1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21
22 #define DM_MSG_PREFIX "verity"
23
24 #define DM_VERITY_ENV_LENGTH 42
25 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
26
27 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
28
29 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
30
31 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
32 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
33 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
34 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
35
36 #define DM_VERITY_OPTS_MAX (2 + DM_VERITY_OPTS_FEC + \
37 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
38
39 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
40
41 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
42
43 struct dm_verity_prefetch_work {
44 struct work_struct work;
45 struct dm_verity *v;
46 sector_t block;
47 unsigned n_blocks;
48 };
49
50 /*
51 * Auxiliary structure appended to each dm-bufio buffer. If the value
52 * hash_verified is nonzero, hash of the block has been verified.
53 *
54 * The variable hash_verified is set to 0 when allocating the buffer, then
55 * it can be changed to 1 and it is never reset to 0 again.
56 *
57 * There is no lock around this value, a race condition can at worst cause
58 * that multiple processes verify the hash of the same buffer simultaneously
59 * and write 1 to hash_verified simultaneously.
60 * This condition is harmless, so we don't need locking.
61 */
62 struct buffer_aux {
63 int hash_verified;
64 };
65
66 /*
67 * Initialize struct buffer_aux for a freshly created buffer.
68 */
dm_bufio_alloc_callback(struct dm_buffer * buf)69 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
70 {
71 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
72
73 aux->hash_verified = 0;
74 }
75
76 /*
77 * Translate input sector number to the sector number on the target device.
78 */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)79 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
80 {
81 return v->data_start + dm_target_offset(v->ti, bi_sector);
82 }
83
84 /*
85 * Return hash position of a specified block at a specified tree level
86 * (0 is the lowest level).
87 * The lowest "hash_per_block_bits"-bits of the result denote hash position
88 * inside a hash block. The remaining bits denote location of the hash block.
89 */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)90 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
91 int level)
92 {
93 return block >> (level * v->hash_per_block_bits);
94 }
95
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)96 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
97 const u8 *data, size_t len,
98 struct crypto_wait *wait)
99 {
100 struct scatterlist sg;
101
102 if (likely(!is_vmalloc_addr(data))) {
103 sg_init_one(&sg, data, len);
104 ahash_request_set_crypt(req, &sg, NULL, len);
105 return crypto_wait_req(crypto_ahash_update(req), wait);
106 } else {
107 do {
108 int r;
109 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
110 flush_kernel_vmap_range((void *)data, this_step);
111 sg_init_table(&sg, 1);
112 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
113 ahash_request_set_crypt(req, &sg, NULL, this_step);
114 r = crypto_wait_req(crypto_ahash_update(req), wait);
115 if (unlikely(r))
116 return r;
117 data += this_step;
118 len -= this_step;
119 } while (len);
120 return 0;
121 }
122 }
123
124 /*
125 * Wrapper for crypto_ahash_init, which handles verity salting.
126 */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait)127 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
128 struct crypto_wait *wait)
129 {
130 int r;
131
132 ahash_request_set_tfm(req, v->tfm);
133 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
134 CRYPTO_TFM_REQ_MAY_BACKLOG,
135 crypto_req_done, (void *)wait);
136 crypto_init_wait(wait);
137
138 r = crypto_wait_req(crypto_ahash_init(req), wait);
139
140 if (unlikely(r < 0)) {
141 DMERR("crypto_ahash_init failed: %d", r);
142 return r;
143 }
144
145 if (likely(v->salt_size && (v->version >= 1)))
146 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
147
148 return r;
149 }
150
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)151 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
152 u8 *digest, struct crypto_wait *wait)
153 {
154 int r;
155
156 if (unlikely(v->salt_size && (!v->version))) {
157 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
158
159 if (r < 0) {
160 DMERR("verity_hash_final failed updating salt: %d", r);
161 goto out;
162 }
163 }
164
165 ahash_request_set_crypt(req, NULL, digest, 0);
166 r = crypto_wait_req(crypto_ahash_final(req), wait);
167 out:
168 return r;
169 }
170
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest)171 int verity_hash(struct dm_verity *v, struct ahash_request *req,
172 const u8 *data, size_t len, u8 *digest)
173 {
174 int r;
175 struct crypto_wait wait;
176
177 r = verity_hash_init(v, req, &wait);
178 if (unlikely(r < 0))
179 goto out;
180
181 r = verity_hash_update(v, req, data, len, &wait);
182 if (unlikely(r < 0))
183 goto out;
184
185 r = verity_hash_final(v, req, digest, &wait);
186
187 out:
188 return r;
189 }
190
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned * offset)191 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
192 sector_t *hash_block, unsigned *offset)
193 {
194 sector_t position = verity_position_at_level(v, block, level);
195 unsigned idx;
196
197 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
198
199 if (!offset)
200 return;
201
202 idx = position & ((1 << v->hash_per_block_bits) - 1);
203 if (!v->version)
204 *offset = idx * v->digest_size;
205 else
206 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
207 }
208
209 /*
210 * Handle verification errors.
211 */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)212 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
213 unsigned long long block)
214 {
215 char verity_env[DM_VERITY_ENV_LENGTH];
216 char *envp[] = { verity_env, NULL };
217 const char *type_str = "";
218 struct mapped_device *md = dm_table_get_md(v->ti->table);
219
220 /* Corruption should be visible in device status in all modes */
221 v->hash_failed = 1;
222
223 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
224 goto out;
225
226 v->corrupted_errs++;
227
228 switch (type) {
229 case DM_VERITY_BLOCK_TYPE_DATA:
230 type_str = "data";
231 break;
232 case DM_VERITY_BLOCK_TYPE_METADATA:
233 type_str = "metadata";
234 break;
235 default:
236 BUG();
237 }
238
239 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
240 type_str, block);
241
242 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
243 DMERR("%s: reached maximum errors", v->data_dev->name);
244
245 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
246 DM_VERITY_ENV_VAR_NAME, type, block);
247
248 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
249
250 out:
251 if (v->mode == DM_VERITY_MODE_LOGGING)
252 return 0;
253
254 if (v->mode == DM_VERITY_MODE_RESTART)
255 kernel_restart("dm-verity device corrupted");
256
257 return 1;
258 }
259
260 /*
261 * Verify hash of a metadata block pertaining to the specified data block
262 * ("block" argument) at a specified level ("level" argument).
263 *
264 * On successful return, verity_io_want_digest(v, io) contains the hash value
265 * for a lower tree level or for the data block (if we're at the lowest level).
266 *
267 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
268 * If "skip_unverified" is false, unverified buffer is hashed and verified
269 * against current value of verity_io_want_digest(v, io).
270 */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)271 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
272 sector_t block, int level, bool skip_unverified,
273 u8 *want_digest)
274 {
275 struct dm_buffer *buf;
276 struct buffer_aux *aux;
277 u8 *data;
278 int r;
279 sector_t hash_block;
280 unsigned offset;
281
282 verity_hash_at_level(v, block, level, &hash_block, &offset);
283
284 data = dm_bufio_read(v->bufio, hash_block, &buf);
285 if (IS_ERR(data))
286 return PTR_ERR(data);
287
288 aux = dm_bufio_get_aux_data(buf);
289
290 if (!aux->hash_verified) {
291 if (skip_unverified) {
292 r = 1;
293 goto release_ret_r;
294 }
295
296 r = verity_hash(v, verity_io_hash_req(v, io),
297 data, 1 << v->hash_dev_block_bits,
298 verity_io_real_digest(v, io));
299 if (unlikely(r < 0))
300 goto release_ret_r;
301
302 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
303 v->digest_size) == 0))
304 aux->hash_verified = 1;
305 else if (verity_fec_decode(v, io,
306 DM_VERITY_BLOCK_TYPE_METADATA,
307 hash_block, data, NULL) == 0)
308 aux->hash_verified = 1;
309 else if (verity_handle_err(v,
310 DM_VERITY_BLOCK_TYPE_METADATA,
311 hash_block)) {
312 r = -EIO;
313 goto release_ret_r;
314 }
315 }
316
317 data += offset;
318 memcpy(want_digest, data, v->digest_size);
319 r = 0;
320
321 release_ret_r:
322 dm_bufio_release(buf);
323 return r;
324 }
325
326 /*
327 * Find a hash for a given block, write it to digest and verify the integrity
328 * of the hash tree if necessary.
329 */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)330 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
331 sector_t block, u8 *digest, bool *is_zero)
332 {
333 int r = 0, i;
334
335 if (likely(v->levels)) {
336 /*
337 * First, we try to get the requested hash for
338 * the current block. If the hash block itself is
339 * verified, zero is returned. If it isn't, this
340 * function returns 1 and we fall back to whole
341 * chain verification.
342 */
343 r = verity_verify_level(v, io, block, 0, true, digest);
344 if (likely(r <= 0))
345 goto out;
346 }
347
348 memcpy(digest, v->root_digest, v->digest_size);
349
350 for (i = v->levels - 1; i >= 0; i--) {
351 r = verity_verify_level(v, io, block, i, false, digest);
352 if (unlikely(r))
353 goto out;
354 }
355 out:
356 if (!r && v->zero_digest)
357 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
358 else
359 *is_zero = false;
360
361 return r;
362 }
363
364 /*
365 * Calculates the digest for the given bio
366 */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct crypto_wait * wait)367 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
368 struct bvec_iter *iter, struct crypto_wait *wait)
369 {
370 unsigned int todo = 1 << v->data_dev_block_bits;
371 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
372 struct scatterlist sg;
373 struct ahash_request *req = verity_io_hash_req(v, io);
374
375 do {
376 int r;
377 unsigned int len;
378 struct bio_vec bv = bio_iter_iovec(bio, *iter);
379
380 sg_init_table(&sg, 1);
381
382 len = bv.bv_len;
383
384 if (likely(len >= todo))
385 len = todo;
386 /*
387 * Operating on a single page at a time looks suboptimal
388 * until you consider the typical block size is 4,096B.
389 * Going through this loops twice should be very rare.
390 */
391 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
392 ahash_request_set_crypt(req, &sg, NULL, len);
393 r = crypto_wait_req(crypto_ahash_update(req), wait);
394
395 if (unlikely(r < 0)) {
396 DMERR("verity_for_io_block crypto op failed: %d", r);
397 return r;
398 }
399
400 bio_advance_iter(bio, iter, len);
401 todo -= len;
402 } while (todo);
403
404 return 0;
405 }
406
407 /*
408 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
409 * starting from iter.
410 */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))411 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
412 struct bvec_iter *iter,
413 int (*process)(struct dm_verity *v,
414 struct dm_verity_io *io, u8 *data,
415 size_t len))
416 {
417 unsigned todo = 1 << v->data_dev_block_bits;
418 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
419
420 do {
421 int r;
422 u8 *page;
423 unsigned len;
424 struct bio_vec bv = bio_iter_iovec(bio, *iter);
425
426 page = kmap_atomic(bv.bv_page);
427 len = bv.bv_len;
428
429 if (likely(len >= todo))
430 len = todo;
431
432 r = process(v, io, page + bv.bv_offset, len);
433 kunmap_atomic(page);
434
435 if (r < 0)
436 return r;
437
438 bio_advance_iter(bio, iter, len);
439 todo -= len;
440 } while (todo);
441
442 return 0;
443 }
444
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)445 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
446 u8 *data, size_t len)
447 {
448 memset(data, 0, len);
449 return 0;
450 }
451
452 /*
453 * Moves the bio iter one data block forward.
454 */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)455 static inline void verity_bv_skip_block(struct dm_verity *v,
456 struct dm_verity_io *io,
457 struct bvec_iter *iter)
458 {
459 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
460
461 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
462 }
463
464 /*
465 * Verify one "dm_verity_io" structure.
466 */
verity_verify_io(struct dm_verity_io * io)467 static int verity_verify_io(struct dm_verity_io *io)
468 {
469 bool is_zero;
470 struct dm_verity *v = io->v;
471 struct bvec_iter start;
472 unsigned b;
473 struct crypto_wait wait;
474
475 for (b = 0; b < io->n_blocks; b++) {
476 int r;
477 sector_t cur_block = io->block + b;
478 struct ahash_request *req = verity_io_hash_req(v, io);
479
480 if (v->validated_blocks &&
481 likely(test_bit(cur_block, v->validated_blocks))) {
482 verity_bv_skip_block(v, io, &io->iter);
483 continue;
484 }
485
486 r = verity_hash_for_block(v, io, cur_block,
487 verity_io_want_digest(v, io),
488 &is_zero);
489 if (unlikely(r < 0))
490 return r;
491
492 if (is_zero) {
493 /*
494 * If we expect a zero block, don't validate, just
495 * return zeros.
496 */
497 r = verity_for_bv_block(v, io, &io->iter,
498 verity_bv_zero);
499 if (unlikely(r < 0))
500 return r;
501
502 continue;
503 }
504
505 r = verity_hash_init(v, req, &wait);
506 if (unlikely(r < 0))
507 return r;
508
509 start = io->iter;
510 r = verity_for_io_block(v, io, &io->iter, &wait);
511 if (unlikely(r < 0))
512 return r;
513
514 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
515 &wait);
516 if (unlikely(r < 0))
517 return r;
518
519 if (likely(memcmp(verity_io_real_digest(v, io),
520 verity_io_want_digest(v, io), v->digest_size) == 0)) {
521 if (v->validated_blocks)
522 set_bit(cur_block, v->validated_blocks);
523 continue;
524 }
525 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
526 cur_block, NULL, &start) == 0)
527 continue;
528 else if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
529 cur_block))
530 return -EIO;
531 }
532
533 return 0;
534 }
535
536 /*
537 * End one "io" structure with a given error.
538 */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)539 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
540 {
541 struct dm_verity *v = io->v;
542 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
543
544 bio->bi_end_io = io->orig_bi_end_io;
545 bio->bi_status = status;
546
547 verity_fec_finish_io(io);
548
549 bio_endio(bio);
550 }
551
verity_work(struct work_struct * w)552 static void verity_work(struct work_struct *w)
553 {
554 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
555
556 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
557 }
558
verity_end_io(struct bio * bio)559 static void verity_end_io(struct bio *bio)
560 {
561 struct dm_verity_io *io = bio->bi_private;
562
563 if (bio->bi_status && !verity_fec_is_enabled(io->v)) {
564 verity_finish_io(io, bio->bi_status);
565 return;
566 }
567
568 INIT_WORK(&io->work, verity_work);
569 queue_work(io->v->verify_wq, &io->work);
570 }
571
572 /*
573 * Prefetch buffers for the specified io.
574 * The root buffer is not prefetched, it is assumed that it will be cached
575 * all the time.
576 */
verity_prefetch_io(struct work_struct * work)577 static void verity_prefetch_io(struct work_struct *work)
578 {
579 struct dm_verity_prefetch_work *pw =
580 container_of(work, struct dm_verity_prefetch_work, work);
581 struct dm_verity *v = pw->v;
582 int i;
583
584 for (i = v->levels - 2; i >= 0; i--) {
585 sector_t hash_block_start;
586 sector_t hash_block_end;
587 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
588 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
589 if (!i) {
590 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
591
592 cluster >>= v->data_dev_block_bits;
593 if (unlikely(!cluster))
594 goto no_prefetch_cluster;
595
596 if (unlikely(cluster & (cluster - 1)))
597 cluster = 1 << __fls(cluster);
598
599 hash_block_start &= ~(sector_t)(cluster - 1);
600 hash_block_end |= cluster - 1;
601 if (unlikely(hash_block_end >= v->hash_blocks))
602 hash_block_end = v->hash_blocks - 1;
603 }
604 no_prefetch_cluster:
605 dm_bufio_prefetch(v->bufio, hash_block_start,
606 hash_block_end - hash_block_start + 1);
607 }
608
609 kfree(pw);
610 }
611
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)612 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
613 {
614 struct dm_verity_prefetch_work *pw;
615
616 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
617 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
618
619 if (!pw)
620 return;
621
622 INIT_WORK(&pw->work, verity_prefetch_io);
623 pw->v = v;
624 pw->block = io->block;
625 pw->n_blocks = io->n_blocks;
626 queue_work(v->verify_wq, &pw->work);
627 }
628
629 /*
630 * Bio map function. It allocates dm_verity_io structure and bio vector and
631 * fills them. Then it issues prefetches and the I/O.
632 */
verity_map(struct dm_target * ti,struct bio * bio)633 static int verity_map(struct dm_target *ti, struct bio *bio)
634 {
635 struct dm_verity *v = ti->private;
636 struct dm_verity_io *io;
637
638 bio_set_dev(bio, v->data_dev->bdev);
639 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
640
641 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
642 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
643 DMERR_LIMIT("unaligned io");
644 return DM_MAPIO_KILL;
645 }
646
647 if (bio_end_sector(bio) >>
648 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
649 DMERR_LIMIT("io out of range");
650 return DM_MAPIO_KILL;
651 }
652
653 if (bio_data_dir(bio) == WRITE)
654 return DM_MAPIO_KILL;
655
656 io = dm_per_bio_data(bio, ti->per_io_data_size);
657 io->v = v;
658 io->orig_bi_end_io = bio->bi_end_io;
659 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
660 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
661
662 bio->bi_end_io = verity_end_io;
663 bio->bi_private = io;
664 io->iter = bio->bi_iter;
665
666 verity_fec_init_io(io);
667
668 verity_submit_prefetch(v, io);
669
670 generic_make_request(bio);
671
672 return DM_MAPIO_SUBMITTED;
673 }
674
675 /*
676 * Status: V (valid) or C (corruption found)
677 */
verity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)678 static void verity_status(struct dm_target *ti, status_type_t type,
679 unsigned status_flags, char *result, unsigned maxlen)
680 {
681 struct dm_verity *v = ti->private;
682 unsigned args = 0;
683 unsigned sz = 0;
684 unsigned x;
685
686 switch (type) {
687 case STATUSTYPE_INFO:
688 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
689 break;
690 case STATUSTYPE_TABLE:
691 DMEMIT("%u %s %s %u %u %llu %llu %s ",
692 v->version,
693 v->data_dev->name,
694 v->hash_dev->name,
695 1 << v->data_dev_block_bits,
696 1 << v->hash_dev_block_bits,
697 (unsigned long long)v->data_blocks,
698 (unsigned long long)v->hash_start,
699 v->alg_name
700 );
701 for (x = 0; x < v->digest_size; x++)
702 DMEMIT("%02x", v->root_digest[x]);
703 DMEMIT(" ");
704 if (!v->salt_size)
705 DMEMIT("-");
706 else
707 for (x = 0; x < v->salt_size; x++)
708 DMEMIT("%02x", v->salt[x]);
709 if (v->mode != DM_VERITY_MODE_EIO)
710 args++;
711 if (verity_fec_is_enabled(v))
712 args += DM_VERITY_OPTS_FEC;
713 if (v->zero_digest)
714 args++;
715 if (v->validated_blocks)
716 args++;
717 if (v->signature_key_desc)
718 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
719 if (!args)
720 return;
721 DMEMIT(" %u", args);
722 if (v->mode != DM_VERITY_MODE_EIO) {
723 DMEMIT(" ");
724 switch (v->mode) {
725 case DM_VERITY_MODE_LOGGING:
726 DMEMIT(DM_VERITY_OPT_LOGGING);
727 break;
728 case DM_VERITY_MODE_RESTART:
729 DMEMIT(DM_VERITY_OPT_RESTART);
730 break;
731 default:
732 BUG();
733 }
734 }
735 if (v->zero_digest)
736 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
737 if (v->validated_blocks)
738 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
739 sz = verity_fec_status_table(v, sz, result, maxlen);
740 if (v->signature_key_desc)
741 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
742 " %s", v->signature_key_desc);
743 break;
744 }
745 }
746
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)747 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
748 {
749 struct dm_verity *v = ti->private;
750
751 *bdev = v->data_dev->bdev;
752
753 if (v->data_start ||
754 ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
755 return 1;
756 return 0;
757 }
758
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)759 static int verity_iterate_devices(struct dm_target *ti,
760 iterate_devices_callout_fn fn, void *data)
761 {
762 struct dm_verity *v = ti->private;
763
764 return fn(ti, v->data_dev, v->data_start, ti->len, data);
765 }
766
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)767 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
768 {
769 struct dm_verity *v = ti->private;
770
771 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
772 limits->logical_block_size = 1 << v->data_dev_block_bits;
773
774 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
775 limits->physical_block_size = 1 << v->data_dev_block_bits;
776
777 blk_limits_io_min(limits, limits->logical_block_size);
778 }
779
verity_dtr(struct dm_target * ti)780 static void verity_dtr(struct dm_target *ti)
781 {
782 struct dm_verity *v = ti->private;
783
784 if (v->verify_wq)
785 destroy_workqueue(v->verify_wq);
786
787 if (v->bufio)
788 dm_bufio_client_destroy(v->bufio);
789
790 kvfree(v->validated_blocks);
791 kfree(v->salt);
792 kfree(v->root_digest);
793 kfree(v->zero_digest);
794
795 if (v->tfm)
796 crypto_free_ahash(v->tfm);
797
798 kfree(v->alg_name);
799
800 if (v->hash_dev)
801 dm_put_device(ti, v->hash_dev);
802
803 if (v->data_dev)
804 dm_put_device(ti, v->data_dev);
805
806 verity_fec_dtr(v);
807
808 kfree(v->signature_key_desc);
809
810 kfree(v);
811 }
812
verity_alloc_most_once(struct dm_verity * v)813 static int verity_alloc_most_once(struct dm_verity *v)
814 {
815 struct dm_target *ti = v->ti;
816
817 /* the bitset can only handle INT_MAX blocks */
818 if (v->data_blocks > INT_MAX) {
819 ti->error = "device too large to use check_at_most_once";
820 return -E2BIG;
821 }
822
823 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
824 sizeof(unsigned long),
825 GFP_KERNEL);
826 if (!v->validated_blocks) {
827 ti->error = "failed to allocate bitset for check_at_most_once";
828 return -ENOMEM;
829 }
830
831 return 0;
832 }
833
verity_alloc_zero_digest(struct dm_verity * v)834 static int verity_alloc_zero_digest(struct dm_verity *v)
835 {
836 int r = -ENOMEM;
837 struct ahash_request *req;
838 u8 *zero_data;
839
840 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
841
842 if (!v->zero_digest)
843 return r;
844
845 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
846
847 if (!req)
848 return r; /* verity_dtr will free zero_digest */
849
850 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
851
852 if (!zero_data)
853 goto out;
854
855 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
856 v->zero_digest);
857
858 out:
859 kfree(req);
860 kfree(zero_data);
861
862 return r;
863 }
864
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args)865 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
866 struct dm_verity_sig_opts *verify_args)
867 {
868 int r;
869 unsigned argc;
870 struct dm_target *ti = v->ti;
871 const char *arg_name;
872
873 static const struct dm_arg _args[] = {
874 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
875 };
876
877 r = dm_read_arg_group(_args, as, &argc, &ti->error);
878 if (r)
879 return -EINVAL;
880
881 if (!argc)
882 return 0;
883
884 do {
885 arg_name = dm_shift_arg(as);
886 argc--;
887
888 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING)) {
889 v->mode = DM_VERITY_MODE_LOGGING;
890 continue;
891
892 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART)) {
893 v->mode = DM_VERITY_MODE_RESTART;
894 continue;
895
896 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
897 r = verity_alloc_zero_digest(v);
898 if (r) {
899 ti->error = "Cannot allocate zero digest";
900 return r;
901 }
902 continue;
903
904 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
905 r = verity_alloc_most_once(v);
906 if (r)
907 return r;
908 continue;
909
910 } else if (verity_is_fec_opt_arg(arg_name)) {
911 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
912 if (r)
913 return r;
914 continue;
915 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
916 r = verity_verify_sig_parse_opt_args(as, v,
917 verify_args,
918 &argc, arg_name);
919 if (r)
920 return r;
921 continue;
922
923 }
924
925 ti->error = "Unrecognized verity feature request";
926 return -EINVAL;
927 } while (argc && !r);
928
929 return r;
930 }
931
932 /*
933 * Target parameters:
934 * <version> The current format is version 1.
935 * Vsn 0 is compatible with original Chromium OS releases.
936 * <data device>
937 * <hash device>
938 * <data block size>
939 * <hash block size>
940 * <the number of data blocks>
941 * <hash start block>
942 * <algorithm>
943 * <digest>
944 * <salt> Hex string or "-" if no salt.
945 */
verity_ctr(struct dm_target * ti,unsigned argc,char ** argv)946 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
947 {
948 struct dm_verity *v;
949 struct dm_verity_sig_opts verify_args = {0};
950 struct dm_arg_set as;
951 unsigned int num;
952 unsigned long long num_ll;
953 int r;
954 int i;
955 sector_t hash_position;
956 char dummy;
957 char *root_hash_digest_to_validate;
958
959 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
960 if (!v) {
961 ti->error = "Cannot allocate verity structure";
962 return -ENOMEM;
963 }
964 ti->private = v;
965 v->ti = ti;
966
967 r = verity_fec_ctr_alloc(v);
968 if (r)
969 goto bad;
970
971 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
972 ti->error = "Device must be readonly";
973 r = -EINVAL;
974 goto bad;
975 }
976
977 if (argc < 10) {
978 ti->error = "Not enough arguments";
979 r = -EINVAL;
980 goto bad;
981 }
982
983 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
984 num > 1) {
985 ti->error = "Invalid version";
986 r = -EINVAL;
987 goto bad;
988 }
989 v->version = num;
990
991 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
992 if (r) {
993 ti->error = "Data device lookup failed";
994 goto bad;
995 }
996
997 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
998 if (r) {
999 ti->error = "Hash device lookup failed";
1000 goto bad;
1001 }
1002
1003 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1004 !num || (num & (num - 1)) ||
1005 num < bdev_logical_block_size(v->data_dev->bdev) ||
1006 num > PAGE_SIZE) {
1007 ti->error = "Invalid data device block size";
1008 r = -EINVAL;
1009 goto bad;
1010 }
1011 v->data_dev_block_bits = __ffs(num);
1012
1013 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1014 !num || (num & (num - 1)) ||
1015 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1016 num > INT_MAX) {
1017 ti->error = "Invalid hash device block size";
1018 r = -EINVAL;
1019 goto bad;
1020 }
1021 v->hash_dev_block_bits = __ffs(num);
1022
1023 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1024 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1025 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1026 ti->error = "Invalid data blocks";
1027 r = -EINVAL;
1028 goto bad;
1029 }
1030 v->data_blocks = num_ll;
1031
1032 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1033 ti->error = "Data device is too small";
1034 r = -EINVAL;
1035 goto bad;
1036 }
1037
1038 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1039 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1040 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1041 ti->error = "Invalid hash start";
1042 r = -EINVAL;
1043 goto bad;
1044 }
1045 v->hash_start = num_ll;
1046
1047 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1048 if (!v->alg_name) {
1049 ti->error = "Cannot allocate algorithm name";
1050 r = -ENOMEM;
1051 goto bad;
1052 }
1053
1054 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1055 if (IS_ERR(v->tfm)) {
1056 ti->error = "Cannot initialize hash function";
1057 r = PTR_ERR(v->tfm);
1058 v->tfm = NULL;
1059 goto bad;
1060 }
1061
1062 /*
1063 * dm-verity performance can vary greatly depending on which hash
1064 * algorithm implementation is used. Help people debug performance
1065 * problems by logging the ->cra_driver_name.
1066 */
1067 DMINFO("%s using implementation \"%s\"", v->alg_name,
1068 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1069
1070 v->digest_size = crypto_ahash_digestsize(v->tfm);
1071 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1072 ti->error = "Digest size too big";
1073 r = -EINVAL;
1074 goto bad;
1075 }
1076 v->ahash_reqsize = sizeof(struct ahash_request) +
1077 crypto_ahash_reqsize(v->tfm);
1078
1079 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1080 if (!v->root_digest) {
1081 ti->error = "Cannot allocate root digest";
1082 r = -ENOMEM;
1083 goto bad;
1084 }
1085 if (strlen(argv[8]) != v->digest_size * 2 ||
1086 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1087 ti->error = "Invalid root digest";
1088 r = -EINVAL;
1089 goto bad;
1090 }
1091 root_hash_digest_to_validate = argv[8];
1092
1093 if (strcmp(argv[9], "-")) {
1094 v->salt_size = strlen(argv[9]) / 2;
1095 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1096 if (!v->salt) {
1097 ti->error = "Cannot allocate salt";
1098 r = -ENOMEM;
1099 goto bad;
1100 }
1101 if (strlen(argv[9]) != v->salt_size * 2 ||
1102 hex2bin(v->salt, argv[9], v->salt_size)) {
1103 ti->error = "Invalid salt";
1104 r = -EINVAL;
1105 goto bad;
1106 }
1107 }
1108
1109 argv += 10;
1110 argc -= 10;
1111
1112 /* Optional parameters */
1113 if (argc) {
1114 as.argc = argc;
1115 as.argv = argv;
1116
1117 r = verity_parse_opt_args(&as, v, &verify_args);
1118 if (r < 0)
1119 goto bad;
1120 }
1121
1122 /* Root hash signature is a optional parameter*/
1123 r = verity_verify_root_hash(root_hash_digest_to_validate,
1124 strlen(root_hash_digest_to_validate),
1125 verify_args.sig,
1126 verify_args.sig_size);
1127 if (r < 0) {
1128 ti->error = "Root hash verification failed";
1129 goto bad;
1130 }
1131 v->hash_per_block_bits =
1132 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1133
1134 v->levels = 0;
1135 if (v->data_blocks)
1136 while (v->hash_per_block_bits * v->levels < 64 &&
1137 (unsigned long long)(v->data_blocks - 1) >>
1138 (v->hash_per_block_bits * v->levels))
1139 v->levels++;
1140
1141 if (v->levels > DM_VERITY_MAX_LEVELS) {
1142 ti->error = "Too many tree levels";
1143 r = -E2BIG;
1144 goto bad;
1145 }
1146
1147 hash_position = v->hash_start;
1148 for (i = v->levels - 1; i >= 0; i--) {
1149 sector_t s;
1150 v->hash_level_block[i] = hash_position;
1151 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1152 >> ((i + 1) * v->hash_per_block_bits);
1153 if (hash_position + s < hash_position) {
1154 ti->error = "Hash device offset overflow";
1155 r = -E2BIG;
1156 goto bad;
1157 }
1158 hash_position += s;
1159 }
1160 v->hash_blocks = hash_position;
1161
1162 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1163 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1164 dm_bufio_alloc_callback, NULL);
1165 if (IS_ERR(v->bufio)) {
1166 ti->error = "Cannot initialize dm-bufio";
1167 r = PTR_ERR(v->bufio);
1168 v->bufio = NULL;
1169 goto bad;
1170 }
1171
1172 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1173 ti->error = "Hash device is too small";
1174 r = -E2BIG;
1175 goto bad;
1176 }
1177
1178 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1179 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1180 if (!v->verify_wq) {
1181 ti->error = "Cannot allocate workqueue";
1182 r = -ENOMEM;
1183 goto bad;
1184 }
1185
1186 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1187 v->ahash_reqsize + v->digest_size * 2;
1188
1189 r = verity_fec_ctr(v);
1190 if (r)
1191 goto bad;
1192
1193 ti->per_io_data_size = roundup(ti->per_io_data_size,
1194 __alignof__(struct dm_verity_io));
1195
1196 verity_verify_sig_opts_cleanup(&verify_args);
1197
1198 return 0;
1199
1200 bad:
1201
1202 verity_verify_sig_opts_cleanup(&verify_args);
1203 verity_dtr(ti);
1204
1205 return r;
1206 }
1207
1208 static struct target_type verity_target = {
1209 .name = "verity",
1210 .version = {1, 5, 0},
1211 .module = THIS_MODULE,
1212 .ctr = verity_ctr,
1213 .dtr = verity_dtr,
1214 .map = verity_map,
1215 .status = verity_status,
1216 .prepare_ioctl = verity_prepare_ioctl,
1217 .iterate_devices = verity_iterate_devices,
1218 .io_hints = verity_io_hints,
1219 };
1220
dm_verity_init(void)1221 static int __init dm_verity_init(void)
1222 {
1223 int r;
1224
1225 r = dm_register_target(&verity_target);
1226 if (r < 0)
1227 DMERR("register failed %d", r);
1228
1229 return r;
1230 }
1231
dm_verity_exit(void)1232 static void __exit dm_verity_exit(void)
1233 {
1234 dm_unregister_target(&verity_target);
1235 }
1236
1237 module_init(dm_verity_init);
1238 module_exit(dm_verity_exit);
1239
1240 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1241 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1242 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1243 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1244 MODULE_LICENSE("GPL");
1245