt access uses only virtualization */
vfio_virt_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)299 static int vfio_virt_config_write(struct vfio_pci_device *vdev, int pos,
300 int count, struct perm_bits *perm,
301 int offset, __le32 val)
302 {
303 memcpy(vdev->vconfig + pos, &val, count);
304 return count;
305 }
306
vfio_virt_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)307 static int vfio_virt_config_read(struct vfio_pci_device *vdev, int pos,
308 int count, struct perm_bits *perm,
309 int offset, __le32 *val)
310 {
311 memcpy(val, vdev->vconfig + pos, count);
312 return count;
313 }
314
315 /* Default capability regions to read-only, no-virtualization */
316 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
317 [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
318 };
319 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
320 [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
321 };
322 /*
323 * Default unassigned regions to raw read-write access. Some devices
324 * require this to function as they hide registers between the gaps in
325 * config space (be2net). Like MMIO and I/O port registers, we have
326 * to trust the hardware isolation.
327 */
328 static struct perm_bits unassigned_perms = {
329 .readfn = vfio_raw_config_read,
330 .writefn = vfio_raw_config_write
331 };
332
333 static struct perm_bits virt_perms = {
334 .readfn = vfio_virt_config_read,
335 .writefn = vfio_virt_config_write
336 };
337
free_perm_bits(struct perm_bits * perm)338 static void free_perm_bits(struct perm_bits *perm)
339 {
340 kfree(perm->virt);
341 kfree(perm->write);
342 perm->virt = NULL;
343 perm->write = NULL;
344 }
345
alloc_perm_bits(struct perm_bits * perm,int size)346 static int alloc_perm_bits(struct perm_bits *perm, int size)
347 {
348 /*
349 * Round up all permission bits to the next dword, this lets us
350 * ignore whether a read/write exceeds the defined capability
351 * structure. We can do this because:
352 * - Standard config space is already dword aligned
353 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
354 * - Express capabilities defined as dword aligned
355 */
356 size = round_up(size, 4);
357
358 /*
359 * Zero state is
360 * - All Readable, None Writeable, None Virtualized
361 */
362 perm->virt = kzalloc(size, GFP_KERNEL);
363 perm->write = kzalloc(size, GFP_KERNEL);
364 if (!perm->virt || !perm->write) {
365 free_perm_bits(perm);
366 return -ENOMEM;
367 }
368
369 perm->readfn = vfio_default_config_read;
370 perm->writefn = vfio_default_config_write;
371
372 return 0;
373 }
374
375 /*
376 * Helper functions for filling in permission tables
377 */
p_setb(struct perm_bits * p,int off,u8 virt,u8 write)378 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
379 {
380 p->virt[off] = virt;
381 p->write[off] = write;
382 }
383
384 /* Handle endian-ness - pci and tables are little-endian */
p_setw(struct perm_bits * p,int off,u16 virt,u16 write)385 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
386 {
387 *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
388 *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
389 }
390
391 /* Handle endian-ness - pci and tables are little-endian */
p_setd(struct perm_bits * p,int off,u32 virt,u32 write)392 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
393 {
394 *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
395 *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
396 }
397
398 /*
399 * Restore the *real* BARs after we detect a FLR or backdoor reset.
400 * (backdoor = some device specific technique that we didn't catch)
401 */
vfio_bar_restore(struct vfio_pci_device * vdev)402 static void vfio_bar_restore(struct vfio_pci_device *vdev)
403 {
404 struct pci_dev *pdev = vdev->pdev;
405 u32 *rbar = vdev->rbar;
406 u16 cmd;
407 int i;
408
409 if (pdev->is_virtfn)
410 return;
411
412 pci_info(pdev, "%s: reset recovery - restoring BARs\n", __func__);
413
414 for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
415 pci_user_write_config_dword(pdev, i, *rbar);
416
417 pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
418
419 if (vdev->nointx) {
420 pci_user_read_config_word(pdev, PCI_COMMAND, &cmd);
421 cmd |= PCI_COMMAND_INTX_DISABLE;
422 pci_user_write_config_word(pdev, PCI_COMMAND, cmd);
423 }
424 }
425
vfio_generate_bar_flags(struct pci_dev * pdev,int bar)426 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
427 {
428 unsigned long flags = pci_resource_flags(pdev, bar);
429 u32 val;
430
431 if (flags & IORESOURCE_IO)
432 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
433
434 val = PCI_BASE_ADDRESS_SPACE_MEMORY;
435
436 if (flags & IORESOURCE_PREFETCH)
437 val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
438
439 if (flags & IORESOURCE_MEM_64)
440 val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
441
442 return cpu_to_le32(val);
443 }
444
445 /*
446 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
447 * to reflect the hardware capabilities. This implements BAR sizing.
448 */
vfio_bar_fixup(struct vfio_pci_device * vdev)449 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
450 {
451 struct pci_dev *pdev = vdev->pdev;
452 int i;
453 __le32 *bar;
454 u64 mask;
455
456 bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
457
458 for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
459 if (!pci_resource_start(pdev, i)) {
460 *bar = 0; /* Unmapped by host = unimplemented to user */
461 continue;
462 }
463
464 mask = ~(pci_resource_len(pdev, i) - 1);
465
466 *bar &= cpu_to_le32((u32)mask);
467 *bar |= vfio_generate_bar_flags(pdev, i);
468
469 if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
470 bar++;
471 *bar &= cpu_to_le32((u32)(mask >> 32));
472 i++;
473 }
474 }
475
476 bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
477
478 /*
479 * NB. REGION_INFO will have reported zero size if we weren't able
480 * to read the ROM, but we still return the actual BAR size here if
481 * it exists (or the shadow ROM space).
482 */
483 if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
484 mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
485 mask |= PCI_ROM_ADDRESS_ENABLE;
486 *bar &= cpu_to_le32((u32)mask);
487 } else if (pdev->resource[PCI_ROM_RESOURCE].flags &
488 IORESOURCE_ROM_SHADOW) {
489 mask = ~(0x20000 - 1);
490 mask |= PCI_ROM_ADDRESS_ENABLE;
491 *bar &= cpu_to_le32((u32)mask);
492 } else
493 *bar = 0;
494
495 vdev->bardirty = false;
496 }
497
vfio_basic_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)498 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
499 int count, struct perm_bits *perm,
500 int offset, __le32 *val)
501 {
502 if (is_bar(offset)) /* pos == offset for basic config */
503 vfio_bar_fixup(vdev);
504
505 count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
506
507 /* Mask in virtual memory enable for SR-IOV devices */
508 if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
509 u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
510 u32 tmp_val = le32_to_cpu(*val);
511
512 tmp_val |= cmd & PCI_COMMAND_MEMORY;
513 *val = cpu_to_le32(tmp_val);
514 }
515
516 return count;
517 }
518
519 /* Test whether BARs match the value we think they should contain */
vfio_need_bar_restore(struct vfio_pci_device * vdev)520 static bool vfio_need_bar_restore(struct vfio_pci_device *vdev)
521 {
522 int i = 0, pos = PCI_BASE_ADDRESS_0, ret;
523 u32 bar;
524
525 for (; pos <= PCI_BASE_ADDRESS_5; i++, pos += 4) {
526 if (vdev->rbar[i]) {
527 ret = pci_user_read_config_dword(vdev->pdev, pos, &bar);
528 if (ret || vdev->rbar[i] != bar)
529 return true;
530 }
531 }
532
533 return false;
534 }
535
vfio_basic_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)536 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
537 int count, struct perm_bits *perm,
538 int offset, __le32 val)
539 {
540 struct pci_dev *pdev = vdev->pdev;
541 __le16 *virt_cmd;
542 u16 new_cmd = 0;
543 int ret;
544
545 virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
546
547 if (offset == PCI_COMMAND) {
548 bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
549 u16 phys_cmd;
550
551 ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
552 if (ret)
553 return ret;
554
555 new_cmd = le32_to_cpu(val);
556
557 phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
558 virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
559 new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
560
561 phys_io = !!(phys_cmd & PCI_COMMAND_IO);
562 virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
563 new_io = !!(new_cmd & PCI_COMMAND_IO);
564
565 /*
566 * If the user is writing mem/io enable (new_mem/io) and we
567 * think it's already enabled (virt_mem/io), but the hardware
568 * shows it disabled (phys_mem/io, then the device has
569 * undergone some kind of backdoor reset and needs to be
570 * restored before we allow it to enable the bars.
571 * SR-IOV devices will trigger this, but we catch them later
572 */
573 if ((new_mem && virt_mem && !phys_mem) ||
574 (new_io && virt_io && !phys_io) ||
575 vfio_need_bar_restore(vdev))
576 vfio_bar_restore(vdev);
577 }
578
579 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
580 if (count < 0)
581 return count;
582
583 /*
584 * Save current memory/io enable bits in vconfig to allow for
585 * the test above next time.
586 */
587 if (offset == PCI_COMMAND) {
588 u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
589
590 *virt_cmd &= cpu_to_le16(~mask);
591 *virt_cmd |= cpu_to_le16(new_cmd & mask);
592 }
593
594 /* Emulate INTx disable */
595 if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
596 bool virt_intx_disable;
597
598 virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
599 PCI_COMMAND_INTX_DISABLE);
600
601 if (virt_intx_disable && !vdev->virq_disabled) {
602 vdev->virq_disabled = true;
603 vfio_pci_intx_mask(vdev);
604 } else if (!virt_intx_disable && vdev->virq_disabled) {
605 vdev->virq_disabled = false;
606 vfio_pci_intx_unmask(vdev);
607 }
608 }
609
610 if (is_bar(offset))
611 vdev->bardirty = true;
612
613 return count;
614 }
615
616 /* Permissions for the Basic PCI Header */
init_pci_cap_basic_perm(struct perm_bits * perm)617 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
618 {
619 if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
620 return -ENOMEM;
621
622 perm->readfn = vfio_basic_config_read;
623 perm->writefn = vfio_basic_config_write;
624
625 /* Virtualized for SR-IOV functions, which just have FFFF */
626 p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
627 p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
628
629 /*
630 * Virtualize INTx disable, we use it internally for interrupt
631 * control and can emulate it for non-PCI 2.3 devices.
632 */
633 p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
634
635 /* Virtualize capability list, we might want to skip/disable */
636 p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
637
638 /* No harm to write */
639 p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
640 p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
641 p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
642
643 /* Virtualize all bars, can't touch the real ones */
644 p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
645 p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
646 p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
647 p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
648 p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
649 p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
650 p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
651
652 /* Allow us to adjust capability chain */
653 p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
654
655 /* Sometimes used by sw, just virtualize */
656 p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
657
658 /* Virtualize interrupt pin to allow hiding INTx */
659 p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
660
661 return 0;
662 }
663
vfio_pm_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)664 static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
665 int count, struct perm_bits *perm,
666 int offset, __le32 val)
667 {
668 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
669 if (count < 0)
670 return count;
671
672 if (offset == PCI_PM_CTRL) {
673 pci_power_t state;
674
675 switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
676 case 0:
677 state = PCI_D0;
678 break;
679 case 1:
680 state = PCI_D1;
681 break;
682 case 2:
683 state = PCI_D2;
684 break;
685 case 3:
686 state = PCI_D3hot;
687 break;
688 }
689
690 vfio_pci_set_power_state(vdev, state);
691 }
692
693 return count;
694 }
695
696 /* Permissions for the Power Management capability */
init_pci_cap_pm_perm(struct perm_bits * perm)697 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
698 {
699 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
700 return -ENOMEM;
701
702 perm->writefn = vfio_pm_config_write;
703
704 /*
705 * We always virtualize the next field so we can remove
706 * capabilities from the chain if we want to.
707 */
708 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
709
710 /*
711 * Power management is defined *per function*, so we can let
712 * the user change power state, but we trap and initiate the
713 * change ourselves, so the state bits are read-only.
714 */
715 p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
716 return 0;
717 }
718
vfio_vpd_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)719 static int vfio_vpd_config_write(struct vfio_pci_device *vdev, int pos,
720 int count, struct perm_bits *perm,
721 int offset, __le32 val)
722 {
723 struct pci_dev *pdev = vdev->pdev;
724 __le16 *paddr = (__le16 *)(vdev->vconfig + pos - offset + PCI_VPD_ADDR);
725 __le32 *pdata = (__le32 *)(vdev->vconfig + pos - offset + PCI_VPD_DATA);
726 u16 addr;
727 u32 data;
728
729 /*
730 * Write through to emulation. If the write includes the upper byte
731 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
732 * have work to do.
733 */
734 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
735 if (count < 0 || offset > PCI_VPD_ADDR + 1 ||
736 offset + count <= PCI_VPD_ADDR + 1)
737 return count;
738
739 addr = le16_to_cpu(*paddr);
740
741 if (addr & PCI_VPD_ADDR_F) {
742 data = le32_to_cpu(*pdata);
743 if (pci_write_vpd(pdev, addr & ~PCI_VPD_ADDR_F, 4, &data) != 4)
744 return count;
745 } else {
746 data = 0;
747 if (pci_read_vpd(pdev, addr, 4, &data) < 0)
748 return count;
749 *pdata = cpu_to_le32(data);
750 }
751
752 /*
753 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
754 * signal completion. If an error occurs above, we assume that not
755 * toggling this bit will induce a driver timeout.
756 */
757 addr ^= PCI_VPD_ADDR_F;
758 *paddr = cpu_to_le16(addr);
759
760 return count;
761 }
762
763 /* Permissions for Vital Product Data capability */
init_pci_cap_vpd_perm(struct perm_bits * perm)764 static int __init init_pci_cap_vpd_perm(struct perm_bits *perm)
765 {
766 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_VPD]))
767 return -ENOMEM;
768
769 perm->writefn = vfio_vpd_config_write;
770
771 /*
772 * We always virtualize the next field so we can remove
773 * capabilities from the chain if we want to.
774 */
775 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
776
777 /*
778 * Both the address and data registers are virtualized to
779 * enable access through the pci_vpd_read/write functions
780 */
781 p_setw(perm, PCI_VPD_ADDR, (u16)ALL_VIRT, (u16)ALL_WRITE);
782 p_setd(perm, PCI_VPD_DATA, ALL_VIRT, ALL_WRITE);
783
784 return 0;
785 }
786
787 /* Permissions for PCI-X capability */
init_pci_cap_pcix_perm(struct perm_bits * perm)788 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
789 {
790 /* Alloc 24, but only 8 are used in v0 */
791 if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
792 return -ENOMEM;
793
794 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
795
796 p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
797 p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
798 return 0;
799 }
800
vfio_exp_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)801 static int vfio_exp_config_write(struct vfio_pci_device *vdev, int pos,
802 int count, struct perm_bits *perm,
803 int offset, __le32 val)
804 {
805 __le16 *ctrl = (__le16 *)(vdev->vconfig + pos -
806 offset + PCI_EXP_DEVCTL);
807 int readrq = le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ;
808
809 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
810 if (count < 0)
811 return count;
812
813 /*
814 * The FLR bit is virtualized, if set and the device supports PCIe
815 * FLR, issue a reset_function. Regardless, clear the bit, the spec
816 * requires it to be always read as zero. NB, reset_function might
817 * not use a PCIe FLR, we don't have that level of granularity.
818 */
819 if (*ctrl & cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR)) {
820 u32 cap;
821 int ret;
822
823 *ctrl &= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR);
824
825 ret = pci_user_read_config_dword(vdev->pdev,
826 pos - offset + PCI_EXP_DEVCAP,
827 &cap);
828
829 if (!ret && (cap & PCI_EXP_DEVCAP_FLR))
830 pci_try_reset_function(vdev->pdev);
831 }
832
833 /*
834 * MPS is virtualized to the user, writes do not change the physical
835 * register since determining a proper MPS value requires a system wide
836 * device view. The MRRS is largely independent of MPS, but since the
837 * user does not have that system-wide view, they might set a safe, but
838 * inefficiently low value. Here we allow writes through to hardware,
839 * but we set the floor to the physical device MPS setting, so that
840 * we can at least use full TLPs, as defined by the MPS value.
841 *
842 * NB, if any devices actually depend on an artificially low MRRS
843 * setting, this will need to be revisited, perhaps with a quirk
844 * though pcie_set_readrq().
845 */
846 if (readrq != (le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ)) {
847 readrq = 128 <<
848 ((le16_to_cpu(*ctrl) & PCI_EXP_DEVCTL_READRQ) >> 12);
849 readrq = max(readrq, pcie_get_mps(vdev->pdev));
850
851 pcie_set_readrq(vdev->pdev, readrq);
852 }
853
854 return count;
855 }
856
857 /* Permissions for PCI Express capability */
init_pci_cap_exp_perm(struct perm_bits * perm)858 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
859 {
860 /* Alloc largest of possible sizes */
861 if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
862 return -ENOMEM;
863
864 perm->writefn = vfio_exp_config_write;
865
866 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
867
868 /*
869 * Allow writes to device control fields, except devctl_phantom,
870 * which could confuse IOMMU, MPS, which can break communication
871 * with other physical devices, and the ARI bit in devctl2, which
872 * is set at probe time. FLR and MRRS get virtualized via our
873 * writefn.
874 */
875 p_setw(perm, PCI_EXP_DEVCTL,
876 PCI_EXP_DEVCTL_BCR_FLR | PCI_EXP_DEVCTL_PAYLOAD |
877 PCI_EXP_DEVCTL_READRQ, ~PCI_EXP_DEVCTL_PHANTOM);
878 p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
879 return 0;
880 }
881
vfio_af_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)882 static int vfio_af_config_write(struct vfio_pci_device *vdev, int pos,
883 int count, struct perm_bits *perm,
884 int offset, __le32 val)
885 {
886 u8 *ctrl = vdev->vconfig + pos - offset + PCI_AF_CTRL;
887
888 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
889 if (count < 0)
890 return count;
891
892 /*
893 * The FLR bit is virtualized, if set and the device supports AF
894 * FLR, issue a reset_function. Regardless, clear the bit, the spec
895 * requires it to be always read as zero. NB, reset_function might
896 * not use an AF FLR, we don't have that level of granularity.
897 */
898 if (*ctrl & PCI_AF_CTRL_FLR) {
899 u8 cap;
900 int ret;
901
902 *ctrl &= ~PCI_AF_CTRL_FLR;
903
904 ret = pci_user_read_config_byte(vdev->pdev,
905 pos - offset + PCI_AF_CAP,
906 &cap);
907
908 if (!ret && (cap & PCI_AF_CAP_FLR) && (cap & PCI_AF_CAP_TP))
909 pci_try_reset_function(vdev->pdev);
910 }
911
912 return count;
913 }
914
915 /* Permissions for Advanced Function capability */
init_pci_cap_af_perm(struct perm_bits * perm)916 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
917 {
918 if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
919 return -ENOMEM;
920
921 perm->writefn = vfio_af_config_write;
922
923 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
924 p_setb(perm, PCI_AF_CTRL, PCI_AF_CTRL_FLR, PCI_AF_CTRL_FLR);
925 return 0;
926 }
927
928 /* Permissions for Advanced Error Reporting extended capability */
init_pci_ext_cap_err_perm(struct perm_bits * perm)929 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
930 {
931 u32 mask;
932
933 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
934 return -ENOMEM;
935
936 /*
937 * Virtualize the first dword of all express capabilities
938 * because it includes the next pointer. This lets us later
939 * remove capabilities from the chain if we need to.
940 */
941 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
942
943 /* Writable bits mask */
944 mask = PCI_ERR_UNC_UND | /* Undefined */
945 PCI_ERR_UNC_DLP | /* Data Link Protocol */
946 PCI_ERR_UNC_SURPDN | /* Surprise Down */
947 PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
948 PCI_ERR_UNC_FCP | /* Flow Control Protocol */
949 PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
950 PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
951 PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
952 PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
953 PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
954 PCI_ERR_UNC_ECRC | /* ECRC Error Status */
955 PCI_ERR_UNC_UNSUP | /* Unsupported Request */
956 PCI_ERR_UNC_ACSV | /* ACS Violation */
957 PCI_ERR_UNC_INTN | /* internal error */
958 PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
959 PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
960 PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
961 p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
962 p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
963 p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
964
965 mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
966 PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
967 PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
968 PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
969 PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
970 PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
971 PCI_ERR_COR_INTERNAL | /* Corrected Internal */
972 PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
973 p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
974 p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
975
976 mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
977 PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
978 p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
979 return 0;
980 }
981
982 /* Permissions for Power Budgeting extended capability */
init_pci_ext_cap_pwr_perm(struct perm_bits * perm)983 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
984 {
985 if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
986 return -ENOMEM;
987
988 p_setd(perm, 0, ALL_VIRT, NO_WRITE);
989
990 /* Writing the data selector is OK, the info is still read-only */
991 p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
992 return 0;
993 }
994
995 /*
996 * Initialize the shared permission tables
997 */
vfio_pci_uninit_perm_bits(void)998 void vfio_pci_uninit_perm_bits(void)
999 {
1000 free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
1001
1002 free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
1003 free_perm_bits(&cap_perms[PCI_CAP_ID_VPD]);
1004 free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
1005 free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
1006 free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
1007
1008 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1009 free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1010 }
1011
vfio_pci_init_perm_bits(void)1012 int __init vfio_pci_init_perm_bits(void)
1013 {
1014 int ret;
1015
1016 /* Basic config space */
1017 ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
1018
1019 /* Capabilities */
1020 ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
1021 ret |= init_pci_cap_vpd_perm(&cap_perms[PCI_CAP_ID_VPD]);
1022 ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
1023 cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1024 ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
1025 ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
1026
1027 /* Extended capabilities */
1028 ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
1029 ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
1030 ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
1031
1032 if (ret)
1033 vfio_pci_uninit_perm_bits();
1034
1035 return ret;
1036 }
1037
vfio_find_cap_start(struct vfio_pci_device * vdev,int pos)1038 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
1039 {
1040 u8 cap;
1041 int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
1042 PCI_STD_HEADER_SIZEOF;
1043 cap = vdev->pci_config_map[pos];
1044
1045 if (cap == PCI_CAP_ID_BASIC)
1046 return 0;
1047
1048 /* XXX Can we have to abutting capabilities of the same type? */
1049 while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
1050 pos--;
1051
1052 return pos;
1053 }
1054
vfio_msi_config_read(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 * val)1055 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
1056 int count, struct perm_bits *perm,
1057 int offset, __le32 *val)
1058 {
1059 /* Update max available queue size from msi_qmax */
1060 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1061 __le16 *flags;
1062 int start;
1063
1064 start = vfio_find_cap_start(vdev, pos);
1065
1066 flags = (__le16 *)&vdev->vconfig[start];
1067
1068 *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
1069 *flags |= cpu_to_le16(vdev->msi_qmax << 1);
1070 }
1071
1072 return vfio_default_config_read(vdev, pos, count, perm, offset, val);
1073 }
1074
vfio_msi_config_write(struct vfio_pci_device * vdev,int pos,int count,struct perm_bits * perm,int offset,__le32 val)1075 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
1076 int count, struct perm_bits *perm,
1077 int offset, __le32 val)
1078 {
1079 count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
1080 if (count < 0)
1081 return count;
1082
1083 /* Fixup and write configured queue size and enable to hardware */
1084 if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
1085 __le16 *pflags;
1086 u16 flags;
1087 int start, ret;
1088
1089 start = vfio_find_cap_start(vdev, pos);
1090
1091 pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
1092
1093 flags = le16_to_cpu(*pflags);
1094
1095 /* MSI is enabled via ioctl */
1096 if (!is_msi(vdev))
1097 flags &= ~PCI_MSI_FLAGS_ENABLE;
1098
1099 /* Check queue size */
1100 if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
1101 flags &= ~PCI_MSI_FLAGS_QSIZE;
1102 flags |= vdev->msi_qmax << 4;
1103 }
1104
1105 /* Write back to virt and to hardware */
1106 *pflags = cpu_to_le16(flags);
1107 ret = pci_user_write_config_word(vdev->pdev,
1108 start + PCI_MSI_FLAGS,
1109 flags);
1110 if (ret)
1111 return ret;
1112 }
1113
1114 return count;
1115 }
1116
1117 /*
1118 * MSI determination is per-device, so this routine gets used beyond
1119 * initialization time. Don't add __init
1120 */
init_pci_cap_msi_perm(struct perm_bits * perm,int len,u16 flags)1121 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
1122 {
1123 if (alloc_perm_bits(perm, len))
1124 return -ENOMEM;
1125
1126 perm->readfn = vfio_msi_config_read;
1127 perm->writefn = vfio_msi_config_write;
1128
1129 p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
1130
1131 /*
1132 * The upper byte of the control register is reserved,
1133 * just setup the lower byte.
1134 */
1135 p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
1136 p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
1137 if (flags & PCI_MSI_FLAGS_64BIT) {
1138 p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
1139 p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
1140 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1141 p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
1142 p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
1143 }
1144 } else {
1145 p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
1146 if (flags & PCI_MSI_FLAGS_MASKBIT) {
1147 p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
1148 p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
1149 }
1150 }
1151 return 0;
1152 }
1153
1154 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
vfio_msi_cap_len(struct vfio_pci_device * vdev,u8 pos)1155 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
1156 {
1157 struct pci_dev *pdev = vdev->pdev;
1158 int len, ret;
1159 u16 flags;
1160
1161 ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
1162 if (ret)
1163 return pcibios_err_to_errno(ret);
1164
1165 len = 10; /* Minimum size */
1166 if (flags & PCI_MSI_FLAGS_64BIT)
1167 len += 4;
1168 if (flags & PCI_MSI_FLAGS_MASKBIT)
1169 len += 10;
1170
1171 if (vdev->msi_perm)
1172 return len;
1173
1174 vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
1175 if (!vdev->msi_perm)
1176 return -ENOMEM;
1177
1178 ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
1179 if (ret) {
1180 kfree(vdev->msi_perm);
1181 return ret;
1182 }
1183
1184 return len;
1185 }
1186
1187 /* Determine extended capability length for VC (2 & 9) and MFVC */
vfio_vc_cap_len(struct vfio_pci_device * vdev,u16 pos)1188 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
1189 {
1190 struct pci_dev *pdev = vdev->pdev;
1191 u32 tmp;
1192 int ret, evcc, phases, vc_arb;
1193 int len = PCI_CAP_VC_BASE_SIZEOF;
1194
1195 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
1196 if (ret)
1197 return pcibios_err_to_errno(ret);
1198
1199 evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
1200 ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
1201 if (ret)
1202 return pcibios_err_to_errno(ret);
1203
1204 if (tmp & PCI_VC_CAP2_128_PHASE)
1205 phases = 128;
1206 else if (tmp & PCI_VC_CAP2_64_PHASE)
1207 phases = 64;
1208 else if (tmp & PCI_VC_CAP2_32_PHASE)
1209 phases = 32;
1210 else
1211 phases = 0;
1212
1213 vc_arb = phases * 4;
1214
1215 /*
1216 * Port arbitration tables are root & switch only;
1217 * function arbitration tables are function 0 only.
1218 * In either case, we'll never let user write them so
1219 * we don't care how big they are
1220 */
1221 len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1222 if (vc_arb) {
1223 len = round_up(len, 16);
1224 len += vc_arb / 8;
1225 }
1226 return len;
1227 }
1228
vfio_cap_len(struct vfio_pci_device * vdev,u8 cap,u8 pos)1229 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1230 {
1231 struct pci_dev *pdev = vdev->pdev;
1232 u32 dword;
1233 u16 word;
1234 u8 byte;
1235 int ret;
1236
1237 switch (cap) {
1238 case PCI_CAP_ID_MSI:
1239 return vfio_msi_cap_len(vdev, pos);
1240 case PCI_CAP_ID_PCIX:
1241 ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1242 if (ret)
1243 return pcibios_err_to_errno(ret);
1244
1245 if (PCI_X_CMD_VERSION(word)) {
1246 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1247 /* Test for extended capabilities */
1248 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE,
1249 &dword);
1250 vdev->extended_caps = (dword != 0);
1251 }
1252 return PCI_CAP_PCIX_SIZEOF_V2;
1253 } else
1254 return PCI_CAP_PCIX_SIZEOF_V0;
1255 case PCI_CAP_ID_VNDR:
1256 /* length follows next field */
1257 ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1258 if (ret)
1259 return pcibios_err_to_errno(ret);
1260
1261 return byte;
1262 case PCI_CAP_ID_EXP:
1263 if (pdev->cfg_size > PCI_CFG_SPACE_SIZE) {
1264 /* Test for extended capabilities */
1265 pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1266 vdev->extended_caps = (dword != 0);
1267 }
1268
1269 /* length based on version and type */
1270 if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1) {
1271 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1272 return 0xc; /* "All Devices" only, no link */
1273 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1274 } else {
1275 if (pci_pcie_type(pdev) == PCI_EXP_TYPE_RC_END)
1276 return 0x2c; /* No link */
1277 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1278 }
1279 case PCI_CAP_ID_HT:
1280 ret = pci_read_config_byte(pdev, pos + 3, &byte);
1281 if (ret)
1282 return pcibios_err_to_errno(ret);
1283
1284 return (byte & HT_3BIT_CAP_MASK) ?
1285 HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1286 case PCI_CAP_ID_SATA:
1287 ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1288 if (ret)
1289 return pcibios_err_to_errno(ret);
1290
1291 byte &= PCI_SATA_REGS_MASK;
1292 if (byte == PCI_SATA_REGS_INLINE)
1293 return PCI_SATA_SIZEOF_LONG;
1294 else
1295 return PCI_SATA_SIZEOF_SHORT;
1296 default:
1297 pci_warn(pdev, "%s: unknown length for PCI cap %#x@%#x\n",
1298 __func__, cap, pos);
1299 }
1300
1301 return 0;
1302 }
1303
vfio_ext_cap_len(struct vfio_pci_device * vdev,u16 ecap,u16 epos)1304 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1305 {
1306 struct pci_dev *pdev = vdev->pdev;
1307 u8 byte;
1308 u32 dword;
1309 int ret;
1310
1311 switch (ecap) {
1312 case PCI_EXT_CAP_ID_VNDR:
1313 ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1314 if (ret)
1315 return pcibios_err_to_errno(ret);
1316
1317 return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1318 case PCI_EXT_CAP_ID_VC:
1319 case PCI_EXT_CAP_ID_VC9:
1320 case PCI_EXT_CAP_ID_MFVC:
1321 return vfio_vc_cap_len(vdev, epos);
1322 case PCI_EXT_CAP_ID_ACS:
1323 ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1324 if (ret)
1325 return pcibios_err_to_errno(ret);
1326
1327 if (byte & PCI_ACS_EC) {
1328 int bits;
1329
1330 ret = pci_read_config_byte(pdev,
1331 epos + PCI_ACS_EGRESS_BITS,
1332 &byte);
1333 if (ret)
1334 return pcibios_err_to_errno(ret);
1335
1336 bits = byte ? round_up(byte, 32) : 256;
1337 return 8 + (bits / 8);
1338 }
1339 return 8;
1340
1341 case PCI_EXT_CAP_ID_REBAR:
1342 ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1343 if (ret)
1344 return pcibios_err_to_errno(ret);
1345
1346 byte &= PCI_REBAR_CTRL_NBAR_MASK;
1347 byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1348
1349 return 4 + (byte * 8);
1350 case PCI_EXT_CAP_ID_DPA:
1351 ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1352 if (ret)
1353 return pcibios_err_to_errno(ret);
1354
1355 byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1356 return PCI_DPA_BASE_SIZEOF + byte + 1;
1357 case PCI_EXT_CAP_ID_TPH:
1358 ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1359 if (ret)
1360 return pcibios_err_to_errno(ret);
1361
1362 if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1363 int sts;
1364
1365 sts = dword & PCI_TPH_CAP_ST_MASK;
1366 sts >>= PCI_TPH_CAP_ST_SHIFT;
1367 return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1368 }
1369 return PCI_TPH_BASE_SIZEOF;
1370 default:
1371 pci_warn(pdev, "%s: unknown length for PCI ecap %#x@%#x\n",
1372 __func__, ecap, epos);
1373 }
1374
1375 return 0;
1376 }
1377
vfio_fill_vconfig_bytes(struct vfio_pci_device * vdev,int offset,int size)1378 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1379 int offset, int size)
1380 {
1381 struct pci_dev *pdev = vdev->pdev;
1382 int ret = 0;
1383
1384 /*
1385 * We try to read physical config space in the largest chunks
1386 * we can, assuming that all of the fields support dword access.
1387 * pci_save_state() makes this same assumption and seems to do ok.
1388 */
1389 while (size) {
1390 int filled;
1391
1392 if (size >= 4 && !(offset % 4)) {
1393 __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1394 u32 dword;
1395
1396 ret = pci_read_config_dword(pdev, offset, &dword);
1397 if (ret)
1398 return ret;
1399 *dwordp = cpu_to_le32(dword);
1400 filled = 4;
1401 } else if (size >= 2 && !(offset % 2)) {
1402 __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1403 u16 word;
1404
1405 ret = pci_read_config_word(pdev, offset, &word);
1406 if (ret)
1407 return ret;
1408 *wordp = cpu_to_le16(word);
1409 filled = 2;
1410 } else {
1411 u8 *byte = &vdev->vconfig[offset];
1412 ret = pci_read_config_byte(pdev, offset, byte);
1413 if (ret)
1414 return ret;
1415 filled = 1;
1416 }
1417
1418 offset += filled;
1419 size -= filled;
1420 }
1421
1422 return ret;
1423 }
1424
vfio_cap_init(struct vfio_pci_device * vdev)1425 static int vfio_cap_init(struct vfio_pci_device *vdev)
1426 {
1427 struct pci_dev *pdev = vdev->pdev;
1428 u8 *map = vdev->pci_config_map;
1429 u16 status;
1430 u8 pos, *prev, cap;
1431 int loops, ret, caps = 0;
1432
1433 /* Any capabilities? */
1434 ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1435 if (ret)
1436 return ret;
1437
1438 if (!(status & PCI_STATUS_CAP_LIST))
1439 return 0; /* Done */
1440
1441 ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1442 if (ret)
1443 return ret;
1444
1445 /* Mark the previous position in case we want to skip a capability */
1446 prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1447
1448 /* We can bound our loop, capabilities are dword aligned */
1449 loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1450 while (pos && loops--) {
1451 u8 next;
1452 int i, len = 0;
1453
1454 ret = pci_read_config_byte(pdev, pos, &cap);
1455 if (ret)
1456 return ret;
1457
1458 ret = pci_read_config_byte(pdev,
1459 pos + PCI_CAP_LIST_NEXT, &next);
1460 if (ret)
1461 return ret;
1462
1463 if (cap <= PCI_CAP_ID_MAX) {
1464 len = pci_cap_length[cap];
1465 if (len == 0xFF) { /* Variable length */
1466 len = vfio_cap_len(vdev, cap, pos);
1467 if (len < 0)
1468 return len;
1469 }
1470 }
1471
1472 if (!len) {
1473 pci_info(pdev, "%s: hiding cap %#x@%#x\n", __func__,
1474 cap, pos);
1475 *prev = next;
1476 pos = next;
1477 continue;
1478 }
1479
1480 /* Sanity check, do we overlap other capabilities? */
1481 for (i = 0; i < len; i++) {
1482 if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1483 continue;
1484
1485 pci_warn(pdev, "%s: PCI config conflict @%#x, was cap %#x now cap %#x\n",
1486 __func__, pos + i, map[pos + i], cap);
1487 }
1488
1489 BUILD_BUG_ON(PCI_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1490
1491 memset(map + pos, cap, len);
1492 ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1493 if (ret)
1494 return ret;
1495
1496 prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1497 pos = next;
1498 caps++;
1499 }
1500
1501 /* If we didn't fill any capabilities, clear the status flag */
1502 if (!caps) {
1503 __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1504 *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1505 }
1506
1507 return 0;
1508 }
1509
vfio_ecap_init(struct vfio_pci_device * vdev)1510 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1511 {
1512 struct pci_dev *pdev = vdev->pdev;
1513 u8 *map = vdev->pci_config_map;
1514 u16 epos;
1515 __le32 *prev = NULL;
1516 int loops, ret, ecaps = 0;
1517
1518 if (!vdev->extended_caps)
1519 return 0;
1520
1521 epos = PCI_CFG_SPACE_SIZE;
1522
1523 loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1524
1525 while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1526 u32 header;
1527 u16 ecap;
1528 int i, len = 0;
1529 bool hidden = false;
1530
1531 ret = pci_read_config_dword(pdev, epos, &header);
1532 if (ret)
1533 return ret;
1534
1535 ecap = PCI_EXT_CAP_ID(header);
1536
1537 if (ecap <= PCI_EXT_CAP_ID_MAX) {
1538 len = pci_ext_cap_length[ecap];
1539 if (len == 0xFF) {
1540 len = vfio_ext_cap_len(vdev, ecap, epos);
1541 if (len < 0)
1542 return ret;
1543 }
1544 }
1545
1546 if (!len) {
1547 pci_info(pdev, "%s: hiding ecap %#x@%#x\n",
1548 __func__, ecap, epos);
1549
1550 /* If not the first in the chain, we can skip over it */
1551 if (prev) {
1552 u32 val = epos = PCI_EXT_CAP_NEXT(header);
1553 *prev &= cpu_to_le32(~(0xffcU << 20));
1554 *prev |= cpu_to_le32(val << 20);
1555 continue;
1556 }
1557
1558 /*
1559 * Otherwise, fill in a placeholder, the direct
1560 * readfn will virtualize this automatically
1561 */
1562 len = PCI_CAP_SIZEOF;
1563 hidden = true;
1564 }
1565
1566 for (i = 0; i < len; i++) {
1567 if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1568 continue;
1569
1570 pci_warn(pdev, "%s: PCI config conflict @%#x, was ecap %#x now ecap %#x\n",
1571 __func__, epos + i, map[epos + i], ecap);
1572 }
1573
1574 /*
1575 * Even though ecap is 2 bytes, we're currently a long way
1576 * from exceeding 1 byte capabilities. If we ever make it
1577 * up to 0xFE we'll need to up this to a two-byte, byte map.
1578 */
1579 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID_VIRT);
1580
1581 memset(map + epos, ecap, len);
1582 ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1583 if (ret)
1584 return ret;
1585
1586 /*
1587 * If we're just using this capability to anchor the list,
1588 * hide the real ID. Only count real ecaps. XXX PCI spec
1589 * indicates to use cap id = 0, version = 0, next = 0 if
1590 * ecaps are absent, hope users check all the way to next.
1591 */
1592 if (hidden)
1593 *(__le32 *)&vdev->vconfig[epos] &=
1594 cpu_to_le32((0xffcU << 20));
1595 else
1596 ecaps++;
1597
1598 prev = (__le32 *)&vdev->vconfig[epos];
1599 epos = PCI_EXT_CAP_NEXT(header);
1600 }
1601
1602 if (!ecaps)
1603 *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1604
1605 return 0;
1606 }
1607
1608 /*
1609 * Nag about hardware bugs, hopefully to have vendors fix them, but at least
1610 * to collect a list of dependencies for the VF INTx pin quirk below.
1611 */
1612 static const struct pci_device_id known_bogus_vf_intx_pin[] = {
1613 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x270c) },
1614 {}
1615 };
1616
1617 /*
1618 * For each device we allocate a pci_config_map that indicates the
1619 * capability occupying each dword and thus the struct perm_bits we
1620 * use for read and write. We also allocate a virtualized config
1621 * space which tracks reads and writes to bits that we emulate for
1622 * the user. Initial values filled from device.
1623 *
1624 * Using shared struct perm_bits between all vfio-pci devices saves
1625 * us from allocating cfg_size buffers for virt and write for every
1626 * device. We could remove vconfig and allocate individual buffers
1627 * for each area requiring emulated bits, but the array of pointers
1628 * would be comparable in size (at least for standard config space).
1629 */
vfio_config_init(struct vfio_pci_device * vdev)1630 int vfio_config_init(struct vfio_pci_device *vdev)
1631 {
1632 struct pci_dev *pdev = vdev->pdev;
1633 u8 *map, *vconfig;
1634 int ret;
1635
1636 /*
1637 * Config space, caps and ecaps are all dword aligned, so we could
1638 * use one byte per dword to record the type. However, there are
1639 * no requiremenst on the length of a capability, so the gap between
1640 * capabilities needs byte granularity.
1641 */
1642 map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1643 if (!map)
1644 return -ENOMEM;
1645
1646 vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1647 if (!vconfig) {
1648 kfree(map);
1649 return -ENOMEM;
1650 }
1651
1652 vdev->pci_config_map = map;
1653 vdev->vconfig = vconfig;
1654
1655 memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1656 memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1657 pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1658
1659 ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1660 if (ret)
1661 goto out;
1662
1663 vdev->bardirty = true;
1664
1665 /*
1666 * XXX can we just pci_load_saved_state/pci_restore_state?
1667 * may need to rebuild vconfig after that
1668 */
1669
1670 /* For restore after reset */
1671 vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1672 vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1673 vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1674 vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1675 vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1676 vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1677 vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1678
1679 if (pdev->is_virtfn) {
1680 *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1681 *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1682
1683 /*
1684 * Per SR-IOV spec rev 1.1, 3.4.1.18 the interrupt pin register
1685 * does not apply to VFs and VFs must implement this register
1686 * as read-only with value zero. Userspace is not readily able
1687 * to identify whether a device is a VF and thus that the pin
1688 * definition on the device is bogus should it violate this
1689 * requirement. We already virtualize the pin register for
1690 * other purposes, so we simply need to replace the bogus value
1691 * and consider VFs when we determine INTx IRQ count.
1692 */
1693 if (vconfig[PCI_INTERRUPT_PIN] &&
1694 !pci_match_id(known_bogus_vf_intx_pin, pdev))
1695 pci_warn(pdev,
1696 "Hardware bug: VF reports bogus INTx pin %d\n",
1697 vconfig[PCI_INTERRUPT_PIN]);
1698
1699 vconfig[PCI_INTERRUPT_PIN] = 0; /* Gratuitous for good VFs */
1700 }
1701
1702 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) || vdev->nointx)
1703 vconfig[PCI_INTERRUPT_PIN] = 0;
1704
1705 ret = vfio_cap_init(vdev);
1706 if (ret)
1707 goto out;
1708
1709 ret = vfio_ecap_init(vdev);
1710 if (ret)
1711 goto out;
1712
1713 return 0;
1714
1715 out:
1716 kfree(map);
1717 vdev->pci_config_map = NULL;
1718 kfree(vconfig);
1719 vdev->vconfig = NULL;
1720 return pcibios_err_to_errno(ret);
1721 }
1722
vfio_config_free(struct vfio_pci_device * vdev)1723 void vfio_config_free(struct vfio_pci_device *vdev)
1724 {
1725 kfree(vdev->vconfig);
1726 vdev->vconfig = NULL;
1727 kfree(vdev->pci_config_map);
1728 vdev->pci_config_map = NULL;
1729 kfree(vdev->msi_perm);
1730 vdev->msi_perm = NULL;
1731 }
1732
1733 /*
1734 * Find the remaining number of bytes in a dword that match the given
1735 * position. Stop at either the end of the capability or the dword boundary.
1736 */
vfio_pci_cap_remaining_dword(struct vfio_pci_device * vdev,loff_t pos)1737 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1738 loff_t pos)
1739 {
1740 u8 cap = vdev->pci_config_map[pos];
1741 size_t i;
1742
1743 for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1744 /* nop */;
1745
1746 return i;
1747 }
1748
vfio_config_do_rw(struct vfio_pci_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1749 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1750 size_t count, loff_t *ppos, bool iswrite)
1751 {
1752 struct pci_dev *pdev = vdev->pdev;
1753 struct perm_bits *perm;
1754 __le32 val = 0;
1755 int cap_start = 0, offset;
1756 u8 cap_id;
1757 ssize_t ret;
1758
1759 if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1760 *ppos + count > pdev->cfg_size)
1761 return -EFAULT;
1762
1763 /*
1764 * Chop accesses into aligned chunks containing no more than a
1765 * single capability. Caller increments to the next chunk.
1766 */
1767 count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1768 if (count >= 4 && !(*ppos % 4))
1769 count = 4;
1770 else if (count >= 2 && !(*ppos % 2))
1771 count = 2;
1772 else
1773 count = 1;
1774
1775 ret = count;
1776
1777 cap_id = vdev->pci_config_map[*ppos];
1778
1779 if (cap_id == PCI_CAP_ID_INVALID) {
1780 perm = &unassigned_perms;
1781 cap_start = *ppos;
1782 } else if (cap_id == PCI_CAP_ID_INVALID_VIRT) {
1783 perm = &virt_perms;
1784 cap_start = *ppos;
1785 } else {
1786 if (*ppos >= PCI_CFG_SPACE_SIZE) {
1787 WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1788
1789 perm = &ecap_perms[cap_id];
1790 cap_start = vfio_find_cap_start(vdev, *ppos);
1791 } else {
1792 WARN_ON(cap_id > PCI_CAP_ID_MAX);
1793
1794 perm = &cap_perms[cap_id];
1795
1796 if (cap_id == PCI_CAP_ID_MSI)
1797 perm = vdev->msi_perm;
1798
1799 if (cap_id > PCI_CAP_ID_BASIC)
1800 cap_start = vfio_find_cap_start(vdev, *ppos);
1801 }
1802 }
1803
1804 WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1805 WARN_ON(cap_start > *ppos);
1806
1807 offset = *ppos - cap_start;
1808
1809 if (iswrite) {
1810 if (!perm->writefn)
1811 return ret;
1812
1813 if (copy_from_user(&val, buf, count))
1814 return -EFAULT;
1815
1816 ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1817 } else {
1818 if (perm->readfn) {
1819 ret = perm->readfn(vdev, *ppos, count,
1820 perm, offset, &val);
1821 if (ret < 0)
1822 return ret;
1823 }
1824
1825 if (copy_to_user(buf, &val, count))
1826 return -EFAULT;
1827 }
1828
1829 return ret;
1830 }
1831
vfio_pci_config_rw(struct vfio_pci_device * vdev,char __user * buf,size_t count,loff_t * ppos,bool iswrite)1832 ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1833 size_t count, loff_t *ppos, bool iswrite)
1834 {
1835 size_t done = 0;
1836 int ret = 0;
1837 loff_t pos = *ppos;
1838
1839 pos &= VFIO_PCI_OFFSET_MASK;
1840
1841 while (count) {
1842 ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1843 if (ret < 0)
1844 return ret;
1845
1846 count -= ret;
1847 done += ret;
1848 buf += ret;
1849 pos += ret;
1850 }
1851
1852 *ppos += done;
1853
1854 return done;
1855 }
1856